The Napier88 Reference Manual

Release 2.0

Ron Morrison
Fred Brown
Richard Connor
Quintin Cutts
Al Dearle
Graham Kirby

Dave Munro

Contents

1
2
3

4

5

6

|

8

Introduction

Context Free Syntax Specification

Types and Type Rules 9
3.1 Universe of DISCOUTISEcccuvtirriiiiriieeniieeniieeeiieesieeeiee e 9

3.2 The Type AIZEbraccccoviiiiiiiiiiiiiiieeeeeeeeeeeee e 10
32,1 ANASING...cctiiiiiiiiiiieeieeeee et 10

3.2.2 Recursive Definitions..........cceeveeerieeniiieeniieenieeeneen. 10

3.2.3 Type OPerators........ccccueeerueerreeeniieeniireenieeenveeenneens 11

3.2.4 Recursive OPerators.........cceeevuveerruveerrireeniueeeniveennneens 11

3.3 Type Equivalence............coovueeeiiiiiiieiniiinieecieeee e 12

34 TYPE RUIES...cooiiiiiieiiee e 12

3.5 First Class Citizenship........ccceevveeriieiniieiniiieieeneeeeeee 13
Literals 14
4.1 Integer Literals........ccoevvieiriieiniiecieeeeeeeeee e 14

4.2 Real LiteralScooviiieriiiiiiieiieeeeeeeeeeeee e 14

4.3 Boolean LiteralS.........ccccueeeviiieniiiiiiieeieececeeeeeeee e 14

4.4 String Literals ...ccocuveeviiiiiiieiiiecieeeeeeeeee e 14

4.5 Pixel LiteralS.......cooviiiiniieiiieeiieeteeeeeeeee e e 15
4.6 Picture Literal.........cccooviieiiiiieiieeieeeeeeeeeeeeee e 15

4.7 INUILLIteral......ccveiiniiieiieeiceeeeeeeeeee e 15
4.8 Procedure Literals..........cccoovueeeriiiiiiieniiieeieeeeeesee e 16

4.9 Image Literal........ccooeeeriiieiiiieiieeieeeeeeee e 16
410 File Literal......cccceiiiiiiiiieeieeeieeeeeeeeeeee e 16
Expressions and Operators 17
5.1 Evaluation Order..........cceeevieeeriieeiieeeieeeeeeeieeesee e 17

5.2 Boolean EXPressionsccceccveeerieeenieesnieesiieenieeenvee e 17

5.3 CompariSOn OPETALOTS.ccuveeeruvreerreearireeniereenrreenreeesneeenanes 18

5.4 Arithmetic EXPressions........ccccveevieeeiiieenieeniieeniieenieeennenn 19

5.5 Arithmetic Precedence Rules.............ccooovveeviieniieencieenieeenee, 20

5.6 String EXPressions.......eeeeveeeeiieenieeenieeeieeeireesieeesveeeneveens 20

5.7 Picture EXPressionseccveeerieeenieeeiieesieeesieeesieeeevee e 21

5.8 Pixel EXPIresSionscccviieriieeriieeiieeeiieeeieeesieeesveeesvee e 22

5.9 The Persistent StOT€........ccevvieeriiieiiieeieeeeeeeiee e 23
5.10 Precedence Tableccccueeeviiieiiieeiieeieeeeeeeiee e 23
Declarations 24
6.1 06 1<) 1181 1S £ T 24

6.2 Variables, Constants and Declaration of Data Objects............ 24

6.3 Declaration of TYPeS......ueeervieerieeeiieeeiieeereeeieeeeveeeevee e 25

6.4 SEQUEINCES ...veeeuvrieeiieeeiie e eeieeeereeereeeereesareesaeeeeseeennseens 25

6.5 53 1 Te) < 1R 26

6.6 SCOPE RUIES ...ttt 26

6.7 Recursive Object Declarationscccveeeeveencieencneeenveeennne. 26

6.8 Recursive Type Declarations...........c.ceeveeeeuieencieencreeenveeennne 27
Clauses 28
7.1 Assignment ClausSecoceeveeeiiiniiniieniecieee e 28

7.2 I CLAUSE. ..ottt e e e e e e e 28

7.3 CASE ClAUSEvveeeeiiiieeeeiiiee ettt et e e e e e e sve e e e esaeaeeeennes 29

7.4 repeat ... while ... do Clausecccceeveeriininienieneenicnicene 29

7.5 FOr CIAUSEvveeieeeeiee ettt e ee e 30
Procedures 31
8.1 Declarations and Callsccouvieeeiiiiieiiniiiie e 31

8.2 Recursive Declarations............ccoceeveerieeniiniieenieiieenieeeee 32

8.3 PolymorphiSmcceieeiiieiiieeiieceeceeee e 32

8.4 Equality and EQuivalenceccccceevevieencieeeniieeeniieeeiee e 33

9 Aggregates 34
9.1 VBCHOTS....eeiiiiiiieeeiite ettt e e e e e 34

9.1.1 Creation Of VECtOIS......cccueerieriieniiiieeiieeieeee e 34

9.1.2 upband IWb ... 35

9.1.3 INdeXING....coeoviiiiiiiiiiieiieeceecee e 36

9.1.4 Equality and Equivalencec..ccoceeveevieneenennucnnns 36

9.2 SEIUCTUTES. ...eeeieeeeiteeeie ettt et 36

9.2.1 Creation Of StruCtUIeS......ccceervieeriirieeieeieeee e 36

9.2.2 INAEXING....eiiiviiiiiiiiiieeiieee e 37

9.2.3 Equality and Equivalencec.cccoceeveevieneencnnucnnns 37

9.3 IMAagesooooviiiiiii 38

9.3.1 Creation of IMages.........ccceeueevueroveneenenrienienenienens 38

9.3.2 Raster Operationsccceeceervveereeerueeneerireeneeeneennns 38

9.3.3 INAEXING....eiioiiiiiiiiiiieeieeeceecee e 40

9.3.4 Depth Selection..........cccccevvereeviirienieneniieneeneeienens 40

9.3.5 Equality and Equivalencec.cccoceeveevieneenennicnnns 41

10 Variants 42
10.1 Variant TYPES.....coecueeeriieeniieerite ettt ettt 42

10.2 Variant Values..........coovuiiiriiiiiniieiieeeieeeieeeeeeee e 42

10.3 1S AN ISNE.uiiiiiiiiiiiiieeiee et 42

10.4 Projection out of Variantscc.ccceceevverveenienneeneenseeneenns 43

10.5 Variant USagec.ceeevueeeiieniienieeieeeieeee et 44

10.6 Equality and EQuivalencecccccceeevveennieennieeniiieenieeeeenn 44

11 Abstract Data Types 45
11.1 Abstract Data Type Definitionccccceeveenieeiieineenneennene 45

11.2 Creation of Abstract Data Objects.........cccccueervieeriiieeniueennnneen. 45

11.3 Use of Abstract Data Objects..........ceevveervveeriieeniiieenieennneenn 46

11.4 Equality and EQuivalencecccocceeevveennieennieeniieenieeeeenn 47

12 Files 48
12,1 File Literal......ccccooiiiiiiiiiiiiiieeeeeeeeee e 48

12.2 Equality and Equivalencecccccceeevvieenieennieeniieenieeeneeenn 48

13 Type any 49
13.1 Injection into TYPE ANyc..ceecueeerireerieeeiieeerieeeieeeevee e 49

13.2 Projection from Type anycccccecveeerveeenieeenieeniieenieeennenn 49

13.3 Equality and Equivalenceccccceevveeenieeenieenieeniee e 50

14 Environments 51
14.1 Creating a New Environmentccccceevveeenieenneeencneeennnennn 51

14.2 Adding Bindings to an Environment..............cccceeevveerueeennenn. 51

14.3 Using Bindings in Environments............cccceeevveeeiieencieeennnnn. 52

14.4 Removing Bindings from Environments............c.cccccecvveennenn. 53

14.5 The contains ClauSe.........cocueerieeniieniieeniienieeniee et 53

14.6 Equality and Equivalenceccccoceevvieenieeenieeeieeeiee e 53

15 References 54
Appendix I 57
Appendix II 62
Appendix I1I 66
Appendix IV 67
Index 68

John Napier (1550-1617)

John Napier was born in Merchiston, Edinburgh in 1550. He matriculated at
St Salvator's College, University of St Andrews in 1563. Very little is known about him
during this period although he did study in Paris and travel in Italy and Germany before
returning to Scotland to marry in 1571.

This was the period of the Scottish Reformation and Napier was very committed to the
Protestant cause. In 1594, he wrote his Plaine Discovery of the whole Revelation of
Saint John which he addressed to King James VI in a letter. This was the first Scottish
book on the interpretation of scripture and has a significant place in the history of
theology in Scotland.

John Napier is best known as the inventor of Logarithms. While important steps in the
theory had been taken in the sixteenth century, notably by Burgi, it was Napier who first
brought the subject, in any large way, to the attention of mathematicians. This was in his
Mirifici logarithmorum canonis descripto (1614), the first important work on
mathematics produced in Great Britain, and one which inspired Briggs, the professor of
geometry at Gresham College, London, to develop the system of common logarithms
with the decimal base. Napier also invented Napier rods or bones for use in
multiplication, a development of a well-known Oriental method, and a number of
formulae in trigonometry relating to circular parts. His other mathematical works
include De arte logistica (1573 but not published until 1839), Rabdoligee seu
numerationis per vigulas libri duo (1617), in which the rods are described, and Mirifici
logarithmorum canonis constructio, published two years after his death.

Napier was also a great advocate of the decimal fraction system invented by Stevinus in
1585. Indeed, it appears that Napier introduced the decimal point into common usage
and eliminated the use of notation to indicate fractional position.

1 Introduction
The Napier88:persistent programming system provides the following facilities:

. Orthogonal persistence
— models of data independent of longevity

. Type completeness
— no restrictions on constructing types

. Higher-order procedures
— procedures are data objects

. Parametric polymorphism
— generic forms which may be specialised for use

. Abstract (existential) data types
— for sophisticated protection and viewing

. Collections of bindings
— for name space control, incremental system construction and
system evolution

. A strongly typed stable store
- apopulated environment of typed data objects that may be
updated atomically

. Graphical data types
— for line drawings and raster images

. Concurrent execution and data access
— using threads, semaphores and transactions

. Support for reflective programming
— for system evolution

The Napier88 system consists of the language and its persistent environment. The
persistent store is populated and, indeed, the system uses objects within the persistent
store to support itself. The implication of orthogonal persistence is that the user need
never write code to move or convert data for long or short term storage [ABC+83]. The
model of persistence in Napier88 is that of reachability from a root object. The
persistent store is also stable, that is, it is transformed from one consistent state to the
next. Stabilisation must be invoked explicitly by the user to preserve data except that
programs which terminate normally generate an automatic stabilise operation. Execution
against the persistent store is always restarted from the last stabilised state.

Concurrency is provided by threads and semaphores [Mun93] for co-operative
concurrency and by the CACS system [SM92] for competitive concurrency and
designer transactions. Thus the notions of stability and visibility in commitment are
orthogonal [Kra85, AMP86, MBB+89]. The entire computation including the state of
the programs, threads and transactions is stable and recoverable after a system crash.

The Napier88 language is in the algol tradition as were its predecessors S-algol
[Mor79] and PS-algol [PS88]. Following the work of Strachey [Str67] and Tennant
[Ten77] the languages obey the principles of correspondence, abstraction and type
completeness. This makes for languages with few defining rules allowing no
exceptions. It is the belief of the designers that such an approach to language design
yields more powerful and less complex languages.

