
This paper should be referenced as:

Kirby, G.N.C. & Morrison, R. “Orthogonal Persistence as an Implementation Platform for
Software Development Environments”. University of St Andrews Technical Report CS/97/6
(1997).

1

Orthogonal Persistence as an Implementation Platform
for Software Development Environments

G. N. C. Kirby & R. Morrison
Department of Mathematical and Computational Sciences, University of St Andrews,

St Andrews, Fife KY16 9SS, Scotland.

{graham, ron}@dcs.st-and.ac.uk

Abstract
Software development environments need to maintain representations of software
entities and the relationships between them. Various supporting software platforms
have been used to provide the storage for these entities and relationships, including
file systems and databases. This paper describes how a persistent object system may
be used as such an implementation platform. It shares many of the advantages of
object oriented databases, with the additional ability to model first-class code values,
and to introduce new type descriptions dynamically.

1 Introduction
One of the main functions of a software development environment (SDE) is to store and
organise information about various aspects of software production. This includes entities
such as program source code, compiled code, executable code, documentation, specifications,
configurations, information about authorised users and so on. Each of these may be
versioned. In addition, the environment must keep track of the relationships between the
entities. For example, for a given source program it may be required to be able to determine
which compiled code entities are derived from it, which are the relevant documentation
entities, what is its version history etc. The E-R diagram in Figure 1 shows some of the
information which might be stored.

Figure 1. E-R Diagram for a Hypothetical Software Development Environment

The significant point here is not the details of the particular entities and relationships, but
rather that there are a number of relationships which must be maintained by the software
development environment in order for it to operate correctly. From a given entity it should
always be possible to locate the other entities to which it is related.

2

Ensuring that such relationships are always represented correctly involves several aspects.
The environment must ensure, firstly, that the entities themselves are not altered in an
inconsistent manner, and secondly, that the mechanism for retrieving the related entities from
a given entity is not corrupted. The degree to which such constraints can be enforced by the
environment depends to some degree on the nature of the repository used to store the
representations of the entities and relationships. Where the repository itself provides
protection mechanisms it may be relatively easy for the environment above it to make
guarantees. Where little protection is provided at the lower levels it requires greater
implementation effort for the SDE to enforce the necessary constraints, and in some cases it
may be necessary for users to conform to certain conventions in order for the SDE to operate
correctly.

No SDE can give 100% reliability since, in the extreme case, the machine or machines on
which it is stored may all fail simultaneously. Choosing a particular implementation platform
for an environment is thus a question of degree: to provide a given level of robustness will
require a different amount of implementation effort on different platforms. Of course other
factors will also be affected, such as performance and flexibility.

The aim of this paper is to point out the suitability of a persistent object system (POS) as an
implementation platform for SDEs, to compare the support it provides with that of alternative
platforms, and to mention some interesting research directions which are made possible.

2 Related Work
A number of SDEs and software development tools [Roc75, Fel79, Tic85] are based around
file systems. Thus the representations of the entities are stored in files, and the associations
between entities are either implicit in the names of the files and their positions in the
directory hierarchy, or are stored explicitly in auxiliary files. File-specific information
maintained by the file system, such as creation and modification times, and access control
flags, are used by the environments. Such environments have the advantage that the many
existing file-based tools can continue to be used.

Such systems often rely on file naming conventions. For example a Pascal source file named
prog.c may not be processed correctly. They may also be vulnerable to misuse if the files are
manipulated by a user directly through the file system interface rather than through the
environment. For example a source file might be deleted, leaving a compiled program with
no corresponding source, or the source file might be replaced by another with the same name
but containing a completely different program. Accidental misuse of this nature can largely
be avoided if users are sufficiently disciplined to use only the environment’s interface;
problems may arise however when that is used in combination with the lower level file
system interface.

Other drawbacks of using an existing file system are that it may be difficult to implement
adequate concurrency control mechanisms above the file system layer, and the difficulties of
storing structured entities within files: the environment implementation has to flatten the
structure to a byte sequence for writing to a file, and rebuild the structure when it is read in.

The Cedar environment [SZH85] is implemented above a custom-built file system layer
which is only accessed through the Cedar language. This allows the problems described
above to be avoided but involves a large implementation effort.

