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Figure 1: Dependencies between D2.3 and other deliverables

This deliverable describes the refined version of the Smart Patient Health Record
format that is being used throughout the Serums project for encapsulating the pa-
tient data. It is a part of WP2, the objectives of which are to:

1. Define a format for smart patient records that can contain data distributed
over multiple devices

2. Develop mechanisms to track the lineage of accesses to the smart patient
records

3. Develop mechanisms to control storage and access rights for smart patient
records

4. Build on existing and develop new machine learning methods for extracting
metadata from unstructured data

The format of the data as described in this deliverable will be used throughout the
project. Its relationship to other deliverables can be seen in Figure 1.

In the subsequent deliverable related to the Smart Patient Health Record format, we
will finalise the format presented in this deliverable to accommodate data that can
reside on different sources collected/exchanged outside of the local environment,
e.g. in scenarios of trans-national exchange of data (D2.5).
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Chapter 1

Introduction

Version D2.3 is the refined specification of the Smart Patient Health Record (SPHR)
that represents a central core for the information about a particular patient in the
smart health centre system, including both static personal data such as age, height,
weight, date of birth etc. that is unlikely to change, and dynamic personal data
such as the treatments the patient is undertaking, screenings, and prescribed medi-
cations. The main challenge for the Serums project is to deal with decentralisation
of the information related to a particular patient. In modern health-care systems,
the data about a single patient may reside on different subsystems in the same
health-care centre, or even, in some scenarios, scattered across different health-
care institutions. It will also be collected from a variety of devices, some of which
(e.g. personal monitoring devices) will need to communicate with the health-care
systems over open networks. We need to be able to represent all this data in a stan-
dardised way, taking into account the possible geographical distribution of both
where the data is stored and where is it collected from.

It is essential to derive a standard, precise, and machine readable format of the
data related to a single patient. This also includes all the metadata associated with
the data (e.g. whether the data is local or remote, how it is accessed etc). The
SPHR also needs to provide the possibility of different types of access rights for
different entities, such as patients, general practitioners, specialists, etc. who will
be accessing the data. Ideally, we want to derive a format that will cover all of the
use cases used in the Serums project. This would allow generic distributed data
analytics mechanism (an objective of WP3) to be performed on the medical data.
Additionally, it would allow successful data fabrication (an objective of WP4),
giving us access to a vast amount of realistic data that will have the same format
as the real data (in terms of the fields used, ranges and distribution of values in the
fields and correlation between different fields), but will be synthetic, without the
possibility of being associated with any real data, and therefore not being subject
of privacy and ownership concerns. This data will be used throughout the project
both for developing new technologies and for stress-testing them on large volumes



of data. Finally, the precise format of the data is essential for storage and access
mechanisms.

This deliverable represents an intermediate step towards deriving a uniform Serums
Smart Patient Health Record format. Here, we are focusing specifically on the cen-
tralised data, where all of the patient data is available at the same place. In the
subsequent deliverable D2.5 we will publish the final format, extending this format
further to support distributed data.

We propose the data vault as an appropriate generic format in which the data will
be kept (these are described in Section 4.2.1.2). Data vaults are recognised in data
science as a universal format that allows easier and more automatic data analytics.
Our ultimate goal is to be able to represent the data of all use cases (described in
Section 2 in the form of data vaults). For transmission, we are choosing JSON (this
is described in Section 4.2.1.3). This is for the convenience of the Serums project,
as it allows for easy integration between the different work packages.



Chapter 2

Project Use Case Descriptions

The core use of the Smart Patient Health Record is to create a singular electronic
health record that the patient has autonomous control over as per General Data
Protection Regulation (GDPR) [1].

One of the objectives of the Serums project is to understand what is required to
derive a universal Smart Patient Health Record format that will be applicable to
a wide variety of different use cases that manipulate patient data, as well as what
techniques and methodologies are required for a practical implementation of this
format. We are especially concerned with providing patients the possibility to grant
specific granular-level access to the record to the approved service providers and
be able to revoke the access if required.

In this section, we describe all three project use cases used to derive the refined
version of the Smart Patient Health Record format. Our (D2.3) focus was to add
the final two use cases to the existing USTAN use case. Our (D2.3) format is shown
in Section 3.

Next we will discus a summary of the three use cases.

2.1 Edinburgh Cancer Data Gateway with integrated Pa-
tient Reported Outcome Measures (USTAN)

We aim to build a predictor within NHS Lothian for toxicity levels from treatment
regimens for cancer patients with or without comorbidities. Giving patients the
opportunity to give more accurate information on their symptoms throughout the
treatment (possibly daily whilst at home), and combining that information with
patient characteristics, cancer information and treatment regimen, will allow clini-
cians to adapt treatments better to individual patients with better patient outcomes
and controlled toxicity levels. Further data from hospitalisations and comorbidities
will contribute to a more accurate prediction [5].