5

The Napier88 type system was evolving at the same time as Cardelli and Wegner
[CW8S5] published their work. Many of the ideas are related to theirs and some have
been borrowed from them. The philosophy is that types are sets of values from the value
space. The type system is mostly statically checkable, a property we wish to retain
wherever possible. However, some dynamic projection out of unions for types any and
env [Dea89], as well as variant selection, allows the dynamic binding required for
orthogonal persistence [ABC+83] and system evolution [MCC+93].

The type system is polymorphic, like ML [Mil78, MTH89] , Russell [DD79] and Poly
[Mat85] and uses the existentially quantified types of Mitchell & Plotkin [MPSS,
CMMOI1] for abstract data types. There is deliberately no type inference, to allow for
explicit specialisation of polymorphic forms from the persistent store. A unique design
feature of the implementation of the typed objects is that their storage format may be
non-uniform [MDC+91]. The type system also includes graphical types for line
drawing in an infinite two-dimensional real space and for manipulating raster images.

The type equivalence rule in Napier88 is by structure and both recursive and
parameterised types are allowed in the type algebra, which in general leads to
undecidable type checking. This is dealt with in Napier88 by a syntactic convention
which allows the type checking to be sound, complete and co-complete [Con90] .

The Napier88 system is designed as a layered architecture [Bro89] consisting of a
compiler [Dea88, Con90, Cut92, Kir92], the Persistent Abstract Machine (PAM)
[BCC+88, CBC+90] and persistent storage architecture [Bro89, BM92, Mun93]. All
the Napier88 architectural layers are virtual in that, in any implementation, they may be
implemented separately or together as efficiency dictates. Thus, they are definitional
rather than concrete. In the current release the stable storage is provided by an after-look
shadow paging mechanism [Bro89, BM92, Mun93]. The architecture is shown below:

/\\

Distribution

Concurrency User Transactions

I

Persistent Abstract Machine

(Local Heap
Protection Mechanism
Stable Heap of Persistent Objects
[Stable Storage]
(Non Volatile Storage j

Napier88 programs are executed in a strict left to right, top to bottom manner except
where the flow of control is altered by one of the language clauses. On encountering an
error state, the PAM generates a call to a standard error procedure held in the persistent
store. These error procedures may be redefined by the user. The Persistent Abstract
Machine also monitors interaction with the operating system in which Napier88 resides.

NN

6

When an asynchronous interrupt occurs the PAM records it and causes the appropriate
procedure call to a standard event procedure in the persistent store. Again, the user may
redefine the procedures used to intercept asynchronous interrupts.

There may be many incarnations of the stable persistent store and many activations of
the PAM. However, only one PAM incarnation may work on one persistent store at any
one time.

This version of the reference manual corresponds to release 2.0 of the Napier88
language. The language has only a few changes to that of release 1.0 [MBC+89a,
MBC+89b] but the persistent environment has been significantly enriched and re-
organised. The changes to the language are:

. a dynamic abstract witness model for abstract types, and
° type operators

A separate manual, the Napier88 Standard Library Reference Manual [KBC+94a]
describes the persistent environment of the release. The main changes are the provision
of a browser, a compiler for reflective programming, threads and semaphores, a new
organisation of the object store to provide a navigation free store, distributed stores with
remote scan and copy, and a hyper-programming system. The environment also
provides a mechanism, through internet, for other sites to contribute programs and data
which may then be accessed by remote scan and copy from other Napier88 stores. The
mechanism for this is described in the Napier88 Release 2.0 Installation Guide
[KBC+94b].

A third manual, the Napier88 to the Persistent Abstract Machine Compilation Rules
Manual [BBC+94] describes the formal definition of Napier88 together with the rules
to generate code for the Persistent Abstract Machine.

The Napier88 persistent programming system was originally planned as part of the
PISA project [AMP86] and was intended as a testbed for our experiments in type
systems, programming environments, concurrency, bulk data, object stores and
persistence. The form of the Napier88 language was first conceived by Ron Morrison
and Malcolm Atkinson but the main design and first implementation was done by Fred
Brown, Richard Connor, Alan Dearle and Ron Morrison. Release 2.0 constitutes a
major re-engineering, re-organisation and enhancement of the system by, in addition to
the above, Quintin Cutts, Graham Kirby and Dave Munro.

Many people have contributed to the Napier88 design. Malcolm Atkinson played a
major role [MBC+87, AM88, MBB+89], as did his research assistants Richard Cooper,
Francis Wai & Paul Philbrow. At STC Technology Ltd., John Scott, John Robinson,
Dave Sparks and Michael Guy aided, abetted and often criticised constructively the early
designs.

Our Visiting Fellows at St Andrews, John Hurst, Chris Barter, Chris Marlin, John
Rosenberg, Dave Stemple and Robin Stanton also contributed and influenced the design
and the research undertaken in the context of Napier88.

Ron Morrison

2 Context Free Syntax Specification

The formal definition of a programming language gives programmers a precise
description from which to work as well as providing implementors with a reference
model. There are two levels of definition, syntactic and semantic. This section deals with
the formal syntactic rules used to define the context free syntax of the language. Later,
informal semantic descriptions of the syntactic categories will be given. The formal rules
define the set of all syntactically legal Napier88 programs, remembering that the
meaning of any one of these programs is defined by the semantics.

To define the syntax of a language another notation is required which is called a meta
language and in this case a variation of Backus-Naur form is used.

The syntax of Napier88 is specified by a set of rules called productions. Each
production specifies the manner in which a particular syntactic category (e.g. a clause)
can be formed. Syntactic categories have names which are used in productions and are
distinguished from names and reserved words in the language. The syntactic categories
can be mixed in productions with terminal symbols which are actual symbols of the
language itself. Thus, by following the productions until terminal symbols are reached,
the set of legal programs can be derived.

The meta symbols, that is those symbols in the meta language used to describe the
grammar of the language, include | which allows a choice in a production. The square
brackets [and] are used in pairs to denote that an term is optional. When used with a *,
a zero or many times repetition is indicated. The reader should not confuse the meta
symbols I, *, [and] with the actual symbols and reserved words in Napier88. To help
with this reserved words will appear in bold and actual symbols will appear in outlinme
Ibolld. The names of the productions will appear in italics.

For example,
identifier ::= letter [letter | digit | _]*

indicates that an identifier can be formed as a letter, optionally followed by zero or many
letters, digits or underbars.

The productions for Napier88 are recursive which means that there are an infinite
number of legal Napier88 programs. However, the syntax of Napier88 can be described
in about 80 productions.

The full context-free syntax of Napier88 is given in Appendix L.

3 Types and Type Rules

The Napier88 type system is based on the notion of types as a set structure imposed
over the value space. Membership of the type sets is defined in terms of common
attributes possessed by values, such as the operations defined over them. In the absence
of polymorphism these sets or types partition the value space; polymorphic forms,
which in Napier88 are polymorphic procedures and abstract data types, allow values to
belong to more than a single type. The sets may be predefined, like infeger, or they may
be formed by using one of the predefined type constructors, like structure.

The constructors obey the Principle of Data Type Completeness [Str67, Mor79]. That
is, where a type may be used in a constructor, any type is legal without exception. This
has two benefits. Firstly, since all the rules are very general and without exceptions, a
very rich type system may be described using a small number of defining rules. This
reduces the complexity of the defining rules. The second benefit is that the type
constructors are as powerful as is possible since there are no restrictions on their
domain.

3.1 Universe of Discourse
The following base types are defined in Napier88:
1. The scalar data types are int, real, bool, pixel, file and null.

2. Type string is the type of a character string; this type embraces the
empty string and single characters.

3. Type pic is the type of a conceptual line drawing, modelled in an
infinite 2-D real space; this type embraces single points.

4. Type image is the type of a value consisting of a rectangular matrix
of pixels.
5. Type env is the type of an environment; values of this type consist of

a collection of bindings.

6. Type any is an infinite union type; values of this type consist of a
value of any type together with a representation of that type.

The following type constructors are defined in Napier88:
7. For any type t, *#t is the type of a vector with elements of type t.

8. For identifiers 1y,...I, and types ty....t,, structure (1;: t},...1,: t,) is
the type of a structure with fields I; and corresponding types t;, for i
=Il.nandn=0.

9. For identifiers 1y,...I,, and types t;,...t,, variant (I;: t},...I,,;: t,,) is the
type of a variant with identifiers I; and corresponding types t;, for i =
l.nand n=0.

10. For any types ty...t, and t, proc (t;,...t, — t) is the type of a
procedure with parameter types t;, for i = 1..n, where n = 0, and result
type t. The type of a resultless procedure is proc (t;,...,t,).

11. proc [Ty,...T,,] (t],....t, — t), where the definitions of types ty,...t,
and t may include the use of the type variables Tj.,...,. T, is the type

of a procedure which is universally quantified over these type
variables for m >0 and n = 0. These are polymorphic procedures.

12. abstype [W;,... W,] (I;: t;,....1,: t,), where the definitions of types
t{,...t, may include the use of the type variables W,...,W_,, is the
type of a structure which is existentially quantified over these type
variables for m >0 and n = 0. These are abstract data types.

The world of data values is defined by the closure of rules 1 to 6 under the recursive
application of rules 7 to 12.

In addition to the above, clauses which yield no value are of type void.
3.2 The Type Algebra
Napier88 provides a simple type algebra which allows the succinct definition of types

within programs. As well as the base types and constructors already introduced, types
may be defined with the use of

. aliasing
J recursive definitions
° type operators

3.2.1 Aliasing

Any legal type description may be aliased by an identifier to provide a shorthand or
conceptually meaningful representation for that type. For example

type ron is int
type man is structure (age : int ; size : real)
type either is variant (first : ron ; second : man)

After its introduction an alias may be used in place of the full type description.
3.2.2 Recursive Definitions

Further expressibility may be achieved in the type algebra by the introduction of
recursive types. Recursive types allow the definition of user-defined types for values
with regular structures. The reserved word rec introduced before a type alias allows
instances of that alias to appear in the type definition. Mutually recursive types may also
be defined by the grouping of aliases with ampersands. In this case binding of
identifiers within the mutual recursion group takes precedence over identifiers already in
scope.

rec type intList is variant (cons : intNode ; tip : null)
& intNode is structure (head : int ; tail : intList)

3.2.3 Type Operators

Type operators allow families of types to be defined; operators may be specialised to
provide particular types. These operators are simple functions over types; note however

10

that they can always be statically resolved. Type operators are defined by an overloading
of the syntax for type aliasing, with formal parameters being provided in square brackets
after the alias. For example,

type heteroPair [a, b] is structure (first : a ; second : b)
type homoPair [t] is structure (first, second : t)

Operators are applied by the use of the identifier followed by specialising types in
square brackets. For example,

type intRealPair is heteroPair [int, real]
type intPair is homoPair [int]

Notice that operator identifiers may not appear without being fully specialised.

Sometimes it is convenient to define higher-order operators:

type pairOperApplnt [oper [t]] is structure (first, second : oper [int])

Notice that in this case the 7 in the inner brackets may not be used as a formal parameter,
and is simply an indication of the arity of the formal parameter oper. Identifiers used in
such contexts have no extent.

3.2.4 Recursive Operators
Napier88 does not distinguish syntactically between recursive type operators and

operators over recursive types. For example the following is a generic description of the
family of list types:

rec type list [s] is variant (cons : node [s] ; tip : null)
& node [t] is structure (head : t ; tail : list [t])

The uncontrolled introduction of recursive type operators leads to the ability to describe
types over which no decidable structural equivalence algorithm is known. There is a
restriction in Napier88 on the definition of recursive operators as follows:

The specialisation of a recursive operator on the right hand side of its own definition
may not include any types which are constructed over its own formal parameters.