The Vesta system [LM93] provides version control and configuration management facilities
based on a conventional file system. It avoids the problems of misuse by implementing a
higher user layer which gives the abstraction of immutable files. From the user view, all
versioning proceeds by copying and no files are ever updated. The implementers state that
one of the main implementation difficulties was ensuring atomic update to a group of files
[CL93] .

3

Most newly developed SDEs use databases rather than file systems to store entity data, with
the same motivations as for introducing databases to other applications: these include
improving resilience, security, performance and concurrency control. Systems have been
built above relational databases [CC83, PL83] ; these do indeed provide these advantages, but
are still not well suited to storing highly structured data as may be necessary for entities such
as configuration and version information, for example.

Increasingly common now is the use of object oriented databases (OODBs) to provide the
storage layer. These have the advantage of being suited to the storage of highly structured
entity representations, and have been used successfully in such systems as Arcadia [Kad92]
and Forest [JV95] . OODBs by their nature provide type system protection which may be
used to restrict inappropriate actions on entity representations. Most also allow the integrity
of links between objects to be enforced, which assists in the reliable implementation of
relationships between entities. The importance of typing and safe links at the SDE support
layer was also recognised in the ECMA PCTE definition [LM93] .

Conceptually, the objects stored in an OODB contain both data and the code (methods) that
operates on the data. In practice however, since all objects belonging to a particular class
share the same methods, the method code is associated with the class definition rather then
the objects . Thus methods are not first class objects and it is not possible, for example, for a
method to generate and return a new method. Schema evolution mechanisms are necessary if
the code is to be allowed to change dynamically.

In an orthogonally persistent programming system this distinction between code and data is
removed, with code values having the same civil rights as all other data. This allows the use
of some new techniques for software construction and maintenance. Specifically, hyper-
programming involves the embedding of typed links to persistent objects within source
programs, rather than using dynamically resolved textual denotations of those objects. This
is described in Section 4, after a summary of orthogonal persistence in Section 3.

3 Orthogonal Persistence
Persistent programming languages were developed in an effort to reduce the burden on the
application programmer of organising the transfer of long-term data between volatile
program storage and non-volatile storage [ABC+83] . Previously, application data which
was to be retained between activations had to be written explicitly to a database or file
system, and later read in again to the application space. The flattening and rebuilding of data
structures that this required involved a significant programming overhead, and an increased
intellectual effort since the programmer had to keep track of a three way mapping between
program representation, database/file representation and real world. The introduction of
orthogonally persistent languages meant that any program data could be made persistent
simply by identifying it as such, with all transfers between memory hierarchy layers handled
transparently. This simplified matters for the application programmer: the three way
mapping was reduced to a single mapping between program representation and real world, as
illustrated in Figure 2.

Figure 2. Conceptual simplification afforded by orthogonal persistence

4

Not only did the automatic transfer of data reduce work for the programmer, it also allowed
more varieties of data to be kept between program activations. Because of the flattening
process needed for explicit transfer of data structures to file or database representations, there
were some forms of data which could not be made persistent in this way, since they could not
be fully flattened by application-level programs. Examples included objects (in the object-
oriented sense) and procedures with encapsulated state, abstract data types, and the identities
of objects or values. Thus orthogonal persistence means that all of the features provided by a
programming language can be used effectively in long-lived applications rather than only in
toy systems. See [AM95] for an overview of current persistence research.

4 Persistence and Software Development Environments
The benefits of a POS as a platform for implementing software development environments
derive principally from the following features: referential integrity; strong typing and first-
class code values.

4.1 Referential Integrity
The property of referential integrity, provided by most orthogonally persistent systems,
ensures that dangling object references can never occur. Thus once a reference to a given
object is established the system guarantees that the object will remain available via that
reference for as long as the reference exists. This property can be supported by combining a
garbage collected volatile memory with a “persistence by reachability” implementation
which automatically makes persistent all objects reachable via the transitive closure of one or
more persistent roots. Objects cannot be explicitly deleted by the programmer but are
removed from the system once they can no longer be accessed.

