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Abstract
Crash recovery in database systems aims to provide an acceptable level of
protection from failure at a given engineering cost. A large number of
recovery mechanisms are known, and have been compared both
analytically and empirically. However, recent trends in computer
hardware present different engineering tradeoffs in the design of recovery
mechanisms. In particular, the comparative improvement in the speed of
processors over disks suggests that disk I/O activity is the dominant
expense. Furthermore, the improvement of disk transfer time relative to
seek time has made patterns of disk access more significant. The
contribution of the MaStA (Massachusetts St Andrews) cost model is that
it is structured independently of machine architectures and application
workloads. It determines costs in terms of I/O categories, access patterns
and application workload parameters. The main features of the model are:

• Cost is based upon a probabilistic estimation of disk activity,
broken down into sequential, asynchronous, clustered
synchronous, and unclustered synchronous disk accesses for
each recovery scheme.

• The model may be calibrated by different disk performance
characteristics, either measured by experiment or predicted by
analysis.

• The model may be used over a wide variety of workloads,
including those typical of object-oriented and database
programming systems.

The paper contains a full description of the model and illustrates its utility
by analysing four recovery mechanisms, delivering performance
predictions for these mechanisms when used for some specific workloads
and execution platforms. The refinement of I/O cost into the various
access patterns is shown to give qualitative predictions differing from
those of uniform access time models. Further the results are shown to
vary qualitatively between two commercially available configurations.

1 Introduction
Recovery management in database systems provides engineering solutions to failure,
offering a required degree of reliability by automatically restoring a system to a
coherent and acceptable state. Conceptually the user manipulates data through reads
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and writes to a database implemented on non-volatile storage, with volatile storage
being used as a cache. Recovery is required because by definition volatile cache
contents are lost when the system crashes. We do not specifically address failures of
non-volatile storage. When failure occurs the user should not be left with an
inconsistent state in the non-volatile store. Recovery mechanisms prevent this by
controlling the writes to non-volatile storage so that some high level abstraction of
atomicity is maintained. Examples of such an abstraction include: an atomic “save”
operation in a text editor; a database atomic transaction; or the commitment of a
mutually agreed design in a co-operative working session.

Application

Database cache on volatile 
store

Database on non-volatile store
Information to
restore consistent
state on failure

Conceptual reads and writes of database

Recovery mechanism ensures cache-consistent
state may be achieved after failure

Figure 1: The General Structure of a Recovery Mechanism

Figure 1 shows the general principle behind all recovery mechanisms. The
application, although conceptually communicating directly with the database,
communicates instead with a database cache implemented on volatile storage. Reads
are fetched from, and writes eventually propagated to, non-volatile storage. Non-
volatile storage is partitioned into two logical areas: the database itself, and a
recovery partition used to record whatever information is necessary for recovery in a
given recovery mechanism. Examples of such information are: a log [Gra78]; a
shadow page table [Lor77]; and a differential file [Sev82]. In every case the recovery
data is maintained so that restart can restore a state consistent with the system's
atomicity abstraction.

The cost of recovery mechanisms can be critical to the overall performance of data-
intensive applications with I/O bandwidth being a limiting factor. Hence many
recovery mechanisms have been invented, each with different performance tradeoffs
[Gra78, Lor77, Sev82]. Each technique's costs involves not only the overhead of
restoring data after failures but also the time and space overhead required to maintain
sufficient recovery information during normal operation to ensure recovery. Under
different workloads and configurations these crash recovery mechanisms exhibit
different costs.

Modern trends in hardware design have given a disproportionate improvement in
processor speed compared to disk access time, and within disks themselves a
disproportionate improvement in transfer rates compared to seek times. These factors
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change the engineering tradeoffs upon which recovery mechanisms are based, and
recently designed mechanisms tend to favour extra processor activity to reduce disk
I/O, and more asynchronous I/O as opposed to random access [EH84, OS94]. The
purpose of the model described here is to provide an analytical framework for
comparing recovery mechanisms under a variety of different workloads and
configurations.

I/O categorisation

I/O access
pattern cost

Probabilistic
measure of
occurrence *

Category A Category B Category C+ + ++

Recovery mechanism

Configuration access behaviourApplication workload 
parameters

TOTAL

Figure 2: An overview of MaStA

Figure 2 shows a simplified view of the MaStA model. Each recovery mechanism's
cost is broken down into constituent independent I/O cost categories, such as data
reads or commit writes. The overall cost of a mechanism is the sum of the costs of
each category:

Total Cost = CatCost(i)
i
∑ , (i ∈ Categories)

Each category's cost is derived from the number of accesses it incurs of each access
pattern:

CatCost(i) = i jn * kA
j,k
∑ , (j ∈ Occurrences, k ∈ Access Patterns)

For any given medium a set of access patterns is developed such that each pattern is
believed to have significantly different costs, such as sequential versus unclustered
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synchronous writes. The number of accesses of each pattern is derived from workload
parameters, such as page and object size, and the density of objects within pages.