This rule extends through dependencies in sets of mutually recursive definitions; for
example list [*t] would not be allowed on the right hand side in the above example
because of the way the definition of list depends upon the definition of node. This rule
precludes the description of some useful type operators and types; for example the
following may not be used to describe the type of an array of any dimension:

rec type array [t] is variant (simple : t ; higherOrder : array [*t])

11

The restriction has been introduced to allow fully decidable typechecking in Napier88
while less restrictive schemes are under investigation.

3.3 Type Equivalence

Type equivalence in Napier88 is based upon the meaning of types, and is independent
of the way the type is expressed within the type algebra. Thus any aliases, recursion
variables, and operator applications are fully factored out before equivalence is assessed.
This style of type equivalence is normally referred to as structural equivalence.

The structural equivalence rules are as follows:
. Every base type is equivalent only to itself.

. For two constructed types to be equivalent, they must have the same
constructor and be constructed over equivalent types.

. The bounds of a vector are not significant for type equivalence.

. For structure, variant and abstype constructors the labels are a significant
part of the type, but their ordering is not.

. For procedure and polymorphic procedure types, the parameter ordering is a
significant part of the type construction.

The definition of type equivalence for types which involve the type variables of
polymorphic procedures and abstract data types is somewhat more subtle, and is defined
in the appropriate sections of this manual.

Napier88 has no subtyping or implicit coercion rules. Values may be substituted by
assignment or parameter passing only when their types are known statically to be
equivalent.

The types of all expressions in Napier88 are inferred. There is no other type inference
mechanism; in particular, the types of all procedure parameters and results must be
explicitly stated by the programmer.

3.4 Type Rules

The type rules form a second set of rules to be used in conjunction with the context free
syntax to define well-formed programs. The generic types that are required for the
formal definition of Napier88 can be described by the following:

type arith is int | real

type ordered is arith | string

type literal s ordered | bool | pixel | pic | null | proc | file |

image

type nonvoid is literal | structure |variant | env | any |
abstype | parameterised | poly | *nonvoid

type type is nonvoid | void

In the above, the generic type arith can be either an imt or a real, representing the types
integer and real in the language. In the type rules, the concrete types and generic types
are written in shadow face to distinguish them from the reserved words, meta—symbols

12

and actual symbols. Each of the type categories given above corresponds to one of the
type construction rules and will be described later in this manual.

To check that a syntactic category is correctly typed, the context free syntax is used in
conjunction with a type rule. For example, the type rule for the two-armed if clause is

t : type, if clause : bool then clause : t else clause : t =>t

This rule may be interpreted as follows: t is given as a type from the table above. It can
be any type including void. Following the comma, the type rule states that the reserved
word if must be followed by a clause which must be of type boolean. This is indicated
by : bool. The then and else alternatives must have clauses of the same type t for any
t. The resultant type, indicated by =>, of this production is also t, the same as the
alternatives.

The type rules will be used throughout this manual, in conjunction with the context-free
syntax rules, to describe the language. A complete set of type rules for Napier88 is
given in Appendix II.
3.5 First Class Citizenship
The application of the Principle of Data Type Completeness [Str67, Mor79] ensures
that all data types may be used in any combination in the language. For example, a value
of any data type may be a parameter to or returned from a procedure. In addition to this,
there are a number of properties possessed by all values of all data types that constitute
their civil rights in the language and define first class citizenship. All values of data
types in Napier88 have first class citizenship.
The additional civil rights that define first class citizenship are:

. the right to be declared,

. the right to be assigned to and to be assigned,

. the right to have equality defined over them, and,

. the right to persist.

13

4 Literals

Literals are the basic building blocks of Napier88 programs that allow values to be
introduced. A literal is defined by:

literal = int_literal | real_literal | bool_literal | string_literal |
pixel_literal |
picture_literal | null_literal | proc_literal | image_literal |
file_literal
4.1 Integer Literals
These are of type integer and are defined by:

ladd_op) digit [digif*
+ |-

int_literal
add_op

int_literal => int

An integer literal is one or more digits optionally preceded by a sign. For example,

1 0 1256 -8797

4.2 Real Literals

These are of type real and are defined by
real_literal = int_literalo[aligit]>l< [e int_literal]
real_literal => real

Thus, there are a number of ways of writing a real literal. For example,

1.2 3.1e2 5.e5

1. 3.4e-2 3.4e+4

3.1e-2 means 3.1 times 10 to the power -2 (i.e. 0.031)

4.3 Boolean Literals

There are two literals of type boolean: true and false. They are defined by
bool_literal = true | false
bool_literal => bool

4.4 String Literals

A string literal is a sequence of characters in the character set (ASCII) enclosed by
double quotes. The syntax is

string_literal = "[char]*"
char = any ASCII character except " | special_character
special_character = "special_follow |

14

" if not followed by a special_follow
special_follow n= miploltlibl"l"

string_literal => string

The empty string is denoted by "". Examples of other string literals are:
"This is a string literal", and,
"I 'am a string"

The programmer may wish to have a double quote itself inside a string literal. This
requires using a single quote as an escape character and so if a single or double quote is
required inside a string literal it must be preceded by a single quote. For example,

mn

"a has the value a", and,

"nn

"a has the value a'.

There are a number of other special characters which may be used inside string literals.
They are:

b backspace ASCII code 8
't horizontal tab ASCII code 9
'n newline ASCII code 10
) newpage ASCII code 12
'o carriage return ASCII code 13

4.5 Pixel Literals

There are two literals of type pixel: on and off. They are defined by
pixel_literal = on | off
pixel_literal => pixel

4.6 Picture Literal

There is only one picture literal. It is used to define a picture with no points.
picture_literal ::= nilpic
nilpic => pic

4.7 Null Literal

There is only one literal of the type null. It is used to ground recursion in variant types.
null_literal = nil

nil => null

15

4.8 Procedure Literals

A procedures is introduced into a program by its literal value. They are defined by:

proc_literal ::= proc [type_parameter_list] ([named_param_list]
[=> type_id]); clause

type_parameter_list ::= [identifier_list]

named_param_list ::= [constant] identifier_list ¢ type_id [

named_param_list]

t : type, proc [type_parameter_list] ([named_param_list]
[=> type_identifier : t]); clause : t

For example,

proc[tj(n:t—t);n

is a procedure literal.
The meaning and use of procedures is described in Chapter 8.
4.9 Image Literal

There is only one image literal. It is used to define the image with no pixels. It has
dimensions 0 by 0 and depth 0.

image_literal = nilimage
nilimage => lmage
4.10 File Literal

There is only one file literal. It is used to denote a file value that is not bound to a file in
the file system.

file_literal = nilfile

nilfile => file

16

5 Expressions and Operators
5.1 Evaluation Order

The order of execution of a Napier88 program is strictly from left to right and top to
bottom except where the flow of control is altered by one of the language clauses. This
rule becomes important in understanding side-effects in the store. Parentheses in
expressions can be used to override the precedence of operators.

When an error occurs in the system, a standard error procedure is called automatically.
The standard error procedures are stored in the standard environment and may be
altered by the user using the Napier88 facilities for updating environments.

An event may also occur during the execution of a Napier88 program. An event acts like
an unexpected procedure call. Events are also defined in the standard environment and
may be manipulated in the same manner as errors. Further details of events and errors
may be found in the Napier88 Standard Library Reference Manual [KBC+94a].

5.2 Boolean Expressions

Objects of type boolean in Napier88 can have the value true or false. There are only two
boolean literals, true and false, and three operators. There is one boolean unary
operator, ~, and two boolean binary operators, and and or. They are defined by the truth
table below:

a b ~a aorb aand b
true false false true false
false true true true false
true true false true true
false false true false false

The precedence of the operators is important and is defined in descending order as:

~

and
or

Thus,
~aorbandc
is equivalent to
(~a) or (b and c)

This is reflected in the syntax rules which are:

expression = expl [or expl]*
expl = exp2 [and exp2]*
exp2 = [~] exp3 ...

17

expl : bool or expl : bool => bool
exp2 : bool and exp?2 : bool => bool
[~] exp3 : bool => bool
The evaluation of a boolean expression in Napier88 is non-strict. That is, in the left to
right evaluation of the expression, no more computation is performed on the expression
than is necessary. For example,
true or expression
gives the value true without evaluating expression and
false and expression
gives the value false without evaluating expression.
5.3 Comparison Operators
Expressions of type boolean can also be formed by some other binary operators. For

example, a = b is either true or false and is therefore boolean. These operators are
called the comparison operators and are:

< less than

<= less than or equal to

> greater than

>= greater than or equal to

= equal to

~= not equal to

is is a particular member of a variant
isnt is not a particular member of a variant
contains is present in an environment (see 14.5)

The syntactic rules for the comparison operators are:

exp2 = [~] exp3 [rel_op exp3]
rel_op = eq_op | co_op | variant_op
eq_op = = | w=

co_op = Ll =l>1 >=
variant_op = is | isnt

t : nonvoid, exp3 : t eq_op exp3 : t => bool
where eq_op ::= = | ~=

t : ordered, exp3 : t co_op exp3 : t => bool
where co_op ::= <l<=l>] >=

18

expression : variant variant_op identifier => bool
where variant_op = is | isnt

Note that the operators <, <=, > and >= are defined on integers, reals and strings whereas
= and ~= are defined on all Napier88 data types. The interpretation of these operations
is given with each data type as it is introduced. The operators is and isnt are for testing
a variant identifier and are defined in Chapter 10.

Equality for types other than scalar types and strings is defined as identity.

5.4 Arithmetic Expressions

Arithmetic may be performed on data objects of type integer and real. The syntax of
arithmetic expressions is:

exp3 = exp4 [add_op exp4]*

exp4 = expS [mult_op exp5]*

exp5 = ladd_op] exp6

mult_op = int_mult_op | real_mult_op| ...
exp6 =

t : arith, exp4 : t add_op exp4 :t=>t
t : arith, add_op exp6 : t =>t

exp5 :imt int_mult_op exp5 : int => int
where int_mult_op ::= # | div | rem

exp5 : real real_mult_op exp5 : real => real
where real_mult_op ::= #| /

The operators mean:

+ addition

- subtraction

* multiplication

/ real division

div integer division throwing away the remainder
rem remainder after integer division

In both div and rem the result is negative only if exactly one of the operands is
negative.

Some examples of arithmetic expressions are

a+b 3+2 1.2 +0.5 2.1+a/20

The language deliberately does not provide automatic coercion from integer to real, but
the transfer may be explicitly invoked by the standard procedure float and the standard
procedure truncate is provided to transfer from real to integer. These are described in
the Napier88 Standard Library Reference Manual [KBC+94a].

19

The evaluation of an arithmetic expression may cause the standard error procedures
unarylnt, Int, unaryReal and Real to be called.

5.5 Arithmetic Precedence Rules

The order of evaluation of an expression in Napier88 is from left to right and based on
the precedence table:

* / div rem

+ -

That is, the operations *, /, div, rem are always evaluated before + and -. However, if the
operators are of the same precedence then the expression is evaluated left to right. For
example,

6 div 4 rem 2 gives the value 1

Brackets may be used to override the precedence of the operator or to clarify an
expression. For example,

3*%(2-1) yields 3 not 5
5.6 String Expressions

The string operator, ++, concatenates two operand strings to form a new string. For
example,

"abc" ++ "def"
results in the string
"abcdef"
The syntax rule is:
exp4 n= exp) [string_mult_op exp5]*

exp5 : string string_mult_op exp5 : string => string
where string_mult_op = 4+

A new string may be formed by selecting a substring of an existing string. For example,
if s is the string "abcdef" then s (3 | 2) is the string "cd". That is, a new string is formed
by selecting 2 elements from s starting at character 3. The syntax rule is:

expb = expression (clause | clause)

expression : string (clause : int [clause : int) => string

For the purposes of substring selection the first character in a string is numbered 1. The
selection values are the start position and the length respectively.