Referential integrity is a useful property for constructing reliable applications in general,
since a possible failure mode is removed. In the context of supporting software development
environments it greatly simplifies the problem of maintaining the various relationships
illustrated in Figure 1, since all that is required is for references to related entities to be stored
in the representation of each entity. The POS then ensures that the related entities will be
stored for as long as the entities are accessible.

It is impossible for a user to use a lower abstraction layer to accidentally corrupt a
relationship stored in this way, since the POS provides no such interface. Malicious
corruption is possible but would require low level access to disk storage, and being able to
interpret low level storage formats. In this respect POSs provide similar support to that of
OODBs, in contrast to file systems which provide little support for referential integrity.

4.2 Strong Typing
Most POSs support rigorously enforced and relatively sophisticated type rules. A strongly
typed system is one in which all code is checked for type correctness before it is allowed to
execute. The checking may be static, if it is possible to determine correctness simply by
analysis of the program text, or dynamic if it is necessary to access the run-time environment
in order to verify the correctness of an operation. Typically both static and dynamic checking
are required: as much as possible is checked statically, in order to detect errors early and to
improve efficiency by factoring out run-time checks, while the facility for dynamic checking
where necessary is retained for flexibility [Con90] .

The enforcement of a type system by a SDE platform enables the SDE implementer to define
types for the various entities supported, and if the type system is sufficiently sophisticated
(supporting an object model, modules, first class procedures or similar) these can capture the
operations allowed on each kind of entity. Thus the implementation platform ensures that the
user can only invoke the legal operations defined on each entity.

5

POSs and OODBs allow type descriptions of arbitrary complexity to be associated reliably
with entity representations. In contrast, file system platforms usually support only the
encoding of limited type information in file name suffixes, and even these may be
contravened by a user changing a file name through the file system interface. File system
tools often attempt to deduce further type information by examination of file contents but this
may be unreliable since files are not always self-describing. For example it may be
impossible to determine whether a file contains a C or C++ source program from its contents.

4.3 Introducing New Code
Most POSs support first-class code values in the form of procedures. Thus procedures may
be nested, passed as parameters, returned as procedure results, stored in data structures and
made persistent in the same manner as other values. This provides a flexible programming
model which may be used to support, among others, information hiding, views, protection
and separate compilation [AM84] .

In the context of supporting SDEs, the ability to represent executable code within the
platform’s type system helps in modelling as many aspects as possible of the software
process. Consider how the platform captures the simple action of compiling a (self-
contained) source code entity to produce an executable code entity, which is then executed.
This requires definitions of types for source and executable code entities. A simple string
representation would suffice for the former, while the latter must represent, at the least, the
types of any parameters passed to the new executable code and of any result returned, in
order that the type correctness of its execution can be verified. This requires flexibility on the
part of the SDE platform since the type definition for the executable code needs to be
introduced dynamically, during the compilation process. The sequence of events might be as
follows:

• source code entity created;
• source code successfully compiled;
• type information for executable code derived from source code;
• new type information introduced into SDE;
• executable code entity created;
• new code executed.

This is difficult to achieve with those OODB platforms which provide a static type schema
against which all code must compiled. Such systems do not cater naturally for the dynamic
generation and introduction of new type definitions during the execution of an application
(the SDE in this context). The extension of OODBs to cope with dynamic schema evolution
is an active research area [Bra93, MS93, Odb95] .

Although it is obviously simple to support such a process on a file system platform, this is at
the cost of being able to associate only limited type information with the various entities, as
discussed in the previous section.

A POS is well suited as a platform for this process due to its support for strong but dynamic
typing and first class procedures. Dynamic typing makes it possible for the SDE to generate
new type definitions, derived from compilation of source entities, and have them safely
introduced into the system without disrupting existing objects. Executable code entities can
then be represented as procedures, with the normal associated type information. In this
scenario the SDE tools such as compilers and linkers are available as procedures in the same
way as user programs. This approach is similar to that of the file-based Vesta system, where
the tools used to create a configuration are themselves specified within the system.