2.2 Fundacié Clinic per a la Recerca Biomedica (FCRB)

We aim to build a Chronic Disease Management System to handle several chronic
diseases via the Primary Care Centre while ensuring the patient remains indepen-
dent for as long as possible. For that reason, Doctors, from the Hospital Clinic de
Barcelona, specialists in Diabetes, can supply wearable medical devices.

Under the GDPR, the patient in Spain can invoke their right to porting [ | ] to enforce
the transfer of this data to any EU state based healthcare provider that is signed-up
to Serums.

2.3 Zuyderland Medisch Centrum (ZMC)

As recovery in the hospitals is shifting from long stay to short stay, the need for
monitoring the condition of our patients at home is growing. Therefor we aim to
create a platform where patients share their medical information and home mea-
surements with any medical professional of choice. This platform must be able
to communicate and share data between multiple parties, such as hospitals, physi-
cians/surgeons at hospitals, general practitioners, various therapists, home mea-
surements and E-coaches within Serums. The patients are able to receive person-
alized feedback and warning signals based on the collected data from the system.
To demonstrate this, we follow a patient whose hip has been replaced and whose
recovery is monitored at home with the Zuyderland Activity Monitor. Documenta-
tion about the surgery and the results of the Zuyderland Activity Monitor are shared
with the surgeon and the physiotherapist by the patient. The Serums system must
comply with the GDPR and the Dutch MedMij standards.

2.4 Serums’ Three Use Cases

Serums now (D2.3) supports all three use case studies for the first time with the
Smart Patient Health Record able to extend with ease to cover other data sources.
This is achieved via the use of the extendable data vault and data processing frame-
work that uses the Smart Patient Health Record ecosystem to share data between
approved medical providers as instructed by the GDPR contracts setup by the pa-
tient.



Chapter 3

Smart Patient Health Record
Format

The Smart Patient Health Record (SPHR) for D2.3 is a continuation of the devel-
opment seen in D2.1 and D2.2. Following are the building blocks which make up
the SPHR. These are very high-level overviews of each component, to be used as a
quick reference for the architecture of the SPHR. See Chapter 4 for a much greater
level of detail on each component.

3.1 Data Lake

The data lake is where the data for the SPHR is stored. It contains six (6) zones,
which can be seen in Figure 3.1. The benefits of this structure were detailed in our
paper The SERUMS tool-chain: Ensuring Security and Privacy of Medical Data in
Smart Patient-Centric Healthcare Systems published by the IEEE in 2019 [2].

Data Lake
bl ===1] ee== fa= =] e
e== = = =g =i ==
= Yot — Sty gty >
e L e e L=
Workspace Raw Zone StructuredZone Curated Zone Consumer Zone Analytics Zone
Zone

Figure 3.1: The six zones of the data lakes

3.2 Data Vault

A data vault [4] is the storage format we have chosen as the base for the SPHR. It
allows for new sources of data to be added without the need for complex redesigns



of the existing data structures. This is of massive benefit for Serums, and specif-
ically the SPHR, as it allows more healthcare systems to be added, as well as the
development of new use cases.

The structure relies on three (3) base type of tables: the Hubs, the Links, and the
Satellites. The Hubs contain the business keys, the Links join the Hubs, and the
Satellites contain the actual data. These three table types can be seen in Figure 3.2,
with the top row showing two Hubs joined by a Link, and two Satellites on the
bottom row, each connected to its parent Hub.

Our Hubs have been chosen as Time, Person, Object, Location, and Event (TPOLE).
With these five (5) categories, we are able to classify any incoming data. These
Hubs can be seen illustrated in Figure 3.3.

The data vault concept is by Dan Linstedt and can be found detailed in Building a
Scalable Data Warehouse with Data Vault 2.0 [3].
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3.3 API

New to D2.3 is the API. An API is a programmatical interface where a system can
retrieve data from or execute commands. In the context of D2.3 the API is used
for external systems to retrieve data from the data lake as a SPHR. This takes the
form of an event called a request, which requires a body. The body contains text
fields which are required to successfully initiate the request. The text fields of the
body will be used as part of the code execution undertake by the API. The response
of a request will be returned back to the system that initiated the request. This
interaction can be seen in Figure 3.4. Details of both the request and response can

be found in Section 4.3.3.

DATA RETRIEVAL

[ TIIT]

Client RESTAPI

Figure 3.4: A basic API interaction
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Chapter 4

Technical Implementation

In this section we describe how the new (D2.3) Smart Patient Health Record (SPHR)
is created from a technical viewpoint. This will cover a brief outline of the con-
struction of the existing (D2.2) data lake from which the SPHR pulls its data, the
new (D2.3) construction of the SPHR format, and finally the new (D2.3) construc-
tion of the API for generating and delivering the SPHR.

4.1 Construction of the data lake

4.1.1 Whatis a data lake?

While a traditional database is normally used for storing curated data, a data lake
accepts data in any form. This allows enterprises to centralise the majority of their
data, no matter how raw that data is. As such we can expect to find a range of
formats and usefulness within the data lake as users can and will store everything
from customer enquiries to images of old receipts to the core operational data the
enterprise relies on to operate.