To compare two strings, the characters are compared in pairs, one from each string, from

left to right. Two strings are considered equal only if they have the same characters in
the same order and are of the same length, otherwise they are not equal.

20

The characters in a string are ordered according to the ASCII character code. Thus,
Hall < HZH
s true.

The null string is less than any other string. Thus the less-than relation can be resolved
by taking the characters pair by pair in the two strings until one is found to be less than
the other. When the strings are not of equal length then they are compared as above and
then the shorter one is considered to be less that the longer. Thus,

HabCH < l|abcd"
The other relations can be defined by using = and <.

The evaluation of a string expression may cause the standard error procedures
concatenate and subString to be called.

5.7 Picture Expressions

The picture drawing facilities of Napier88 allow the user to produce line drawings in
two dimensions. The system provides an infinite two dimensional real space. Altering
the relationship between different parts of the picture is performed by mathematical
transformations, which means that pictures are usually composed of a number of sub-
pictures.

In a line drawing system, the simplest picture is a point. For example, the expression,
[0.1, 2.0]
defines the point (0.1, 2.0).

Points in pictures are implicitly ordered. A binary operation on pictures operates
between the last point of the first picture and the first point of the second. The resulting
picture has as its first point, the first point of the first picture, and as its last, the last
point of the second.

There are two infix picture operators. They are /A, which forms a new picture by joining
the first picture to the second by a straight line from the last point of the first picture to
the first point of the second. ++ also forms a new picture by including all the
subpictures of both the operand pictures. The other transformations and operations on
pictures are:

shift The new picture consists of the points obtained by adding the x
and y shift values and the x and y co-ordinates of the points in
the old picture. The ordering of the points is preserved.

scale The new picture consists of the points obtained by multiplying
the x and y scale values with the x and y co-ordinates of the
points in the old picture, respectively. The ordering of the points
is preserved.

rotate The new picture consists of the points obtained by rotating the x
and y co-ordinates of the points in the old picture clockwise
about the origin by the angle indicated in degrees. The ordering
of the points is preserved.

colour The new picture is the old one in a new colour.

21

text The new picture consists of the text string converted to a picture
representation. The two points represent the base line of the
string, which will be scaled to fit.

A text expression may cause the standard error procedure Text to be called while the
picture is being drawn.

The full syntax of picture expressions is:

exp4
pic_mult_op

exp3 [pic_mult_op expS]*
Al

expression : Pic pic_mult_op expression : pic => pic

value_constructor ::
picture_constr
picture_op

picture_constr | picture_op | ...

[clause, clause]

shift clause by clause, clause |

scale clause by clause, clause |

rotate clause by clause |

colour clause in clause |

text clause from clause, clause to clause, clause

[clause : real ; clause : real] => pic
shift clause : pic by clause : real; clause : real => pic
scale clause : pic by clause : real, clause : real => pic
rotate clause : pic by clause : real => pic
colour clause : pic in clause : pixel => pic
text clause : string from clause : real , clause : real

to clause : real, clause : real => pic

5.8 Pixel Expressions

Pixels may be concatenated to produce another pixel of a greater depth using the
operator ++.

exp4 n= expS [+rexps 1*
exp5 : pixel &+ exp5 : pixel => pixel

For example,

let b = on ++ off ++ off ++ on

A pixel has depth representing the number of planes in the pixel. The planes are
numbered from 0 and new pixels can be formed from subpixels of others. The syntax is

expb = expression (clause | clause)
expression : pixel (clause : int | clause : int) => pixel
For example, assuming the declaration of b above,

b (112) is the pixel off ++ off

22

This last expression is interpreted as the pixel formed by starting at plane 1 in b and
selecting 2 planes.

The evaluation of a pixel expression may cause the standard error procedures
pixelOverflow and subPixel to be called.

Two pixels are equal if they have the same depth and the corresponding planes have the
same value.

5.9 The Persistent Store

There is one predefined procedure in Napier88 and it allows access to the persistent
store. It is defined by

exp6 =15 ()
PS () => amy

The structure of the persistent store is described in the Napier88 Standard Library
Reference Manual [KBC+94a].

5.10 Precedence Table

The full precedence table for operators in Napier88 is:

/ * div. rem A
+ - ++
= ~= < <= > >= is isnt
and
or

23

6 Declarations

6.1 Identifiers

In Napier88, an identifier may be bound to a data object, a procedure parameter, a
structure field, a variant label, an abstract data type label or a type. An identifier may be

formed according to the syntactic rule

identifier ::= letter [id_follow]
id_follow n= letter [id_follow] | digit [id_follow] | _ [id_follow]

That is, an identifier consists of a letter followed by any number of underscores, letters
or digits. The following are legal Napier88 identifiers:

x1 ronsObject look_for Recordl Ron

Note that case is significant in identifiers.

6.2 Variables, Constants and Declaration of Data Objects

Before an identifier can be used in Napier88, it must be declared. The action of
declaring a data object associates an identifier with a typed location which can hold
values. In Napier88, the programmer may specify whether the location is constant or
variable. A constant may be manipulated in exactly the same manner as a variable except
that it may not be updated.

When introducing an identifier, the programmer must indicate the identifier, the type of
the data object which is usually deduced, whether it is variable or constant, and its initial
value. Identifiers are declared using the following syntax:

let identifier init_op clause
init_op = SHEE

let identifier init_op clause : monvoid => void
A variable is declared by
let identifier := clause

For example,

leta:=1

introduces an integer variable with initial value 1. Notice that the compiler deduces the
type.

A constant is declared by
let identifier = clause

For example,

24

let discrim=b *b-4.0*a*c

introduces a real constant with the calculated value. The language implementation will
detect and flag as an error any attempt to assign to a constant.

6.3 Declaration of Types
Type names may be declared by the user in Napier88. The name is used to represent a

set of objects drawn from the value space and may be used wherever a type identifier is
legal. The syntax of type declarations is:

type_decl ::= type type_init | rec type type_init [& type_init]*
type_init ::= identifier [type_operator_list] is type_id
type_operator_list ::= [type_operator [, type_operator]]
type_operator ::= identifier | identifier [type_operator]

type_id = int [real | bool | string | pixel | pic | null |

any | env | image | file |
identifier [parameterisation) | type_constructor

parameterisation = [type_list]
type_list = type_id [, type_list]
type_constructor := #type_id | structure_type | variant_type |

proc_type | abstype

structure_type ::= structure ([named_param_list])
named_param_list ::= [constant] identifier_list ¢ type_id [
named_param_list]

variant_type ::= variant ([variant_fields])
variant_fields ::= identifier_list ¢ type_id [variant_fields]
proc_type ::= proc [type_parameter_list] ([parameter_list]
[-> type_id])
parameter_list = type_id [, parameter_list]
abstype ::= abstype type_parameter_list (named_param_list)
type_parameter_list ::= [identifier_list]
Thus,
type al is bool

is a type declaration aliasing the identifier al with the boolean type. They are the same
type and may be used interchangeably. Examples of type declarations will be given in
later chapters.

6.4 Sequences
A sequence is composed of any combination, in any order, of declarations and clauses.

The type of the sequence is the type of the last clause in the sequence. Where the
sequence ends with a declaration, which by definition is of type void, the sequence is of

25

type void. If there is more than one clause in a sequence then all but the last must be of
type void.

sequence::= declaration [5 sequence] | clause [; sequence]
sequence : void 7 => void
t 2 type, declaration : void s sequence : t => t
t : type, clause : void ;3 sequence : t =>t
t : type, clause : t=>t
6.5 Brackets

Brackets are used to make a sequence of clauses and declarations into a single clause.
There are two forms, which are:

begin
sequence
end
and
{sequence}

t : type, begin sequence : t end => t
t : type, {sequence : t} =>t

{ and } allow a sequence to be written clearly on one line as a clause. For example,

leti:=2
forj=1to5do {i:=i*i;writelnt (i)}

However, if the sequence is longer than one line, the first alternative gives greater clarity.
Nonvoid sequences are sometimes called block expressions.

6.6 Scope Rules

The scope of an identifier is limited to the rest of the sequence following the declaration.
This means that the scope of an identifier starts immediately after the declaration and
continues up to the next unmatched } or end. If the same identifier is declared in an
inner sequence, then while the inner name is in scope the outer one is not.

6.7 Recursive Object Declarations

It is sometimes necessary to define values recursively. For example, the following
defines a recursive version of the factorial procedure:

rec let factorial = proc (n : int — int)
if n = 0 then 1 else n * factorial (n - 1)

The effect of the recursive declaration is to allow the identifier to enter scope
immediately. That is, after the init_op and not after the whole declaration clause, as is the
case with non-recursive declarations. Thus, the identifier factorial used in the literal is

26

the same as, and refers to the same location as, the one being defined. Chapter 8 gives an
example of mutually recursive procedures.

Where there is more than one identifier being declared, all the identifiers come into
scope at the same time. That is, all the names are declared first and then are available for
the clauses after the init_op.

The initialising clauses for recursive declarations are restricted to literal values.

The full syntax of object declarations is:

object_decl

let object _init |

rec let rec_object_init [& rec_object_init]*
identifier init_op clause

identifier init_op literal

::Io::
=] 3=

object_init
rec_object_init
init_op

declaration => void
where object_decl

let object_init | rec let rec_object _init
[& rec_object_init]*

identifier init_op clause : nonvoid
identifier init_op literal : nonvoid

= o=

where object_init
where rec_object_init
where init_op

6.8 Recursive Type Declarations

The full syntax of type declarations is:

type_decl ::= type type_init | rec type type_init [& type_init]*
type_init .:= identifier [type_operator_list] is type_id
type_operator_list ::= [type_operator [, type_operator]]
type_operator .:= identifier | identifier [type_operator_list]

For example, the following

rec type intList is variant (cons : intNode ; tip : null)
& intNode is structure (head : int ; tail : intList)

defines a type for a list of integers.

27

7 Clauses
The expressions described in Chapter 5 are clauses which allow the operators in the
language to be used to produce data objects. There are other kinds of clauses in
Napier88 which allow the data objects to be manipulated and which provide control over
the flow of the program.
7.1 Assignment Clause
The assignment clause has the following syntax:

clause = name 3= clause

t : nomvoid, name : t := clause : t => void

For example,

discriminant :=b *b-4.0 *a * ¢

gives discriminant the value of the expression on the right. Of course, the identifier
must have been declared as a variable and not a constant. The clause alters the value
denoted by the identifier. Assignments may also be made to vector elements and fields
of structures and abstract data types.

The semantics of assignment is defined in terms of equality. The clause,

a:==b
where a and b are both identifiers, implies that after execution a = b will be true. Thus,
as will be seen later, assignment for scalar types means value assignment and for
constructed types it means pointer assignment.
7.2 if Clause

There are two forms of the if clause defined by:

if clause do clause |
if clause then clause else clause

if clause : bool do clause : void => void
t : type, if clause : bool then clause : t else clause : t => t

In the single armed version, if the condition after the if is true, then the clause after the
do is executed. For example, in the clause

ifa<bdoa:=3

the value 3 will be assigned to a, if a is smaller than b before the if clause is executed.

The second version allows a choice between two actions to be made. If the first clause is
true, then the second clause is executed, otherwise the third clause is executed. Notice
that the second and third clauses are of the same type and the result is of that type. The
following contains two examples of if clauses:

28

ifx=0theny:=1lelsex:=y-1
let temp =if a < b then 1 else 5

7.3 case Clause

The case clause is a generalisation of the if clause which allows the selection of one
item from a number of possible ones. The syntax is:

case clause of case_list default 2 clause
case_list ::= clause_list : clause 3 [case_list]

t: type ; tl : nonvoid, case clause : t1 of case_list

default s clause : t =>t
where case_list ::= clause_list s clause : t g [case_list]
where clause_list = clause : tl [, clause_list]

An example of the use of the case clause is

case next_car_colour of

64 "green"
3-2: "red"
default : any"

During the execution of this clause, the value next_car_colour is compared in strict
order, 1.e left to right, top to bottom, with the expressions on the left hand side of the
colon. When a match is found the clause on the right hand side is executed. Control is
then transferred to the next clause after the case clause. If no match is found then the
default clause is executed. The above case clause has result type string.