6

4.4 Hyper-Programming
The treatment of source programs as strongly typed persistent objects, which is made
possible by the use of a POS or OODB as the support platform, permits a new approach to
program construction. Hyper-programming involves storing strongly typed references to
other persistent objects within a source program representation. Thus the source code entity
is represented by a graph rather than a linear text sequence. By analogy with hyper-text this
is called a hyper-program [MCC+95] . It may be considered as similar to a closure, in that it
contains both a textual program and an environment in which non-locally declared names
may be resolved. The difference is that with a hyper-program the environment is explicitly
constructed by the programmer who specifies persistent objects to be bound into the hyper-
program at construction time.

Figure 3 shows an example of a hyper-program representation. The first embedded reference
is to a first-class procedure value writeString which writes a prompt to the user. The program
then calls another procedure readString to read in a name, and then finds an address
corresponding to the name. This is done by calling a procedure lookup to look up the address
in a table package referred to by the hyper-program. The address is then written out. Note
that code objects (readString, writeString and lookup) are treated in exactly the same way as
data objects (the table). Note also that the object names used in this description have been
associated with the objects for clarity only, and are not part of the semantics of the hyper-
program.

Figure 3. Hyper-program represented as persistent object graph

Figure 4 shows an example of a simple user interface to a hyper-program editor [KBC+96] .
The editor displays light-buttons embedded within the text representing the hyper-program
references; when a button is pressed the corresponding object is displayed in a separate
graphical object browser window. The browser is also used to select persistent objects for
embedding in hyper-programs under construction. A more sophisticated SDE might also
allow objects to be retrieved by query over the persistent store.

7

Figure 4. User interface for hyper-program editor

The support of hyper-program construction techniques by a POS provides a number of
advantages to the user of an SDE based on it:

• Program succinctness: textual descriptions of the locations and types of persistent
components used by the program may be replaced by simple embedded references.

• Increased execution efficiency: checking of the validity of specified access paths to
other components is factored out when they are embedded directly in the source
program. Checking of type consistency may be performed at compilation time rather
than execution time.

• Reliable access to components: where a textual description of a component is replaced
by a direct reference, the underlying referential integrity of the POS ensures that the
component will always be accessible by the program. By contrast, where a textual
description is used it may become invalid by the time the program executes, even if it
was valid at the time the program was constructed.

• Automatic source code retention: the hyper-program notation may also be used to
represent procedure closures, with encapsulated state denoted by direct references
embedded in the text. This means that it is possible to associate a source
representation with every procedure value, which fully captures its state. This source
representation can be recorded automatically by the POS when the procedure is
created, and permanently associated with the procedure by recording a reference to it
in the closure value.

Due to the source retention facility the SDE is guaranteed that the hyper-program source code
will always be trivially available from any procedure value. The representation of procedure
state as embedded references gives a mechanism for accessing the internal state of existing
applications which may be used by SDE tools such as debuggers, documentation generators
etc.

The availability of first-class procedures supports an application construction style in which
each application is composed of a graph of procedures which refer to each other and to
application-specific data. Since the POS allows the hyper-program source code, including
embedded references, to be retrieved from any particular procedure, the configuration details
of an application are an intrinsic part of the application itself. As such they may be reliably
accessed by the SDE.

In the example shown in Figure 5 the application is invoked via the main procedure labelled
A, which calls procedures B and C. They in turn call other procedures and access data
internal to the application. To discover the configuration of the application the SDE first
obtains the hyper-program source code for procedure A. This is a data structure containing

8

the text and a list of embedded references, in this case to B and C. Their hyper-programs are
retrieved in turn, and the full configuration is eventually derived by traversing the entire
graph.

Figure 5. Application configured from graph of procedures

In this way the SDE is relieved of the task of maintaining configuration information for
applications since it is performed by the POS support platform. A similar approach could be
used to embed versioning information and documentation within the application itself.

Since the programmer has access to an application’s internal configuration, it becomes
possible to alter the implementation of a particular procedure component of the application
without having to completely rebuild the application and losing the current application state.
This is achieved by obtaining a hyper-program representation of the required procedure,
editing the textual part, compiling to produce a new procedure which contains references to
the same application state, and finally installing it in place of the existing procedure. An
application architecture which supports this methodology is described in [DCC93] .

