This paper should be referenced as:

Kirby, G.N.C., Morrison, R., Connor, R.C.H. & Zdonik, S.B. “Evolving Database Systems:
A Persistent View”. University of St Andrews Technical Report CS/97/5 (1997).

1

The growing requirements of database application systems challenge database architects to
provide the appropriate mechanisms for system evolution. Traditional database systems are
designed under a number of a priori assumptions about how they will be used that

Evolving Database Systems: A Persistent View

G.N.C. Kirby, R. Morrison, R.C.H. Connor* & S.B. Zdonik"

School of Mathematical and Computational Sciences,
University of St Andrews, St Andrews, Fife, Scotland.

*Department of Computing Science,
University of Glasgow, Lilybank Gardens, Glasgow, Scotland.

TDepartment of Computer Science,
Brown University, Providence, Rhode Island, USA.

{graham, ron, richard} @dcs.st-and.ac.uk
sbz@cs.brown.edu

Abstract

Orthogonal persistence ensures that information will exist for as long as it is
useful, for which it must have the ability to evolve with the growing needs of
the application systems that use it. This may involve evolution of the data,
meta-data, programs and applications, as well as the users’ perception of
what the information models. The need for evolution has been well
recognised in the traditional (data processing) database community and the
cost of failing to evolve can be gauged by the resources being invested in
interfacing with legacy systems.

Zdonik has identified new classes of application, such as scientific, financial
and hypermedia, that require new approaches to evolution. These
applications are characterised by their need to store large amounts of data
whose structure must evolve as it is discovered by the applications that use it.
This requires that the data be mapped dynamically to an evolving schema.
Here, we discuss the problems of evolution in these new classes of
application within an orthogonally persistent environment and outline some
approaches to these problems.

Keywords: persistence, views, schema evolution, unstructured data

Introduction

fundamentally affect their ability to evolve. These include:

Order - The database is constructed and used in strict order by defining the meta-data
(schema) first and then initialising some data in accordance with the meta-data
description. Programs and queries may then use the data and when necessary generate
more data. Where data with a new structure is required the process is repeated in the
same order. Thus programs that discover new structure about existing data have an
ordering difficulty. Before they run, they must ensure that the schema contains the new
structure which is impossible since the new structure is only discovered during
execution.

* Content - The information in the database is contained in three separate parts: the
schema, the programs and the data. The mechanisms for using these parts are different
and their independent use can lead to inconsistency in addition to the complexity of
non-uniformity. This increases the difficulty of discovering new structure and applying
change consistently.

* Fixed name space - The values and objects in the database are identified by their
names which are contained in the schema and fixed for the lifetime of the database.
This makes it difficult to evolve the schema, merge databases with duplicate names
and combine applications that may have name clashes.

e Size - The size of the data is expected to be large in comparison with the size of the
meta-data, hence the term bulk data. While this is true of some traditional relational
systems, where the structure of the data is first-order and relatively simple, it is less so
in object-oriented databases and persistent object systems which support complex
objects. The trade-off between the size of the data and the meta-data alters the cost of
propagating evolutionary changes.

* Completeness - The description of the data is complete and all the data and meta-data
is consistent and correct. As new structure is discovered in the data, meta-data and
programs that use the data only partial completeness can be assumed.

e Structure - The schema defines the storage structure of the data and its location within
the database. Data of a single type is stored in a finite (small) number of fixed forms,
usually constrained by size, for efficient storage. This does not accommodate the need
for new storage formats to efficiently implement new data structures.

This paper focuses on new classes of application, such as scientific, financial and
hypermedia, that require new approaches to evolution. These applications are characterised
by their need to store large amounts of data whose structure must evolve as it is discovered.
This requires that the data be mapped dynamically to an evolving schema, involving the
freeing up of the traditional notions of order, content, fixed name space, size, completeness
and structure. The problems of evolution in these new classes of application will be discussed
within the context of an orthogonally persistent environment [ABC+83, AM95] and
mechanisms proposed which will go some way to accommodate the evolutionary needs of
data, meta-data, programs and users.

To illustrate our points, we develop a simple meteorological database where the data is
collected from satellites at a rate that is too fast to analyse the structure of the data, before
storage. We show how new statically predicted stucture may be imposed on this data by
considering data constructors as viewing mechanisms. Where the constructor is abstract,
information hiding may be achieved without encapsulation [CDM+90]. We also show how to
accommodate schema change where the new structure of the data is not predicted statically
but generated dynamically by some application using the data. Some of the techniques in this
paper are already known. However, their combination is unique as is their application to this
new set of challenges.