7.4 repeat ... while ... do Clause

There are three forms of this clause which allow loops to be constructed with the test at
the start, the end or the middle of the loop. The three forms are encapsulated in the two
production alternatives:

repeat clause while clause [do clause] | while clause do clause

repeat clause : void while clause : bool [do clause : void] => void
while clause : bool do clause : void => void

In each of the three forms the loop is executed until the boolean clause is false. The
while do version is used to perform a loop zero or many times, whereas the repeat
while is used for one or many times.

An example of the repeat ... while ... do clause is

29

let factorial :=1 ;leti:=0

repeat

begin
writeString ("Factorial ") ; writelnt (i)
writeString (" is ") ; writelnt (factorial)
writeString ("'n")

end

while i < 8 do {i :=1+ 1 ; factorial := factorial * i}

7.5 for Clause

The for clause is included in the language as syntactic sugar where there is a fixed
number of iterations defined at the initialisation of the loop. It is defined by:

for identifier = clause to clause [by clause] do clause

for identifier = clause : int to clause : int
[by clause : int | do clause : void => void

in which the clauses are: the initial value, the limit, the increment and the clause to be
repeated, respectively. The first three are of type int and are calculated only once at the
start. The by clause may be omitted where the increment is 1. The identifier, known as
the control constant, is in scope within the void clause, taking on the range of values
successively defined by initial value, increment and limit. That is, the control constant is
considered to be declared at the start of the repetition clause. The repetition clause is
executed as many times as necessary to complete the loop and each time it is, the control
constant is initialised to a new value, starting with the initial loop value, changing by the
increment until the limit is reached. An example of a for clause is:

let factorial := 1 ;letn=38
for i =1 to n do factorial := factorial * i

With a positive increment, the for loop terminates when the control constant is initialised
to a value greater than the limit. With a negative increment, the for loop terminates when
the control constant is initialised to a value less than the limit.

30

8 Procedures
8.1 Declarations and Calls

Procedures in Napier88 constitute abstractions over expressions, if they return a value,
and clauses of type void if they do not. In accordance with the Principle of
Correspondence [Str67], any method of introducing a name in a declaration has an
equivalent form as a parameter.

Thus, in declarations of data objects, giving a name an initial value is equivalent to
assigning the actual parameter value to the formal parameter. Since this is the only type
of declaration for data objects in the language, it is also the only parameter passing
mode and is commonly known as call by value.

Like declarations, the formal parameters representing data objects must have a name, a
type and an indication of whether they are variable or constant. A procedure which
returns a value must also specify its return type. The scope of the formal parameters is
from their declaration to the end of the procedure clause. Procedures are defined as
literals with the following syntax:

proc_literal ::= proc [type_parameter_list] ([named_param_list]
[=>type_id]); clause

type_parameter_list ::= [identifier_list]

named_param_list ::= [constant] identifier_list ¢ type_id [

named_param_list]

t : type, proc [type_parameter_list] ([named_param_list]
[=> type_id : t])s clause : t

Thus, the integer identity procedure, called inz_id, may be declared by:

let int_id = proc (n : int — int) ; n

The syntax of a procedure call is:

expression ([application])
application n= clause_list

t : type, expression : proc ([clause_list]) => t
where clause_list ::= clause : nonvoid [,clause_list]

There must be a one-to-one correspondence between the actual and formal parameters
and their types. Thus, to call the integer identity procedure given above, the following
could be used,

int_id (42)

which will evaluate to the integer 42.
The type of int_id is written proc (int — int).

To complete the Principle of Correspondence for procedures, the parameters may be
made constant. Variable parameters may be assigned to, but since they are local

31

variables this only has local effect. Constant parameters may not be assigned to. For
example, the parameter n in inf_id is not assigned to and is more appropriately a
constant. Therefore, the declaration should be:

let int_id = proc (constant n : int — int) ; n

Note that the constancy of the parameter is not part of the type, a notion that is important
when deciding type equivalence.

8.2 Recursive Declarations

Recursive and mutually recursive declarations of procedures are allowed in Napier88.
For example,

rec let tak = proc (x, y, z : int — int)
if x <=y then z else tak (tak (x- 1,y, z),
tak (y - 1, z, x),
tak (z-1,x,y))

declares the recursive Takeuchi procedure.

Mutually recursive procedures may also be defined. For example,

rec let expression = proc () ; repeat expl () while have ("or")
& expl = proc () ; repeat exp2 () while have ("and")
& exp2 = proc ()
case symb of
"identifier" : next_symbol ()
default : {mustbe ("(") ; expression () ; mustbe (")")}

declares three mutually recursive procedures.
8.3 Polymorphism

Polymorphism permits abstraction over type. For example,

let id = proc [t] (constant x : t —=1t) ; X

declares a procedure that is the identity procedure for all types. The square brackets
signify that the procedure type is universally quantified by a type, ¢, and that once given
that type, the procedure is from type ¢ to ¢. To call this procedure the programmer may
write,

id [int] (3) which yields 3, or,

id [real] (4.2) which yields 4.2

or the type parameter may be used by itself. For example,

32

id [int] which yields a procedure equivalent to int_id above.

Thus, one procedure, id, is in fact, an infinite number of identity procedures, one for
each type as it is specialised. The square brackets for quantifier type variables are used
to signify that types are not part of the value space of the language, but are based on the
philosophy that types are sets of values.

The type of id is written as
proc [t] (t = t)

in Napier88. Procedures of these polymorphic types are first class and may be stored,
passed as parameters and returned as results, etc.

The advantage of the polymorphic abstraction should be obvious in the context of
software reuse. For example, a procedure to sort a vector of integers may be written and
another procedure to sort a vector of reals. By using the polymorphism in Napier88, one
procedure for all types, instead of a different one for each type, may be written. This
greatly reduces the amount of code that has to be written in a large system.

8.4 Equality and Equivalence

Two procedures are equal in Napier88 if and only if their values are derived from the
same evaluation of the same procedure expression. For the cognoscenti, this means that
they have the same closure.

In common with all aggregate objects in Napier88, equality means identity.

Two procedure types are structurally equivalent if they have the same parameter types in
one-one correspondence and the same result type. For polymorphic procedures, there is
the additional constraint that they have the same number of quantifiers used in a
consistently substitutable manner.

In terms of types as sets, the polymorphic procedures are infinite intersections of types
[CWS8S5].

The declaration of a quantifier type variable acts as if the type is a new base type for
type equivalence purposes. Thus quantifier type variables are only equivalent if they are
derived from the same instantiation of the same type variable (identifier). As a
consequence, a value of a quantifier type variable that has been injected into an infinite
union may only be projected onto the same quantifier type variable.

33

9 Aggregates

Napier88 allows the programmer to group together data objects into larger aggregate
objects which may then be treated as single objects. There are three such object types in
Napier88: vectors, structures and images. If the constituent objects are of the same type,
a vector may be used and a structure otherwise. Images are collections of pixels.
Vectors, structures and images have the same civil rights as any other data object in
Napier88. Both abstract data types (Chapter 11) and environments (Chapter 14) may
also be considered methods of aggregation, but we have chosen to treat them separately.

All aggregate data objects in Napier88 have pointer semantics. That is, when an
aggregate data object is created, a pointer to the locations that make up the object is also
created. The object is always referred to by the pointer which may be passed around by
assignment and tested for equality. The location containing the pointer and the
constituent parts of the aggregate data object may be independently constant or variable.

9.1 Vectors

9.1.1 Creation of Vectors

A vector provides a method of grouping together objects of the same type. Since
Napier88 does not allow uninitialised locations, all the initial values of the elements must

be specified. The syntax is:

vector_constr
vector_element_init

[constant] vector vector_element _init
range of clause | range using clause |
@clause of [clause [, clause]*]
clause to clause

range

t : nonvoid, vector range of clause : t => *t

t : nonvoid, vector range using clause : proe (int -> t) => *t

t : nonvoid, vector @ clause : int of [clause : t [, clause : t]*] => *t
where range ::= clause : int to clause : int

For example,

vector @1 of [1,2 ,3,4]

is a vector of integers, whose type is written as *int, with lower bound 1 and variable
locations initialised to 1, 2, 3 and 4. Similarly,

let abc := vector @1 of [1,2, 3,4]

introduces a variable abc of type *int and the initial value expressed above.

Multi-dimensional vectors, which are not necessarily rectangular, can also be created.
For example,

34

let Pascal = constant vector @1 of |
constant vector @1 of [1],
constant vector @1 of [1,
constant vector @1 of [1,2, 1
constant vector @1 of [1, 3, 3, 1
constant vector @1 of [1, 4, 6, 4,
constant vector @1 of [1,5, 1

|
2,

Pascal is of type **int. It is constant, as are all its elements. This is a fixed table.

The use of the word constant before vector indicates that the elements are to be
constant. The checking for constancy will be performed when an assignment is made to
the element. The pointer constancy is determined by the init_op, which is = in this case
and so indicates that the pointer is also constant.

The above form of vector expression is sometimes very tedious to write for large
rectangular vectors with a common initial value. Therefore another form of vector
expression is available. For example

vector -1 to 3 of -2

produces a five element integer vector with all the elements variable and initialised to -2.
The lower bound of this vector is -1 and the upper bound is 3. The element initialising
expression is evaluated only once and the result assigned to each of the elements.

A third form of vector initialisation is provided to allow the elements of a vector to be
initialised by a function over the index. For example,

let squares = proc (n : int — int) ; n * n
let squares_vector = constant vector 1 to 10 using squares

In the initialisation, the procedure squares is called for every index of the vector in order
from the lower to upper bound. The corresponding element is initialised to the result of
its own index being passed to the procedure. In the above case, the vector
squares_vector has elements initialised to 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100.
The initialising procedure must be of type

proc (int — t)

and the resulting vector is of type *¢. This style of initialisation is particularly useful for
vectors with constant elements.

The creation of a vector may call the standard error procedure makeVector.
9.1.2 upb and Iwb
It is often necessary to interrogate a vector to find its bounds. The standard procedures

upb and Iwb are provided in Napier88 for this purpose. They are defined in the
Napier88 Standard Library Reference Manual [KBC+94a] and are of type

35

proc [t] (¥t — int).
9.1.3 Indexing

To obtain the elements of a vector, indexing is used. For vectors, the index is always an
integer value. The syntax is:

expression (dereference)
clause [, dereference]

exp6
dereference

t : monvoid, expression : *t (clause : int) => t
For example,
a(3+4)

selects the element of the vector a which is associated with the index value 7. Multi-
dimension vectors may be indexed by using commas to separate the indices.

Indexing expressions may call the standard error procedure vectorIndexSubs and
assignment to a vector element may call vectorIndexAssign and vectorElementConstant.

9.14 Equality and Equivalence

Two vectors are equal if they have the same identity, that is, the same pointer. Two
vectors are type equivalent if they have equivalent element types. Notice that the bounds
are not part of the type.

9.2 Structures

9.2.1 Creation of Structures

Objects of different types can be grouped together into a structure. The fields of a
structure have identifiers that are unique within that structure. The structures are sets of
labelled cross products from the value space. A structure may be created in two ways,

the first of which has the following syntax:

structure_constr::= struct ([struct_init_list])
struct_init_list = identifier init_op clause (3 struct_init_list]

struct (struct_init_list) => structure
where struct_init_list ::= identifier init_op clause : nonvoid [; struct_init_list]

For example,

struct (a=1 ;b :=true)

creates a structure whose first field is a constant integer with the identifier @ and whose
second field is a variable boolean with the identifier b.