The provision of source code browsing and editing tools in the SDE is facilitated by the
availability of a structured source form. For example it is relatively simple to transform the
hyper-program obtained from an application into a hyper-text form suitable for browsing1.
Of course it may not be desirable to allow all SDE users unrestricted access to hyper-program
forms since the internal application state may be intentionally hidden.

All of the features described in this section could be provided by an OODB platform if, but
only if, it supported the dynamic introduction of new types or classes. This is necessary to
allow the compilation of hyper-programs constructed within the OODB into executable
programs with statically unknown types.

1For an example see: http://www-ppg.dcs.st-and.ac.uk/NapierSource/

9

5 Further Work
A prototype SDE has been developed, based on the Napier88 persistent object system2. This
supports the construction of hyper-programs and automatic source code retention. Currently
only simple software development tools have been implemented. Tools for managing
versioning, configurations and documentation will be developed in the future. The approach
for these will be similar to that currently used for applications and hyper-program source
code: all entities which need to be associated reliably will be linked with typed references
between them.

Another research direction involves making use of the tight association between executable
procedures and hyper-program source code to provide a simplified SDE interface to the
programmer. The existence of those entities which are not essential to the software
construction task, such as executable program forms, will be hidden from the programmer.
Thus the distinction between source program and executable program will be removed: the
programmer will interact with a single representation, the hyper-program, for all SDE
activities, including program construction, execution, debugging, profiling etc.

We also intend to experiment with the provision of hyper-programming on a more widely
used platform, possibly on a persistent version of Java such as PJava, currently under
development at Glasgow University [Jor96] .

6 Conclusions
Software development environments have been implemented on a variety of software
platforms, including file systems, object oriented databases and persistent object systems.
These platforms vary in the amount of support provided for reliable storage of software
entities, concurrency control, ensuring consistent update, storing relationships between
entities and so on. Clearly the greater the support provided in the underlying platform, the
less has to be implemented in the SDE, so long as that support is appropriate to the
requirements of the SDE.

This paper has attempted to show how the important features of a POS—strong typing,
referential integrity, first-class code and the ability to introduce new types
dynamically—make it suitable as a support platform on which SDEs may be implemented.
POSs differ markedly from file system platforms in their support for typed objects and
referential integrity. The distinction between POSs and OODBs is less strong but the
significant differences in this context are their support for first-class code values, and, in
comparison with many OODBs, their greater flexibility in allowing new types to be
introduced during application execution.

Thus the use of a POS as a support platform allows more of the aspects required of an SDE to
be implemented in the support platform and mapped directly into the SDE, rather than
needing to be implemented at the SDE level. This is illustrated in Figure 6. The maintenance
of relationships between entities is shown spanning the two layers for object oriented
databases, since these platforms do support referential integrity but may not be able to
satisfactorily represent all entity types.

2Available at: http://www-ppg.dcs.st-and.ac.uk/Info/Release2.2.1.html

10

Figure 6. Comparison of SDE features supported by various platforms

We postulate that provision of such features at the support platform level rather than the SDE
level will simplify the implementation of SDEs and improve SDE reliability since it reduces
the scope for unwanted access to entities through lower abstraction layers. It should also
allow greater flexibility for the SDE implementer since the need for entity naming
conventions is removed. Finally, the potential of hyper-program technology, made possible
by these features, has been outlined.

One likely disadvantage of this approach is a reduction in portability of SDE
implementations, since they will make more assumptions about the support layer. This, and
the claimed advantages, will need to be tested in a substantial SDE built using a POS.

7 Acknowledgements
We thank Roy Levin for his help in our understanding of the Vesta configuration
management system. This work is partially supported by UK EPSRC grant GR/J 67611
“Delivering the Benefits of Persistence to System Construction”. The research prototype
mentioned in this paper was developed by the persistent programming group at St Andrews
which included Dharini Balasubramaniam, Richard Connor, Quintin Cutts, Vivienne
Dunstan, Dave Munro and Stephan Scheuerl.

8 References
[ABC+83] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R. “An Approach to

Persistent Programming”. Computer Journal 26, 4 (1983) pp 360-365.

[AM84] Atkinson, M.P. & Morrison, R. “Persistent First Class Procedures are Enough”. In Lecture Notes
in Computer Science 181, Joseph, M. & Shyamasundar, R. (ed), Springer-Verlag (1984) pp 223-
240.