The derivation of a cost estimate for a particular combination of mechanism,
configuration and workload is therefore derived by analysing:

• The mechanism: identifying the cost categories, and for each category the
access pattern and number of accesses.

• The configuration: determining the average cost of each access pattern
experimentally or analytically.

• The workload: measuring and choosing values for the workload
parameter.

The identification of these three categories allows the MaStA model to encompass
the patterns of usage in both traditional and modern database systems.

2 Recovery Mechanisms
To illustrate the MaStA model, we chose four specific recovery mechanisms: object
logging and page logging, both with deferred updates [Gra78]; after-image shadow
paging [Lor77, Cha78]; and before-image shadow paging [Bro89, BR91]. These
mechanisms were chosen because of our familiarity with them [Mun93, Bro89,
RHB+90, MS88]. Because we have good intuitions about how these mechanisms
perform under varying workloads, we can satisfy ourselves that the model predicts
appropriate qualitative behaviours. Furthermore, having implemented some of these
mechanisms we have a basis for future empirical validation of the model against
actual implementations.

When using a logging mechanism with deferred updates, changes are recorded in a
log but updates to non-volatile store may be deferred until commit or even later. The
log may be written sequentially (for speed), and may be buffered until just before
each transaction commits; group commit can offer further improvement by writing
multiple transactions’ changes together. Since the log is written to a separate area,
database updates do not move database pages, so the original database clustering, be
it good or poor, is maintained. Updates must eventually be installed in the non-
volatile database. Installing an update always requires an installation write, though
multiple changes to the same page may be merged to produce a single page write. In
the case of object logging, installation may also require an installation read, to obtain
the original version of a disk page into which to merge one or more partial-page
updates. Otherwise, object logging and page logging differ only in the granularity of
the items logged.

In a shadow paging system a page replacement algorithm controls the movement of
pages between volatile and non-volatile store such that recovery will always produce
a consistent state. To implement this a disk page table is used to maintain the
correspondence between the virtual pages of the database and blocks on non-volatile
store; the table may actually exist (after-image shadow paging) or may only be
conceptual (before-image shadow paging).

After-image shadow paging writes each updated page to a free block and updates the
disk page table to reflect the new mapping. The mechanism maintains a mirrored root
block from which the last consistent map can be found. When a transaction commits,
the new mappings, in addition to updated data pages, are written to non-volatile store
and then the oldest root block is updated atomically. Since after-image shadow
paging always writes pages to new disk blocks, the original clustering of the blocks
may be lost. Note that reclustering may or may not improve performance; while most
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database researchers assume that reclustering degrades performance, log structured
file systems have been seen to offer improved performance.

In before-image shadow paging the first modification to a page causes the original to
be written to a free disk block. Updates are then performed in place. A disk page
table is used to record the location of the shadow pages (but not the database pages,
since they do not move), and must be present on disk before updates overwrite the
original disk blocks. The disk page table can be used to recover the last consistent
state of the database. On commit, updated pages are written back to disk and the disk
page table is no longer required. Since before-image shadow paging uses an update-
in-place policy it maintains the original clustering.

3 Developing the MaStA Cost Model
The structure of the MaStA cost model as depicted in Figure 2. Here that structure is
fleshed out, with specific I/O cost categories, access patterns and parameter variables,
and applied to the four described recovery mechanisms.

3.1 I/O Categorisation of Recovery Mechanisms

The I/O cost categories used in the MaStA model are:
• Data reads and writes: The cost of data reads and writes are included in the

model since the presence of a recovery mechanism may change the I/O access
patterns of a running system. For this reason MaStA models total I/O costs as
opposed to recovery overheads alone. For example, an after-image shadow
paging mechanism may be forced to perform clustered and unclustered
synchronous reads because of long term declustering.

• Recovery reads and writes: The information to provide recoverability
typically imposes additional costs such as writing log records in a log based
system.

• Installation reads and writes: Database recovery mechanisms that defer
updates to the database may incur installation I/O costs. For example, an object
logging mechanism must copy updated objects from the buffer to the database
page containing the object.

• Commit overhead: This is the I/O overhead of recording the committed state
of a transaction on disk. For example in a logging system this may include
writing a transaction commit record to the log.