Structures may also be created using a type identifier. The syntax of structure types is:

structure_type ::= structure ([named_param_list])
named_param_list ::= [constant] identifier_list : type_id [named_param_list]

36

For example, a structure type may be declared as follows:

type person is structure (constant name : string ; age, height : int)

This declares a structure type, person, with three fields of type string, int and int,
respectively. The name field is constant. It also declares the field identifiers, name, age
and height.

To create a structure from a type declaration, the type identifier followed by the
initialising values for the fields is used.

structure_creation = identifier [[specialisation]] ([clause_list])

For example,

let ron = person("Ronald Morrison", 42, 175)

creates a structure of type person defined above. The initialising values must be in one-
one correspondence with the structure type declaration.

9.2.2 Indexing

To obtain a field of a structure, the field identifier is used as an index. For example, if
ron is declared as above, then,

ron (age)

yields 42. For the indexing operation to be legal, the structure must contain a field with
that identifier. As with vectors, a constancy check is performed on assignment.

Field identifiers, when used as indices, are only in scope within the brackets following a
structure expression. Thus these identifiers need only be unique within each structure

type.

A comma notation may be used for vectors or structures when the elements or fields are
themselves structures or vectors. The indexing of vectors and structures may therefore
be freely mixed. For example, if v is a vector of vectors of persons then v(i)(j)(name)
and v(i,j,name) and v(i,j)(name) are equivalent expressions.

Attempted assignment to a constant field of a structure will cause the standard error
procedure structureFieldConstant to be called.

9.2.3 Equality and Equivalence
Two structures are equal if they have the same identity (pointer).

The type of a structure is the set of the field identifier-type pairs. Thus the structure ron
has type:

structure (name : string ; age : int ; height : int)

37

Two structures have equivalent types when the types have the same set of identifier-type
pairs for the fields. Note that the order of the fields is unimportant.

9.3 Images
9.3.1 Creation of Images

An image is a rectangular grid of pixels. Images may be created and manipulated using
the raster operations provided in the language. The creation of images is defined by

image_constr ::= [constant] image clause by clause image_init
image_init ::= of clause | using clause
subimage_constr ::= limit clause [to clause by clause]

[at clause, clause]

image clause : int by clause : int of clause : pixel => image
image clause : int by clause : int using clause : image => image
limit clause : image [to clause : int by clause : int]

[at clause : int , clause : int] => image

The integer values following at above must be = 0 and are subjected to an upper bound
check. All other integer values must be > 0. If these conditions are violated, the standard
error procedure makelmage is called.

An image is a two dimensional object made up of a rectangular grid of pixels. An image
may be created as follows:

let c = image 5 by 10 of on

which creates ¢ with 5 pixels in the X direction and 10 in the Y direction, all of them
initiallised to on. The origin of all images is 0, O and in this case the depth is 1.

Multi-plane images may be formed by using multi-plane pixels, such as in,

let a = image 64 by 32 of on ++ off ++ on ++ on

Images are first class data objects and may be assigned, passed as parameters or
returned as results. For example,

letb:=a

will assign the existing image a to the new one b. In order to map the operations usual
on bitmapped screens, the assignment does not make a new copy of a but merely copies
the pointer to it. Thus the image acts like a vector or structure on assignment.

9.3.2 Raster Operations

There are eight raster operations which may be used as described in the following
syntax.

38

raster ::= raster_op clause onto clause
raster_op ::=ror | rand | xor | copy | nand | nor | not | xnor

raster_op clause : image onto clause : image => void

thus, the clause

xor b onto a

performs a raster operation of b onto a using xor. Notice that a is altered in situ and b is
unchanged. Both images have origin 0, 0 and automatic clipping at the extremities of the
destination image is performed.

The raster operations are performed by considering the images as bitmaps and altering
each bit in the destination image according to the source bit and the operation. Multiple
plane raster operations are discussed in 9.3.4. The following gives the meanings of the
operations (D stands for destination and S for source):

Operation Interpretation Result
ror inclusive or SorD
rand and S and D
xor exclusive or S xor D
copy overwrite S
nand not and ~(S and D)
nor not inclusive or ~(S or D)
not not the source ~S
Xnor not exclusive or ~S xor D

Images may also be created by using an initialising image as a background pattern. For
example,

let d = constant image 64 by 512 using abc

will create the image d of size 64 x 512 and then copy the image abc onto it as many
times as is necessary to fill it in both directions, starting at 0, 0. This style of
initialisation is particularly useful for setting up images with constant pixels and images
of regular patterns.

Rastering onto an image of constant pixels causes the standard error procedure
imagePixelConstant to be called.

39

9.3.3 Indexing

The limit operation allows the user to set up aliases to parts of images. For example,

let c =limitato 1 by 5 at 3,2

sets ¢ to be that part of @ which starts at 3, 2 and has size 1 by 5. ¢ has an origin of 0,0
in itself and is therefore a window on a.

Rastering sections of images on to sections of other images may be performed by, for
example,

xor limit a to 1 by 4 at 6, 5 onto
limit b to 3 by 4 at 9, 10

Automatic clipping on the edges of the limited region is performed. If the starting point
of the limited region is omitted, then 0,0 is used and if the size of the region is omitted
then it is taken as the maximum possible. That is, it is taken from the starting point to
the edges of the host image. Limited regions of limited regions may also be defined.

If the source and destination images overlap, then the raster operation is performed in
such a manner that each pixel is used as a source before it is used as a destination.

The evaluation of the limit operation may cause the standard error procedures limitAt
and limitAtBy to be called.

9.3.4 Depth Selection

All the operations that have already been seen on images (raster, limit and assignment)
work more generally with depth. Thus the raster operations perform the raster function
plane by plane in one - one correspondence between source and destination. Automatic
depth clipping at the destination is performed, and if the source has fewer planes than
the destination, then the extra planes will remain unaltered. The limit operation works
over all the planes of an image.

The depth of the image may be restricted by the depth selection operation. For example,
assuming the earlier definition of a

letb=a(112)

yields b which is an alias for that part of @ which has the two depth planes 1 and 2. 1 is
the start plane and 2 is the number of planes. b has depth origin 0 and dimensions 64 by
32.
The full syntax of the depth selection operation is

expb = expression (clause | clause)

expression : image (clause : int | clause : int) => image

This indexing expression may call the standard error procedure sublmage.

40

9.3.5 Equality and Equivalence
Two images are equal if they have the same pointer.

All images have equivalent types.

41

10 Variants
10.1 Variant Types

Variants are sets of labelled disjoint sums from the value space. A variant value has one
of these identifier-value pairs. A variant type may be defined by

variant_type ::= variant ([variant_fields])
variant_fields ::=identifier_list ; type_id [s variant_fields]
For example,

type this_variant is variant (a : int ; b : real)

declares a type this_variant which may be an a : int or a b : real.
10.2 Variant Values

A variant value may be formed by naming the variant type and injecting the identifier-
value pair into it. The syntax is:

variant_creation ::= identifier [[specialisation]] (identifier ¢ clause)

For example

let A :=this_variant (b : 3.912)

declares a value A of type:

variant (a : int ; b : real)

with the value of value 3.912 injected with the identifier b. The variant type must contain
the identifier-type pair that is used in the initialisation.

10.3 is and isnt
A variant object can be tested for having a particular identifier. The syntax is:

exp3 [type_op identifier]
is | isnt

exp2
type_op

expression : variant type_op identifier => bool
where type_op = is | isnt

Thus,

Aisb

42

is legal and will yield the boolean value true. A compilation error will occur if the
variant type does not contain the identifier tag.

10.4 Projection out of Variants

Variants are particularly useful when used in conjunction with recursive types. For
example, the type definition for a list of integers might be:

rec type intList is variant (cons : intNode ; tip : null)
& intNode is structure (head : int ; tail : intList)

The first element of the list is formed by

let first = intList (tip : nil)
let next := intList (cons : struct (hd = 2 ; tl := first))

In order to facilitate static type checking, a value injected into a variant is rebound to a
constant location by the project clause. The syntax is:

project clause as ldentlfler onto project_list default ¢ clause
project_list . | variant_project_list
variant_project_list zdentlf ier ¢ clause 3 [variant_project_list|

t : type, project clause : variant as identifier onto variant_project_list
default clause : t =>t
where variant_project_list = identifier ¢ clause : t g [variant_project_list]

The projected value is given a constant binding to the identifier following the as. The
scope of the identifier is the clauses on the right hand side of the colons. This
mechanism prevents side effects on the projected value inside the evaluation of the right
hand side clauses and allows for static type checking therein. For projection, the variant
is compared to each of the labels on the left hand side of the colons. The first match
causes the corresponding clause on the right hand side to be executed. Within the
clause, the identifier has the type of the projected value. Control passes to the clause
following the project clause. Within the default clause, the constant identifier is bound
to the original variant value.

For example, a procedure to reverse a list might be:

43

rec type intList is variant (cons : intNode ; tip : null)
& intNode is structure (hd : int ; tl : intList)

let reverseList = proc (list : intList — intList)
begin
let temp := intList (tip : nil) ; let done := false
while ~done do
project list as X onto
cons : begin
temp := intList (cons : struct (hd = X (hd); tl := temp))
list := X (t])
end
default : done :=true
temp
end

10.5 Variant Usage

The value of a variant may be projected by using the single quote (') notation. The
syntax is

expression'identifier
For example, assuming the definition given for A above, A'b yields the value 3.912 of
type real. The scope of the variant identifiers is such that they may only be used in

variant injections and after the symbols is, isnt and '.

The above procedure to reverse an integer list might be written as

let reverseList = proc (list : intList — intList)
begin
let temp := intList (tip : nil)
while list isnt tip do
begin
temp := intList (cons : struct (hd = list'cons (hd); tl := temp))
list := list'cons (tI)
end
temp
end

The evaluation of the ' operation may cause the standard error procedure varProject to
be called.

10.6 Equality and Equivalence
Two variant types are equivalent if they have the same set of identifier-type pairs.

Two variants are equal if they have equivalent types, the same identifier tags and equal
values.

44

11 Abstract Data Types

Abstract data types may be used where the data object displays some abstract behaviour
independent of representation type. Thus it is a second mechanism for abstracting over

type.
11.1 Abstract Data Type Definition
Abstract data types may be introduced by the following syntax:
abstype = abstype type_parameter_list ([named_param_list])

Thus,

type TEST is abstype [i] (a:i; constantb : proc (i — 1))

declares the type TEST as abstract. The type identifiers that are enclosed in the square
brackets are called the witness type identifiers and are the types that are abstracted over.

A comparison can be made with polymorphic procedures which have universally
quantified types. These abstract types are existentially quantified and constitute infinite
unions over types [MP88].

The abstract data type interface is declared between the round brackets. In the above
case, the type has two elements, a field a with type i and a constant procedure b with

type
proc (i —1i).

11.2 Creation of Abstract Data Objects

To create an abstract data object, the following syntax is used:
abstype_creation ::= expression [specialisation] ([clause_list])

For example,

let inc_int = proc (a: int —int) ;a + 1
let this = TEST [int] (3, inc_int)

declares the abstract data object this from the type definition TEST, the concrete (as
opposed to abstract) witness type int, the integer 3 and procedure inc_int. In the creation,
the values must be in one-one type correspondence with the type definition.

Once the abstract data object is created, the user can never again tell how it was
constructed. Thus this has type:

abstype [i] (a:i;b:proc(i—1))

and the user can never discover that the witness type is integer.