2 New Challenges

Zdonik [Zdo93] has identified new classes of application system that require new approaches
to evolution. These include scientific applications, data mining, financial applications,
multimedia applications, graphics and video applications, text applications and heterogeneous
databases. The applications are characterised by their need to store large amounts of data
whose structure must evolve as it is discovered. The changes may be additive, subtractive or
descriptive [CCK+94a], but all require that the data be mapped in complex ways, and

dynamically, to an evolving schema. The nature of these applications may be illustrated by
the example of a scientific application, taken from [Zdo93].

Consider a satellite that is sending weather maps to a monitoring station. Image enhancement
techniques might be applied to the data as it arrives, but it is stored initially as a large bitmap
without any higher level information concerning its contents. Further additional structure
may be discovered by an application program that is able to perform feature extraction on this
image and can identify and categorise various kinds of storms. For example, while the
weather map is an object, each storm might best be considered as an object as well. The
storms are embedded inside the weather map. The fact that this weather map contains one or
more storms would be stored as a part of the weather map object which might cause it to
become reclassified as an inclement weather map. Each storm might also contain some
substructure. For example, if the storm is a hurricane, the storm object might have an eye, a
size, and a location. For this to occur, the schema needs to dynamically change to suit the
needs of the application.

It should be noted that there is no requirement that the objects that are discovered in the
weather map be disjoint. Other feature extractors could identify weather fronts that intersect
several of the storms. The embedded objects do not necessarily partition the weather map nor
do they form a hierarchy. The weather map type might contain some constraints regarding
cloud motion that is based on the normal position of the jet stream. A new weather map or
series of weather maps might cause the feature extraction application to determine that the jet
stream has moved to a position that would not be allowed by the constraints in the current
schema. The application would then suggest a change in the schema based on this new
information.

The above example illustrates many of the problems incurred by applications that use
databases outside the commercial world. In summary, they pose the following new
challenges to database architects:

* Run-time schema change - As the new structure is discovered, for example in the
discovery of hurricanes and weather fronts in the weather map, it must be possible to
incorporate that new structure into the schema while the program is running.

* Complex mapping to the schema - A mechanism is required that will keep track of
the complex relationships amongst the data, meta-data and programs, and indeed the
intended semantics defined by the users.

* Object type migration - A mechanism is required for descriptive evolution, as in the
reclassification of the weather map as an inclement weather map, even where the new
form of the data differs markedly from the old. Existing applications may operate with
new data if the system supports a type system that allows new structure to be related to
existing structure, such as subtyping [Car84] or mechanisms geared specifically to
evolution [CBM95]. A more powerful technique is required where such a mechanism
is not supported or where the evolution does not follow the predicted path provided by
the type system.

* Embedded and overlapping objects - Encapsulation requires that objects hide their
internal structure. Some objects, like the hurricane in the weather map, may, however,
be part of others. To model this accurately requires a mechanism that will allow an
aggregation superstructure to be placed on the object without encapsulation, while
retaining the property of information hiding where necessary. Similarly two objects
may overlap, such as two weather fronts in the weather map. In both cases, unlike in
traditional object models, multiple objects share state and therefore pose problems of
consistent update.

* Co-ordinate systems - Applications may require more than one co-ordinate system to
be active at one time. For example, the weather map may have its own co-ordinate
system which is active at the same time as the co-ordinate system required by the
hurricane object. The system should provide and support the translation between these
systems.

* Non-contiguous object specification - Conceptually objects in a database system are
regarded as if they occupy contiguous storage. Where the data contained in a new
object is non-contiguous, such as alternate rows of a matrix, a mechanism is required
to group the parts into an apparently contiguous object with separate identity.

* Breaking abstraction - Hiding data in objects as they are formed runs the risk of
improperly imposing structure on data. As we have seen, data may require several
forms thus it must always be possible to access the original form, subject to
appropriate authorisation.

The following sections will consider database applications based on a persistent
programming system. Nonetheless, a traditional schema will be assumed to locate the data.
The schema, which may be distributed, contains the types of the data and entry points for
both code and data. Each entry point can be considered as an application or a data object.