Within the MaStA model the four described recovery mechanisms discussed incur
costs with I/O categories as shown in Table 1.
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Object
logging

Page
logging

After
image SP

Before
image SP

Data read ✔ ✔ ✔ ✔

write ✔ ✔ ✔ ✔

Recovery read ✔

write ✔ ✔ ✔ ✔

Installation read ✔

write ✔ ✔

Commit write ✔ ✔ ✔ ✔

Table 1: Assigning I/O Cost Categories to Recovery Mechanisms

It can be seen that neither of the shadow paging schemes require installation reads or
writes. This is because they do not defer updates past commit time. After-image
shadow paging requires recovery reads and writes to maintain the disk page tables;
the other mechanisms can use an update-in-place policy with a fixed disk page map.
Page logging does not require installation reads because it installs whole pages as
opposed to merging objects into pages.

3.2 Disk Access Patterns

The crucial refinement of the MaStA model is to distinguish various I/O access
patterns, on the basis of their significantly different costs. The model includes four
patterns, called sequential, asynchronous, clustered synchronous, and unclustered
synchronous, and further breaks each down into reads and writes. The patterns are
intended to reflect the characteristics of magnetic disk systems, but the general idea
applies to any device whose access time varies according to the sequence of positions
accessed. The patterns are defined as follows:

• Sequential reads/writes (rseq, wseq): The data are read/written in sequentially
increasing positions. This is the most efficient access pattern because hardware,
firmware, and software tend to be tuned specifically to support it well. A
typical example is writing to a sequentially structured log.

• Asynchronous reads/writes (rasc, wasc): The system maintains a pool of
read/write requests which can be processed in any order. The requests are
scheduled in a favourable order, so if the pool is large enough the average cost
can approach that of sequential I/O. A typical example is keeping a pool of
modified pages requiring installation in the database.

• Clustered synchronous reads/writes (rclu, wclu): This comprises localised
accesses that are synchronous and hence cannot be freely scheduled. A typical
example is localised reads of database pages for active transactions.

• Unclustered synchronous reads/writes (rucl, wucl): These are synchronous
accesses that involve moving the access position arbitrarily far. A typical
example is forcing the log (if it is stored on the same device as the database),
since the database area can be far from the log area.

The costs of the I/O access patterns vary with machine platform as well as database
size and storage layout. Given a suitably accurate model of the disk device and
associated software, one might derive an analytical or simulation model to determine
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the cost of each I/O access pattern. One can also run experiments to measure these
values, which is the approach taken here. Note that the cost of an I/O access pattern
may also depend on the application workload. For example, the parts of the database
accessed determine the locality of clustered I/O, and the size and structure of the
pools of scheduled I/O requests. While the costs may remain approximately the same
across a range of related workloads they may vary between substantially different
workloads.

The refinement of I/O costs to include different access patterns turns out to be
significant as will be seen later. The ratio of the cost of the most expensive
unclustered synchronous write access pattern to the least, sequential read, was
observed to be a factor of six in an actual system.

3.2.1 Assigning I/O Access Patterns

The I/O access patterns for the four recovery mechanisms are given in Table 2.

Object
logging

Page
logging

After
image SP

Before
image SP

Data read clustered
synchronous

clustered
synchronous

clustered &
unclustered
synchronous

clustered
synchronous

write sequential sequential sequential clustered
synchronous

Recovery read unclustered
synchronous

write sequential sequential sequential sequential

Installation read asynchronous

write asynchronous asynchronous

Commit write
sequential (1)
& unclustered

synchronous(2)

sequential (1)
& unclustered
synchronous(2)

sequential (1)
& unclustered
synchronous(2)

sequential (1)
& unclustered
synchronous(2)

Table 2: I/O Access Pattern Assignments

In object logging data reads are clustered synchronous because the mechanism
maintains the initial clustering of blocks. Data writes consist of writing sequential
records to the log. Recovery writes are also to the log, so incur sequential write costs.
Installation reads may be required when updated objects are copied from the buffer to
the database. The pages containing the installed objects are written back to disk using
installation writes. Installation I/O can be delayed and therefore are asynchronous.
Commit I/O consists of writing a commit record to the log. This is normally written
with other log records and so is given a sequential write cost. Writing the commit
record may also incur two unclustered synchronous seeks: one to position the device
at the log and one to move it back to the database area. The second actually occurs at
the beginning of the next data read but is most conveniently modelled here. In
accordance with our assumption that main memory is relatively plentiful, we assume
that logged changes are retained in volatile store until installed, so that the log
installation does not need to read the changes back from the log.