45

let that = TEST [int] (-42, inc_int)

creates another abstract data object. Although it is constructed using the same concrete
witness type, this information is abstracted over, therefore this and that have the same
type, namely,

abstype [i] (a:1;b:proc(i—1))

as does also below:

let inc_real = proc (b : real —real) ;b + 1.0
let also = TEST [real] (-41.99999, inc_real)

Thus a vector of the objects can be formed by:

let abs_TEST_vec = constant vector @1 of [this, that, also]

since they have the same type.

11.3 Use of Abstract Data Objects

Since the internal representation of an abstract data object is hidden, it is inappropriate to
mix operations from one with another. That is, the abstract data object is totally enclosed

and may only be used with its own operations.

A second requirement in the system is that the type checking on the use of these objects
is static.

To achieve the above aims, the use clause is introduced to define a constant binding for
the abstract data object. This constant binding can then be indexed to refer to the values
in a manner that is statically checkable. The syntax of the use clause is

use clause as identifier [witness_decls] in clause

use clause : abstype as identifier [witness_decls) in clause : void => void

For example,

use abs_TEST_vec (1) as X in
begin

X (a):=X (b) (X (a))
end

which will apply the procedure b to the value a, storing the result in a, for the abstract
data object referred to by abs_TEST_vec (1). X is declared as a constant initialised to
abs_TEST _vec (1).

46

This could be generalised to a procedure to act on any of the elements of the vector. For
example,

let increment = proc (this_one : TEST)
use this_one as X in
begin
X (a) =X (b) (X ()
end

let lower = lwb [TEST] (abs_TEST_vec)
let upper = upb [TEST] (abs_TEST_vec)

for i = lower to upper do increment (abs_TEST_vec (i))

The scope of the identifiers in the interface is restricted to within the clause following
the constant binding identifier.

In the use clause, the witness types may be named for use. For example,

use this as X [B] in

begin
letid =proc (x: B —=B);x
let one := X (a)
one :=id [B] (one)

end

which renames the witness type as B and allows it to be used as a type identifier within
the use clause.

11.4 Equality and Equivalence

An abstract data object is only equal to itself, that is equality means identity.

Two abstract data types are equivalent if they have the same identifiers with equivalent
types in the interface and the same number of witness types used in a substitutable
manner.

Two witness types are only equivalent if they derive from the same instance of the
abstract data type. Thus a value of a witness type that has been injected into an infinite

union may only be projected onto the corresponding witness of the same abstype
instance.

47

12 Files

The file data type is used to access the I/O devices that are available to the host
environment in which the Napier88 system is implemented. A file may refer to either a
disk file, a terminal, a mouse, a tablet, an X-window, a socket, a shell or a raster graphics
display. There are certain operations that are specific to each kind of file and a range of
operations applicable to all files. A value of type file is implemented as a pointer to an
object that describes the I/0 device and its associated state. A set of standard procedures
is provided to create and manipulate both file descriptors and the I/O devices they refer
to. The operation of each of the standard procedures is fully described in the Napier88
Standard Library Reference Manual [KBC+94a].

12.1 File Literal

There is only one literal of type file, nilfile. See Section 4.10.
12.2 Equality and Equivalence

Two values of type file are equal if they are the same file.

All values of type file have equivalent types.

48

13 Type any
Type any is the type of the union of all values in Napier88. Values must be explicitly
injected into and projected from type any. Both of these operations are performed
dynamically and, in particular, the projection from any to another type involves a
dynamic type check. We have argued elsewhere [ABC+83] that such a type check is
required to support the binding of independently prepared programs and data in a type
secure persistent object store.
13.1 Injection into Type any
Values may be injected into type any by the following syntax:

any (clause)

t : monvoid, any (clause : t) => amy

For example,

let int_any = any (-42)

which declares int_any to be the integer value -42 injected into type any.

Values of type any may be passed as parameters. For example, the following is an
identity procedure for type any.

let id_any = proc (x : any — any) ; x

Thus polymorphic procedures may be written by using type any and injecting the
parameters into any before the call and projecting the results after the call.

13.2 Projection from Type any
Values may be projected from type any by use of the project clause.

project clause as identifier onto project_list default s clause
project_list n= any_project_list | ...
any_project_list ::= type_id ¢ clause 5 [any_project_list]

t : type, project clause : any as identifier onto any_project_list
default : clause : t =>t
where any_project_list ::= type_id ¢ clause : t 3 [any_project_list]

The projected value is given a constant binding to the identifier following the as. The
scope of the identifier is the clauses on the right hand side of the colons. This
mechanism prevents side effects on the projected value inside the evaluation of the right
hand side clauses and allows for static type checking therein. For projection, the type is
compared to each of the types on the left hand side of the colons. The first match causes
the corresponding clause on the right hand side to be executed. Within the clause, the
identifier has the type of the projected value. After execution of the project clause,
control passes to the clause following the project clause.

An example of projection is:

49

let write_type = proc (x : any — string)
project x as X onto

int : "type is integer"
real: "typeis areal"
default : "type is neither integer nor real"

13.3 Equality and Equivalence

Two values of type any are equal if and only if they can be projected onto equivalent
types and the projected values are equal.

All values of type any are type equivalent.

50

14 Environments

Environments [Dea89] are the infinite union of all labelled cross products.
Environments differ from structures in that bindings may be added to or removed from
environments dynamically. This mechanism is used in Napier88 to provide a method for
dynamically composing block structure and thus controlling the name space.
Environments also provide a method of storing and composing independently prepared
programs and data, and thus control of the persistent object store in which the language
resides.

A binding in Napier88 has four components: an identifier, a type, a value and a
variable/constant location indicator [AM88]. The type environment is written as env in
Napier88.

14.1 Creating a New Environment

A new environment is created by using the standard procedure environment of type:

proc (— env)

Calling this procedure creates an environment with no bindings. The procedure is fully
described in the Napier88 Standard Library Reference Manual [KBC+94a] .

14.2 Adding Bindings to an Environment
Bindings are added to environments by means of declarations. The syntax is:

env_decl ::= in clause let object _init |

in clause rec let rec_object_init [& rec_object_init]*
identifier init_op clause

identifier init_op literal

::Io::
=] 3=

object_init
rec_object_init
init_op

Thus the program segment,

let this = environment ()
in this let a =3

creates an environment zhis. In the environment, it creates the binding with identifier a,
value 3, type integer and constant, i.e. {a, 3, int, constant}. The binding is added to the
environment this, but not to the local scope. The standard error procedure
envRedeclaration is called if the binding to be added does not have a unique identifier
within the environment.

Another binding may be added by writing:

in this rec let fac := proc (n : int — int)
if n =0 then 1 else n * fac (n-1)

after which this now has the form {a, 3, int, constant} {fac, proc..., proc (int — int),
variable}

51

Non-recursive declarations of bindings are added to environments one at a time.
Recursive declarations are added simultaneously, although in the above case there is
only one. This corresponds to the scoping rules for non-recursive and recursive
declarations in blocks.

An example of mutually recursive procedures in an environment is given by the
following:

rec type list [t] is variant (cons : node [t] ; tip : null)
& node [s] is structure (hd : s ; tl : list [s])

rec type object is variant (ron : bool ; fred : list [object])

in this rec let show = proc (this : object — string)
project this as X onto
ron : if X then "true" else "false"
fred : "[" ++ showlist (X) ++ "]"
default : ""

& showlist = proc (this : list [object] — string)
if this is tip then ""
else show (this'cons (hd)) ++ "," ++ showlist (this'cons (tl))

Notice that although both show and showlist refer to each other, neither appears in the
local scope. It would seem that none of the calls on these procedures are bound at all.
To achieve the desired bindings for mutually recursive procedures in environments, the
rule is that the identifiers bind to the environment's objects being declared.

14.3 Using Bindings in Environments

The bindings in an environment are brought into scope by a use clause. The syntax is:

clause ::= use clause with signature in clause
signature ::= named_param_list
named_param_list ::= [constant] identifier_list ¢ type_id [;

named_param_list]
t : type, use clause : env with signature in clause : t =>t

For example, to use fac declared earlier, the programmer may write:

use this with fac : proc (int — int) in ... fac ...

The effect of the use clause is to bring the name fac into scope at the head of the clause
after in. fac binds to the location in the environment. Therefore, local assignment to fac
will alter the value in the environment.

Notice that only a partial match on the signature of the environment is necessary. For
every binding, the identifiers in the use must be the same as in the environment binding
and the types equivalent. The constancy is determined by the original binding although
it may be separately specified as constant in the use clause. No update to a constant
value is allowed at run time and the compiler will flag as a syntax error any assignment
to a binding specified as constant. Bindings in the environment that are not specified in

52

the signature of the use clause are not in scope in the clause following in and may not
be used.

The standard error procedure envProject is called if the signature in the use clause
cannot be matched by the environment.

14.4 Removing Bindings from Environments

Bindings may be removed from environments by the drop clause. The syntax is:
clause ::= drop identifier from clause
drop identifier from clause : env => void

For example,

drop fac from this

The effect of the above is that the binding is no longer reachable from the environment.
It does not imply the destruction of any object or any dangling reference, since other
bindings to the value in the dropped binding will still be valid. The standard error
procedure envDrop is called if the dropped identifier does not exist in the environment.

14.5 The contains Clause

An environment may be tested by the infix operator contains to determine if it contains
a binding with certain characteristics. The syntax is

expb n= clause contains [constant] identifier [type_id]|
clause : env contains [constant] identifier [: type_id] => bool
There are several forms of this which allow testing of an identifier in an environment

binding, an identifier-type pair, an identifier constancy binding and an identifier
constancy type binding. Thus, using the environment this given earlier:

this contains a true
this contains a : int true
this contains constant a true
this contains constant a : int true
this contains a : string false
this contains b false

14.6 Equality and Equivalence

Two values of type environment are equal if they refer to the same environment. All
environments have equivalent types.

53

15 References

[ABC+83]*

[AMSS]

[AMP86]

[BBC+94]*

[BCC+88]

[BMO2]*

[Bro89]*

[CBC+90]*

[CMMO1]*

[Con90]*

[Cut92]*

[CW85]

[DD79]

[Dea88]*

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. &
Morrison, R. “An Approach to Persistent Programming”. Computer
Journal 26, 4 (1983) pp 360-365.

Atkinson, M.P. & Morrison, R. “Types, Bindings and Parameters in a
Persistent Environment”. In Data Types and Persistence, Atkinson,
M.P., Buneman, O.P. & Morrison, R. (ed), Springer-Verlag (1988) pp
3-20.

Atkinson, M.P., Morrison, R. & Pratten, G.D. “Designing a Persistent
Information Space Architecture”. In Proc. 10th IFIP World Congress,
Dublin (1986) pp 115-120.

Balasubramaniam, D., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle,
A., Kirby, G.N.C., Morrison, R., Munro, D.S. & Scheuerl, S. “The
Napier88 To the Persistent Abstract Machine Compilation Rules”.
University of St Andrews Technical Report CS/94/8 (1994).

Brown, A.L., Carrick, R., Connor, R.C.H., Dearle, A. & Morrison, R.
“The Persistent Abstract Machine”. Universities of Glasgow and St
Andrews Technical Report PPRR-59-88 (1988).

Brown, A.L. & Morrison, R. “A Generic Persistent Object Store”.
Software Engineering Journal 7, 2 (1992) pp 161-168.

Brown, A.L. “Persistent Object Stores”. Ph.D. Thesis, University of St
Andrews (1989).

Connor, R.C.H., Brown, A.L., Carrick, R., Dearle, A. & Morrison, R.
“The Persistent Abstract Machine”. In Persistent Object Systems,
Rosenberg, J. & Koch, D.M. (ed), Springer-Verlag, Proc. 3rd
International Workshop on Persistent Object Systems, Newcastle,
Australia (1990) pp 353-366.

Connor, R.C.H., McNally, D.J. & Morrison, R. “Subtyping and
Assignment in Database Programming Languages”. In Proc. 3rd
International Workshop on Database Programming Languages,
Nafplion, Greece (1991).