4.1.2 The structure of the Serums data lake

Each use case partner (ZMC, FCRB, and USTAN) has their own data lake. These
are stored separetely to better replicate real world conditions, where each data lake
would be directly tied to the health care provider, allowing for either real-time or
batch processing of their patient data.

A key feature of the Serums data lake is that all instances follow the same mapping.
An example of this is the directory "100-DL/100-Raw-Zone/200-Internal/l100-CSV/".
This exists in all of the data lakes, and is where the healthcare provider would store
any CSVs they wished to be part of the Serums infrastructure. With all data lakes
following this common format, it allows us to programmatically access data across
all users without the need to manually search for the location of files or write cus-
tom code to comb through each data lake. A complete directory tree for the data
lake can be found in Appendix B.
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The data lakes are broken up into six (6) zones (Figure 3.1), each serving specific
uses. For instance, when a new file is added to the data lake, it will be added
into the raw zone. As different forms of processing are applied to the file (adding
structure, metadata, classification, etc) copies, or copies of specific elements, of
the file will be created in the structured zone, followed by the curated zone, before
finally being placed in the consumer zone. It is this consumer zone from which the
SPHR will be served.

There are an additional two zones, the analytics zone and the workspace zone.
The workspace zone is simply a test bed for new code, which allows the Serums
developers to work with copies of data, without running the risk of damaging the
original versions. The analytics zone will feature copies of the curated zone’s data,
and will allow any authorised parties to run analytics from, again without the risk
of source data being corrupted.

4.1.3 The technology the Serums data lake is built with

Each data lake comprises of a file system within a Linux drive, combined with
a PostgreSQL database. This is a highly flexible and powerful combination of
technologies. The relationship between these two systems in the lifecycle of the
creation of the SPHR is demonstrated in Figure 4.1.

1. Data of any kind is selected to be
shared with the Serums system
2. The data is stored within a Linux file
AL = . system which easily handles any type
of raw data, such as spreadsheets,

[ _:I images, or even audio
D_ S 3. The data in the file systemis processed

to add metadata and, where
'3 appropriate, add structure

2, 4, 4. This processed data is added to the
I - I database and transformed into the

Smart Patient Health Record

5. The Smart Patient Health Record is
/ ready for transmission
5.
— z g 3

)
—J

Figure 4.1: Depiction of how the Linux File system and PostgreSQL database are
used in conjunction with each other during the creation of the Smart Patient Health
Record

The Linux file system allows us store files of any conceivable format. It is also an
ideal environment to deploy code in.

PostgreSQL is a full featured database that is perfect for our needs. It plays a key
role in bringing structure to the raw data, as well as helping to generate some of
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the most basic metadata.

Both Linux and PostgreSQL are open source. By focusing on open source tech-
nologies, we not only keep costs down, we also benefit from large developer com-
munities already built up around them.

4.1.4 Changes to the data lake since the initial specification

We had originally used Hadoop as the file store for the data lake. This too is an
open source technology, however, it does not have as rich a developer community
surrounding it. With its focus on Big Data, it tends to be used by large corporations,
who are able to hire specialists to set up and maintain the Hadoop cluster. With the
lack of a large developer community, it proved difficult to implement correctly and,
ultimately, brought no real benefit to the project.

The Hadoop instance we were running was a prebuilt trial version supplied by
Cloudera as a Virtual Machine (VM). Since it was prebuilt, it was limited in ad-
justments we could make to it, as such we used the included relational database
which was MySQL. The differences between MySQL and PostgreSQL are mini-
mal at the levels we are using them, however this too would have limited our ability
to radically alter the default behavior of the database itself.

4.2 Construction of the Smart Patient Health Record

4.2.1 The data lake, the data vault, and the JSON object

The Smart Patient Health Record (SPHR) can be thought of in many different
forms. At its most basic, it is simply the selected records of a patient from a single
healthcare provider. Serums, however, is combining the data from multiple source
systems within a single format that is capable of being transmitted in a secure way.
In order to achieve this we take the raw data from each of the data lakes, transform
it into a data structure known as a data vault, and finally transmit it as a JSON
object to the Serums’ frontend for use by the patient or healthcare provider.

4.2.1.1 The data lake

The structure of the data lakes has been covered in detail in the previous section.
An important caveat to mention here however is that the data we are using has been
fabricated by IBM as part of WP4. As such, all of it is provided to us as CSVs.
In the real world, it is likely that each data lake would be connected directly to the
hospitals’ systems. The data that enters their Serums data lake would take many
more formats than this. The outline of the process would not change however, we
would simply apply different forms of processing to the data in order to reach the
same end goal.
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4.2.1.2 The data vault

With the goal for Serums being that the technology is one day rolled out across
healthcare providers, it was clear that we needed to choose data modelling that
allows for constant changing of the underlying data, in terms of structure, volume,
and detail. We have chosen data vault to solve this issue. By separating business
keys (the patient id in the case of Serums) from the descriptive attributes, we are
able to avoid having to worry about making drastic changes to the overall schema.
An example of this can be seen in the Figures 4.2, 4.3, 4.4, and 4.5.