3 The Persistent Environment

The contribution of orthogonal persistence [ABC+83, AM95] is to integrate the notions of
long and short term data and to allow programs to be treated as first class data objects
[AMBSS]. The facilities of orthogonally persistent programming systems, such as Napier88
[MBC+94], Tycoon [MM93] and Fibonacci [AGO94] may be used to address the
evolutionary problems described earlier. The features that are required include a persistent
store that contains data, programs and the meta-data. In strongly typed systems, such as these,
the meta-data consists of type assertions about the contents of the persistent store; these are
analogous to a traditional schema [AM95].

Applications which discover new structure, such as a data mining program, may compute
over the data, programs and meta-data structure. Orthogonally persistent systems allow the
limitations of traditional systems in dealing with evolution, as outlined in the introduction, to
be eased in the following manner:

* Order - The essential property is to allow schema update during execution. One such
mechanism is linguistic reflection [SMK+93, SSS+92] which allows computations
over the meta-data representations, and new data, programs and meta-data to be bound
into the executing system.

* Content - The complete database, i.e. the schema, the programs and the data, is
contained in a single persistent object store. The mechanisms for using these parts are
uniform allowing new structure to be discovered and utilised in a uniform manner.
Thus applications may compute over existing data, programs and meta-data in a
uniform manner and in one environment.

* Fixed name space - All objects in the persistent store are anonymous and have unique
identities. Names are associated with access paths rather than objects. Applications
may thus impose their own name spaces on the data, allowing the same object to be
used in different applications with different names.

The evolution of orthogonally persistent systems will be illustrated, with reference to the
meteorological database, in two parts: mechanisms for imposing multiple layers of structure
on the data, and mechanisms for evolving meta-data. The concept of all data constructors as
viewing mechanisms [CDM+90] will be used for structuring data, dealing with the new

problems of embedded objects, co-ordinate systems, overlapping objects, non-contiguous
object specification and breaking abstraction. Linguistic reflection and hyper-programming
[KCC+92] will be used for evolving the meta-data including run-time schema change, object
type migration and complex mapping to the schema. Persistent programming systems may
also be used to address the problems of size, completeness and structure mentioned in the
introduction, but space forbids development at this time.

The mechanisms described here may be combined and used under a single methodology.
Indeed it is this combination in the presence of a single uniform persistent store that makes
the approach unique.

4 Structuring Mechanisms

4.1. Multiple Views

The methodology used to accommodate evolution in data and programs is to regard all data
constructors as views over the data. Initially data is placed in the persistent store in the
manner in which it is collected or generated, which will then be regarded as its most primitive
form. Systems are built in terms of multiple views of the primitive data and may involve
many layers of views. The hypothesis is that each view may be described by a consistent set
of view mechanisms and that change control across a view boundary may be achieved using a

single methodology.
Viewing
Cihject
-~

e
Do pende ney

4L e Boudary

-

Viewel |
Cihject

Figure 1. View Dependencies

Figure 1 depicts the relationship between two objects across a view boundary. The view
boundary is, in general, bi-lateral and many-to-many since the viewing object may view
many objects across different boundaries and the viewed object may be multiply viewed
across many view boundaries.

Views may be open, and defined implicitly by the data constructor, or abstract and defined
explicitly by a set of functional interfaces. Thus a view forms a functional dependency over
an existing object. Every object in the system is defined by a signature, consisting of a set of
operations available over the value and an implementation consisting of the operations. In the
abstract case the definition of the signatures and the implementations are divorced allowing
different implementations to be used at different times. Signatures are, however, fixed for the
lifetime of an object (view). Co-ordinates, vectors and records, for example, may be used to
provide open views and existentially quantified types to provide abstract views.

There is an obligation to maintain the functional dependencies in such a way that changes are
reflected through the viewing interface. Where all the views are abstract, and provided by

explicit functional dependencies, it is a simple matter to maintain the consistency between
views at different levels of abstraction. In the weather map example, the storm information
may be stored initially as a co-ordinate system within the weather map. The storm view may
be written in terms of functions which operate over the weather map, consisting of the
translation rules for mapping from the weather map to the storm and in reverse. The functions
guarantee the consistency of the use of the views under some concurrency control for update.

