

Project no. 826278

SERUMS

Research & Innovation Action (RIA)
SECURING MEDICAL DATA IN SMART-PATIENT HEALTHCARE SYSTEMS

Software on the Refined Verified User Authentication Scheme
D5.3

Due date of deliverable: 31st October 2020

Start date of project: 1st January 2019

Type: Deliverable
WP number: WP5

Responsible Institution: UCY
Editor and editor’s address: Marios Belk (belk@cs.ucy.ac.cy)

Partners Contributing: UCL, SOPRA, IBM, ZMC, FCRB

Reviewers: Juliana Bowles (USTAN)
Bram Elshof (Accenture)

Wanting Huang (Accenture)

Version 1.0

2

Project co-founded by the European Commission within the Horizon H2020 Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

3

Release History
Release No. Date Author(s) Release Description/Changes made

V0.01
03/02/2020 Marios Belk (UCY),

Andreas Pitsillides (UCY)

Defined TOC and added initial Executive

Summary

V0.02
04/03/2020 Marios Belk (UCY),

Christos Fidas (UCY),

Andreas Pitsillides (UCY)

Added refined general architecture and

extended description on use-case

scenarios

V0.03
09/04/2020 Marios Belk (UCY),

Christos Fidas (UCY),

Argyris Constantinides (UCY),

Andreas Pitsillides (UCY)

Added initial description of new APIs

V0.04
14/05/2020 Thomas Given-Wilson (UCL),

Marios Belk (UCY)

Added description on the verification

properties

V0.05
15/05/2020 Marios Belk (UCY),

Christos Fidas (UCY),

Argyris Constantinides (UCY),

Andreas Pitsillides (UCY)

Finalized use-case scenarios

V0.06
29/05/2020 Elias Athanasopoulos (UCY)

Added the architecture and

implementation details of the credential

hardening mechanism

V0.07
02/07/2020 Marios Belk (UCY),

Christos Fidas (UCY),

Argyris Constantinides (UCY),

Andreas Pitsillides (UCY)

Finalized new APIs

V0.08
18/09/2020 Thomas Given-Wilson (UCL),

Marios Belk (UCY)

Added description of the verification of

the user authentication system

V0.1
09/10/2020 Marios Belk (UCY),

Christos Fidas (UCY),

Elias Athanasopoulos (UCY),

Argyris Constantinides (UCY),

Andreas Pitsillides (UCY),

Thomas Given-Wilson (UCL)

First draft of the deliverable

V0.2
20/10/2020 Marios Belk (UCY),

Christos Fidas (UCY),

Elias Athanasopoulos (UCY),

Argyris Constantinides (UCY),

Andreas Pitsillides (UCY),

Thomas Given-Wilson (UCL),

Eduard Baranov (UCL)

Beta version of the deliverable for internal

review

V0.3
27/10/2020 Juliana Bowles (USTAN),

Bram Elshof (Accenture),

Wanting Huang (Accenture)

Version after partners’ comments

V0.4
30/10/2020 Marios Belk (UCY),

Christos Fidas (UCY),

Andreas Pitsillides (UCY)

Pre-final version for final check

V1.0
30/10/2020 Marios Belk (UCY),

Christos Fidas (UCY),

Andreas Pitsillides (UCY)

Release candidate

4

SERUMS Consortium

Partner 1 University of St Andrews

Contact Person Name: Juliana Bowles

Email: jkfb@st-andrews.ac.uk

Partner 2 Zuyderland Medisch Centrum

Contact Person Name: Mark Mestrum

Email: m.mestrum@zuyderland.nl

Partner 3 Accenture B.V.

Contact Person Name: Bram Elshof

Email: bram.elshof@accenture.com

Partner 4 IBM Israel Science & Technology Ltd.

Contact Person Name: Michael Vinov

Email: vinov@il.ibm.com

Partner 5 Sopra-Steria

Contact Person Name: Andre Vermeulen

Email: andreas.vermeulen@soprasteria.com

Partner 6 Université Catholique de Louvain

Contact Person Name: Axel Legay

Email: axel.legay@uclouvain.be

Partner 7 Software Competence Centre Hagenberg

Contact Person Name: Michael Rossbory

Email: michael.rossbory@scch.at

Partner 8 University of Cyprus

Contact Person Andreas Pitsillides

Email: andreas.pitsillides@ucy.ac.cy

Partner 9 Fundació Clínic per a la Recerca Biomèdica

Contact Person Name: Santiago Iriso

Email: siriso@clinic.cat

Partner 10 University of Dundee

Contact Person Name: Vladimir Janjic

Email: vjanjic001@dundee.ac.uk

5

Table of Contents

EXECUTIVE SUMMARY ... 7

1 INTRODUCTION .. 8

1.1 ROLE OF THE DELIVERABLE ... 8
1.2 RELATIONSHIP TO OTHER SERUMS DELIVERABLES ... 8
1.3 STRUCTURE OF THIS DOCUMENT .. 8

2 REFINED FLEXIBLE AND PERSONALIZED AUTHENTICATION PARADIGM 9

2.1 OVERVIEW .. 9
2.2 SUGGESTED RETROSPECTIVE APPROACH IN GRAPHICAL PASSWORDS .. 9
2.3 NEW DEVELOPED CUED-RECALL GRAPHICAL AUTHENTICATION MECHANISM ... 10

3 GENERAL ARCHITECTURE OF THE USER AUTHENTICATION SYSTEM 11

4 CREDENTIAL HARDENING .. 12

4.1 IMPLEMENTATION .. 12
4.2 STORING TEXTUAL AND GRAPHICAL PASSWORDS.. 14

5 USE-CASE SCENARIOS... 17

5.1 ADMINISTRATOR LOGIN ... 17
5.2 ADMINISTRATOR CREATES AND ACTIVATES A USER ACCOUNT ... 18
5.3 END-USER ACTIVATES ACCOUNT.. 18
5.4 CREATION OF THE GRAPHICAL AND TEXTUAL PASSWORD ... 19
5.5 ENABLE TWO-FACTOR AUTHENTICATION TYPE AND PAIR MOBILE DEVICE ... 21
5.6 TWO-FACTOR AUTHENTICATION LOGIN USING THE MOBILE APPLICATION ... 22

6 VERIFICATION OF AUTHENTICATION PROPERTIES .. 24

6.1 MODEL OF THE USER AUTHENTICATION SYSTEM... 25
6.2 PROPERTIES VERIFICATION ... 30
6.3 NEXT STEPS ... 30

7 CONCLUSIONS ... 31

REFERENCES .. 32

ABBREVIATIONS ... 34

APPENDIX A – REFINED PROTOTYPE DESIGNS OF THE USER INTERFACES 35

6

UI OF THE FLEXPASS HOMEPAGE AND DEMONSTRATION PAGE .. 35
UI OF THE SYSTEM ADMINISTRATOR’S PAGE .. 36
UI OF THE USER ACCOUNT REGISTRATION PAGE ... 37
UI OF THE GRAPHICAL PASSWORD CREATION PAGE ... 37
UI OF THE TEXTUAL PASSWORD CREATION PAGE .. 38
UI OF THE TWO-FACTOR AUTHENTICATION ACTIVATION PAGE .. 39
UI OF THE USER LOGIN PAGE ... 40
UI OF THE TWO-FACTOR AUTHENTICATION LOGIN PAGE .. 42
UI OF THE MOBILE APPLICATION FOR TWO-FACTOR AUTHENTICATION .. 43

APPENDIX B – RESTFUL APPLICATION PROGRAMMING INTERFACE 49

CREATE ADMIN API TOKEN ... 49
REGISTER SERUMS USER ... 50
CHECK USERNAME .. 50
SET GRAPHICAL PASSWORD .. 51
RETRIEVE GRAPHICAL INFO ... 52
CREATE JWT .. 53
SET GRAPHICAL INFO ... 54
SET PASSPHRASE ... 55
SET SECOND FACTOR ... 56
CHECK PASSPHRASE SET ... 57
REFRESH JWT .. 57
CHECK SECOND FACTOR SET .. 58
STORE GRAPHICAL LOGIN ATTEMPT .. 59
STORE PASSPHRASE LOGIN ATTEMPT .. 60
REQUEST DEVICE ENROLL ... 61
POLL ENROLL STATUS ... 62
CHECK DEVICE ENROLLED.. 63
ENROLL DEVICE ... 64
MAP FCM TO DEVICE .. 66
SUBMIT TOTP .. 67
SEND PUSH NOTIFICATION .. 68
POLL AUTH PUSH STATUS ... 68
TWO FACTOR RESPONSE ... 69
VERIFY JWT ... 70

APPENDIX C – UPDATED DATABASE DESIGN (ENTITY-RELATIONSHIP DIAGRAM) 72

7

Executive Summary

Securing Medical Data in Smart Patient-Centric Healthcare Systems (Serums) is a research project
supported by the European Commission (EC) under the Horizon 2020 program. This is the third
deliverable of Work Package 5: “Authentication and Trust”. The leader of this work package is UCY,
with involvement from the following partners: UCL, SOPRA, IBM, ZMC, FCRB. The objective of this

work package is focused on designing and developing a user-centric authentication system aiming to
deliver a secure, personalized and usable authentication mechanism to each user’s preference and

interaction device, in order to preserve security and improve usability. The primary goals are to: i)
provide high levels of security to confirm the identity of each user and accordingly authorize access to
certain parts of personal and/or medical data in the system; and ii) improve the usability levels of the
user authentication mechanisms by increasing memorability of selected secrets and task execution

efficiency and effectiveness.

This deliverable, entitled “D5.3. Software on the Refined Verified User Authentication Scheme”
describes the outcome and overall methodology that has been applied for the design and development
of the refined software of the user authentication scheme. A User-Centered Design methodology will
be adopted for developing and finalizing the user authentication scheme through multiple iterations
(three releases are anticipated; initial, refined, final software) that will be used for evaluation studies.
This deliverable produced the second version (refined) software of the user authentication scheme.

8

1 Introduction

1.1 Role of the Deliverable

The role of this deliverable is to report the design and development of the refined software of the user
authentication scheme. Specifically, it reports: i) the improved user authentication paradigm based on
a novel retrospective approach in graphical passwords; ii) the updated architecture of the user
authentication scheme; iii) the architectural design and development details of the credential hardening
mechanism; iv) the sequence diagrams of new, refined authentication use-case scenarios; v) the
description of the new, refined Application Programming Interface (API) and updated database design

of the user authentication scheme; vi) the improved prototype designs of the user interfaces of the
authentication system; and vii) results of the verification of the user authentication system. The outcome

of the deliverable constitutes the basis for the development of the final Serums authentication system
and the evaluation of the second Proof of Concept (PoC2).

1.2 Relationship to Other Serums Deliverables

Deliverable Relation

D2.5: Report on Final Specification of Smart

Patient Health Records

Specifications of D5.3 will be used as input in the final

specification of the Smart Patient Health Records

D2.6: Final Software for Storage, Access,

Blockchain and Metadata Extraction for Smart

Patient Health Records

The refined API of D5.3 is used as input in the final

software of the Smart Patient Health Records

D4.3: Report on Final Data Fabrication and

Semantic-Preserving Encryption

Characteristics of the updated database schema of D5.3 will

be used as input for data fabrication and semantic-

preserving encryption

D5.4: Report on Final User Authentication

System

The outcome of D5.3 will be used as input for further

developing and improving the development of the third

development cycle of the user authentication scheme

D6.2: Report on Refined Smart Health Centre

System Software

The outcome of D5.3 will be used as input for the refined

version of the integrated smart healthcare system software

D7.5: Report on Refined Use Cases and

Evaluation

The second version of the prototype designs of the user

authentication scheme that were produced in D5.3 will be

used in the context of the evaluation studies of PoC2

1.3 Structure of this Document

The rest of the document is structured as follows: Chapter 2 describes the refined authentication
paradigm. Chapter 3 describes the updated general architecture of the user authentication system.
Chapter 4 provides implementation details of the credential hardening mechanism. Chapter 5 describes
the sequence diagrams of the new and refined user authentication scenarios. Chapter 6 describes the
results of the user authentication component verification. Chapter 7 concludes the deliverable.
APPENDIX A presents the new and refined front-end designs of the user authentication screens, which
were designed based on the primacy use-case scenarios defined in Chapter 5. APPENDIX B and C
respectively describe the refined API of the user authentication system, and the refined design of the

database.

9

2 Refined Flexible and Personalized Authentication Paradigm

In this chapter we present the refined flexible and personalized authentication paradigm that is based
on a novel retrospective approach in graphical passwords.

2.1 Overview

Building on the first version of the user authentication system [2], and the feedback gathered from the
first proof-of-concept evaluation cycle, we have refined the FlexPass authentication paradigm [3] with
regards to the graphical authentication process. In particular, FlexPass allows users to create secret
picture passwords in which users are required to remember a secret combination of three areas on an

image by drawing them on the image. Building on existing work, which has shown that using images
based on the users’ prior experiences and activities improves security and memorability [3-8], FlexPass

further provides images tailored to each user’s existing daily life activities and experiences related to
locations of their healthcare organizations (e.g., cafeteria, reception hall, garden, etc.) to make them
more memorable and secure. Users are also allowed to use textual passwords by creating a secret
passphrase, which they can utilize to flexibly switch between the graphical password in order to login.
Next, we present the suggested retrospective approach in graphical passwords for personalizing images
to each user’s prior activities and experiences.

2.2 Suggested Retrospective Approach in Graphical Passwords

An important user interface design factor that affects the security strength of user-chosen PGA
passwords (Picture Gesture Authentication) is the background image used [9-11]. Research has shown
that the selections of images can be predictable since users prefer clear vs. incoherent images [12], and

choose images that illustrate people [13, 14] and sceneries [13]. In addition, users’ choices are
influenced by human attributes in an image (e.g., race, age, gender [15]), image colors and type [16].