Figures 4.2 and 4.3 show a traditional style database, and how introducing a new
data source requires multiple new joins to be made between the existing tables
and the new one. Scale this issue up to a brand new department within a hospital
entering the Serums ecosystem, or even multiple regions of a country’s healthcare
services linking together and this standard data model becomes untenable.

Figures 4.4 and 4.5 show a data vault containing exactly the same detail, how-
ever now only a single change is required to be made to the existing data model.
This offers incredible flexibility as new sources can easily be added or redundant
sources removed, without the need to refresh the entire database. The trade-off
for this flexibility is the initial setup requires understanding of the underlying data,
especially if it is being converted from an existing data source.

The key to the data vault structure is its use of Hub, Links, and Satellites (Fig-
ure 3.2).

* The Hubs form the backbone of the data model, containing only the business
keys, as well as its own internal id used for linking together the Hubs. We
have decided on five (5) categories for our Hubs. These are Time, Person,
Object, Location, and Event (TPOLE). With these five categories, we are
able to classify any incoming data under one of these headings

* The Links are just that, they link together the Hubs. They form many-to-
many relationships between the Hubs, which gives the freedom for complex
relationships to form between the Satellites across numerous Hubs.

* The Satellites are where the majority of the useful data resides. These are
purposely designed to be as atomic as possible, each containing only very
closely related data. This serves two purposes: first, it allows us even finer
control over access to the data. Second, should we find ourselves with two
sets of very similar data from multiple end users, we can evaluate more easily
whether these can be combined into a single table or kept as two
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Figure 4.2: Starting point of traditional style database
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Figure 4.3: End point of traditional style database
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4.2.1.3 The JSON object
Our chosen output for the SPHR is as a JSON
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object (JSON stands for JavaScript

Object Notation). Since the Serums project will be demonstrated via a web in-
terface, transporting the data in this method allows easy integration between the
backend server and the frontend website. JSON has the advantage of being recog-
nised by a range of programming languages beyond JavaScript, including Python,
Perl, Java, C, C++, C#, etc. As such, a number of different applications and plat-
forms would be able to integrate the Serums data, without the need to develop

tools to parse it first.

The object itself contains encrypted data, specifically an encrypted key and the
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encrypted record. Exact details of this encryption will be covered in Section 4.3.3
that describes the construction of the API. The important thing to note is that the
data is encrypted before it leaves the backend server, and must be decrypted by
the frontend. This mitigates the risk of a data breach should the network traffic be
intercepted.

4.2.2 The structure of the Smart Patient Health Record

The SPHR is the result of the application of granular access controls placed upon
any and all of the data a patient has within the Serums system. As such, it could
be the entire patient record if the patient so wished, or it could be a very specific
subset of the data, given to a specialist who is external to the patient’s primary care
center.

Since the patient could be a patient of multiple healthcare providers within the
Serums system, we must first pull together and classify the data from all potential
sources into a single source. This is where our data vault comes into play. The
schemas for each of the use case partners’ data sets have been manually generated
in data vault format, allowing data to be rapidly pulled from the source data sets
and converted.

At this point, rules can be applied to the data which will control the outputs. These
rules have been designed by the work package, and the current set, as well as a
detailed description of how they are used can be found in Section 4.3.3.2. For the
final version of the deliverable (D2.5) the patient themselves will be able to define
these rules and store them on the blockchain (T2.2). Once the rules have been
applied, the SPHR is ready for transmission.

4.2.3 The technology the Smart Patient Health Record is built with

As was covered in Section 4.1, each patient’s data is stored within the data lake
for the healthcare provider at which they have received care. As a reminder, these
data lakes are the combination of a Linux file system and PostgreSQL database in
a prescribed structure.

Preprocessing takes place in order to transform the source data structures into the
data vault models. This is handled by a series of Python functions written as Jupyter
Lab notebooks. This allows the entire preprocessing to be handled automatically,
thus being scalable, repeatable, and reliable. Specifically the process takes the
CSVs provided by IBM and stored in the corresponding data lakes, creates exact
copies of these with the PostgreSQL database, before abstracting them out into
their data vault forms.

The data set that is the easiest to visualise this with is from the wearable device
found in the ZMC use case. Figure 4.6 shows a sample of the synthetic data in CSV
form as provided by IBM. This is then converted into a table with the structure as
seen in Figure 4.7. Finally it can be found in its data vault model in Figure 4.8.
No data has been lost at any point of these transformations, with the result of the
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previous step being kept to ensure we can track the lineage of any data within the
Serums system.

patient_nr B day_nr Bl time_total B time_passive Bl time_active B time_sit Bl time_stand Bl time_walk B time_cycle Bl time_hi B nr_sst B steps_total Bl cadence B cyc_rot B cyc_rpm B2