The solution may however be clumsy especially if the storm is described in terms of the same
co-ordinate system as the weather map. In this case the functional dependencies must be
defined when the implicit view is created in order to maintain consistency. The discussion
highlights the need for mixing open and abstract views in a manner that allows the user to
manipulate the appropriate abstraction. It is a problem that will not, however, be addressed in
this paper.

4.2. Implementation Issues

Consider again the meteorological database. Initially the data is held in an unstructured form,
just a collection of photographic images captured by various satellites. This data is then used
by a weather forecasting application to build higher level models of weather patterns, and
ultimately to produce forecasts. Due to space limitations the example here will consider only
the first stage of analysis and structure formation. This involves running a feature extractor
application over the photographic data. The purpose of this application is to use image
analysis to determine the locations of static features, such as landmasses and oceans, and
dynamic features such as fronts, storms and hurricanes. Thus as the program is running it
discovers new structure in the original data and forms new views over it.

Figure 2 shows the database schema, which contains three entry points, a set of type
definitions, and an application interface. The entry points refer to sets of objects of the
corresponding types.

entry MAPS is set [WeatherMap]
entry FEATURES is set [Feature]
entry AREAS is set [Area]

type WeatherMap is structure (satellitePic : Bitmap;
features : set [Feature])

type Bitmap is .. ! arbitrarily shaped region of pixels;

! storage structure not specified here
type Feature is structure (featureType : string; featureArea : Area)
type Area is structure (mapRegion : Region; picture : Bitmap)
type Region is .. ! representation of region in real-world coordinates

application extractFeatures : proc (WeatherMap)

Figure 2. Database Schema

As each raw photographic image arrives it is stored initially as a WeatherMap object with an
empty feature set, and a reference to it entered in the entry point set MAPS. Later, when the
feature extraction application is run against the image it creates additional views comprising
Feature and Area structure objects which contain references to the raw data. These objects
are entered in the FEATURES and AREAS entry point sets; subsequently users can access the
data via the views provided by any of the three entry points. A simplified diagram of this
structure is shown in Figure 3:

- - j. -
E e B
E it b ks ke e
- “a L 4 ;]
R | B Dipky. Ind am | ' '

Figure 3. Structure Views with General Access

Here the raw data is partitioned into chunks and accessed by users through views provided by
structures which contain links to the raw data. The perceived ordering of the raw data may
vary depending on the view. There is nothing to stop users accessing the raw data directly if
they wish, via the index which contains links to all the raw data chunks. This access may be
restricted to the administrator by imposing password protection on the access to the raw data
as shown in Figure 4. Users may now access only those parts of the raw data allowed by their
views; since user address arithmetic is forbidden there is no way to access one chunk directly
from another. The administrator may gain access to the index and thus the raw data by
presenting the correct password to the checking procedure which contains a link to the index
encapsulated within its closure.

Figure 4. Structure Views with Restricted Access

Procedural encapsulation can be extended further so that users have no access to the raw data
itself. Instead a user view contains procedures which contain encapsulated links to the raw
data; the user is restricted to the functionality provided by the procedures, as shown in Figure

S:
d..{ui_'i.lr::-\.l.u Piak T VPR g EZaITRES —IHH
T e .
L

|| [LIAL N Safr SR

T + - ___". T W maer ray faca
AR |_||_|r —‘ T Y
A I

T h -1 ,
y ¥ I

b
»
-
-

| v Tata Tedait '7 e o - e
Figure 5. Encapsulated Views
This mechanism prevents users from accessing the raw data at all. Another possibility is to

use abstract data types to provide user views, allowing users to access parts of the raw data
directly but with limited type information. This restricts the operations a user program may

perform on the raw data, while retaining the ability to pass references to the raw data to
interface procedures [CDM+90]. For example, the database may implement a feature object
as a structure containing two address mapping functions as described earlier, and provide a
procedure in a user view which creates a new feature object. That procedure returns to the
user a reference to the structure implementing the object, with a restricted type. The user
cannot discover the contents of the structure, or even that it is a structure. All they can do
with the reference is to pass it to other interface procedures which operate on weather
features.