Prior works [11, 13, 17] investigated the use of image semantics and their effects on the security of
user-chosen passwords. Images can be broadly categorized as generic (i.e., not directly relevant nor
familiar to the users, e.g., abstract, nature, landscapes, etc.) or personal (i.e., directly relevant and highly
familiar to the users, e.g., depicting people, objects, or scenes highly personal to users). Studies in [10,
11, 18] indicate that generic images are susceptible to hotspots (points on an image that attract users to
select them), thus, leading to the creation of easily predictable passwords. Subsequently, several works
focused on alleviating the hotspot issue, mainly by limiting the available choices during password
creation to prevent users from making selections on hotspots [11, 19, 20].

The use of personal images also impacts the security of user-chosen passwords, since it may result to
the creation of passwords easily guessable by someone who knows the user [17, 21, 22]. The use of

images that are familiar to the user (e.g., containing family members) increases the likelihood of certain
areas on the image to be selected as part of the password [11]. Furthermore, the fact that many users
often do not understand security features [23] may lead to the use of personal photos that violate the
privacy of others depicted in the photo, as well as theirs, since private information is revealed [24].

Hence, the aforementioned state-of-the-art approaches embrace deficiencies; when image content is
delivered randomly, the security of the graphical password is depreciated since users, in an attempt to
scaffold memorability, tend to choose easy-to-remember and predictable hotspots [17]; when users are

allowed to upload image content, security and privacy considerations also arise since users tend to
create easily guessable passwords [17] and often violate the privacy of people depicted in the uploaded
images [24]. Therefore, there is a need for a more sophisticated approach within PGA schemes to

10

achieve a better tradeoff between security and memorability [25-27]. A possible direction to achieve
this goal is a retrospective-based approach for PGA schemes [29].

A retrospective-based approach for PGA schemes aims at delivering background images to end-users
which depict sceneries that reflect users’ sociocultural experiences, on different levels of abstractions,

thus, expanding the state-of-the-art narrow spectrum (e.g., too generic or too personal) of image content
semantics in PGAs.

We suggest a five-tier model (Figure 1) of image content familiarity, namely: Individual, Group,
Organizational, National and Global, bootstrapped to the users’ prior sociocultural activities,
experiences and explicit memories. At the individual level, people have personal experiences (e.g.,
one’s experiences within her neighborhood’s cafeteria). At the group level, people have shared
experiences within the communities they belong to (e.g., one’s experiences within the volleyball team
she plays for). At the organizational level, people have experiences within their working places (e.g.,

one’s experiences within the working space area at the company she works for). At the national level,
people have nationally shared experiences (e.g., within monuments, landmarks, folklore). At the global

level, people can have experiences within places not directly relevant to their culture (e.g., experiences
when traveling).

Figure 1. Five-tier model of retrospective image content delivery inspired by Erez and Gati [28]

which indicates that culture (i.e., behaviors, attitudes and prior experiences) can be represented at
various levels in a multi-level model of culture.

2.3 New Developed Cued-Recall Graphical Authentication Mechanism

We developed a Web-based PGA-like graphical authentication scheme (Figure 2), similar to Windows
10TM PGA [30], in which users can create gesture-based passwords on a background image that acts as
a cue. Three types of gestures are allowed: taps, lines and circles. Free line gestures are not permitted;
hence, they are automatically converted into one of the three permitted gestures.

Before enrolment in the system, the mechanism provides a demonstration page, in which users can
experiment by drawing gestures on a background image. On the enrolment page, the screen is split in
two sides (Figure 2). On the left side, there are instructions about the password creation, and three

numbers (1, 2, 3) indicating the current active gesture.

11

Figure 2. A picture password illustrating the three gestures on the background image. The left image
illustrates a generic image (not familiar to an end-user), the right image illustrates a personalized

image (a public image of the ZMC hospital use-case).

On the right side, there is the background image on which users can create their passwords by drawing
three gestures. After each gesture is drawn, the shape of the gesture is temporarily displayed on the

screen at the corresponding location, to provide feedback to the user that the gesture has been captured
by the mechanism. Users are required to redraw the three gestures to confirm their graphical password.

During the login task, the user is presented with the same page and the user is required to enter the
graphical password by reproducing all three gestures. The mechanism compares the entered password
with the stored one and login is considered successful if (a) all three gestures (ordering, type, and
directionality) match with the stored ones; and (b) the tolerance distance between the entered gestures
and the stored ones fit in the predefined tolerance threshold.

3 General Architecture of the User Authentication System

In this chapter we present the refined architectural design of the developed user authentication system.
Figure 3 illustrates the refined high-level architectural design of the user authentication system, which
now includes a password-hardening component (please see Section 3). The user authentication API is

built and deployed using Docker (version: 19.03.13, API version: 1.40) and it is hosted at the University
of Cyprus’ (UCY) premises on a Kernel-based Virtual Machine (KVM) running CentOS Linux version

7 with 1GB of RAM and 40GB of disk space. The APIs have been implemented as a Django application
in Python 3.7.4, using the Django REST Framework (DRF), which is an open-source Python and
Django library intended for building Web APIs. The main benefits of using DRF include the feature of
Web-browsable API, the support of broad categories of authentication schemes, and the powerful
serialization for converting complex data into native Python data types. For the deployment of the
Django application we use a modified Apache HTTP Server with an extension of the mod_ssl module
for credential hardening, and mod_wsgi, which is an Apache module that can host any Python WSGI
(Web Server Gateway Interface) application. Furthermore, to support fast request-response cycles and
deal with time-consuming tasks we use Celery, which is an asynchronous task queue based on
distributed message passing. We also use RabbitMQ as the external message broker solution required
by Celery. To store users’ data, we use PostgreSQL which is an open-source Relational Database
Management System (RDBMS) commonly used within Django applications.

12

Figure 3. Refined high-level architectural design and technologies used.

4 Credential Hardening

In this section, we present how Serums employs additional countermeasures in order to defend against
attacks that are based on cracking off-line leaked credentials.

4.1 Implementation

Recall that Serums secures a text-based password using a MAC, instead of a cryptographic hash
function (please refer to D5.2 [2]). In particular, HMAC is used as provided by OpenSSL (Open Secure
Sockets Layer); the aforementioned implementation uses internally SHA-256 (Secure Hash Algorithm)
for hashing. The HMAC uses bits from the private key of the server to compute (internally) the
cryptographic hash. Figure 4 illustrates an overview of how credential hardening works in the Serums
server. In Figure 4, we assume that Web App is the front-end (User Interface) of the Serums
infrastructure.

Figure 4. Architecture for credential hardening.

13

We have implemented the credential hardening mechanism by enhancing an Apache module, therefore
it can be instantly enabled to all Web applications that run over Apache. Alternatively, it is

straightforward to realize credential hardening to other Web infrastructures, as long as they support
TLS connections. We now expand on all Apache-based modifications and then on all Web application

modifications required for deploying credential hardening.

Credential hardening builds on the existing mod_ssl module by adding a new hook. This can be done
by modifying mod_ssl.c, where all the hooks needed to the Apache for serving TLS connections are
set. Our hook is set as APR_HOOK_FIRST and thus it is executed as soon as possible in the request

pipeline. We depict here the part where the hook is established.

...

#include "hasher.h"

...

static void ssl_register_hooks(apr_pool_t *p){

 ...

 ap_hook_handler(hasher_handler, NULL, NULL, APR_HOOK_FIRST);

 ...

}

...

Moreover, in Figure 5, we depict the core code of the entire credential hardening mechanism. Here, we
reference lines of code for each of the basic steps credential hardening does, but reading the code is not
necessary to understand the mechanics. Thus, the main handler of credential hardening does the
following.

1. Declines any requests that are not local and that do not have arguments (i.e., no password);
(lines 2-5)

2. Checks that the connection uses TLS, and drops any non-encrypted one; (lines 9-10)
3. Reads the private key –used for TLS– from the SSL context and stores it to a buffer; if the

private key is not available declines the request; (lines 12-19)
4. Decodes the argument (i.e., password) from the request’s URL; if the plain password is not

correctly encoded, the request is declined; (lines 24-28)
5. Calls the HMAC function of the OpenSSL library with parameters: (a) the cryptographic

hashing function (SHA256); (b) the private key as the key for the computed HMAC; and (c)
the password to be hashed; (lines 30-34)

6. Returns the keyed digest to the client in the form of an encrypted HTTP response. (lines 35-37)

14

1 int hasher_handler(request_rec *r) {
2 if (strcmp(r->uri,"/hmac-service")==0 && r->args!=NULL &&
3 strcmp(ap_get_remote_host(r->connection, NULL,
4 REMOTE_NAME, NULL),
5 "127.0.0.1")==0) {
6 char * key; server_rec *s = r->server;
7 SSLSrvConfigRec *sc = mySrvConfig(s);
8 modssl_ctx_t *server = sc->server;
9 if (server == NULL || server->ssl_ctx == NULL)
10 return DECLINED;
11 else {
12 EVP_PKEY * evp = SSL_CTX_get0_privatekey(server->ssl_ctx);
13 if (evp) {
14 size_t len = PRIVATE_KEY_SIZE; key = malloc(len);
15 FILE *stringFile = fmemopen(key, len, "w");
16 PEM_write_PrivateKey(stringFile, evp, NULL,
17 NULL, 0, 0, NULL);
18 fclose(stringFile);
19 } else return DECLINED;
20 }
21 char * plainPassword = getPasswordFromArgs(r->args);
22 int rounds = getRoundsFromArgs(r->args);
23 // wrong password format
24 char * dec=malloc(sizeof(char)*strlen(plainPassword)+1);
25 if (plainPassword==NULL || decode(plainPassword, dec)<0){
26 free(dec); free(key);
27 return DECLINED;
28 }
29 int rlen,i;
30 unsigned char * hashed = HMAC(EVP_sha256(),
31 key, strlen(key),
32 dec, strlen(dec), NULL, &rlen);
33 for (i=1;i<rounds;i++)
34 h = HMAC(EVP_sha256(), key, strlen(key), h, rlen, NULL, &rlen);
35 for (i = 0; i < rlen; i++) {
36 ap_rprintf(r, "%02X", h[i]);
37 }
38 free(key); free(dec); free(plainPassword);
39 return OK;
40 }
41 return DECLINED;
42 }

Figure 5. Implementation of credential hardening.

4.2 Storing Textual and Graphical Passwords

Regarding the storage of the textual password, we make a request to the Credential Hardening
component, which converts the textual password string into a Hash Message Authentication Code using
the TLS key. The final HMAC’ed textual password string is stored in the database.

With regards to the graphical password system, three types of gestures are allowed: taps (clicks), lines
and circles. Free line gestures are not permitted; hence, they are automatically converted into one of the
three permitted gestures.

For the processing of the gestures, the mechanism creates a grid of the image containing 100 squares
(segments) on the longest side, and then divides the shortest side by the same scale1. Rounding was not
applied to any decimal segments, and we allowed .25 segments size overflow at the rightmost side of

1 MicrosoftTM Picture Password blog – bit.ly/2SajCDO

15

the image. The approach of creating a grid of 100 squares allows for storing the gestures based on their
segment position on the grid rather than the coordinates in pixels. For each gesture, the following data

are stored: for taps, the (x, y) coordinates of a point, for lines the (x, y) coordinates of the starting and
ending point, and for circles the (x, y) coordinates of the center, the radius and the directionality

(clockwise/counter-clockwise).

The mechanism allows for a tolerance distance in terms of the coordinates on the grid (36 segments
around each initial selected segment are acceptable1 [27], thus, building a circle of 3 segments radius).
This tolerance allows better accuracy of users’ selections during login. However, there is no tolerance
regarding ordering, type, directionality of the gestures. During the login, the mechanism will compare
the entered password with the stored one and login will be considered successful if (a) all three gestures
(ordering, type, and directionality) match with the stored ones; and (b) the tolerance distance between
the entered gestures and the stored ones fit in the predefined tolerance threshold.

Although the approach adopted by Microsoft’s PGATM for storing the graphical passwords remains
undisclosed [14], we follow state-of-the-art research on PGA for the scenario in which all the passwords

that fall into the vicinity (as defined by the threshold) of chosen passwords are stored in a file with
hashes on the server [14]. To be able to calculate the hash of the graphical password and store it in the
file, we first need to represent the graphical password as a string. To do so, we use the following string
representation for each gesture type:

Tap: "#N|T|x1,y1"

#: Denotes the start of the gesture representation.

N: The order of the gesture. Can be any integer number in the range [1-3].

|: The first vertical bar separates the order of the gesture and the gesture type.

T: The letter “T” refers to the gesture type tap (click).

|: The second vertical bar separates the gesture type and the remaining data, i.e., (x1, y1) coordinates.

x1: The x coordinate of the tap inside the image grid.

y1: The y coordinate of the tap inside the image grid.

Circle: "#N|C|x1,y1,r,c"

#: Denotes the start of the gesture representation.

N: The order of the gesture. Can be any integer number in the range [1-3].

|: The first vertical bar separates the order of the gesture and the gesture type.

C: The letter “C” refers to the gesture type circle.

|: The second vertical bar separates the gesture type and the remaining data, i.e., (x1, y1) coordinates,
radius, and directionality.

x1: The x coordinate of the circle’s center inside the image grid.

y1: The y coordinate of the circle’s center inside the image grid.

r: The radius of the circle.

c: Boolean value that denotes whether the directionality is clockwise (True) or counter-clockwise
(False)

16

Line: "#N|C|x1,y1,x2,y2"

#: Denotes the start of the gesture representation.