1 1 29287 9519 19368 7581 2338 19368 0 0 30 20080 62 (]
2 1 49328 30105 19223 30104 1 19223 0 0 20 20181 62 [
3 1 69855 57994 11861 53103 4891 11861 0 0 21 11255 56 0
4 1 62178 54860 7318, 43671 11189 7318, 0 0 15 6159, 50 o
5 1 62214 51522 10692 41985 9537 5975 0 anz7 13 5105 51 (]
6 1 39775 26635 13140 25396 1239 13140 0 0 2 11554 52 [
7 1 66680 54885 11795 52056 2829 11795 0 0 i 11006 55 (]
8 1 71115 58274 12841 49278 8996 12841 0 0 21 11207 52 0
9 1 71165 62930 8235 53069 9861 7289 946 0 16 6188 50 666 42

Figure 4.6: Sample of the synthetic data for ZMC'’s use case in CSV format

| zmc

(= patient_nr bigint « ok #
(= day_nr smallint « ok &

O time_total  integer
O time_passive integer
O time_active  integer
O time_sit integer
O time_stand  integer
O time_walk  integer
O time_cycle  integer

O time_hi integer
O nr_sst integer
O steps_total integer
© cadence smallint
O oyc_rot integer

O cyc_rpm integer
& hub_person_pk constraint  « pk »
L

Figure 4.7: Representation of ZMC’s use case data in PostgreSQL

many._hub_person_has_many._hub_time: many,_bub_person_has_many_hub_object

hub_person hub_object
(= serums_id uuid « pi ») = serums._id uuid « pi ») = serums_id utid « phe »)
Q hub_time_pk constraint « pk [ | Q hub_person_pk constraimt « px»’/ J Q hub_object pk constraint <« pk »
o A o 4 o A

s | 3

)
hub_time_has_many_sst_tine exercse_messurements bub_object has many_sat_object exercss_messurements
T

\
o Juby_person_as_many, sat_person_pabent id|
?
VAN \ 0]
sat_time_exercise_measurements o A
= g serial «pk» A sat_object_exercise_measurements
sat_person_patient_id

© day_nr ‘ smallint = id serial « Pk »!
© time_total nt4 - - © nr_sst intd
© time_passive intd o id sartal gaky O steps_total intd
© time_active int4 " patient_nr bigint © cadenc i
= tme_ ” ® seums it hub_person_uuid «if» Cacerce (2
© time_sit nt4 - © cyc_rot intd
© time_stand ntd @ 53t_person_patient_id_pk constraint « pk »| © e om A
2 tme_wak inta 2 huh pomn i  serums_id_hub_object umid < o)
2
. t:;:—;““ o ::4 < sat_object_exercise_measurements_pk constraint « pk»
& serums_ il hub_tine uuid « 5 Q hub_olject K — L
< sat_time_exercise_messurements pk constraint < pk» =
& hub_time A it _«fes
& A

Figure 4.8: Representation of ZMC’s use case data as a data vault in PostgreSQL

Should the patient wish to share the details about how long they took part in the
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various forms of exercise being measured in this example, they could invoke the
"Time" rule (a full list of the current rules can be found in Section 4.3.3.2) which
would only permit the table zmc.sat_time_exercise_measurements from Figure
4.8 to be shared with the health professional. Of course they could choose to share
all of the details, we have simply given the patient this granular level of control.
The SPHR is now ready for transmission.

4.2.4 Changes to the Smart Patient Health Record since the initial
specification

We had originally planned for a data vault structure being developed within Post-
greSQL to form the basis of the SPHR. As such this has remained constant between
versions.

The largest change has come from the move from HDF5 (Hierarchical Data Format
5) to JSON as the actual output. This is simply down to how the Serums technical
partners will be integrating our work packages. Since we are using a web browser
interface, JSON is a more natural fit. Were we to replicate an actual hospital’s
hardware system, we would likely add HDF5 as an additional output option as this
matches the standard format used across the world by healthcare providers.

A further change has come in the fact that we can now begin to apply rules to the
output, enabling the patient to control levels of access to their data. These rules
(Section 4.3.3.2) are still in an early stage of development and will change before
the final iteration of this deliverable, however they do give a sense of how the final
system will behave, as well as giving the blockchain a set of rules to test against as
part of their next deliverable (D2.4).

4.3 Construction of the API

4.3.1 Whatis an API?

An Application Program Interface (API) is essentially a middleman between two
applications. It allows these applications to interact without necessarily knowing
what is going on behind the scenes of the other one. This means that a devel-
oper from Company A can use features of Company B’s product within their own
application, without the need to integrate their two systems.

For this deliverable, the API has the ability to accept a request for a patient’s data,
and return said data in an encrypted form. The request in this case will come from
our system’s frontend which is being developed as part of the integration work
package (WP6). The frontend will be making numerous API requests (it will speak
to the authentication layer, the blockchain layer, and the data lake) as part of the
interaction between patient, healthcare provider, and patient data, however the user
of the system will be unable to see that the web browser is not really doing any of
the work other than visually representing the results of the various API requests.
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4.3.2 The structure of the API

The API itself has one (1) end point at this stage. For reference, an end point
in this context is the web address for the request. The end point in question is
"api/get_sphr". This section will take a high level look at the API before Section
4.3.3 goes into specifics about the actions taking place.