Page logging differs from object logging only in the granularity of the log records.
Since the log contains complete updated pages, installation reads are not required.
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In after-image shadow paging, updated pages are written to free disk blocks. These
shadow blocks can be allocated contiguously, so data writes can be sequential.
Through the loss of the original clustering of the pages, data reads may require
clustered and unclustered synchronous reads. Recovery reads are required to read the
page mapping tables; such reads require unclustered synchronous disk seeks.
Recovery writes to write the page tables can be sequential once the disk head is
correctly positioned. The cost of this seek is charged to commit I/O. Commit I/O
consists of writing the root block and is given the cost of an unclustered synchronous
write.

In before-image shadow paging clustering is maintained, so data reads and writes are
both clustered synchronous. There are two costs involved in recovery writes. The first
is writing before-images to shadow blocks. Shadow blocks can be allocated
contiguously and written sequentially. The second cost is writing page table
mappings indicating the locations of the shadow copies. These mappings must be
written before an original block is overwritten, and therefore consists of unclustered
synchronous writes. Commit I/O is as for after-image shadow paging.

3.3 Transaction Workload

The goal of the application workload model is to capture all the parameters that affect
I/O. For example, the number of updated pages affects the number of log records or
shadow pages written. These parameters are expressed in terms of derived variables
which are normalised to produce the number of page I/Os incurred.

The application workload derived variables could be obtained by simulation,
measurement of a real system or, as in this case, from a combination of basic
variables that decompose workload into more fundamental units. The basic variables
are described in Appendix I; the derivation functions are defined in Appendix II; and
the method of calculation of the derived variables using the derivation functions is
given in Appendix III. Here we concentrate on the derived variables to illustrate the
workings of the MaStA model; Table 3 describes the application workload derived
variables used to cost the four recovery mechanisms.
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Derived Variable Description

PMiss the number of data page read misses

PDirty the number of pages updated

PTMiss the number of page table page read misses

PTDirty the number of page table pages updated

PIRead the number of installation reads

PIWrite the number of installation writes

PLog the number of pages written for log
records

PolHouse the number of pages written for log
housekeeping information

PpHouse the number of pages written to record the
position of pages in the log

PcommR the number of log pages written to secure
a commit record

PRoot the number of root pages written to the log
to record commit state

Table 3: Workload Derived Variables

The model includes additional variables to take account of implementation details of
particular recovery mechanisms. These variables are described below.

3.4 Parameter Determination of Object Logging Mechanisms

The following variables affect the amount of data written to the log when using
object logging:

• The average ratio of object size to log record size. Some logging mechanisms
may record only updated byte ranges thereby potentially reducing the amount
of the data written to the log.

• The average number of log records per updated object. For example, a
mechanism which writes a record for every update may write a different
amount from a mechanism writing only one record per updated object.

• The size of per-log-record housekeeping data.

3.5 Parameter Determination of Shadow Paging Mechanisms

In shadow paging mechanisms the choice of I/O access patterns used in the I/O
categories is influenced by the block allocation strategy used. Allocating new blocks
sequentially, for example, may allow the mechanism to take advantage of sequential
writes. Other possible allocation strategies include:

• Paired blocks: all blocks are allocated in pairs, so that shadow blocks are
allocated adjacent to original blocks.
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• Same cylinder: the mechanism tries to allocate shadow blocks in the same
cylinder as originals.

• Dynamically clustered: new blocks are chosen from a set of free blocks,
allowing some control over clustering.

3.6 The MaStA Cost Model for the Four Recovery Mechanisms

Table 4 shows the cost functions for the four recovery mechanisms. Within each
category the I/O cost function is the product of a derived variable and an I/O access
pattern cost, or in the case of before-images shadow paging, a sum of two such
products.

I/O
Categories

Object Logging Page Logging After Image
Shadow Paging

Before Image
Shadow Paging

Derived
Variable

Access
Pattern

Derived
Variable

Access
Pattern

Derived
Variable

Access
Pattern

Derived
Variable

Access
Pattern

Data
Read

PMiss rclu PMiss rclu PMiss rucl / rclu PMiss rclu

Data
Write

PLog wseq PDirty wseq PDirty wseq PDirty wclu

Recovery
Read

PTMiss rucl

Recovery
Write

PolHouse wseq PpHouse wseq PTDirty wseq PTDirty
PDirty

wseq
wseq

Installation
Read

PIRead rasc

Installation
Write

PIWrite wasc PIWrite wasc

commit/
other

PcommR
2

wseq
sucl

PcommR
2

wseq
sucl

PRoot
2

wucl
sucl

PRoot
1

wucl
sucl

Table 4: I/O Cost Functions for Four Recovery Mechanisms

An access pattern Sucl is attributed to the commit/other category to indicate that
unclustered seek costs are incurred by the mechanisms. Two unclustered seeks are
incurred for example by the logging mechanisms to move to the log area and back to
the data area when writing to the log.