Notice that these viewing mechanisms can support embedded and overlapping objects. For
example, Area objects are embedded within the original WeatherMap objects, and may
overlap other Area objects. For example, the Napier88 language supports images as a basic
co-ordinate system of pixels in an infinite two dimensional integer space. If one of the
photographic images is modelled by a Napier88 image type, then views to part of the image
may be formed by the limit operation. For example

let firstView = limit photolmagel to 200 by 300 at 20, 20
let secondView = limit photoIlmage1 to 1000, 1200 at 50, 50

All images have their own origin (0, 0). firstView is that part of photolmagel that starts at the
pixel 20, 20 and has the size 200 x 300. Translation to the correct origin is automatic in the
context of the view. Notice that the two views overlap and are embedded in the photolmagel
views. Other embedded and overlapping objects may be formed by the same object being in
more than one view. Notice also that, although not demonstrated here, views may be formed
over other views to any depth and any mixing of levels.

It is interesting to compare this style of viewing with encapsulation and information hiding in
object oriented database systems. In the latter the raw data may only be viewed through one
interface and the information is essentially trapped in the object once instantiated. In this
technique, the data is placed in an object (view) dynamically when the data modelling
requires it. The viewed value and the viewing value are both available to other views of the
data and there is no sense in which the viewed value becomes unavailable, or encapsulated, in
the viewing object. Of course, it is not always desirable to expose all views of data and
techniques are required to limit the visibility of certain data. However this is achieved by
information hiding and not encapsulation and thus overcomes any conceptual difficulties in
breaking encapsulation even when the views are abstract.

Once a new view has been established it must be placed in the schema. So far the new views
created have been predicted in advance by the feature extraction application and can therefore
have entries and type defined in the schema before the application executes. Placing the new
view in the schema involves altering data reachable from some entry point or establishing a
new entry point.

5 Meta-Data Evolution

We now show how a completely new view, i.e. one that is not statically expressed, may be
placed in the schema of the meteorological database. The application itself may change the
schema dynamically, which involves the following steps:

* the need for a schema alteration is identified by the application, such as the
establishment of a new view;

* the application obtains a representation of the current schema, constructs the necessary
schema change and modifies the representation appropriately;

* the modified representation is checked for consistency and a new schema derived from
it;

» all data objects and applications affected by the schema change are updated to make
them consistent; and

* finally, execution can continue.

Note that if the application needs to continue executing after the schema change then it must
itself be updated to be consistent with the new schema. As with the schema change, updates
to objects and programs are achieved by creating new versions which are then substituted. If
all of these operations are performed within a transaction then the schema evolution may take
place within a live system in which there are other applications running.

5.1. Mechanisms

Supporting schema evolution requires that all the inter-dependent parts of the schema, data
and applications are changed consistently with the schema change. The advantage of basing
the database on a persistent system is that since the schema representation, data and
applications are all held as objects in a persistent store, each can contain links to the parts on
which they depend and vice-versa. Further, the integrity of these links is guaranteed through
the store’s property of referential integrity, so it will always be possible to follow the links to
find, for example, all of the applications which depend on a particular schema entry point
[MCC+95].

Once affected data and applications are located they must be updated to make them
consistent with the new schema. This can be achieved by creating new versions and
substituting them for the existing versions. The feasibility of automating this process depends
on the complexity of the schema change, and on whether the change is additive, subtractive
or descriptive [CCK+94a].

5.2. Dynamic Evolution of Meteorological Schema

Figure 6 shows a simplified version of the schema of Figure 2. Here only the photographic
images are stored, in a simple format which allows only rectangular bitmaps. The next
section will then show how this may be evolved dynamically to support the definition of
views which were not predicted statically.

entry MAPS is set [WeatherMap]
type WeatherMap is structure (satellitePic : image)

application extractFeatures : proc (WeatherMap)

Figure 6. Initial Schema Definition

In order to support future evolution, the schema, data and applications are all represented as
typed objects in the persistent store, as shown in Figure 7. The schema representation is a
graph of objects which together describe the type and entry point definitions. For each entry
point the database stores links to the associated data objects and to the definitions of the
applications which refer to it. Similarly, the data objects and application definitions are stored
together with reverse links to the corresponding entry point and type definitions. This is

possible for the application definitions since they are stored as hyper-programs [KCC+92]
which contain direct links to other persistent objects. This will allow all affected parts of the
database to be located should a schema change become necessary.

kom0 wprd o . ek w0 g At

FRU LI EPE T [R Fewer 3 e e i T dmim am ol mim

T | wrrmaerners weeer 1 i T - g
¢t e e L H. A

mwd [[Fanbilbma Pl] |

1 e

L. - ! - prasea 0| e w laas Mug |
R — PR — By A -
L —— B - ——
-

- - = -

oama s b A TR T R A TF Rk 1 T
o B PR 0 m B o el e

Figure 7. Schema, Data and Programs as Persistent Objects

The feature extraction application is now run over the simple initial database, and on one
particular image locates the static and dynamic features shown in Figure 8:

photographic image

Figure 8. Features Located in a Weather Map

In order to store the derived information about the features, the application now refines,
dynamically, the schema to that shown originally in Figure 2. This refinement is a
combination of an additive change in which the field features is added to WeatherMap, and a
descriptive change in which the type of the field satellitePic is refined to Bitmap.