N: The order of the gesture. Can be any integer number in the range [1-3].

|: The first vertical bar separates the order of the gesture and the gesture type.

L: The letter “L” refers to the gesture type line.

|: The second vertical bar separates the gesture type and the remaining data, i.e., (x1, y1) coordinates
and (x2, y2) coordinates.

x1: The x coordinate of the line’s starting point inside the image grid.

y1: The y coordinate of the line’s starting point inside the image grid.

x2: The x coordinate of the line’s ending point inside the image grid.

y2: The y coordinate of the line’s ending point inside the image grid.

Combinations based on the threshold. The final string representation of the graphical password is the

concatenation of the three strings, where each string refers to the corresponding gesture. Due to the
introduction of the tolerance, for each graphical password string we also compute all the possible

combinations that will match the initial graphical password string. After applying the tolerance to each
segment, we end up with the following combinations for each gesture type:

- Tap: A total of 4 combinations, which correspond to the tap’s (x, y) pairs of coordinates that
will match the initial graphical password string during the comparison.

- Circle: A total of 12 combinations (4 combinations for the centre * 3 combinations for the
radius), which correspond to the circle’s centre (x, y) pairs of coordinates combined with 3 radii
(initial, increased, decreased) that will match the initial graphical password string during the
comparison.

- Line: A total of 16 combinations (4 combinations for the line’s starting point * 4 combinations
for the line’s ending point), which correspond to the starting point’s (x, y) pairs of coordinates

combined with the ending point’s (x, y) pairs that will match the initial graphical password
string during the comparison.

Due to the differences in total combinations across gestures, and aiming to avoid revealing any
information about the gesture type, we take an extra step by generalizing to the most complex
combination, i.e., as in having 3 lines, which would yield 4096 combinations (16*16*16). Therefore,
in case of taps and circles, for the remaining combinations, we also generate dummy password string
combinations so we always create the maximum number of 4096 combinations. To do so, we generate
the remaining dummy password strings as 50-character strings [31].

Finally, for each of the generated combination, we make a request to the Credential Hardening
component, which converts the password string into a Hash Message Authentication Code using the

TLS key. The final HMAC’ed graphical password string is stored in a file and contains all the possible
matching combinations for a particular user. The content of this file is used during the login process, in

which the input graphical password string is first converted to an HMAC via the Credential Hardening
component and is then compared to the HMACs contained in the file for comparison.

17

5 Use-case Scenarios

The second version of the user authentication system builds on the first version of the system. For the
tasks of the first version of the user authentication system, please refer to D5.2 - Software on the Initial
Verified User Authentication System [2]. The new tasks are the following: i) administrator login; ii)
administrator creates and activates a user account2; iii) updated activation page; iv) set two-factor
authentication during registration; v) download mobile application and enroll user device; and vi) two-
factor authentication approval page. The following tasks from the first version of the system remain the
same: i) user-adaptable authentication; ii) request to reset secret; and iii) reset secret.

5.1 Administrator Login

The administrator login page aims to assure that an administrator3 (e.g., administrator from the end-
user organizations) has the right to access the Serums’ authentication administration page, which is
primarily used to create end-user (e.g., patient) accounts (Figure 6). In this phase, administrators enter
their credentials, which consist of a unique username, a secret Web-based key and their organization.
Then, the Authentication System validates the provided input details, leading to one of the following

cases: i) if the administrator does not exist in the Database, an error message is communicated to the
user interface with an informational message that the credentials are not correct; and ii) if the

credentials’ validation is successful, then an expiring API token is generated, and sent back to the
administrator’s user interface.

Figure 6. Administrator login.

2 In D5.2, an end-user could create an account, however, due to requirements’ changes, the user account is now
created by the system administrator.
3 To create system administrator accounts, we run a helper script that generates the accounts directly in the
Database. This is a special type of user that can enrol a user of any of the following types: hospital_admin;
medical_staff; and patient.

18

5.2 Administrator Creates and Activates a User Account

In this step, an administrator creates a new user account for an end-user (e.g., patient, doctor, etc.)
(Figure 7). In this phase, the user initially enters the account details of the end-user. Then, the

Authentication System checks the provided input details, leading to one of the following cases: i) if the
user does not exist in the Database, the provided input details are stored in the Database, and an

activation code is generated and sent to the Notification System. Then, an email including the activation
code is sent to the end-user and a success operation is returned to the administrator; ii) if the user already
exists in the Database, an unsuccessful operation is returned, along with a message notifying the user
that the provided user profile already exists.

Figure 7. End-user registration and account activation by administrator.

5.3 End-user Activates Account

In this step, the end-user activates the account that was created by the administrator (Figure 8). The

user enters the email and the one-time password (activation code) received in the email. Then, the
Authentication System checks the provided input details, leading to one of the following cases: i) if the
provided details are valid, the user account is activated, a success operation is returned, and the user is
redirected to the secret creation page; ii) if the provided details are not valid, an unsuccessful operation
is returned, along with a message notifying the user that the provided credentials are wrong.

19

Figure 8. User account verification and activation.

5.4 Creation of the Graphical and Textual Password

The first version of the password creation phase (D5.2 - Software on the Initial Verified User
Authentication System) has been adapted and includes the following two steps as follows. First, a grid
of personalized images to limit to the set of images linked to their hospital is illustrated to the users,

which illustrate sceneries from their hospitals. For the personalization of the images, we currently limit
the set of images to a predefined set that contains images highly relevant to the participants’ everyday

activities and experiences within their healthcare environments. The users then select their preferred
image, which is then used as a background image on which the users create a secret gesture-based
password. Three types of gestures are allowed: taps, lines and circles. After creating the graphical
password key, users may also (optionally) create a textual passphrase secret they wish (including
minimum 16 characters). Figure 9 illustrates the sequence diagram for the creation of graphical
password, and Figure 10 illustrates the sequence diagram for the creation of a textual password.

20

Figure 9. Creation of the graphical password.

Figure 10. Creation of the textual password.

21

5.5 Enable Two-Factor Authentication Type and Pair Mobile Device

After successful creation of the graphical and/or textual password, the user may choose to set a second
factor for authentication for increased security. For this purpose, a mobile application has been

developed, which is utilized by the user to login. The mobile application is downloaded and installed
by the user and then the user needs to pair the device with his/her Serums account. Before pairing the

device, an enrollment code or a QR code is generated and sent to the Web-based user interface. Figure
11 illustrates the sequence of interactions for generating the enrollment and QR codes.

Next, to pair the device, the user enters the enrolment code or scans the QR code through the mobile
phone. When codes are valid, the 2FA feature is enabled and the mobile device of the user is
successfully paired with the Serums account. Otherwise, an error message is communicated to the user.
Figure 12 illustrates the sequence of interactions for generating the enrollment and QR codes.

Figure 11. Creation of the textual password.

22

Figure 12. Pairing the user’s device based on the enrollment code or the QR code.

5.6 Two-Factor Authentication Login using the Mobile Application

In this page, a user approves or rejects the two-factor authentication (2FA) login request through his/her
smartphone’s mobile application. Two types for 2FA are supported; login through a Time-based One-

Time Password (TOTP), or through a mobile-based push notification. The user initially selects the
preferred 2FA login type (TOTP or push notification). Figure 13 illustrates the sequence of interactions
for the generation of the two-factor authentication login types.

In case the TOTP option is selected, the login screen enables a textbox, waiting for the user to enter the
code that can be found on the mobile application (Figure 14). In case the push notification option is
selected, a request is made to the Google’s Firebase Cloud Messaging Platform, which then sends the
appropriate notification to the end-user’s mobile application (Figure 15).

23

Figure 13. Generation of two-factor authentication login types.

Figure 14. Two-factor authentication login through a time-based one-time password.

24

Figure 15. Two-factor authentication login through a mobile-based push notification.

6 Verification of Authentication Properties

For the verification of the User Authentication System, we built a model in a formal language
representing the developed software. The model also includes other components of the Serums system

as well as other actors allowing us to reason about interactions between different components.
Modelling of the whole Serums system allows us to check that the behavior meets the specification.

These is also a significant part of WP6 - “Integration and Testing” that will combine the software here
with other work packages (particularly WP3 and WP4).

We are using the Uppaal tool [32] that provides an expressive modelling formalism and model checkers
allowing us to verify that the properties hold on the model. Uppaal has been used in multiple projects
to address similar challenges, for example [33, 34].

Uppaal models are defined as networks of timed automata. An example of an automaton is shown in
Figure 16.

Figure 16. Credential Hardening model.

An automaton can be considered as a graph where nodes are states of the system (e.g., ‘Receive’ state
in Figure 16 corresponds to the moment when Credential Hardening component receives a passphrase)

25

and edges are transitions defining how the system change states (e.g., the edge between ‘Receive’ and
‘Send’ states models the generation of an HMAC by the component and the preparation to send it).

Each transition has a set of optional labels. A guard is a Boolean expression controlling the enablement
of the transition (there is no guard on Figure 16; an example could be a guard on the transition from

the ‘Init’ state to the ‘Receive’ modelling the reception of a passphrase that blocks the transition if the
passphrase is empty). The second label is an update, a sequence of actions that modify the variables of
the model (a blue label on the transition between ‘Receive’ and ‘Send’ modifies the value of a variable
shared_au_ch). The updates are defined with a subset of C language. The third label is a channel
allowing automata to synchronize actions. Each channel is defined by a specific variable and transitions
of two automata labelled with the same channel are synchronized, i.e., they must be taken
simultaneously. For example, the transition from the ‘Init’ state of Figure 16 to the ‘Receive’ state is
synchronized over the channel au_ch_requestHMAC. Another automaton sending the passphrase to the

Credential Hardening component shall have a transition with the same channel and the two actions
would be performed together. It is important to note that if two transitions are synchronized and one of

the automata cannot take the transition the second one cannot take the transition either (e.g., Credential
Hardening component cannot receive a second passphrase before it finishes processing the first one).
One of the two transitions shall be an initiator of the synchronization (indicated with ‘!’) and the other
is a receiver (indicated with ‘?’). In Figure 16, sending a generated HMAC is initialized by the
Credential Hardening component while reception of the passphrase shall be initialized by another
component.

Several timed automata are combined into a network via synchronizations and shared variables. At each
point of time the network has three options to evolve to the next state: 1) by passing time 2) by one
automaton making a transition that is not synchronized with other automata 3) by several automata
making a simultaneous transition synchronized over the same channel.

6.1 Model of the User Authentication System

The current version of the model is based on the implementation developed for the second Proof-of-

Concept (PoC2). The model of the User Authentication System consists of four automata: Backend,
Frontend, and two small automata for Credential Hardening. In addition, we have a model of a patient
or doctor communicating with the system.

The model of the Backend is shown in Figure 17. The central state is the initial state of the automaton.
This automaton does not initiate any action: it waits for inputs from other components. After receiving
a request, the component performs a set of actions modelling to the implemented software. Request
procession is represented by one of the petals in the model. All requests are checked for correctness, in
particular that the required parameters send via the shared variable are present. Some requests require
checking that the user is in a database, some require checking the passphrase or JWT. In case of an
incorrect input the component returns into the initial state notifying the requestor through the

corresponding channel. In case of the correct input, the automaton performs the required actions and
return the result to the requestor. For example, if the component receive a request to create JWT

(middle-right part of the model) via au_pga_create_jwt? channel (? indicates that Backend is not an
initiator of the synchronization) it takes the value from the shared variable and parse it in order to obtain
3 parameters: username, type of passphrase (graphical or text base) and the passphrase.

26

Figure 17. Authentication Backend model

27

If the parsing has failed, the component takes the transition with !checkInput() guard, which notifies
the requestor via au_pga_incorrect_request! channel (! indicates that Backend initiates the notification)

and returns to the idle state. Similarly, if the username is not in the database, the requestor is notified
via au_pga_no_user! channel. If both checks are passed (guard checkInput() && hasIdInDb()), the

passphrase is sent to the Credential Hardening component via au_ch_requestHMAC! channel and wait
for the reply from the Credential Hardening component. The reply is compared with the correct hashed
passphrase (textual or graphical depending on the parameter) and either return wrong credentials
message or a generated JWT. The API for the second factor authentication is not yet included in the
model.

The model for Credential Hardening component (Figure 16) is simple: it gets the passphrase from the
User Authentication component, creates a HMAC and sends it back. Note that the model being an
abstraction of the original system does not include full implementation of the HMAC procedure. Since

the implementation of the function is taken from the standard openssl library, we assume the
implementation to be correct and, in the model, we assume that the original passphrase cannot be

recovered from the HMAC. The function generate in the model is returning the input.

The model for the Frontend component is shown in Figures 18 and 19. The Signup and Login behaviors
are included in this model. Signup starts from the bottom right state by getting the username followed
by creation of the graphical password, textual passphrase and a placeholder for the second factor
authentication. In Figure 18, the procedure follows the circle in a counterclockwise direction and in
case of any failure the model moves to the state in the center followed by patient notification. The login
procedure also starts with receiving of the username. The Backend component shows which type of
identification is available for the user and requesting a passphrase or a graphical password afterwards.
In Figure 19, the procedure starts from the bottom left state and moves in a counterclockwise direction.
In case of successful password check, the Frontend returns a JWT to the user. The Frontend component

interacts with both Backend and Users.

Figure 20 illustrates the interaction of a patient with the Authentication system. A sequence of actions

showed in the right-top part of the Figure 20 shows the actions required by a Sign up procedure. The
left part of the figure shows the Login actions. Both procedures follow the circle in a counter-clockwise
direction from the bottom right state.

28

Figure 18. Authentication front-end: Sign up procedure.

29

Figure 19. Authentication front-end model: Login procedure.