As an example, when written out, the cost function for object logging is:

PMiss * rclu+ PLog * wseq + PolHouse * wseq + PIRead * rasc +
PIWrite * wasc + PcommR * wseq + 2 * sucl

4 Experimentation and Results
To show the flexibility and utility of the model, several experiments will be
described. By experiment we mean supplying values for the variables and predicting
the I/O costs of the four schemes.

In the experiments described here the following assumptions are made :-

• main memory is large enough to hold all required log records, page mapping
tables and data pages accessed and updated by all running transactions;
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• a paged virtual memory system is assumed and hence all mechanisms perform
the same number of data reads.

The following recovery mechanism costs are omitted:

• the cost of recovering from a crash;

• the cost of aborting and re-running transactions;

• other costs of concurrency control schemes;

• the influence of multi-programming;

• checkpointing.

4.1 Calibration

Measurements were performed on two platforms to illustrate the platform
independence of the MaStA model. From these measurements, values were obtained
for the I/O access patterns for each platform. The two platforms were a Sun
SPARCStation ELC running SunOS 4.1.3 with 48MB main memory, 500MB CDC
Wren V SCSI drive, and a DEC Alpha AXP 3000/600 running OSF/1 V2.0 with
128MB main memory and a 2.1GB Seagate ST12550N (Barracuda II) SCSI drive.
The experiments involved block read and write operations on large disk files which
spanned the majority of the disk, intending to avoid operating system disk cache
effects. The locality of I/O operations was controlled to simulate sequential,
asynchronous, and unclustered synchronous I/O. All experiments were performed on
a cold single-user system and timings were obtained using the operating systems’
time commands. A "cold" cache was obtained by reading a large file from another
device, forwards and backwards.

Sequential I/O was simulated by performing ordered I/O operations on contiguous
blocks of the file. Unclustered synchronous I/O was simulated by choosing at random
10% of the blocks in the file and accessing the blocks in the random order.
Asynchronous I/O was simulated by sorting the block numbers used in the
unclustered synchronous experiment and then accessing these in order. There was
less than 5% variation between runs. Table 5 shows the measured I/O access pattern
costs as a ratio to that of sequential reads. It is important to point out that these do not
compare the I/O access costs of the Alpha and the SPARCStation but give each
machine’s I/O access costs as multiples of the cost of a sequential read on that
machine. ASR stands for Alpha sequential read and SSR for SPARCStation
sequential read.
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I/O Access Pattern Alpha SPARCStation
Sequential reads 1.0 ASR 1.0 SSR
Sequential writes 1.0 ASR 1.0 SSR

Asynchronous reads 4.0 ASR 1.8 SSR
Asynchronous writes 2.1 ASR 1.5 SSR

Clustered synchronous reads 3.0 ASR 1.5 SSR
Clustered synchronous writes 3.5 ASR 3.5 SSR

Unclustered synchronous reads 5.6 ASR 2.6 SSR
Unclustered synchronous writes 5.7 ASR 5.5 SSR

Table 5: Costs Assigned to I/O Access Patterns

4.2 Applications of the Model

Experiment 1

Experiment 1 considers the relative costs of the recovery mechanisms under a given
workload. The I/O access pattern costs used are those of Table 5 with the basic
workload variable values of Table 6.

Workload
Variables Description Values

Oacc number of objects accessed 10000
Psize page size 2048 words
Osize object size 16 words

ObjLoc object locality within the address
range* 0.3

DObjLoc dirty object locality within pages varied in the
range [0, 1]

Odirt percentage of objects updated 20%
iread % of updated pages requiring

installation reads 30%

iwrite % of updated pages requiring
installation writes 30%

PTemp degree of page temporal locality 20%
Ploc locality of updated pages 20%

LRover average log record overhead 3 words
MapEntry mapping entry size 2 words
LRratio log record/object ratio 100%

Table 6: Basic Workload Variables Values used in Experiment 1

                                                

* This value can be varied in the range [0, 1]. A value of 1 indicates that the objects
are held on the fewest pages possible. A value of 0 indicates that the objects are
scattered in the address range and are held on as many pages as possible.
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In this experiment all but the DObjLoc basic variable remain constant. In this and
subsequent experiments the degree of locality of the objects updated is varied
between 0 and 1 thus varying the number of pages dirtied obtained from the derived
variable PDirty. The x-axis of the graphs plotted indicates the pages updated as a
percentage of the number of pages accessed.