This end point allows the frontend to make a request for data from the various data
lakes. In order to return the patient record, we require that the frontend passes the
API a packet of data in JSON format. Specifically the API requires a patient id, a
key for encryption (this will be covered in more detail in Section 4.3.3), and a rule
to invoke (Section 4.3.3.2).

An example of what the request looks like is as follows:

{
"public_key": "—BEGIN PUBLIC KEY—

MIIBIjANBgkghkiGOwOBAQEFAAOCAQSAMIIBCgKCAQEAzaSIE9H
TGxw8vVCc0kOVDZA+xj2CcCy0IfcGROgKviRDLTaTOt+zuOX9ACn
+wd+3SFa+0OL4c6te Au/NIzfGxUkhBp2H4hCY 8XwRiGCuycv/FpD
DnaPP4ICZgzN81OrHvbPyBTd273+DfqL+IR6xO8KCuhnOq+wBIF
fAJmFopPFQaTsHrW1jrgGZhJYJO7IFwawbec7dhY vLURjxzQqx1
yyUkJ7AUocQMsKIQS+kPIR7Qgj3URRJUVM YrBWxxAorm/ygNORw
jwIDAQAB

—END PUBLIC KEY—",

" non

rule":"person",
"serums_id":"cb944c1c-6560-4ccb-875b-113a826e10df"

}

These values are used by the API to generate and return the SPHR. The rule is used
to select the specific subset of tables, the serums id is used to select the records for
one specific patient, and the public key is used for a form of encryption. In return,
the API hands the frontend back a new JSON object, this time however containing
the SPHR and the key to unlock it. An example of what the response looks like is
as follows:

"key": "gAAAAABej3aSKS5SNbK{8PdkKFMnhFGIrAXyMwhFROHKue
R8gclhEeAdz0007fuHtpYt1Npee3S2aCGbvedQJvrpvHIC1vEErvw==",
"data": "sYTaaUd63ctbolHm9gllpwB9yVRpipSKYjMDclkjMOfSLY
fx5qleZjxIPdnlTDgn/cLfOFXVTRReSdp/3ugbG8vKsKRaXmJ/GHAO
ep/mypSTSp/OLEXLAGVEjSfGWSO3FwZNEjYP1jATPCFm93JbplgqAc
PYn+hkyPpUSYyRY]LINGWBcCBS5YFsvsQ+1J902BjWpYTT+S/RIAfS
HKB8/1dcjIZ52HF1QuGbvfcBb61HxSjg15qFTIal1+EmMS18dnQ9Z2Y"
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With these, the frontend is now capable of decrypting the record, and displaying
the results for the patient or health professional.

4.3.3 The technology of the API
4.3.3.1 Encrypting the Smart Patient Health Record

The security of the API comes from its use of dual encryption. The frontend using
asymmetric encryption, and the API using symmetric encryption.

Every time the frontend makes a request for data to the data lake, it must generate
an RSA keypair. This keypair is made up of a public key and a private key. The
private key, as its name suggests, is kept secret. It is the key that is used to unlock
data that has been encrypted with the public key. The public key, as its name
suggests, can be made public and shared. The public key’s function in this instance
is to act as a lock.

It is statistically improbable that the private key could be derived from the pub-
lic key. These are generated through the multiplication of incredibly large prime
numbers, and modulus mathematics ensuring that, even by brute force attacks, it is
highly unlikely that an attacker would be able to break the encryption.

A draw back with this type of encryption, however, is the volume of data which
can be encrypted by the public key. As such, in order to encrypt a potentially large
volume of data, we rely on a different type of encryption. For the API, we have
chosen Fernet encryption for its high level of security, as well as the length of data
it is capable of handling. Fernet encryption works by generating a key, which in
turn is used to prime an encryption algorithm, which itself is used to encrypt the
data.

Within the API, once the SPHR has been generated, it is transformed into a JSON
string, before being encrypted by a Fernet algorithm. The key that was used to
generate the Fernet algorithm is itself encrypted using the public key that was pro-
vided as part of the API request. With both elements encrypted, they are bound to
a JSON object and returned to the frontend.

The frontend is now capable of: firstly decrypting the Fernet key, using the private
key which has not been revealed to the outside world, before the newly decrypted
Fernet key is used to generate a decryption algorithm for use on the SPHR. At this
point the request is completed and the SPHR can now be viewed. This lifecycle
can be viewed in Figure 4.9.