The incorporation of the new type definitions into the schema is achieved through linguistic
reflection. Having determined the required new types, the application generates a source code
representation of the types, for example strings or hyper-code, and then transforms that
representation into a table which maps type names to system-level type representations. This

in

requires the presence of a compiler as a procedure in the database. The application then calls
system procedures to delete the obsolete entry point and to create the new ones. Figure 9
shows the dynamically generated source representation of the new types:

type Region is ..
type Bitmap is ..
type Area is structure (mapRegion : Region; picture : Bitmap)
type Feature is structure (featureType : string; featureArea : Area)
type WeatherMap is structure (satellitePic : Bitmap;

features : set [Feature])

Figure 9. Dynamically Generated Representation of New Types

Figure 10 shows part of the system code which processes the source representation and
updates the entry points. It uses the system procedure compileTypes to compile the source
representation into a table which is then used by the procedure createEntryPoints to
determine the types of the new entry points being created. Note that the code in Figure 9 is
specific to this particular example of evolution, while that in Figure 10 is general code used
in all occurrences of evolution.

Code to generate list of names

in this case ["MAPS"]

Code to generate list of names

in this case ["MAPS","FEATURES", "AREAS"]
Code to generate list of type names

in this case ["WeatherMap", "Feature", "Area"]

let oldEntryPointNames =
let newEntryPointNames =

let newEntryPointTypes =

! compileTypes : proc (SourceRep -> Table [string,TypeRep])
let typeTable = compileTypes (typeRep) ! typeRep defined in Figure 9

deleteEntryPoints (oldEntryPointNames)
createEntryPoints (newEntryPointNames, newEntryPointTypes, typeTable)

Figure 10. Creating and Deleting Entry Points

Next, to maintain consistency the database must create versions of the existing weather map
objects with the new type. To allow for the additive change each new object contains an
empty set of features; to allow for the descriptive change it contains a Bitmap object derived
from the original image. The former is catered for automatically by a built-in rule for the set
constructor, while the user is prompted to supply a conversion function from image to
Bitmap. Figure 11 illustrates the conversion of a weather map object. Note that none of the
raw data is actually copied, rather references to the data are manipulated in order to create a
new view over it.

Figure 11. Creating a New Version of a Weather Map Object

The creation of the new objects is also achieved using linguistic reflection: the representation
of a source code fragment is constructed dynamically, based on details of the schema change,
and then transformed into executable code and executed. Another requirement is a dynamic
binding mechanism to allow objects with new types to be introduced into the database
[MCC+95]. Figure 12 shows the hyper-program source code representation generated by the

11

system, producing a procedure to convert weather map objects to the new schema. The
underlined words indicate direct links to the appropriate types and procedures already present
in the database (imageToBitmap is a procedure supplied by the user).

type 0ld is structure (satellitePic : image)
type New is structure (satellitePic : Bitmap; features : set [Feature])
proc (oldvVersion : 0ld -> New)

New (imageToBitmap (oldVersion (satellitePic)),

emptySet [Feature]())

Figure 12. Automatically Generated Representation of Conversion Procedure

Once the hyper-program representation has been generated it is compiled, projected onto the
expected type proc (0ld -> New) with a dynamic type check, and the resulting procedure
used to convert the existing weather map objects. Figure 13 shows part of this process:

type 01d is .. ! declare appropriate types

type New is ..

project compile (programRep) as executable onto

proc (0ld -> New) : ! apply executable to existing map objects
default : ! report an error in the generation process

Figure 13. Compiling and Applying Conversion Procedure

Some strategies for object conversion with more complex schema changes, in particular
descriptive changes, are outlined in [CCK+94a].