11

[AM95] Atkinson, M.P. & Morrison, R. “Orthogonally Persistent Object Systems”. VLDB Journal 4, 3
(1995) pp 319-401.

[Bra93] Bratsberg, S.E. “Evolution and Integration of Classes in Object-Oriented Databases”. PhD Thesis,
Norwegian Institute of Technology (1993).

[CC83] Ceri, S. & Crespi-Reghizzi, S. “Relational Data Bases in the Design of Program Construction
Systems”. ACM SIGPLAN Notices 18, 11 (1983) pp 34-44.

[CL93] Chiu, S.-Y. & Levin, R. “The Vesta Repository: A File System Extension for Software
Development”. DEC Systems Research Center Technical Report 106 (1993).

[Con90] Connor, R.C.H. “Types and Polymorphism in Persistent Programming Systems”. Ph.D. Thesis,
University of St Andrews. Technical Report CS/91/3 (1990).

[DCC93] Dearle, A., Cutts, Q.I. & Connor, R.C.H. “Using Persistence to Support Incremental System
Construction”. Journal of Microprocessors and Microprogramming 17, 3 (1993) pp 161-171.

[Fel79] Feldman, S.I. “Make – A Program for Maintaining Computer Programs”. Software – Practice and
Experience 9 (1979) pp 255-265.

[Jor96] Jordan, M. “Early Experiences with Persistent Java™”. In Proc. 1st International Workshop on
Persistence for Java, Glasgow (1996).

[JV95] Jordan, M. & Van De Vanter, M.L. “Software Configuration Management in an Object Oriented
Database”. In Proc. USENIX Conference on Object-Oriented Technologies (COOTS), Monterey,
California (1995).

[Kad92] Kadia, R. “Issues Encountered in Building a Flexible Software Development Environment”. ACM
Software Engineering Notes 17, 5. Proc. 5th ACM SIGSOFT Symposium on Software
Development Environments, Tyson’s Corner, Virginia (1992) pp 169-180.

[KBC+96] Kirby, G.N.C., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle, A., Dunstan, V.S., Morrison, R.
& Munro, D.S. “Napier88 Standard Library Reference Manual (Release 2.2.1)”. University of St
Andrews (1996).

[LM93] Levin, R. & McJones, P.R. “The Vesta Approach to Precise Configuration of Large Software
Systems”. DEC Systems Research Center Technical Report 105 (1993).

[LM93] Long, F. & Morris, E. “An Overview of PCTE: A Basis for a Portable Common Tool
Environment”. Carnegie Mellon University Technical Report CMU/SEI-93-TR-1 (1993).

[MCC+95] Morrison, R., Connor, R.C.H., Cutts, Q.I., Dunstan, V.S. & Kirby, G.N.C. “Exploiting Persistent
Linkage in Software Engineering Environments”. Computer Journal 38, 1 (1995) pp 1-16.

[MS93] Monk, S.R. & Sommerville, I. “Schema Evolution in OODBs using Class Versioning”. ACM
SIGMOD Record 22, 3 (1993) pp 16-22.

[Odb95] Odberg, E. “MultiPerspectives: Object Evolution and Schema Modification Management for
Object-Oriented Databases”. PhD Thesis, Norwegian Institute of Technology (1995).

[PL83] Powell, M.L. & Linton, M.A. “A Database Model of Debugging”. ACM Software Engineering
Notes 8, 4. Proc. ACM SIGSOFT/SIGPLAN Software Engineering Symposium on High-Level
Debugging, Pacific Grove, California (1983) pp 67-70.

[Roc75] Rochkind, M.J. “The Source Code Control System”. IEEE Transactions on Software Engineering
SE-1, 4 (1975) pp 364-370.

[SZH85] Swinehart, D.C., Zellweger, P.T. & Hagmann, R.B. “The Structure of Cedar”. In Proc. ACM
SIGPLAN Symposium on Programming Languages and Programming Environments (1985) pp
230-244.

[Tic85] Tichy, W.F. “RCS - A System for Version Control”. Software – Practice and Experience 15, 7
(1985) pp 637-654.