4.3.3.2 Selecting the data to return

The key to the selection of data is the rule which is passed as part of the API
call. In the final iteration of the software, the patient will be able to design these
themselves, giving them granular control over who can see what. As such, this is
a core tenet of Serums. For this interim stage, however, a basic set of groupings
have been chosen to give a sense of this control, as well provide us a set of values
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1. (o] 1. Frontend generates RSA
T 2. key and lock and passes
—_— \ I lock to server
= \/ TITT 2. Server retrieves record
— — 1 (- and generates Fernet
- g = _ key

3. Fernet encryption used
on record and RSA lock

N\t encrypts Fernet key
=SUCCESS= 4. Encrypted key and
T L * / record returned to
\ frontend where RSA key
4 X decrypts Fernet key and
. Fernet key decrypts
3. record

Figure 4.9: Lifecycle of the ecryption process

to test the integration of the WP2 elements, including the SPHR, the data lake, and
the blockchain.
These rules are as follows:

* The five Hub categories of our data vault format:
— Time, Person, Object, Location, Event

* Each of the three use case partners’ entire data collection
- ZMC, USTAN, FCRB

* Two more general rules, one which captures just some basic details about
the patient, and one which returns all of the tables from all of the use case
partners in which the patient appears

— General, All

When the rule is received by the API, it is first looked up to determine the tables
the query is allowed access to. At this point, the tables are searched using the
Serums ID provided by the request. Once all results have been found, these are
then encrypted using the method described above, before being returned to the
frontend for decryption.

If we refer to Figure 4.8, and invoked the "Time" rule we would return only
the Satellite zmc.sat_time_exercise_measurements, if we invoked the "Object"
rule we would return only the Satellite zmc.sat_object_exercise_measurements,
whereas if we invoked the "ZMC" rule we would return the Satellites zme.sat_tim-
e_exercise_measurements, zmc.sat_person_patient_id, and sat_object_exercis-
€_measurements.
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4.3.4 Changes to the API since the initial specification

In the initial specification of the SPHR we did not have an API to return the data.
As such, both the ability to select specific subsets of data for a patient, and the
ability to encrypt the data are new for this iteration.
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5. Conclusion

The current Smart Patient Health Record (Chapter 3) is version 001.002 and will
evolve over the period of the research of Serums project. The Smart Patient Health
Record version 001.002 included all other research use cases identified by the con-
sortium. The Smart Patient Health Record will evolve as the researchers add ma-
chine learning processing but WP2 do not foresee any major change to the current
Smart Patient Health Record’s core structure, other than adding more granular con-
trols to the data selection via the creation of rules by the patient.

Version 001.003 of Smart Patient Health Record (Chapter 3) will be the final for-

matted version for this research project and will be included as part of deliverable
2.5.
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Appendix A

End-to-end creation of a Smart
Patient Health Record for a use
case partner

The creation of the Smart Patient Health Record (SPHR) and the data contained
therein has required collaboration between SOPRA, each of the use case partners,
and IBM. In this section, we will walk through the creation of the SPHR tables for
FCRB.

As with all of the use case partners, we first required the extraction of metadata
from the tables FCRB wished to use for its use case. It is important to understand
that the metadata does not contain any actual data that might identify someone,
it merely describes what typical data for a particular field should look like. An
example of one of the tables provided by FCRB can be found in Figure A.1. This
is the metadata for a table named Diagnostic, and this table will be referenced
throughout. A complete overview of the database they have provided can be found
in Figure A.2.

With the metadata collected, a model was generated for each of the tables. This
was achieved with the use of pgModeler, a database modelling tool. These tables
can be seen in Figure A.3. pgModeler generates SQL files which are used by both
SOPRA and IBM. The SQL for the Diagnostic table is as follows:

CREATE TABLE fcrb.diagnostic (
einri char (4),
patnr char (10) NOT NULL,
falnr char (10),
l1fdnr varchar (255),
dkeyl char (30),
erusr char (12),
CONSTRAINT diagnostic_pk PRIMARY KEY (patnr)
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Diagnostic

Field name | Description Type of variable
EIMRI Medical Centre. Can be ‘HCPB’ {p=0.75), '‘BCL" | CHAR 4
(p=0.15} or 'HCM' (p=0.10}.
PATMR Unigue patient identifier. Number starting by | CHAR 10
1"
FALNR Unique episode identifier. Number starting by | CHAR 10

1000000001" if it is BCL , starting by
“2000000001" if it is from HCPB and
'3000000001" if it is HCM.

LFDMR Number of actual diagnostic. Number from 1- | NUMC 3
10.

DKEY1 Code of a diagnostic. Number with the format | CHAR 30
HHHYYL

Being XXX a number from 001 —959 and YY a
number from inexistent to 59. See ANNEX 9
for all possihbilities.