The final step is to make the applications which depend on the changed part of the schema (in
this case all of them) consistent with the schema change. The findMap application can simply
be recompiled under the new schema, since its operation does not depend on the structure of
WeatherMap. The extractFeatures application, which is itself performing the schema change,
does depend on the details of WeatherMap since it needs to access the photographic image
which has now become part of the Bitmap object. The application hyper-program source code
is located and changed appropriately. This edit can be performed entirely by the user, or the
system may be able to partly automate the change, requiring the user only to supply a
procedure to convert from Bitmap back to image. Once the updated version of the application
is compiled it is substituted for the existing version and the schema update is complete. If it is
required that the new version of the extractFeatures application continue after the update, it
is possible for the old version to record details of its current state in the database before it
replaces itself with the new version. These can then be read by the new version which
continues execution from the same point. Alternatively these details can be coded into the
new version during the process of constructing the source code of the new version.

-------------- —| s srswscssTerss clastran] 0 wesaseer 1 mww lessowese] s o |
.) R e o iy .
- - w ! awem | e e | 1

- E | "

Figure 14. Database After Dynamic Schema Refinement

1"

Figure 14 shows the state of the persistent store after the dynamic schema change, with the
bi-directional links in place to support further evolution:

6 Conclusions

Databases that fail to evolve will atrophy and eventually die. Thus for truly long term data,
the database must support mechanisms that will allow it to evolve to meet the ever changing
needs of applications builders and users. While the problem of evolution has been well
recognised, new challenges have been presented to the database community by new classes
of application that are typified by their need to store large amounts of information whose
structure may change dynamically throughout its lifetime. This requires complex mappings
of the data to the schema. The complexity of this task is illustrated by the growth in
popularity of specialist databases that allow for evolution in a restricted domain. Here, we
postulate that given the correct mechanisms, general purpose databases may accommodate
evolution in the desired manner.

Our approach is twofold. We utilise a persistent environment where the data, programs and
meta-data may be manipulated in a consistent manner. Programs may access the data, other
programs and representations of the meta-data. Using linguistic reflection the schema may be
altered to record any new structure discovered by applications in the data, programs or meta-
data. Our second approach is to construct or initially store the data in a form that
accommodates evolution. All constructions over this data and any derived data are formed by
using views. These views may be overlapping, non-contiguous and contain embedded
objects. Encapsulation has been abandoned by providing viewing mechanisms that are either
open or abstract. Abstract views restrict access to data thus providing the essential needs of
information hiding. By constructing the abstract views in the correct manner, even the
abstraction may be broken in a controlled manner by the use of trusted passwords.

Some of the techniques in this paper are known. However their combination is unique as is
their application to this new set of challenges. We expect such challenges to grow with the
work on querying the file [ACM93] which imposes structure dynamically on unstructured
data, programming with unstructured data [BDS95], heterogeneity and in attempts to
program the WWW, as in Java [GM95] and Internet programming [Con96], which require
structure in distributed applications to be discovered and checked locally.

7 Acknowledgements

This work was supported in St Andrews by EPSRC Grant GR/J67611 "Delivering the
Benefits of Persistence". Richard Connor is supported by EPSRC Advanced Fellowship
B/94/AF/1921.

8 References

[ABC+83] Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
“An Approach to Persistent Programming”. Computer Journal 26, 4 (1983) pp
360-365. URL: http://www.dcs.st-
and.ac.uk/research/publications/ABC+83a.php

[ACM93] Abiteboul, S., Cluet, S. & Milo, T. “Querying and Updating the File”. In Proc.
19th International Conference on Very Large Data Bases, Dublin, Ireland,
Agrawal, R., Baker, S. & Bell, D. (eds) (1993) pp 73-84, Technical Report
ESPRIT BRA Project 6309 FIDE, FIDE/93/60.

12

[AGO9%4]

[AMSS]

[AM95]

[BDS95]

[Car84]

[CBMY5]

[CCK+94a]

[CDM+90]

[Con96]
[GMY5]

[KCC+92]

[MBC+94]

Albano, A., Ghelli, G. & Orsini, R. “Fibonacci Reference Manual: A
Preliminary Version”. ESPRIT BRA Project 6309 FIDE, Technical Report
FIDE/94/102 (1994).

Atkinson, M.P. & Morrison, R. “Procedures as Persistent Data Objects”. ACM
Transactions on Programming Languages and Systems 7, 4 (1985) pp 539-559.