Figure 20. Patient model for authentication system.

30

6.2 Properties Verification

For the verification of a model, the properties are checked with the Uppaal model checker. The
properties shall be expressed in the Uppaal query language based on a simplified version of Timed
Computation Tree Logic (TCTL). In the following queries we would use an expression of a form A[]
p which means that the property p is required to hold in all states on all execution paths. At this stage
we have successfully verified several simple safety properties like:

- The model does not deadlock, i.e. the model does not have a state from which it cannot progress.

This is checked with the following query: A[] !deadlock.

- The user cannot login and receive a JWT if he has not signed up. The property is checked with the

following query: A[] ((Patient.JWT != -1) => Patient.has_signedup). Each Patient has a Boolean
variable has_signedup initialized to False. After successful completion of the Sign up procedure,
the variable is set to True. A JWT variable is equal to -1 (an initial value) if the patient is not logged
in. At the end of the successful login procedure, the Authentication component sends a JWT to the
patient that is stored in this variable. In this and the following query, we assume that the patient
does not attempt to update the JWT variable without receiving the JWT from the Authentication
component.

- The user cannot receive a JWT if he uses incorrect passphrase or graphical pass. The property is
checked by minor modification of the Patient model forcing to use an incorrect password. The
model checker verifies that such patient never receives JWT: A[] (Patient.JWT== -1). As in the
previous property, the JWT variable is updated only after the successful login procedure, therefore
the query checks that all login attempts are unsuccessful.

- An issued JWT can be verified by the Authentication system. This property can be checked by
adding an additional transition synchronized with the Backend on a channel au_pga_verify_jwt
and adding a Boolean variable that is set to True if the JWT verification fails. The model checker

verifies that the property holds: A[] (! Backend.jwt_unverified).

- A dual to the previous property: a fake JWT fails verification by the Authentication system. The

Frontend component sends a fake JWT to the Backend with the assumption that the key used to
sign the JWT is unknown to the creator of the fake JWT. A boolean variable is set to True if the
JWT verification succeeds: A[] (! Backend.jwt_approved).

6.3 Next Steps

The model will be further developed incorporating second factor authentication and the developed

components will be integrated in the global Serums model. That would allow us to verify properties
related to authentication for the whole Serums system, in particular that the generated JWT can be used

to authenticate user by other Serums components. For the security properties, attacker will be modelled
on the Authentication component level and on the global Serums system level. This will exploit attack
models to explore how to violate the correct behaviors of the system and find potential vulnerabilities
such as in [35].

The software developed in WP5 will also be tested using fuzzing techniques that can identify
unexpected behaviors that would violate correctness and be beyond the capability of some formal
methods [36]. Note that the approaches used in [36] also incorporate testing of the smart contracts that
use the authentication from WP5.

31

The validation of the metrics described in D7.4 “Guessability” and “Password cracking rate” will also
be checked by implementation of the defined algorithms to ensure conformance. These will be validated

to be implemented correctly and that authentication requires adequate security metrics from users of
the Serums software developed in WP5.

7 Conclusions

The aim of this deliverable D5.3. - “Software on the Refined Verified User Authentication Scheme” is
to report the outcome of the design and development of the refined software of the user authentication
scheme. This includes the improved authentication paradigm based on a novel retrospective approach
in graphical passwords, the refined general architecture design, the development details of the credential
hardening component, the sequence diagrams of new use-case scenarios of the user authentication
scheme, the design of the front-end prototypes of the second user authentication system, the results of
the verification of the authentication properties, and the description of the core endpoints of the
Application Programming Interface.

The outcome of this deliverable will be used as an essential input for other tasks and deliverables in
Serums. Specifically, the refined API and the underlying database will be used as input in D2.5 and

D2.6 for the final specifications and final software of the Smart Patient Health Records, and in D4.3 for
the final data fabrication and semantic-preserving encryption. The refined authentication architecture,
APIs and database will be used as an essential input in D6.2 for integrating the authentication system
in the overall Serums’ smart healthcare system software. The refined user interface designs of the user
authentication tasks will be evaluated as part of D7.5 aiming to further evaluate the likeability aspects
of FlexPass, its security and usability characteristics, the design of the user authentication system front-
end, measure the users’ acceptance, as well as the users’ perceptions on aspects such as usability,
memorability, security and trust. Finally, the outcome of D5.3 as a whole (and the forthcoming results

of the second evaluation studies in WP7) will be used for the final development cycle of the user
authentication scheme for D5.4. - “Report on Final User Authentication System”.

32

References

[1] Deliverable 5.1 - Initial Report on Security Metrics and Authentication Policies (2019). Deliverable of EU

Horizon 2020 Grant 826278 “Securing Medical Data in Smart Patient-Centric Healthcare Systems” (Serums)

[2] Deliverable 5.2 - Software on the Initial Verified User Authentication System (2019). Deliverable of EU

Horizon 2020 Grant 826278 “Securing Medical Data in Smart Patient-Centric Healthcare Systems” (Serums)

[3] Belk, M., Fidas, C., Pitsillides, A. (2019). Flexpass: Symbiosis of seamless user authentication schemes in

IoT. In Proceedings of the Conference on Human Factors in Computing Systems (CHI 2019), ACM Press, 2019

[4] Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. 2019. On the accuracy of eye gaze-driven classifiers for

predicting image content familiarity in graphical passwords. In Proceedings of the ACM Conference on User

Modeling, Adaptation and Personalization (UMAP 2019). ACM Press, 201-205

[5] Constantinides, A., Fidas, C., Belk, M., Pitsillides, A. 2019. "I Recall this Picture": Understanding Picture

Password Selections based on Users’ Sociocultural Experiences. In IEEE/WIC/ACM International Conference on

Web Intelligence (WI 2019), ACM Press, 408-412

[6] Constantinides, A., Belk, M., Fidas, C., Pitsillides, A. 2020. An eye gaze-driven metric for estimating the

strength of graphical passwords based on image hotspots. In Proceedings of the International Conference on

Intelligent User Interfaces (IUI 2020), ACM Press, 33–37

[7] Constantinides, A., Pietron, A., Belk, M., Fidas, C., Han, T., Pitsillides, A. 2020. A Cross-cultural Perspective

for Personalizing Picture Passwords. In Proceedings of the 28th ACM Conference on User Modeling, Adaptation

and Personalization (UMAP 2020), ACM Press, 43-52

[8] Constantinides, A., Fidas, C., Belk, M., Pitsillides, A. (2020). Design and Development of a Patient-centric

User Authentication System. In Proceedings of the 28th ACM Conference on User Modeling, Adaptation and

Personalization (Adjunct UMAP 2020), 201-203

[9] Thorpe, J., Al-Badawi, M., MacRae, B. and Salehi-Abari, A., 2014. The presentation effect on graphical

passwords. In proceedings of the SIGCHI conference on human factors in computing systems (pp. 2947-2950)

[10] Van Oorschot, P.C. and Thorpe, J., 2011. Exploiting predictability in click-based graphical passwords.

Journal of Computer Security, 19(4), pp.669-702

[11] Bulling, A., Alt, F. and Schmidt, A., 2012. Increasing the security of gaze-based cued-recall graphical

passwords using saliency masks. In Conference on Human Factors in Computing Systems (pp. 3011-3020)

[12] Aydın, Ü.A., Acartürk, C. and Çağıltay, K., 2013. The role of visual coherence in graphical passwords. In

Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 35)

[13] Alt, F., Schneegass, S., Shirazi, A.S., Hassib, M. and Bulling, A., 2015. Graphical passwords in the wild:

Understanding how users choose pictures and passwords in image-based authentication schemes. In Proceedings

of the International Conference on Human-Computer Interaction with Mobile Devices and Services (pp. 316-322)

[14] Zhao, Z., Ahn, G.J., Seo, J.J. and Hu, H., 2013. On the security of picture gesture authentication. In Presented

as part of the 22nd {USENIX} Security Symposium ({USENIX} Security 13) (pp. 383-398).

[15] Davis, D., Monrose, F. and Reiter, M.K., 2004. On user choice in graphical password schemes. In USENIX

Security Symposium (Vol. 13, No. 2004, pp. 11-11)

[16] Mihajlov, M., Jerman-Blažič, B. and Ciunova Shuleska, A., 2016. Why that picture? discovering password

properties in recognition-based graphical authentication. International Journal of Human–Computer Interaction,

32(12), pp.975-988

[17] Tullis, T.S. and Tedesco, D.P., 2005. Using personal photos as pictorial passwords. In CHI'05 extended

abstracts on Human factors in computing systems (pp. 1841-1844)

33

[18] Thorpe, J. and van Oorschot, P.C., 2007. Human-Seeded Attacks and Exploiting Hot-Spots in Graphical

Passwords. In USENIX Security Symposium (Vol. 8, pp. 1-8).

[19] Chiasson, S., Van Oorschot, P.C. and Biddle, R., 2007. Graphical password authentication using cued click

points. In European Symposium on Research in Computer Security (pp. 359-374). Springer, Berlin, Heidelberg

[20] Chiasson, S., Forget, A., Biddle, R. and Oorschot, P.V., 2008. Influencing users towards better passwords:

persuasive cued click-points. People and Computers XXII Culture, Creativity, Interaction 22, pp.121-130

[21] Wiedenbeck, S., Waters, J., Birget, J.C., Brodskiy, A. and Memon, N., 2005. Authentication using graphical

passwords: Effects of tolerance and image choice. In Symposium on Usable privacy and security (pp. 1-12)

[22] Schaub, F., Walch, M., Könings, B. and Weber, M., 2013. Exploring the design space of graphical passwords

on smartphones. In Proceedings of the Ninth Symposium on Usable Privacy and security (pp. 1-14)

[23] Furnell, S., 2005. Why users cannot use security. Computers & Security, 24(4), pp.274-279

[24] Ahern, S., Eckles, D., Good, N.S., King, S., Naaman, M. and Nair, R., 2007. Over-exposed? Privacy patterns

and considerations in online and mobile photo sharing. In Proceedings of the SIGCHI conference on Human

factors in computing systems (pp. 357-366).

[25] Belk, M., Fidas, C., Germanakos, P. and Samaras, G., 2017. The interplay between humans, technology and

user authentication: A cognitive processing perspective. Computers in Human Behavior, 76, pp. 184-200

[26] Biddle, R., Chiasson, S. and Van Oorschot, P.C., 2012. Graphical passwords: Learning from the first twelve

years. ACM Computing Surveys (CSUR), 44(4), pp.1-41.

[27] Katsini, C., Fidas, C., Raptis, G.E., Belk, M., Samaras, G. and Avouris, N., 2018. Influences of human

cognition and visual behavior on password strength during picture password composition. In Proceedings of the

2018 CHI conference on human factors in computing systems (pp. 1-14)

[28] Erez, M., Gati, E., 2004. A dynamic, multi‐level model of culture: from the micro level of the individual to

the macro level of a global culture. Applied Psychology, 53(4), pp.583-598

[29] Constantinides, A., Fidas, A., Belk, M., Pietron, A.M., Han, T., Pitsillides, A. (2020). From hot-spots towards

experience-spots: Leveraging on users’ sociocultural experiences to enhance security in cued-recall graphical

authentication. International Journal of Human-Computer Studies, Elsevier (under review)

[30] Johnson, J., Seixeiro, S., Pace, Z., van der Bogert, G., Gilmour, S., Siebens, L. and Tubbs, K., Microsoft

Corp, 2014. Picture gesture authentication. U.S. Patent 8,650,636. Retrieved from

https://google.com/patents/US8910253

[31] Komanduri, S., Shay, R., Kelley, P. G., Mazurek, M. L., Bauer, L., Christin, N. & Egelman, S. (2011, May).

Of passwords and people: measuring the effect of password-composition policies. In Proceedings of the sigchi

conference on human factors in computing systems (pp. 2595-2604).

[32] Uppaal. http://www.uppaal.org/

[33] R. Gu and E. Enoiu and C. Seceleanu. TAMAA: UPPAAL-based mission planning for autonomous agents.

In Proceedings of the 35th Annual ACM Symposium on Applied Computing, 2020

[34] D. Basile, F.D. Giandomenico, and S. Gnesi. Statistical Model Checking of an Energy-Saving Cyber-Physical

System in the Railway Domain. In Proceedings of the Symposium on Applied Computing, 2017

[35] Noomene Ben Henda. 2014. Generic and efficient attacker models in SPIN. In Proceedings of the 2014

International SPIN Symposium on Model Checking of Software (SPIN 2014). ACM, New York, NY, USA, 77-

86. Doi: http://dx.doi.org/10.1145/2632362.2632378

[36] B. Jiang, Y. Liu, and W. K. Chan. Contractfuzzer: Fuzzing smart contracts for vulnerability detection. CoRR,

abs/1807.03932, 2018.

34

ABBREVIATIONS

2FA Two-Factor Authentication

API Application Programming Interface

DRF Django REST Framework

HMAC Hash-based Message Authentication Code

HTTP HyperText Transfer Protocol

KVM Kernel-based Virtual Machine

MAC Message Authentication Code

PGA Picture Gesture Authentication

POC Proof of Concept

QR Quick Response

RDBMS Relational Database Management System

SHA-256 Secure Hash Algorithm

SSL Secure Sockets Layer

TLS Transport Layer Security

TOTP Time-based One-Time Password

UCD User Centered Design

UI User Interface

UX User Experience

WSGI Web Server Gateway Interface

35

APPENDIX A – Refined Prototype Designs of the User Interfaces

In this section, we provide prototypes of the main User Interfaces (UI) of the second version of the user
authentication system according to User Experience (UX) principles, heuristics and trends. Aiming to

build an easy to use and usable user authentication system that can be deployed on heterogenous
devices, fundamental UX principles were considered for the design of the UI interfaces. Focus will be
given on using a simple language for communicating information and feedback to the end-users,
avoiding technical terms. The UIs have been designed focusing on both functional and hedonic aspects.