The graphs in Figure 3 plot values for this percentage from 0.19%, the minimum
possible to 30% using three sets of I/O access pattern costs.
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Figure 3: Experiment 1

Graphs 3.a and 3.b show that when the percentage of accessed pages updated is at the
minimum, the mechanisms, except for after-image shadow paging, have similar costs.
This is because they have the same data read costs, and because at this level of
mutation write costs are small relative to read costs. After-image shadow paging has
higher I/O costs even at low percentages of updated pages because its data reads are
in part unclustered synchronous whilst the other schemes are clustered synchronous.

As would be expected the I/O costs of all the mechanisms increase as the percentage
of updated pages increases. The graphs illustrate that the I/O cost of before-image
shadow paging increases more rapidly compared to the other mechanisms. This is due
to the extra page writes required in this mechanism. Figure 3.c illustrates the relative
costs of the recovery mechanisms calculated using a uniform I/O access pattern cost
of 3.5 in every I/O cost category. As can be seen the relative positions of the costs of
the recovery mechanisms is different from that of graphs 3.a and 3.b, stressing the
importance of distinguishing different I/O access patterns.

Experiment 2

This experiment increases the object locality from 30% to 100%, that is the objects
accessed are densely packed, and increases the percentage of objects updated from
20% to 60%. The remaining workload variables are unchanged from Experiment 1.
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Figure 4: Experiment 2

Varying the application workload causes up to 100% of the accessed pages to be
updated. Comparing graphs the 4.a and 4.b shows that after-image shadow paging
outperforms the other schemes on the SPARCStation when the percentage of updated
pages is higher than 75%. This happens for two reasons. Firstly, with high object
locality and a higher percentage of objects updated, the amount of unchanged data
written back is reduced in the page based mechanisms. This reduces the advantage of
object logging over page based schemes. Secondly, as the number of pages updated
increases, page logging costs increase because there are more installation writes.
Figure 4.c shows predictions of the uniform I/O cost model, which again are different
from the refined models.

Experiment 3

This experiment increases the average object size (Osize) from 16 to 1024 words to
show the effect on the mechanisms of accessing large objects. The remaining
workload variables, including object locality and the percentage of objects updated,
are given the values in Table 9.
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Figure 5: Experiment 3
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Graphs 5.a and 5.b show that the minimum percentage of updated pages has
increased due to the large object size. Under this workload, page logging has the
lowest costs on the Alpha and when low percentages of pages are updated on the
SPARCStation. There are two reasons for this: page logging requires no installation
reads, and page logging reads are better clustered than those of after-image shadow
paging. The difference between the cost of after-image shadow paging and the other
mechanisms is more pronounced in graph 5.b than in graphs 5.a again due to the
difference in the ratios of the I/O access pattern costs between the two configurations.

These experiments show that relative performance of the recovery mechanisms
depends not only on the application workload but also on the platform. They also
demonstrate a primary hypothesis of the model: that different I/O access patterns
affect the costs strongly enough that they must be modelled.

5 Related Work
A classification of recovery mechanisms is given by Haerder and Reuter [HR83].
They stratify recovery into a hierarchy of propagation strategy, page replacement
strategy, end-of-transaction processing and checkpointing strategies adopted by the
mechanisms in systems which provide atomic transactions. The propagation strategy
is said to be atomic if multiple updates to the non-volatile object store can be
performed as a unit at end-of-transaction processing or ¬atomic if the propagation of
updates is interruptable by a system crash. The recovery mechanism’s page
replacement strategy is described as steal if updated pages can be written out to disk
during transaction processing or ¬steal if all updated pages must remain in main
memory at least until end-of-transaction processing. The end-of-transaction
processing strategy is designated as being force if updated data is propagated to the
non-volatile store during end-of-transaction processing and ¬ force if the propagation
can be deferred until after commit time. In this classification the checkpointing
strategy is split into four categories depending on the times at which checkpoints can
be generated. These are:

• transaction-oriented checkpoints (TOC) which occur every time a transaction
commits and is associated with a force propagation strategy.

• transaction-consistent checkpoints (TCC) which cause the checkpointing of all
update transactions at the same time. In progress update transactions are
allowed to terminate and new update transactions are blocked. All updates are
then propagated to the object store after which normal execution is resumed.

• action-consistent checkpoints (ACC) which are generated in a similar manner
to transaction-consistent checkpoints except they are at an operational level
instead of at the level of transaction commit.

• fuzzy checkpoints where only pages which have not been propagated since the
last checkpoint are propagated to the store.