Atkinson, M.P. & Morrison, R. “Orthogonally Persistent Object Systems”.
VLDB Journal 4, 3 (1995) pp 319-401.

Buneman, P., Davidson, S.B. & Suciu, D. “Programming Constructs for
Unstructured Data”. In Proc. 5th International Workshop on Database
Programming Languages, Gubbio, Italy, Atzeni, P. & Tannen, V. (eds) (1995)
pp 266-276.

Cardelli, L. “A Semantics of Multiple Inheritance”. In Lecture Notes in
Computer Science 173, Kahn, G., MacQueen, D.B. & Plotkin, G. (eds),
Springer-Verlag, Proc. International Symposium on the Semantics of Data
Types, Sophia-Antipolis, France, Goos, G. & Hartmanis, J. (series ed) (1984) pp
51-67.

Connor, R.C.H., Balasubramaniam, D. & Morrison, R. “Investigating Extension
Polymorphism”. In Proc. 5th International Workshop on Database Programming
Languages, Gubbio, Italy, Atzeni, P. & Tannen, V. (eds) (1995) pp 13-22.

Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C. & Morrison, R. “Using Persistence
Technology to Control Schema Evolution”. In Proc. 9th ACM Symposium on
Applied Computing, Phoenix, Arizona, Deaton, E., Oppenheim, D., Urban, J. &
Berghel, H. (eds) (1994) pp 441-446, Technical Report ESPRIT BRA Project
6309 FIDE2 FIDE/94/97.

Connor, R.C.H., Dearle, A., Morrison, R. & Brown, A.L. “Existentially
Quantified Types as a Database Viewing Mechanism”. In Lecture Notes in
Computer Science 416, Bancilhon, F., Thanos, C. & Tsichritzis, D. (eds),
Springer-Verlag, Proc. 2nd International Conference on Extending Database
Technology (EDBT'90), Venice, Italy, Goos, G. & Hartmanis, J. (series ed),
ISBN 3-540-52291-3 (1990) pp 301-315.

Connor, R.C.H. “InterProgramming”. Personal communication (1996).

Gosling, J. & McGilton, H. “The Java™ Language Environment: A White
Paper”. Sun Microsystems, Inc (1995). URL:
http://java.sun.com/doc/language_environment/

Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A., Farkas, A M. &
Morrison, R. “Persistent Hyper-Programs”. In Persistent Object Systems,
Albano, A. & Morrison, R. (eds), Springer-Verlag, Proc. 5th International
Workshop on Persistent Object Systems (POSS5), San Miniato, Italy, In Series:
Workshops in Computing, van Rijsbergen, C.J. (series ed), ISBN 3-540-19800-
8 (1992) pp 86-106.

Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle, A., Kirby,

G.N.C. & Munro, D.S. “The Napier88 Reference Manual (Release 2.0)”.
University of St Andrews Technical Report CS/94/8 (1994).

11

[MCC+95]

[MMO3]

[SMK+93]

[SSS+92]

[Zdo93]

Morrison, R., Connor, R.C.H., Cutts, Q.I., Dunstan, V.S. & Kirby, G.N.C.
“Exploiting Persistent Linkage in Software Engineering Environments”.
Computer Journal 38, 1 (1995) pp 1-16.

Matthes, F. & MuBig, S. “The Tycoon Language TL: An Introduction”.
University of Hamburg Technical Report DBIS 112-93 (1993).

Stemple, D., Morrison, R., Kirby, G.N.C. & Connor, R.C.H. “Integrating
Reflection, Strong Typing and Static Checking”. In Proc. 16th Australian
Computer Science Conference (ACSC'93), Brisbane, Australia (1993) pp 83-92,
Technical Report University of St Andrews Report CS/93/6.

Stemple, D., Stanton, R.B., Sheard, T., Philbrow, P., Morrison, R., Kirby,
G.N.C., Fegaras, L., Cooper, R.L., Connor, R.C.H., Atkinson, M.P. & Alagic, S.
“Type-Safe Linguistic Reflection: A Generator Technology”. ESPRIT BRA
Project 3070 FIDE Technical Report FIDE/92/49 (1992).

Zdonik, S.B. “Incremental Database Systems: Databases from the Ground Up”.
In Proc. ACM SIGMOD, Washington D.C., USA (1993) pp 408-412.

1<