UI of the FlexPass Homepage and Demonstration Page

Figure 21. Homepage screen introducing the FlexPass paradigm.

Figure 22. Demonstration page in which users can familiarize with the graphical password creation in
the FlexPass system.

36

UI of the System Administrator’s Page

Figure 23. System administrator’s login page.

Figure 24. Administrator’s user account creation page in which system administrators create new
accounts for end-users of their organization and their corresponding role (i.e., patient, medical staff,

hospital administrator).

37

UI of the User Account Registration Page

Figure 25. User account registration page. Once a user account has been created by the system
administrator (see Figure 24), an email is sent to the end-user along with an activation page in which

the user is redirected to start creating his/her password.

UI of the Graphical Password Creation Page

Figure 26. Image selection for graphical password creation. This page illustrates a set of images
illustrating content that is highly relevant to the users’ everyday activities and experiences within their

healthcare environments. End-users select their preferred image, which is used to create their
graphical password.

38

Figure 27. Graphical password creation. End-users create their graphical password by creating a set
of secret gestures on the image (gestures can be a combination of tabs, lines and circles).

UI of the Textual Password Creation Page

Figure 28. Passphrase creation page. End-users can optionally create a textual passphrase as an
alternative type for authentication by reflecting their secret used in the graphical password creation,
which can then be used to switch between types of passwords (graphical vs. textual) during login.

39

UI of the Two-Factor Authentication Activation Page

Figure 29. Two-factor authentication activation page. In order to add an additional factor for
authentication, end-users can setup two-factor authentication by downloading and installing a mobile

application on their smartphone that has been developed for this purpose. The smartphone’s mobile
application can then be used as a second factor for authentication during login.

Figure 30. QR code for enrolling the user’s smartphone device for two-factor authentication.

40

UI of the User Login Page

Figure 31. Sign in page based on the end-user’s username.

Figure 32. Sign in page in which the users select their preferred authentication type (graphical or
textual).

41

Figure 33. User graphical password login page. End-users enter their graphical password by creating

gestures on the image that were setup during the graphical password creation phase.

Figure 34. User textual password login page for end-users that have selected the textual password
type to login.

42

UI of the Two-Factor Authentication Login Page

Figure 35. Two-factor authentication with push notification in which a push notification is sent to the
end-user’s mobile application for approval.

Figure 36. Two-factor authentication with a Time-based One-Time Password. The end-user provides

a one-time password code that can be found on the smartphone’s mobile application.

43

UI of the Mobile Application for Two-Factor Authentication

Figure 37. User account creation and enrolment of the end-user’s device for two-factor

authentication.

44

Figure 38. Enrolment with QR code or enrollment code. In case the user selects the QR code option,
the mobile application is ready to scan the QR code that is illustrated on the end-user’s Web-based

registration system of FlexPass (see Figure 30). In case the user selects the enrollment code option,
the user has to enter the secret code that is also available on the end-user’s Web-based registration

system of FlexPass (see Figure 30).

45

Figure 39. Time-based One-Time Password on the end-user’s smartphone mobile application that is
automatically reset every 30 seconds. The one-time password can be used by the user during two-

factor authentication login.

46

Figure 40. Push notification for two-factor authentication approval to login.

47

Figure 41. Two-factor authentication approval page. The user either approves or rejects the push
notification of the login attempt.

48

Figure 42. Notification after the user accepts the push notification.

49

APPENDIX B – RESTful Application Programming Interface

This section lists all the endpoints of the second version of the user authentication system. Note that
this section provides all the successful scenarios and their respective responses (i.e., 200, 201). The full

list of responses (including for e.g., 400 – Bad Request; 401 – Unauthorized; 500 – Internal Server
Error, etc.), is available at the Serums’ development and testing server.

Base url: https://authentication.serums.cs.st-andrews.ac.uk/ua

Demo: https://authentication.serums.cs.st-andrews.ac.uk/ua/demo

Documentation: https://authentication.serums.cs.st-andrews.ac.uk/ua/doc

Create Admin API Token

Endpoint /create_api_token/
Method POST
Headers
accept application/json
Content-Type application/json
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
username * string <email> (Username) [1 .. 50] characters
organization * string (Organization) Enum [“ZMC”, “USTAN”, “FCRB”]
web_key * string (Web key) [1 .. 500] characters
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_str string (A string value associated with the resource_name)
resource_expires_in_sec float (The expiration time in seconds)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/create_api_token/" -H "accept: application/json"
-H "Content-Type: application/json" -d "{ \"username\":
\"admin@test.com\", \"organization\": \"USTAN\", \"web_key\":
\"6HRrEPetK6UadiSnmtHFLJmnw5CN1Hi9su9LQvpF7peR8hBuOa\"}"

Response
Schema application/json
Description Expiring API Token has been created successfully. The value is

returned in resource_str and expires in resource_expires_in_sec
seconds.

Status Code 201
Body {

 "message": "Expiring API Token has been created successfully. The
value is returned in `resource_str` and expires in
`resource_expires_in_sec` seconds.",
 "resource_name": "token",
 "resource_str": "5604c407f727fedd38e60ddafd2b870a28fe129d",
 "resource_expires_in_sec": 344944.185673
}

50

Register Serums User

Endpoint /register_user/
Method POST
Headers
accept application/json
Content-Type application/json
Authorization Token: <Expiring API Token>
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
username * string <email> (Username) [1 .. 50] characters
organization * string (Organization) Enum [“ZMC”, “USTAN”, “FCRB”]
role * string (Role) Enum [“HOSPITAL_ADMIN”, “MEDICAL_STAFF”,

“PATIENT”]
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_int integer (An integer value associated with the resource_name)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/register_user/" -H "accept: application/json" -H
"Authorization: Token
5604c407f727fedd38e60ddafd2b870a28fe129d" -H "Content-
Type: application/json" -d "{ \"username\": \"test_patient@st-
andrews.ac.uk\", \"organization\": \"USTAN\", \"role\":
\"PATIENT\"}"

Response
Schema application/json
Description User has been created successfully. The value is returned in

resource_int.
Status Code 201
Body {

 "message": "User has been created successfully. The value is
returned in `resource_int`.",
 "resource_name": "user",
 "resource_int": 53
}

Check Username

Endpoint /check_username/
Method POST
Headers
accept application/json
Content-Type application/json
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
username * string <email> (Username) [1 .. 50] characters
Output Parameters Type (Description)

51

message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/check_username/" -H "accept:
application/json" -H "Content-Type: application/json" -d "{
\"username\": \"test_patient@st-andrews.ac.uk\"}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "user"
}

Set Graphical Password

Endpoint /set_graphical_password/
Method POST
Headers
accept application/json
Content-Type application/json
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
username * string <email> (Username) [1 .. 50] characters
graphical_password * string (Graphical password) Enum [1 .. 200] characters
time_started_creation * Integer (Time started creation) [-9223372036854776000 ..

9223372036854776000]
time_finished_creation * Integer (Time finished creation) [-9223372036854776000 ..

9223372036854776000]
time_first_gesture_started * Integer (Time first gesture started) [-9223372036854776000 ..

9223372036854776000]
time_first_gesture_fin * Integer (Time first gesture finished) [-9223372036854776000 ..

9223372036854776000]
time_second_gesture_started * Integer (Time second gesture started) [-9223372036854776000 ..

9223372036854776000]
time_second_gesture_fin * Integer (Time second gesture finished) [-9223372036854776000

.. 9223372036854776000]
time_third_gesture_started * Integer (Time third gesture started) [-9223372036854776000 ..

9223372036854776000]
time_third_gesture_fin * Integer (Time third gesture finished) [-9223372036854776000 ..

9223372036854776000]
total_time_creation * Integer (Total time creation) [-9223372036854776000 ..

9223372036854776000]
total_time_creation_with_confirm
*

Integer (Total time creation with confirm) [-
9223372036854776000 .. 9223372036854776000]

total_time_first * Integer (Total time first gesture) [-9223372036854776000 ..
9223372036854776000]

total_time_second * Integer (Total time second gesture) [-9223372036854776000 ..
9223372036854776000]

52

total_time_third * Integer (Total time third gesture) [-9223372036854776000 ..
9223372036854776000]

total_failed_attempts * Integer (Total failed attempts) [-9223372036854776000 ..
9223372036854776000]

total_restart_attempts * Integer (Total restart attempts) [-9223372036854776000 ..
9223372036854776000]

total_time_creation_task * Integer (Total time creation task) [-9223372036854776000 ..
9223372036854776000]

timestamp_page_load * Integer (Timestamp page load) [-9223372036854776000 ..
9223372036854776000]

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/set_graphical_password/" -H "accept:
application/json" -H "Content-Type: application/json" -d "{
\"username\": \"user3@ustan.com\", \"graphical_password\":
\"#1|T|50,22#2|T|69,32#3|T|95,37\",
\"time_started_creation\": 177, \"time_finished_creation\":
14234, \"time_first_gesture_started\": 6979,
\"time_first_gesture_fin\": 7311,
\"time_second_gesture_started\": 8039,
\"time_second_gesture_fin\": 8353,
\"time_third_gesture_started\": 10327,
\"time_third_gesture_fin\": 10678, \"total_time_creation\":
3699, \"total_time_creation_with_confirm\": 7306,
\"total_time_first\": 332, \"total_time_second\": 314,
\"total_time_third\": 351, \"total_failed_attempts\": 0,
\"total_restart_attempts\": 0, \"total_time_creation_task\":
15710, \"timestamp_page_load\": 1603879802171}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "user"
}

Retrieve Graphical Info

Endpoint /retrieve_graphical_info/
Method POST
Headers
accept application/json
Content-Type application/json
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
username * string <email> (Username) [1 .. 50] characters
Output Parameters Type (Description)

53

message string (A general message description)
resource_name string (The name of the resource)
image_id integer (The ID of the image)
image_type string (The type of the image)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/retrieve_graphical_info/" -H "accept:
application/json" -H "Content-Type: application/json" -d "{
\"username\": \"test_patient@st-andrews.ac.uk\"}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "image",
 "image_id": 5,
 "image_type": "retrospective"
}

Create JWT

Endpoint /create_jwt/
Method POST
Headers
accept application/json
Content-Type application/json
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
username * string <email> (Username) non-empty
password * string (Password) non-empty
login_type * string (The type of login) Enum [“TEXT”, “GRAPHICAL”]
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_obj object (A dictionary that contains the JWT in the form of key-value pairs.

The key access is a string that corresponds to the JWT access token and
the key refresh is a string that corresponds to the JWT refresh token.)

Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/create_jwt/" -H "accept: application/json" -H
"Content-Type: application/json" -d "{ \"username\": \"test_patient@st-
andrews.ac.uk\", \"password\": \"#1|T|27,40#2|T|27,40#3|T|27,40\",
\"login_type\": \"GRAPHICAL\"}"

Response
Schema application/json
Description JSON Web Token has been created successfully. The value is returned in

resource_obj.

54

Status Code 201
Body {

 "message": "JSON Web Token has been created successfully. The value
is returned in `resource_obj`.",
 "resource_name": "jwt",
 "resource_obj": {
 "access":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi
wiZXhwIjoxNjAyODQ1NDM2LCJqdGkiOiI0ODkzNGQyODIxN2I0YTcyYjk2N
TM5MzExZGJjZmM4ZiIsInVzZXJJRCI6NTMsImlzcyI6IlNlcnVtc0F1dGhlbnRp
Y2F0aW9uIiwiaWF0IjoxNjAyODQzNjM2LCJzdWIiOiJ0ZXN0X3BhdGllbnRAc
3QtYW5kcmV3cy5hYy51ayIsImdyb3VwSURzIjpbIlBBVElFTlQiXSwib3JnSU
QiOiJVU1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW5zZS5wcm9vZnBva
W50LmNvbS92Mi91cmw_dT1odHRwLTNBX193d3cuc2VydW1zLmNvbSZk
PUR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExYMHVFSFhKdlU4bk9IclVLOE
lyd05LT3RrVlUmcj11VGZONXVRMWtod2JSeV9UZ0tINmFVZDAtQmJtMEc
4Sy1WYWprelpteTk4Jm09MmlVTm4yOUZTYWY3LTAzeHU5eE1CcmNuN
HQ2VV8zdzN1cUxpTHl0VGZUNCZzPTVqQjJqbXFoc05BX2cxU1Z5WmdVRl
JGOW9FUDhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.S9jVI5_cnKw3iifM9bPlJG0
7Vwdqe3oVWE7ZpAk56IQ",
 "refresh":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoicmVmcmVz
aCIsImV4cCI6MTYwNTQzNTYzNiwianRpIjoiOGI2N2MwMDA3Yjg5NDhiZT
g1YzBkNTMyZWY1OGUxM2QiLCJ1c2VySUQiOjUzLCJpc3MiOiJTZXJ1bXNB
dXRoZW50aWNhdGlvbiIsImlhdCI6MTYwMjg0MzYzNiwic3ViIjoidGVzdF9w
YXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQVRJ
RU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJhdWQiOiJodHRwczovL3VybGRlZmVu
c2UucHJvb2Zwb2ludC5jb20vdjIvdXJsP3U9aHR0cC0zQV9fd3d3LnNlcnVtcy
5jb20mZD1Ed0lEYVEmYz1lSUdqc0lUZlhQX3ktRExMWDB1RUhYSnZVOG5
PSHJVSzhJcndOS090a1ZVJnI9dVRmTjV1UTFraHdiUnlfVGdLSDZhVWQwLU
JibTBHOEstVmFqa3pabXk5OCZtPTJpVU5uMjlGU2FmNy0wM3h1OXhNQn
JjbjR0NlVfM3czdXFMaUx5dFRmVDQmcz01akIyam1xaHNOQV9nMVNWe
VpnVUZSRjlvRVA4X0FRYS1saWNZVzNJdWZ3JmU9In0.T7025oX-
Iv0_m5w66Zer1c8RWATJNKuGzgHb5SAoE3Y"
 }
}