Using this classification the object logging and page logging mechanisms described
above exhibit (¬atomic, ¬steal, ¬force, …) properties, where the ellipses indicate that
checkpointing can be transaction-oriented, transaction consistent or fuzzy. The
before-look shadow paging exhibits (¬atomic, steal, force, transaction oriented
checkpoint) properties whereas after-look shadow paging is (atomic, steal, force,
transaction oriented checkpoint). Indeed, one observation that can be made from this
work is that shadow paging is a variant of page based logging differing only on the
I/O access patterns required to read and write the data and the recovery data, and to
write commit points.
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Reuter [Reu84] presents a cost model which uses this classification to analyse and
compare the performance of a number of recovery schemes. The model ignores CPU
costs using the number of I/O operations as a cost unit. The model computes a
number of costs associated with a recovery mechanism taking into account the mean
time between failures, the frequency of the checkpointing interval, the probability of
abort and the availability of shared pages. Altogether ten recovery schemes are
analysed and compared. These schemes are split into three groups with the following
properties:

page-level logging
¬atomic steal ¬force TCC (only at system shutdown)
¬atomic steal ¬force ACC (at regular intervals)
¬atomic steal force TOC
object-level logging
¬atomic steal ¬force TCC (only at system shutdown)
¬atomic steal ¬force ACC (at regular intervals)
¬atomic steal force TOC
miscellaneous
¬atomic steal ¬force fuzzy
atomic steal ¬force ACC
atomic steal force TOC
¬atomic ¬steal ¬force fuzzy

From simulations using different transaction workloads, Reuter concludes that page-
logging is generally more costly than object-level logging, that an increase in shared
pages makes all force algorithms drastically worse than others and that schemes that
use indirect mapping, such as after-image shadow paging, impose extra overheads
unless the page-table costs can be amortised.

Agrawal and DeWitt [AD85] produced an analytical model which they use to
investigate the relative costs of object logging, shadow paging, and differential files
and their interaction with locking, timestamp ordering and optimistic concurrency
control schemes. Rather than produce costings based on transaction throughput their
model uses a performance metric that describes the burden imposed on a transaction
by a recovery mechanism and a particular concurrency control scheme. The model
recognises that real systems have finite resources and incorporates CPU costs and the
impact that the concurrency control schemes may have on the probability that a
transaction will run to completion. Burden ratios for the different integrated
concurrency control and recovery mechanisms are calculated and compared using
sample evaluations from varying transactions workloads and database characteristics.
The conclusions from these test runs suggest that there is no overall best integrated
mechanism but that a load which comprises of a mix of transaction sizes favours
logging with a locking approach. Shadow paging performs rather poorly in their tests.
However their model takes no account of synchronous costs, such as the writing back
of data pages in shadow paging, or checkpointing in logging. A weakness of the
model with respect to more modern systems is that shadow page tables reads were
assumed to be from disk, whereas with modern memory sizes the entire shadow page
table may reasonably be assumed to be resident in main memory.

These previous studies represent work that is probably closest to that presented in this
paper. However re-investigation of this study is considered to be worthwhile in the
light of more recent knowledge and more modern machine architectures. In
particular, both models have only a single disk I/O cost, making no allowance for the
different costs of sequential, asynchronous or synchronous I/O, whereas most modern
schemes are designed to take advantage of the differences between these costs.
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In contrast to the analytical models described above, the Predator project [KGC85]
takes an empirical approach to comparing recovery methods. Prototype databases
supporting different recovery mechanisms are constructed on stock hardware together
with a transaction simulator used for experimentation. A suite of transaction
experiments which vary locality of update, abort frequency and I/O access methods is
carried out over databases supporting concurrent shadow paging and page based
logging. The performance metrics are based on transaction throughput and mean
response time. The experiments are constructed from short transactions on a small
system and conclude that shadow paging works best when there is locality of
reference and where the page table cache is large, otherwise logging is the better
mechanism. The main observation from this work suggests that there is no one best
mechanism and that the choice of recovery method is application dependent.
However one interesting observation made is that the transaction abort rate has a
more radical effect on the performance of logging recovery schemes than on shadow
paging.

6 Conclusions
Comparisons between different recovery mechanisms is often a difficult and
inconclusive task. A number of not necessarily independent criteria have to be
considered when making comparisons. These are:

• The tradeoffs in the time taken to recover after failure, the time and resources
used to collect recovery information and the time and resources used in
constructing a recoverable system.

• The store architecture and its anticipated use. The issues here include the
frequency of updates, locality of reference, object identity and addressing.
Scalability of the recovery mechanism with respect to store size may also be of
concern.

• The expected frequency of hard and soft crashes. In conflict concurrency
systems the frequency of aborted actions is also a factor. This may also depend
on the concurrency control implementation used, for example optimistic
concurrency control may result in more transaction aborts than say two-phase
locking.