ERUSR Mame of the person that created the registry. | CHAR 12

Figure A.1: Metadata provided by FCRB for a table with the name Diagnostic

Medical Specalty

Figure A.2: Entity Relationship Diagram (ERD) provided by FCRB alonside their
metadata documentation
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ferb

Ogschl  char(1)
Onname char(30)
ame char(30)
O gbdat  date

O gbnam char(30)
Opstz _char(10)
@ patient_pk_constraint_« pk >

Oeinri  char(10)
Ofanr  char(10)
Oidodr  char(10)

= patnr char(10) «pk»)

Oerusr  char(12)
Oerdat date
Oorgid _char(s)

Q order_entry_pk_constraint_« pk »,

Figure A.3:

IBM was supplied all of the SQL files, as well as any accompanying documentation
for the metadata. In combination, these were used to create the initial version of
the fabricated data as part of Deliverable 4.1 (Figure 1). This fabricated data was
then passed to both the relevant use case partner and SOPRA, the use case partner
to evaluate its accuracy and to begin the process of producing more realistic data,
and SOPRA to continue the development of the SPHR. A small sample of some of

Ostras__char(50)
Q patient_address pk_constraint_« pk »|

Oenri  char(4)
&~ patnr char(10) «pk)
Ofanr  char(10)
r - varchar(255)
O dkeyl char(30)
O erust _char(12)
Q dignostic pk_constraint_«
° a

char(10)

char(10)
char(15)
char(10)
varchar(255)
varchar(255)
varchar(255)

© wertmax char(20)
© wertmin - char(20)
Oertat _date

O vital signs_pk_constraint _« pk »

= pernr char(10)
= orgid char(3)

) gbdat dlate

ke char(1)

nr - char(10)

char(1)
g char(1)
2t char(1)
dt date
dt date
ke char(1)
hat  date
st char(12)
fat date
O rank _char(3)
Q professional pk_constraint_« pk »|

o a

Oeinri char(4)
Ofahr  char(10)

chr
ndtyp char(2)
Odocw  char(1)
Ozendzt_time

time
char(1)
varchar(255)

it date
© stod varchar(255)
 medication_pk_constraint _« pk »,

Q episode_pk_constraint_« pk »|

medical_speciality
= orgid_char(s) «pk»
 medical_speciity_pk _constraint _« pk »|

All of FCRB'’s original tables modelled in pgModeler

the fabricated data for the Diagnostic table can be found in Figure A.4.

Key to the Smart Patient Health Record is the use of the data vault structure (Sec-
tion 4.2.1.2). These were generated for each of the use case partners, again using

einri upﬂtnr uialnr

BCL
BCL
BCL
BCL
BCL
BCL
BCL

Figure A.4: Example of IBM’s data fabrication for the Diagnostic table of FCRB’s

use case

= o L s wa pa

1000000001
1000000002
1000000003
1000000004
1000000005
1000000006
1000000007

30
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1
1127.2
1110

1 E26.02

ﬂlidnr ndke';l n erusr
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Figure A.5: The data vault model of the FCRB tables

pgModeler. In the case of FCRB it resulted in a construction which can be found
in Figure A.5. The top most row shows the Hubs of the data vault with Satellites
below each. The source tables are no longer recognisable in this new construction,
however none of the data has been lost and the data lineage has been tracked, al-
lowing the user to see from where the data has originated. It is important to note
here that the Satellites do not have an active relationship with any of the other
Satellites, despite what this image may appear to show. They have simply been
arranged in this manner to show their relationship to their respective Hub.

At this point, it is now possible to build and fill the data vaults for the use case
partners. Firstly, the source tables are created within the Serums data lake using
the SQL files SOPRA provided to IBM and the fabricated data SOPRA received
in return. Next, the SQL file for the data vault structure is ran to create an empty
database within the data lake. Finally, a piece of code is executed which takes each
of the source tables and automatically maps them onto the data vault structure,
taking each row from each table and inserting it correctly into the waiting Satellites,
all the while filling in the Hubs and Links to ensure the data maintains its original
relationships.

With the data vault complete for each of the use case partners, it is now possible
for the Smart Patient Health Record to be generated and safely transmitted via
SOPRA’s API (Section 4.3.3).
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Appendix B

The data lake directory tree

Below shows the complete structure of the Linux file system partition of the Serums
data lake:

100-DL
—— 000-Workspace-Zone
—— 100-Raw-Zone
—— 100-External
—— 100-University-of-St-Andrews
—— 200-Zuyderland-Medisch-Centrum
—— 300-Fundacio-Clinic
— 900-Other
—— 200-Internal
—— 100-CsV
—— 200-TEXT
—— 300-JSON
—— 400-XML
—— 900-Human-in-the-Loop
-— 300-Archive
—— 100-CsvVv
—— 200-TEXT
—— 300-JSON
—— 400-XML
-— 900-Human—-in-the-Loop
—— 200-Structured-Zone
—— 300-Curated-Zone
—— Hub
Event

Location
Object
Person
Time
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—— Link

Event-Location
Event-Object
Event-Person
Event-Time
Location-Event
Location—-0Object
Location—-Person
Location-Time
Object-Event
Object-Location
Object-Person
Object-Time
Person-Event
Person-Location
Person-Object
Person-Time
Time-Event
Time-Location
Time-Object
Time-Person

Satellite

Event
Location
Object
Person
Time

—— 400-Consumer—-2Zone
-— 500-Analytics—-Zone
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Appendix C

Interactive documentation for the
API

The interactive documentation for this deliverable is available at http: //melonlander.
co.uk:8080/. Itis possible to test out the /api/get_sphr endpoint and see real
encrypted data being returned from a duplicated version of the data lake.
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