Set Graphical Info

Endpoint /set_graphical_info/
Method POST
Headers
accept application/json
Content-Type application/json
Authorization Bearer: <JWT>
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
image_type * string (Image type) [1 .. 13] characters
image_id * integer
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request

55

Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/set_graphical_info/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIiw
iZXhwIjoxNjAyODQ1NDM2LCJqdGkiOiI0ODkzNGQyODIxN2I0YTcyYjk2NT
M5MzExZGJjZmM4ZiIsInVzZXJJRCI6NTMsImlzcyI6IlNlcnVtc0F1dGhlbnRpY
2F0aW9uIiwiaWF0IjoxNjAyODQzNjM2LCJzdWIiOiJ0ZXN0X3BhdGllbnRAc
3QtYW5kcmV3cy5hYy51ayIsImdyb3VwSURzIjpbIlBBVElFTlQiXSwib3JnSU
QiOiJVU1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW5zZS5wcm9vZnBva
W50LmNvbS92Mi91cmw_dT1odHRwLTNBX193d3cuc2VydW1zLmNvbSZk
PUR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExYMHVFSFhKdlU4bk9IclVLOE
lyd05LT3RrVlUmcj11VGZONXVRMWtod2JSeV9UZ0tINmFVZDAtQmJtMEc
4Sy1WYWprelpteTk4Jm09MmlVTm4yOUZTYWY3LTAzeHU5eE1CcmNuN
HQ2VV8zdzN1cUxpTHl0VGZUNCZzPTVqQjJqbXFoc05BX2cxU1Z5WmdVRl
JGOW9FUDhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.S9jVI5_cnKw3iifM9bPlJG0
7Vwdqe3oVWE7ZpAk56IQ" -H "Content-Type: application/json" -d "{
\"image_type\": \"retrospective\", \"image_id\": 5}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "user"
}

Set Passphrase

Endpoint /set_passphrase/
Method POST
Headers
accept application/json
Content-Type application/json
Authorization Bearer: <JWT>
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
single_secret * string (Single secret) [1 .. 500] characters
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/set_passphrase/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIiw
iZXhwIjoxNjAyODQ1NDM2LCJqdGkiOiI0ODkzNGQyODIxN2I0YTcyYjk2NT
M5MzExZGJjZmM4ZiIsInVzZXJJRCI6NTMsImlzcyI6IlNlcnVtc0F1dGhlbnRpY
2F0aW9uIiwiaWF0IjoxNjAyODQzNjM2LCJzdWIiOiJ0ZXN0X3BhdGllbnRAc
3QtYW5kcmV3cy5hYy51ayIsImdyb3VwSURzIjpbIlBBVElFTlQiXSwib3JnSU
QiOiJVU1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW5zZS5wcm9vZnBva

56

W50LmNvbS92Mi91cmw_dT1odHRwLTNBX193d3cuc2VydW1zLmNvbSZk
PUR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExYMHVFSFhKdlU4bk9IclVLOE
lyd05LT3RrVlUmcj11VGZONXVRMWtod2JSeV9UZ0tINmFVZDAtQmJtMEc
4Sy1WYWprelpteTk4Jm09MmlVTm4yOUZTYWY3LTAzeHU5eE1CcmNuN
HQ2VV8zdzN1cUxpTHl0VGZUNCZzPTVqQjJqbXFoc05BX2cxU1Z5WmdVRl
JGOW9FUDhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.S9jVI5_cnKw3iifM9bPlJG0
7Vwdqe3oVWE7ZpAk56IQ" -H "Content-Type: application/json" -d "{
\"single_secret\": \"qwertyqwertyqwerty\"}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "user"
}

Set Second Factor

Endpoint /set_second_factor/
Method POST
Headers
accept application/json
Content-Type application/json
Authorization Bearer: <JWT>
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
second_factor * string (The type of login) Enum [“MOBILE”, “TOTP”]
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/set_second_factor/" -H "accept: application/json" -H
"Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIiw
iZXhwIjoxNjAyODQ1NDM2LCJqdGkiOiI0ODkzNGQyODIxN2I0YTcyYjk2NT
M5MzExZGJjZmM4ZiIsInVzZXJJRCI6NTMsImlzcyI6IlNlcnVtc0F1dGhlbnRpY
2F0aW9uIiwiaWF0IjoxNjAyODQzNjM2LCJzdWIiOiJ0ZXN0X3BhdGllbnRAc
3QtYW5kcmV3cy5hYy51ayIsImdyb3VwSURzIjpbIlBBVElFTlQiXSwib3JnSU
QiOiJVU1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW5zZS5wcm9vZnBva
W50LmNvbS92Mi91cmw_dT1odHRwLTNBX193d3cuc2VydW1zLmNvbSZk
PUR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExYMHVFSFhKdlU4bk9IclVLOE
lyd05LT3RrVlUmcj11VGZONXVRMWtod2JSeV9UZ0tINmFVZDAtQmJtMEc
4Sy1WYWprelpteTk4Jm09MmlVTm4yOUZTYWY3LTAzeHU5eE1CcmNuN
HQ2VV8zdzN1cUxpTHl0VGZUNCZzPTVqQjJqbXFoc05BX2cxU1Z5WmdVRl
JGOW9FUDhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.S9jVI5_cnKw3iifM9bPlJG0
7Vwdqe3oVWE7ZpAk56IQ" -H "Content-Type: application/json" -d "{
\"second_factor\": \"MOBILE\"}"

Response
Schema application/json

57

Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "user"
}

Check Passphrase Set

Endpoint /check_passphrase_set/
Method POST
Headers
accept application/json
Content-Type application/json
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
username * string <email> (Username) [1 .. 50] characters
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_already_activated boolean (True if resource is already activated, else False.)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/check_passphrase_set/" -H "accept:
application/json" -H "Content-Type: application/json" -d "{
\"username\": \"test_patient@st-andrews.ac.uk\"}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "passphrase",
 "resource_already_activated": true
}

Refresh JWT

Endpoint /refresh_jwt/
Method POST
Headers
accept application/json
Content-Type application/json
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
refresh * string (Refresh) non-empty
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)

58

resource_str string (A string value associated with the resource_name)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/refresh_jwt/" -H "accept: application/json" -H
"Content-Type: application/json" -d "{ \"refresh\":
\"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoicmVmcmV
zaCIsImV4cCI6MTYwNTQzNDcyNSwianRpIjoiYWI5MjllZWVkNDZmNGM3
MmJlNTIwZjVhYWU1ODIxY2EiLCJ1c2VySUQiOjUzLCJpc3MiOiJTZXJ1bXNB
dXRoZW50aWNhdGlvbiIsImlhdCI6MTYwMjg0MjcyNSwic3ViIjoidGVzdF9w
YXRpZW50QHN0LWFuZHJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQVRJ
RU5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJhdWQiOiJodHRwczovL3VybGRlZmVu
c2UucHJvb2Zwb2ludC5jb20vdjIvdXJsP3U9aHR0cC0zQV9fd3d3LnNlcnVtcy
5jb20mZD1Ed0lEYVEmYz1lSUdqc0lUZlhQX3ktRExMWDB1RUhYSnZVOG5
PSHJVSzhJcndOS090a1ZVJnI9dVRmTjV1UTFraHdiUnlfVGdLSDZhVWQwLU
JibTBHOEstVmFqa3pabXk5OCZtPTJpVU5uMjlGU2FmNy0wM3h1OXhNQn
JjbjR0NlVfM3czdXFMaUx5dFRmVDQmcz01akIyam1xaHNOQV9nMVNWe
VpnVUZSRjlvRVA4X0FRYS1saWNZVzNJdWZ3JmU9In0.KCJcaZ0oPrWTZlEa
2CwTBLRE77vFxjI-rsBNQFmcMf8\"}"

Response
Schema application/json
Description JSON Web Token has been created successfully. The value is returned in

resource_str.
Status Code 201
Body {

 "message": "JSON Web Token has been created",
 "resource_name": "jwt",
 "resource_str":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIi
wiZXhwIjoxNjAyODQ5MzA2LCJqdGkiOiI3NjVjOTQ2N2JhY2Y0ODFiYWY2M
mRhMmEwNjA5MDMzOCIsInVzZXJJRCI6NTMsImlzcyI6IlNlcnVtc0F1dGhlb
nRpY2F0aW9uIiwiaWF0IjoxNjAyODQyNzI1LCJzdWIiOiJ0ZXN0X3BhdGllbn
RAc3QtYW5kcmV3cy5hYy51ayIsImdyb3VwSURzIjpbIlBBVElFTlQiXSwib3Jn
SUQiOiJVU1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW5zZS5wcm9vZnB
vaW50LmNvbS92Mi91cmw_dT1odHRwLTNBX193d3cuc2VydW1zLmNvbS
ZkPUR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExYMHVFSFhKdlU4bk9IclVL
OElyd05LT3RrVlUmcj11VGZONXVRMWtod2JSeV9UZ0tINmFVZDAtQmJt
MEc4Sy1WYWprelpteTk4Jm09MmlVTm4yOUZTYWY3LTAzeHU5eE1Ccm
NuNHQ2VV8zdzN1cUxpTHl0VGZUNCZzPTVqQjJqbXFoc05BX2cxU1Z5Wm
dVRlJGOW9FUDhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.o3JHKaOT4VsOx9C4Si
ztj_MbTTT6qKKRlp8nGed-j1M"
}

Check Second Factor Set

Endpoint /check_second_factor_set/
Method POST
Headers
accept application/json
Content-Type application/json
Authorization Bearer: <JWT>
Output Parameters Type (Description)

59

message string (A general message description)
resource_name string (The name of the resource)
resource_str string (A string value associated with the resource_name)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/check_second_factor_set/" -H "accept:
application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiYWNjZXNzIiw
iZXhwIjoxNjAyODQ5MzA2LCJqdGkiOiI3NjVjOTQ2N2JhY2Y0ODFiYWY2M
mRhMmEwNjA5MDMzOCIsInVzZXJJRCI6NTMsImlzcyI6IlNlcnVtc0F1dGhlb
nRpY2F0aW9uIiwiaWF0IjoxNjAyODQyNzI1LCJzdWIiOiJ0ZXN0X3BhdGllbn
RAc3QtYW5kcmV3cy5hYy51ayIsImdyb3VwSURzIjpbIlBBVElFTlQiXSwib3Jn
SUQiOiJVU1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW5zZS5wcm9vZnB
vaW50LmNvbS92Mi91cmw_dT1odHRwLTNBX193d3cuc2VydW1zLmNvbS
ZkPUR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExYMHVFSFhKdlU4bk9IclVL
OElyd05LT3RrVlUmcj11VGZONXVRMWtod2JSeV9UZ0tINmFVZDAtQmJt
MEc4Sy1WYWprelpteTk4Jm09MmlVTm4yOUZTYWY3LTAzeHU5eE1Ccm
NuNHQ2VV8zdzN1cUxpTHl0VGZUNCZzPTVqQjJqbXFoc05BX2cxU1Z5Wm
dVRlJGOW9FUDhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.o3JHKaOT4VsOx9C4Si
ztj_MbTTT6qKKRlp8nGed-j1M" -H "Content-Type: application/json" -d
"{}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "second_factor",
 "resource_str": "MOBILE"
}

Store Graphical Login Attempt

Endpoint /store_graphical_login_attempt/
Method POST
Headers
accept application/json
Content-Type application/json
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
username * string <email> (Username) non-empty
total_failed_attempts * integer (Total failed attempts) [-2147483648 .. 2147483647]
is_reset * boolean (Is reset)
is_reset_from_main_page * boolean (Is reset from main page)
total_time_until_submit * integer (Total time until submit) [-9223372036854776000 ..

9223372036854776000]
total_time_until_successful_login
*

integer (Total time until successful login) [-
9223372036854776000 .. 9223372036854776000]

time_interaction_started * integer (Time interaction started) [-9223372036854776000 ..
9223372036854776000]

60

total_time_since_page_load * integer (Total time since page load) [-9223372036854776000 ..
9223372036854776000]

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/store_graphical_login_attempt/" -H "accept:
application/json" -H "Content-Type: application/json" -d "{
\"username\": \"test_patient@st-andrews.ac.uk\",
\"total_failed_attempts\": 0, \"is_reset\": false,
\"is_reset_from_main_page\": false, \"total_time_until_submit\":
1000, \"total_time_until_successful_login\": 100,
\"time_interaction_started\": 10,
\"total_time_since_page_load\": 1100}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "passphrase"
}

Store Passphrase Login Attempt

Endpoint /store_passphrase_login_attempt/
Method POST
Headers
accept application/json
Content-Type application/json
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
username * string <email> (Username) non-empty
is_failed_attempt * boolean (Is failed attempt)
is_reset * boolean (Is reset)
total_time_until_submit * integer (Total time until submit) [-

9223372036854776000 .. 9223372036854776000]
total_time_until_submit_since_page_load
*

integer (Total time until submit since page load) [-
9223372036854776000 .. 9223372036854776000]

time_interaction_started * integer (Time interaction started) [-
9223372036854776000 .. 9223372036854776000]

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/store_passphrase_login_attempt/" -H

61

"accept: application/json" -H "Content-Type:
application/json" -d "{ \"username\": \"test_patient@st-
andrews.ac.uk\", \"is_failed_attempt\": false,
\"is_reset\": false, \"total_time_until_submit\": 1000,
\"total_time_until_submit_since_page_load\": 1100,
\"time_interaction_started\": 10}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "passphrase"
}

Request Device Enroll

Endpoint /request_device_enroll/
Method POST
Headers
accept application/json
Content-Type application/json
Authorization Bearer: <JWT>
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_obj_qr object (A dictionary that contains information about the QR

code in the form of key-value pairs. The key img_byte_str is a
base64 encoded string that corresponds to the image bytes.
The key qr_img_id is a string that corresponds to the image id.
The key enroll_text_id is a string that corresponds to the
enroll id as text.)

Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/request_device_enroll/" -H "accept:
application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiY
WNjZXNzIiwiZXhwIjoxNjAyODQ5MzA2LCJqdGkiOiI3NjVjOTQ2
N2JhY2Y0ODFiYWY2MmRhMmEwNjA5MDMzOCIsInVzZXJJRCI
6NTMsImlzcyI6IlNlcnVtc0F1dGhlbnRpY2F0aW9uIiwiaWF0IjoxN
jAyODQyNzI1LCJzdWIiOiJ0ZXN0X3BhdGllbnRAc3QtYW5kcmV3
cy5hYy51ayIsImdyb3VwSURzIjpbIlBBVElFTlQiXSwib3JnSUQiOiJ
VU1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW5zZS5wcm9vZ
nBvaW50LmNvbS92Mi91cmw_dT1odHRwLTNBX193d3cuc2Vy
dW1zLmNvbSZkPUR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExY
MHVFSFhKdlU4bk9IclVLOElyd05LT3RrVlUmcj11VGZONXVRM
Wtod2JSeV9UZ0tINmFVZDAtQmJtMEc4Sy1WYWprelpteTk4Jm
09MmlVTm4yOUZTYWY3LTAzeHU5eE1CcmNuNHQ2VV8zdzN1
cUxpTHl0VGZUNCZzPTVqQjJqbXFoc05BX2cxU1Z5WmdVRlJGO
W9FUDhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.o3JHKaOT4VsOx9C

62

4Siztj_MbTTT6qKKRlp8nGed-j1M" -H "Content-Type:
application/json" -d "{}"

Response
Schema application/json
Description QR code has been created successfully. The value is returned

in resource_obj_qr.
Status Code 201
Body {

 "message": "QR code has been created successfully. The
value is returned in `resource_obj_qr`.",
 "resource_name": "QR",
 "resource_obj_qr": {
 "qr_img_byte_str":
"iVBORw0KGgoAAAANSUhEUgAAAcIAAAHCAQAAAABUY/ToA
AADiUlEQVR4nO2cW4rcSBBFT0wK6jMLegG9FGlnwyxpdiAtxQs
wZH4aJMIf+ZBUbWMw1e7q8o0PgZAOkiDIuPFImfN7tvzzmyCI
FClSpEiRIkU+HmnVBsxsALKZTWxmE8By3cym3O6aPvhtRT4Wib
u7M7q7ewruc9xPwd1XgOCMKfjh5vlzfafI9ydzX1+yGcsVWF7d
WezijGkzn6GtUnd6psjnIIebc4OwGmyDjwlsTC8Ul7rfM0U+OTm
mzSAP3XM2e/dninwKMrr7DLBcgwPBKe4Tiwhym9jl0X2eKfKpy
MXMzK7AmOrB/v1yccgDNuUBYCtp2ce/rciHIoseOjQ8lmvAYa2
H5fWb0VakOz1T5HORh9y+LkHuNZaNvtIOLdIRlduLvLXiQ8QVn
+NaFE+pFJX6UArlanGfLo/kQyK7VR/qVhej7lKJg0YCgnxI5Nm6H
toGiAkjrgPkK0as5SLIYbWih/LLR76tyEckux5a8RnqoUQwgvscqx
5iTO2C9JDIk1UfSntUC11TH4Nc86YVxTKRZ6seAfhM7bkWf6k52
C62W1tWPiTyZLumLu5TvaSGthbB2tVZmlrkGzusQ56gZfl99iOF
VjhKofiQ9JDIsx1iVPGcpnj2GmNdkYpu0jok8tZ8t5l94emN16KM
qjySHhL5U3IxM5tibcofsvw5D1UUzfd+psgnIXtuH2oeP6bj6nPQ
2UVOJ5AeEnm2YxjrAqiq696HTX10KLpimcgb2zX1Tchqxer9FFC/
TORbO9WHel/D+4jHIVdr7RD5kMiT3daH9pRsHx3qt4DqQyJvrf
Ttjfh1gOgY1LFGXwycfC0HRgcjpjb0+Lm+U+T7kW32I18c8svqy+
sKsA0/+iGIk4c2lP+5vlPkHyHNXlf2bUE2xRWza3CbCO7/lXH8TXu
lRZ6txTIwyFYClY1fLm4QnGXaDOK3spvDxv/Dah/3tiIfkTz2Omq
Gdiwl1kIjp1PlZSJPtuf21PGz47DHPnRWEjb1XEX+jCwpfKo1xqa
MzEq/jGxW+x+ATfd5psgnIQ+zsHWl8b4FKPWaUV+q+sys1iGR3
W58qDbN0mmPIvRJWdUYRf6SLH/7iCvl10OLDcWRbKJeqBXrh3
hbkQ9AvvkPWm2L7dP5XSi1LYuKZSJPVv9htZSiT8DGGQw2q/s
W6YXpfHEDyi2f7TtFvh9p+se5SJEiRYoUKfIvJ78D2wJlcBrhmcIAA
AAASUVORK5CYII=",
 "qr_img_id": "dae881b5c555464192bb11ec5e0410af",
 "enroll_text_id": "AzqpCp"
 }
}

Poll Enroll Status

Endpoint /poll_enroll_status/
Method POST
Headers
accept application/json
Content-Type application/json
Authorization Bearer: <JWT>
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
qr_img_id * string (QR img id) [1 .. 50] characters

63

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_already_activated boolean (True if resource is already activated, else False)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/poll_enroll_status/" -H "accept:
application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiY
WNjZXNzIiwiZXhwIjoxNjAyODUxMTg2LCJqdGkiOiJiOTY3MzRl
MTkyM2Y0ZjBhODRkYzg2MGIwN2NiNjY0MSIsInVzZXJJRCI6NT
MsImlzcyI6IlNlcnVtc0F1dGhlbnRpY2F0aW9uIiwiaWF0IjoxNjAy
ODQyNzI1LCJzdWIiOiJ0ZXN0X3BhdGllbnRAc3QtYW5kcmV3cy5
hYy51ayIsImdyb3VwSURzIjpbIlBBVElFTlQiXSwib3JnSUQiOiJVU
1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW5zZS5wcm9vZnBv
aW50LmNvbS92Mi91cmw_dT1odHRwLTNBX193d3cuc2VydW
1zLmNvbSZkPUR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExYMH
VFSFhKdlU4bk9IclVLOElyd05LT3RrVlUmcj11VGZONXVRMWto
d2JSeV9UZ0tINmFVZDAtQmJtMEc4Sy1WYWprelpteTk4Jm09M
mlVTm4yOUZTYWY3LTAzeHU5eE1CcmNuNHQ2VV8zdzN1cUx
pTHl0VGZUNCZzPTVqQjJqbXFoc05BX2cxU1Z5WmdVRlJGOW9
FUDhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.jkE-
3Yx9V9vdcyaHYx_n2esgc3RPIZGzIReqe5wvvt4" -H "Content-
Type: application/json" -d "{ \"qr_img_id\":
\"dae881b5c555464192bb11ec5e0410af\"}"

Response
Schema application/json
Description Device is already activated
Status Code 200
Body {

 "message": "Device is already activated",
 "resource_name": "device",
 "resource_already_activated": false
}

Check Device Enrolled

Endpoint /check_device_enrolled/
Method POST
Headers
accept application/json
Content-Type application/json
Authorization Bearer: <JWT>
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_already_activated boolean (True if resource is already activated, else False)
Example Call
Request

64

Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/check_device_enrolled/" -H "accept:
application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiY
WNjZXNzIiwiZXhwIjoxNjAyODUxMTg2LCJqdGkiOiJiOTY3MzRl
MTkyM2Y0ZjBhODRkYzg2MGIwN2NiNjY0MSIsInVzZXJJRCI6NT
MsImlzcyI6IlNlcnVtc0F1dGhlbnRpY2F0aW9uIiwiaWF0IjoxNjAy
ODQyNzI1LCJzdWIiOiJ0ZXN0X3BhdGllbnRAc3QtYW5kcmV3cy5
hYy51ayIsImdyb3VwSURzIjpbIlBBVElFTlQiXSwib3JnSUQiOiJVU
1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW5zZS5wcm9vZnBv
aW50LmNvbS92Mi91cmw_dT1odHRwLTNBX193d3cuc2VydW
1zLmNvbSZkPUR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExYMH
VFSFhKdlU4bk9IclVLOElyd05LT3RrVlUmcj11VGZONXVRMWto
d2JSeV9UZ0tINmFVZDAtQmJtMEc4Sy1WYWprelpteTk4Jm09M
mlVTm4yOUZTYWY3LTAzeHU5eE1CcmNuNHQ2VV8zdzN1cUx
pTHl0VGZUNCZzPTVqQjJqbXFoc05BX2cxU1Z5WmdVRlJGOW9
FUDhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.jkE-
3Yx9V9vdcyaHYx_n2esgc3RPIZGzIReqe5wvvt4" -H "Content-
Type: application/json" -d "{}"

Response
Schema application/json
Description Device is already activated
Status Code 200
Body {

 "message": "Device is already activated",
 "resource_name": "device",
 "resource_already_activated": false
}

Enroll Device

Endpoint /enroll_device/
Method POST
Headers
accept application/json
Content-Type application/json
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
device_name * string (Device name) non-empty
device_id * string (Device id) non-empty
enroll_id * string (Enroll id) non-empty
operation * string (Operation) non-empty
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_obj_device object (A dictionary that contains information about the

enrolled device in the form of key-value pairs. The key totp is a
string that will be used for the time-based one-time
passwords. The key username is a string that corresponds to
the username set for the enrolled device. The key jwt_access
is a string that corresponds to the JWT access token that will
be saved on the device. The key jwt_refresh is a string that

65

corresponds to the JWT refresh token that will be saved on the
device.)

Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/enroll_device/" -H "accept:
application/json" -H "Content-Type: application/json" -d "{
\"device_name\": \"Xioami Mi 9T Pro\", \"device_id\":
\"123456\", \"enroll_id\": \"eaa45e70-0fa5-11eb-a8c0-
0242ac170005\", \"operation\": \"QR\"}"

Response
Schema application/json
Description Device has been created successfully. The value is returned in

resource_obj_device.
Status Code 201
Body {

 "message": "Device has been created successfully. The value
is returned in `resource_obj_device`.",
 "resource_name": "device",
 "resource_obj_device": {
 "totp": "d65c042c9b034080",
 "username": "test_patient@st-andrews.ac.uk",
 "jwt_access": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
eyJ0b2tlbl90eXBlIjoiYWNjZXNzIiwiZXhwIjoxNjA
yODUyNDUzLCJqdGkiOiIyZjI2YmEzNWJiNzk0Yj
FiOTgyYmJiMDJmY2E3M2UxNSIsInVzZXJJRCI6N
TMsImlzcyI6IlNlcnVtc0F1dGhlbnRpY2F0aW9uIi
wiaWF0IjoxNjAyODUwNjUzLCJzdWIiOiJ0ZXN0X
3BhdGllbnRAc3QtYW5kcmV3cy5hYy51ayIsImd
yb3VwSURzIjpbIlBBVElFTlQiXSwib3JnSUQiOiJV
U1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW
5zZS5wcm9vZnBvaW50LmNvbS92Mi91cmw_d
T1odHRwLTNBX193d3cuc2VydW1zLmNvbSZkP
UR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExYMHVFS
FhKdlU4bk9IclVLOElyd05LT3RrVlUmcj11VGZO
NXVRMWtod2JSeV9UZ0tINmFVZDAtQmJtMEc
4Sy1WYWprelpteTk4Jm09MmlVTm4yOUZTYW
Y3LTAzeHU5eE1CcmNuNHQ2VV8zdzN1cUxpTHl0VGZUNC
ZzPTVqQjJqbXFoc05BX2cxU1Z5WmdVRlJGOW9FU
DhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.ic1ZQ7yLkm6W
7rb6wlAD9LkYjG0n96FsBjFX6tIy7Xw",
 "jwt_refresh": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1
NiJ9.eyJ0b2tlbl90
eXBlIjoicmVmcmVzaCIsImV4cCI6MTYwNTQ0MjY1My
wianRpIjoiNjQ2MTUxY2VmY2I4NGMwNzllNzhlOGFiY
WE5OTE3MjkiLCJ1c2VySUQiOjUzLCJpc3MiOiJTZXJ1b
XNBdXRoZW50aWNhdGlvbiIsImlhdCI6MTYwMjg1M
DY1Mywic3ViIjoidGVzdF9wYXRpZW50QHN0LWFuZ
HJld3MuYWMudWsiLCJncm91cElEcyI6WyJQQVRJR
U5UIl0sIm9yZ0lEIjoiVVNUQU4iLCJhdWQiOiJodHRw
czovL3VybGRlZmVuc2UucHJvb2Zwb2ludC5jb20vdjI
vdXJsP3U9aHR0cC0zQV9fd3d3LnNlcnVtcy5jb20mZ
D1Ed0lEYVEmYz1lSUdqc0lUZlhQX3ktRExMWDB1RUhYSnZVOG
5PSHJVSzhJcndOS090a1ZVJnI9dVRmTjV1UTFraHdiUnlfVGdLSD
ZhVWQwLUJibTBHOEstV