• The frequency, cost and style of checkpoints.

• The hardware and operating system support.

The major motivation for this work is that ongoing changes in machine architectures,
hardware technology, and database usage patterns are perceived to change the cost
comparisons among different recovery mechanisms. To this end an attempt has been
made to produce a cost model which is independent from both machine and
application workload parameters; these parameters may be injected into the model
based either on measurements from real systems or as the result of further analyses
and estimates.

Although the work is at an early stage, the line of investigation is believed to have
been justified for two reasons: firstly, a cost model which is independent from
machine and workload parameters has been implemented and has been shown to be
usable; secondly, early investigations of the model fit with both intuition and some
rudimentary experiments with real systems. The results do show already that some of
the orthodoxy of crash recovery engineering may be challenged in the context of
modern application loads and hardware systems.
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Much work remains to be done in terms of the refinement and verification of the
model. To avoid complexity, the model is somewhat simplistic; in particular, the
costs of checkpointing and transaction failure recovery are not yet included. The
results shown by the current model therefore favour object logging somewhat
artificially over the other mechanisms.

In terms of verification, it is intended to parameterise the model with a number of full
sets of configuration and workload parameters which are obtained by measurement
and analysis from real database programming applications. These will be used to
calibrate and inspire confidence in the model, with the eventual intention of being
able to predict the running time of an arbitrary mixture of application, recovery
mechanism and platform.
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8 Appendix I
Transaction workload basic variables

Application workload derived variables may use a combination of the following
application workload basic variables:

• Oacc: the transaction size. This defines the number of objects which the
transaction accesses;

• Odirt: the percentage of accessed objects which are updated;

• Osize: the average size of an objects;

• Psize: the size of a page;

• ObjLoc / DObjLoc: the locality of accessed and updated objects within pages.
The percentage assigned to this variable determines the degree of locality of
the objects within pages. A value of 100% indicates that all objects accessed
are densely packed within the fewest pages possible and a small percentage
indicates that the objects are scattered over a large number of pages.

• PTemp: the temporal locality of pages. This variable describes the degree to
which pages remain in main memory long enough to allow more than one
transaction to access the page. This may affect the number of reads required by
a transaction to fault data pages into memory;

• Ploc: the locality of pages updated. This may affect the recovery I/O costs;

• iread / iwrite: the percentage of a transaction's updated pages requiring
installation reads and writes. If pages are updated by more than one transaction,
an installation read and write may incorporate changes by a number of
transactions. Therefore these variables can be used to determine the number of
installation reads and writes performed by a single transaction in relation to the
number of pages updated by the transaction.

• LRover: the size of the log record overhead used to store the transaction
identifier etc.
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• MapEntry: the size of a page map entry used in after-image shadow paging.

• LRratio: the log record size to object size ratio. Note that this variable is not an
application workload variable but is used in the derivation of PLog.

Appendix II
The following derivation functions are used in evaluating the derived variables in
Appendix III. Descriptions of the workload variables used in the following functions
can be found in Appendix I.

procedure numOD( -> int ) ! number of objects dirtied
Oacc * Odirt

procedure Pmax( -> int ) ! maximum number of pages accessed
if Osize <= Psize then 2 * Oacc
else Oacc * roundUp( ( Osize - 1) / Psize )

procedure Pmin( -> int ) ! minimum number of pages access
roundUp( Oacc * ( Osize / Psize ) )

procedure Pacc( -> int ) ! number of pages accessed
if ObjLoc = 0 then Pmax else Pmax - (Pmax - Pmin) * ObjLoc

procedure PDmin( -> int ) ! minimum number of accessed pages dirtied
roundUp( numOD * ( Osize / Psize ) )

procedure PDmax( -> int ) ! maximum number of accessed pages dirtied
if Osize < Psize then min( 2 * numOD, Pacc)
else numOD * ( roundUp( ( Osize - 1 ) / Psize ) + 1 )

Appendix III
Table 7 illustrates how the application workload functions are composed.

Derived Variable Description
PMiss PTemp * Pacc
PDirty PDmin + ( ( PDmax - PDmin ) * DObjLoc )
PIRead iread * PDirty
PIWrite iwrite * PDirty
PLog ( Osize * numOD * LRratio ) / Psize

PpHouse PDirty/(Psize/2)
PolHouse (LRover / Psize ) * numOD
PTMiss 0
PTDirty PDirty / ( Ploc * ( Psize / MapEntry ) )
PcommR LRover/Psize

Table 7: Transaction Workload Derived Variables
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