66

mFqa3pabXk5OCZtPTJpVU5uMjlGU2FmNy0wM3h1
OXhNQnJjbjR0NlVfM3czdXFMaUx5dFRmVDQmcz
01akIyam1xaHNOQV9nMVNWeVpnVUZSRjlvRV
A4X0FRYS1saWNZVzNJdWZ3JmU9In0.mXzTQeCjFfGlPnwuT4W
wAkwp2oMhj7-lQaBR2xtGExU"
 }
}

Map FCM to Device

Endpoint /map_fcm_to_device/
Method POST
Headers
accept application/json
Content-Type application/json
Authorization Bearer: <JWT>
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
device_id * string (Device id) non-empty
fcm_token * string (Fcm token) [1 .. 255] characters
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/map_fcm_to_device/" -H "accept:
application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiY
WNjZXNzIiwiZXhwIjoxNjAyODUxMTg2LCJqdGkiOiJiOTY3MzRl
MTkyM2Y0ZjBhODRkYzg2MGIwN2NiNjY0MSIsInVzZXJJRCI6NT
MsImlzcyI6IlNlcnVtc0F1dGhlbnRpY2F0aW9uIiwiaWF0IjoxNjAy
ODQyNzI1LCJzdWIiOiJ0ZXN0X3BhdGllbnRAc3QtYW5kcmV3cy5
hYy51ayIsImdyb3VwSURzIjpbIlBBVElFTlQiXSwib3JnSUQiOiJVU
1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW5zZS5wcm9vZnBv
aW50LmNvbS92Mi91cmw_dT1odHRwLTNBX193d3cuc2VydW
1zLmNvbSZkPUR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExYMH
VFSFhKdlU4bk9IclVLOElyd05LT3RrVlUmcj11VGZONXVRMWto
d2JSeV9UZ0tINmFVZDAtQmJtMEc4Sy1WYWprelpteTk4Jm09M
mlVTm4yOUZTYWY3LTAzeHU5eE1CcmNuNHQ2VV8zdzN1cUx
pTHl0VGZUNCZzPTVqQjJqbXFoc05BX2cxU1Z5WmdVRlJGOW9
FUDhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.jkE-
3Yx9V9vdcyaHYx_n2esgc3RPIZGzIReqe5wvvt4" -H "Content-
Type: application/json" -d "{ \"device_id\": \"123456\",
\"fcm_token\": \"d0hnVaEW7AI:APA91bE0Hw-
u78mkhvr0Vk61Rs3zop5Q2J8UL1xvFT-
qLbqeT6xE48ulq_R_ZDmNnEfUHW4UAlrt6xg1IiVF-
4DP1QzfMNRNF3sLNvcJsQEFRQ7iehAxud1QgRkA9cJQgQz0RS
mDkInV\"}"

Response
Schema application/json
Description Success

67

Status Code 200
Body {

 "message": "Success"
}

Submit TOTP

Endpoint /submit_totp/
Method POST
Headers
accept application/json
Content-Type application/json
Authorization Bearer: <JWT>
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
totp_token * string (Totp code) [1 .. 6] characters
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_bool boolean (Returns True/False that is associated with the

resource_name)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/submit_totp/" -H "accept:
application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiY
WNjZXNzIiwiZXhwIjoxNjAyODUzMDkzLCJqdGkiOiI5MzhhYWQ
3NGU2NDc0M2NlOTZkOGRiMGE0YjIxYzM1NiIsInVzZXJJRCI6NT
MsImlzcyI6IlNlcnVtc0F1dGhlbnRpY2F0aW9uIiwiaWF0IjoxNjAy
ODQyNzI1LCJzdWIiOiJ0ZXN0X3BhdGllbnRAc3QtYW5kcmV3cy5
hYy51ayIsImdyb3VwSURzIjpbIlBBVElFTlQiXSwib3JnSUQiOiJVU
1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW5zZS5wcm9vZnBv
aW50LmNvbS92Mi91cmw_dT1odHRwLTNBX193d3cuc2VydW
1zLmNvbSZkPUR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExYMH
VFSFhKdlU4bk9IclVLOElyd05LT3RrVlUmcj11VGZONXVRMWto
d2JSeV9UZ0tINmFVZDAtQmJtMEc4Sy1WYWprelpteTk4Jm09M
mlVTm4yOUZTYWY3LTAzeHU5eE1CcmNuNHQ2VV8zdzN1cUx
pTHl0VGZUNCZzPTVqQjJqbXFoc05BX2cxU1Z5WmdVRlJGOW9
FUDhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.TbDJ_qvTIe8rFEUBVb_
Dl2XeJM4LmDVaWpW8vyaqOn8" -H "Content-Type:
application/json" -d "{ \"totp_code\": \"123456\"}"

Response
Schema application/json
Description Authentication response
Status Code 200
Body {

 "message": "Authentication response",
 "resource_name": "Authentication response",
 "resource_bool": false
}

68

Send Push Notification

Endpoint /send_push_notification/
Method POST
Headers
accept application/json
Content-Type application/json
Authorization Bearer: <JWT>
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_str string (A string value associated with the resource_name)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/send_push_notification/" -H "accept:
application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiY
WNjZXNzIiwiZXhwIjoxNjAyODUzMDkzLCJqdGkiOiI5MzhhYWQ
3NGU2NDc0M2NlOTZkOGRiMGE0YjIxYzM1NiIsInVzZXJJRCI6NT
MsImlzcyI6IlNlcnVtc0F1dGhlbnRpY2F0aW9uIiwiaWF0IjoxNjAy
ODQyNzI1LCJzdWIiOiJ0ZXN0X3BhdGllbnRAc3QtYW5kcmV3cy5
hYy51ayIsImdyb3VwSURzIjpbIlBBVElFTlQiXSwib3JnSUQiOiJVU
1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW5zZS5wcm9vZnBv
aW50LmNvbS92Mi91cmw_dT1odHRwLTNBX193d3cuc2VydW
1zLmNvbSZkPUR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExYMH
VFSFhKdlU4bk9IclVLOElyd05LT3RrVlUmcj11VGZONXVRMWto
d2JSeV9UZ0tINmFVZDAtQmJtMEc4Sy1WYWprelpteTk4Jm09M
mlVTm4yOUZTYWY3LTAzeHU5eE1CcmNuNHQ2VV8zdzN1cUx
pTHl0VGZUNCZzPTVqQjJqbXFoc05BX2cxU1Z5WmdVRlJGOW9
FUDhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.TbDJ_qvTIe8rFEUBVb_
Dl2XeJM4LmDVaWpW8vyaqOn8" -H "Content-Type:
application/json" -d "{}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "resource_name": "authentication_id",
 "resource_str": "1ae4d876-0fab-11eb-a8c0-0242ac170005"
}

Poll Auth Push Status

Endpoint /poll_auth_push_status/
Method POST
Headers
accept application/json
Content-Type application/json

69

Authorization Bearer: <JWT>
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
authentication_id * string (Authentication id) non-empty
Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
resource_bool boolean (Returns True/False that is associated with the

resource_name)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/poll_auth_push_status/" -H "accept:
application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiY
WNjZXNzIiwiZXhwIjoxNjAyODUzMDkzLCJqdGkiOiI5MzhhYWQ
3NGU2NDc0M2NlOTZkOGRiMGE0YjIxYzM1NiIsInVzZXJJRCI6NT
MsImlzcyI6IlNlcnVtc0F1dGhlbnRpY2F0aW9uIiwiaWF0IjoxNjAy
ODQyNzI1LCJzdWIiOiJ0ZXN0X3BhdGllbnRAc3QtYW5kcmV3cy5
hYy51ayIsImdyb3VwSURzIjpbIlBBVElFTlQiXSwib3JnSUQiOiJVU
1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW5zZS5wcm9vZnBv
aW50LmNvbS92Mi91cmw_dT1odHRwLTNBX193d3cuc2VydW
1zLmNvbSZkPUR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExYMH
VFSFhKdlU4bk9IclVLOElyd05LT3RrVlUmcj11VGZONXVRMWto
d2JSeV9UZ0tINmFVZDAtQmJtMEc4Sy1WYWprelpteTk4Jm09M
mlVTm4yOUZTYWY3LTAzeHU5eE1CcmNuNHQ2VV8zdzN1cUx
pTHl0VGZUNCZzPTVqQjJqbXFoc05BX2cxU1Z5WmdVRlJGOW9
FUDhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.TbDJ_qvTIe8rFEUBVb_
Dl2XeJM4LmDVaWpW8vyaqOn8" -H "Content-Type:
application/json" -d "{ \"authentication_id\": \"1ae4d876-
0fab-11eb-a8c0-0242ac170005\"}"

Response
Schema application/json
Description Authentication response
Status Code 200
Body {

 "message": "Authentication response",
 "resource_name": "Authentication response",
 "resource_bool": false
}

Two Factor Response

Endpoint /two_factor_response/
Method POST
Headers
accept application/json
Content-Type application/json
Authorization Bearer: <JWT>
Input Parameters (* required) Type <Format> (Field Model) [MinLength .. MaxLength]
device_id * string (Device id) non-empty
response * boolean (Response)

70

Output Parameters Type (Description)
message string (A general message description)
resource_name string (The name of the resource)
Example Call
Request
Schema application/json
Curl command curl -X POST "https://authentication.serums.cs.st-

andrews.ac.uk/ua/two_factor_response/" -H "accept:
application/json" -H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiY
WNjZXNzIiwiZXhwIjoxNjAyODUzMDkzLCJqdGkiOiI5MzhhYWQ
3NGU2NDc0M2NlOTZkOGRiMGE0YjIxYzM1NiIsInVzZXJJRCI6NT
MsImlzcyI6IlNlcnVtc0F1dGhlbnRpY2F0aW9uIiwiaWF0IjoxNjAy
ODQyNzI1LCJzdWIiOiJ0ZXN0X3BhdGllbnRAc3QtYW5kcmV3cy5
hYy51ayIsImdyb3VwSURzIjpbIlBBVElFTlQiXSwib3JnSUQiOiJVU
1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW5zZS5wcm9vZnBv
aW50LmNvbS92Mi91cmw_dT1odHRwLTNBX193d3cuc2VydW
1zLmNvbSZkPUR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExYMH
VFSFhKdlU4bk9IclVLOElyd05LT3RrVlUmcj11VGZONXVRMWto
d2JSeV9UZ0tINmFVZDAtQmJtMEc4Sy1WYWprelpteTk4Jm09M
mlVTm4yOUZTYWY3LTAzeHU5eE1CcmNuNHQ2VV8zdzN1cUx
pTHl0VGZUNCZzPTVqQjJqbXFoc05BX2cxU1Z5WmdVRlJGOW9
FUDhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.TbDJ_qvTIe8rFEUBVb_
Dl2XeJM4LmDVaWpW8vyaqOn8" -H "Content-Type:
application/json" -d "{ \"device_id\": \"123456\",
\"response\": true}"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success"
}

Verify JWT

Endpoint /verify_jwt/
Method POST
Headers
accept application/json
Content-Type application/json
Authorization Bearer: <JWT>
Output Parameters Type (Description)
message string (A general message description)
groupIDs Array of strings (The group IDs associated with the SERUMS

userID)
orgID string (The organization ID associated with the SERUMS

userID)
userID integer (The SERUMS userID)
Example Call
Request
Schema application/json

71

Curl command curl -X POST "https://authentication.serums.cs.st-
andrews.ac.uk/ua/verify_jwt/" -H "accept: application/json" -
H "Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJ0b2tlbl90eXBlIjoiY
WNjZXNzIiwiZXhwIjoxNjAyODUzMDkzLCJqdGkiOiI5MzhhYWQ
3NGU2NDc0M2NlOTZkOGRiMGE0YjIxYzM1NiIsInVzZXJJRCI6NT
MsImlzcyI6IlNlcnVtc0F1dGhlbnRpY2F0aW9uIiwiaWF0IjoxNjAy
ODQyNzI1LCJzdWIiOiJ0ZXN0X3BhdGllbnRAc3QtYW5kcmV3cy5
hYy51ayIsImdyb3VwSURzIjpbIlBBVElFTlQiXSwib3JnSUQiOiJVU
1RBTiIsImF1ZCI6Imh0dHBzOi8vdXJsZGVmZW5zZS5wcm9vZnBv
aW50LmNvbS92Mi91cmw_dT1odHRwLTNBX193d3cuc2VydW
1zLmNvbSZkPUR3SURhUSZjPWVJR2pzSVRmWFBfeS1ETExYMH
VFSFhKdlU4bk9IclVLOElyd05LT3RrVlUmcj11VGZONXVRMWto
d2JSeV9UZ0tINmFVZDAtQmJtMEc4Sy1WYWprelpteTk4Jm09M
mlVTm4yOUZTYWY3LTAzeHU5eE1CcmNuNHQ2VV8zdzN1cUx
pTHl0VGZUNCZzPTVqQjJqbXFoc05BX2cxU1Z5WmdVRlJGOW9
FUDhfQVFhLWxpY1lXM0l1ZncmZT0ifQ.TbDJ_qvTIe8rFEUBVb_
Dl2XeJM4LmDVaWpW8vyaqOn8"

Response
Schema application/json
Description Success
Status Code 200
Body {

 "message": "Success",
 "userID": 53,
 "groupIDs": [
 "PATIENT"
],
 "orgID": "USTAN"
}

APPENDIX C – Updated Database Design (Entity-Relationship Diagram)