Connor, R.C.H. “Types and Polymorphism in Persistent Programming
Systems”. Ph.D. Thesis, University of St Andrews (1990).

Cutts, Q.I. “Delivering the Benefits of Persistence to System
Construction and Execution”. Ph.D. Thesis, University of St Andrews
(1992).

Cardelli, L. & Wegner, P. “On Understanding Types, Data Abstraction
and Polymorphism”. ACM Computing Surveys 17, 4 (1985) pp 471-
523.

Demers, A. & Donahue, J. “Revised Report on Russell”. Cornell
University Technical Report TR79-389 (1979).

Dearle, A. “On the Construction of Persistent Programming
Environments”. Ph.D. Thesis, University of St Andrews (1988).

54

[Dea89]*

[KBC+94a]*

[KBC+94b]*

[Kir92]*

[Kra85]

[Mat85]
[MBB+89]*

[MBC+87]*

[MBC+89a]*

[MBC+89b]

[MCC+93]*

[MDC+91]*

[Mil78]

[Mor79]

Dearle, A. “Environments: A flexible binding mechanism to support
system evolution”. In Proc. 22nd International Conference on Systems
Sciences, Hawaii (1989) pp 46-55.

Kirby, G.N.C., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle, A,
Moore, V.S., Morrison, R. & Munro, D.S. “The Napier88 Standard
Library Reference Manual Version 2.2”. University of St Andrews
Technical Report CS/94/7 (1994).

Kirby, G.N.C., Brown, A.L., Connor, R.C.H., Cutts, Q.I., Dearle, A,
Morrison, R. & Munro, D.S. “The Napier88 Release 2.0 Installation
Guide”. University of St Andrews (1994).

Kirby, G.N.C. “Reflection and Hyper-Programming in Persistent
Programming Systems”. Ph.D. Thesis, University of St Andrews
(1992).

Krablin, G.L. “Building Flexible Multilevel Transactions in a
Distributed Persistent Environment”. In Proc. 2nd International
Workshop on Persistent Object Systems, Appin, Scotland (1985) pp 86-
117.

Matthews, D.C.J. “Poly Manual”. University of Cambridge (1985).

Morrison, R., Barter, C.J., Brown, A.L., Carrick, R., Connor, R.C.H.,
Dearle, A., Hurst, A.J. & Livesey, M.J. “Language Design Issues in
Supporting Process-Oriented Computation in Persistent Environments”.
In Proc. 22nd International Conference on System Sciences, Hawaii

(1989) pp 736-744.

Morrison, R., Brown, A.L., Carrick, R., Connor, R.C.H., Dearle, A. &
Atkinson, M.P. “Polymorphism, Persistence and Software Reuse in a
Strongly Typed Object Oriented Environment”. Software Engineering
Journal, December (1987) pp 199-204.

Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. “The Napier88
Reference Manual”. Universities of Glasgow and St Andrews Technical
Report PPRR-77-89 (1989).

Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. “Napier88
Release 1.0”. University of St Andrews (1989).

Morrison, R., Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C. & Stemple, D.
“Mechanisms for Controlling Evolution in Persistent Object Systems”.
Journal of Microprocessors and Microprogramming 17, 3 (1993) pp
173-181.

Morrison, R., Dearle, A., Connor, R.C.H. & Brown, A.L. “An Ad-Hoc
Approach to the Implementation of Polymorphism”. ACM Transactions
on Programming Languages and Systems 13, 3 (1991) pp 342-371.

Milner, R. “A Theory of Type Polymorphism in Programming”.
Journal of Computer and System Sciences 17, 3 (1978) pp 348-375.

Morrison, R. “On the Development of Algol”. Ph.D. Thesis, University
of St Andrews (1979).

55

[MP88] Mitchell, J.C. & Plotkin, G.D. “Abstract Types have Existential Type”.
ACM Transactions on Programming Languages and Systems 10, 3
(1988) pp 470-502.

[MTHS9] Milner, R., Tofte, M. & Harper, R. The Definition of Standard ML.
MIT Press, Cambridge, Massachusetts (1989).

[Mun93]* Munro, D.S. “On the Integration of Concurrency, Distribution and
Persistence”. Ph.D. Thesis, University of St Andrews (1993).

[PS88] “PS-algol Reference Manual, 4th edition”. Universities of Glasgow and
St Andrews Technical Report PPRR-12-88 (1988).

[SMO2]* Stemple, D. & Morrison, R. “Specifying Flexible Concurrency Control
Schemes: An Abstract Operational Approach”. In Proc. 15th Australian
Computer Science Conference, Hobart, Tasmania (1992) pp 873-891.

[Str67] Strachey, C. Fundamental Concepts in Programming Languages.
Oxford University Press, Oxford (1967).

[Ten77] Tennant, R.D. “Language Design Methods Based on Semantic
Principles”. Acta Informatica 8 (1977) pp 97-112.

*Available via ftp from: ftp-fide.dcs.st-andrews.ac.uk/
pub/persistence.papers

or via WWW from: http://www-fide.dcs.st-andrews.ac.uk:8080/
Publications.html

56

Appendix I
Context Free Syntax
Session:
session ::= sequence?
sequence::= declaration [5 sequence] | clause [; sequence]
declaration = type_decl | object_decl

Type declarations:

type_decl ::= type type_init | rec type type_init [& type_init]*
type_init .:= identifier [type_operator_list] is type_id
type_operator_list .:= [type_operator [, type_operator]]
type_operator ::= identifier | identifier [type_operator_list]

Type descriptors:

type_id n= int | real | bool | string | pixel | pic | null | any |
env | image | file | identifier |[parameterisation] |
type_constructor

parameterisation = [type_list]
type_list = type_id [, type_list]
type_constructor = #type_id | structure_type | variant_type |

proc_type | abstype

structure_type .= structure ([named_param_list])

named_param_list ::= [constant] identifier_list ¢ type_id 3 named_param_list]

variant_type ::= variant ([variant_fields])

variant_fields ::=identifier_list s type_id [; variant_fields]

proc_type ::= proc [type_parameter_list] ([parameter_list] [=> type_id])
parameter_list ::=type_id [, parameter_list)

abstype ::= abstype type_parameter_list (([named_param_list])
type_parameter_list ::= [identifier_list]

57

Object declarations:

object_decl = let object _init |
rec let rec_object_init [& rec_object_init]*
object_init n= identifier init_op clause
rec_object_init = identifier init_op literal
init_op = =|s=
Clauses:
clause ::= env_decl |

if clause do clause |
if clause then clause else clause |
repeat clause while clause [do clause] |
while clause do clause |
for identifier = clause to clause [by clause] do clausel
use clause with signature in clause |
use clause as identifier [witness_decls] in clause |
case clause of case_list default ¢ clause |
raster |
drop identifier from clause |
project clause as identifier
onto project_list default : clause |
name = clause |
expression

env_decl ::= in clause let object _init |
in clause rec let rec_object_init [& rec_object_init]*

signature ::= named_param_list
witness_decls ::=type_parameter_list

case_list ::= clause_list s clause 3 [case_list]

raster ::= raster_op clause onto clause
raster_op ::=ror | rand | xor | copy | nand | nor | not | xnor
project_list ::= any_project_list | variant_project_list

any_project_list ::= type_id ¢ clause § [any_project_list]

variant_project_list ::=identifier ¢ clause 3 [variant_project _list]
Expressions:

expression n= expl [or expl]*

expl n= exp2 [and exp2]*

exp2 n= [~] exp3 [rel_op exp3]

exp3 n= exp4 [add_op exp4]*

58

exp4 n= expS [mult_op expS]*
exp5 n= ladd_op] exp6

expb n= literal | value_constructor | (clause) |
begin sequence end | {sequence} |
expression (clause | clause) |
expression (dereference) |
expression'identifier |
expression [specialisation] |
expression ([application]) |
clause contains [constant] identifier [: type_id]|
any (clause) |

PS (I
name
dereference = clause [, dereference]
specialisation = type_parameter_list
application = clause_list
name ::= identifier | expression (clause_list) [(clause_list)]*
clause_list = clause [, clause_list]
Value constructors:
value_constructor = vector_constr | structure_constr | image_constr |
subimage_constr | picture_constr | picture_op |
structure_creation | variant_creation |
abstype_creation |
vector_constr = [constant] vector vector_element _init
vector_element_init n= range of clause | range using clause |
@clause of [clause [, clause]*]
range n= clause to clause
structure_constr::= struct ([struct_init_list])
struct_init_list = identifier init_op clause [3 struct_init_list]
image_constr n= [constant] image clause by clause image_init
image_init n= of clause | using clause
subimage_constr n= limit clause [to clause by clause]
[at clause,clause]
picture_constr n= [clause, clause]
picture_op n= shift clause by clause, clause |

scale clause by clause, clause |

rotate clause by clause |

colour clause in clause |

text clause from clause, clause to clause, clause

59

structure_creation n= identifier [[specialisation]] ([clause_list])

variant_creation

n= identifier [[specialisation]] (identifier ¢ clause)

abstype_creation = expression [specialisation | ([clause_list])
Literals:
literal = int_literal | real_literal | bool_literal | string_literal |

pixel_literal |
file_literal
int_literal
real_literal
bool_literal

string_literal

picture_literal | null_literal | proc_literal | image_literal |

w= [add_op) digit [digif]*
w= int_literal.[digif]" [e int_literal)
n= true | false

= "[char]*"

char = any ASCII character except " | special_character
special_character n= 'special_follow |

" if not followed by a special_follow
special_follow n= miploltlibl"l"
pixel_literal = on | off
null_literal = nil

proc_literal
([named_param
picture_literal
image_literal
file_literal
Miscellaneous and

add_op :=

mult_op ::

int_mult_op

real_mult_op

string_mult_op

pic_mult_op

n= proc [type_parameter_list]
_list]
[=>type_id])s clause

n= nilpic
n= nilimage
= nilfile
microsyntax:
& |-

int_mult_op | real_mult_op | string_mult_op | pic_mult_op |
pixel_mult_op

n= # | div | rem

= # 1/

&

Al

60

pixel_mult op ::= &

rel_op n= eq_op | co_op | variant_op
eq_op n= = |~z

co_op u= Ll <=l>1| ==
variant_op = is | isnt

identifier_list identifier [, identifier_list]

identifier ::= letter [id_follow]

id_follow n= letter [id_follow] | digit [id_follow] | _[id_follow)

letter = alblecldlelflglhliljlkIllml
mlolplglrislitlulvliwlixlylzl
AIBICIDIEIFIGIHITIJIKILIMI
NITOIPIQIRISITITUIVIWIXIYIZ

digit = DITI213141516171819

61

Appendix 1T

Type Rules
type arith is int | real
type ordered is arith | string
type literal is ordered | bool | pixel | pic | null | proc | file |
image
type nonvoid is literal | structure |variant | env | any |

abstype | parameterised | poly | *nonvoid

type type is nonvoid | void

Session :

sequence : void 7 => void
t : type, declaration : void s sequence : t => t
t : type, clause : void 3 sequence : t =>t
t : type, clause :t=> 1t
Object Declarations :

declaration => void
where object_decl let object_init | rec let rec_object_init
[& rec_object_init]*

identifier init_op clause : nonvoid
identifier init_op literal : nonvoid

= o=
= o=

where object_init
where rec_object_init
where init_op

Clauses :

in clause : env letobject_init | => void
in clause : envrec let rec_object_init => void

clause : env contains [constant] identifier [: type_id] => bool

if clause : bool do clause : void => void

t : type, if clause : bool then clause : t else clause : t =>t

repeat clause : void while clause : bool [do clause : void] => void
while clause : bool do clause : void => void

for identifier = clause : imt to clause : int
[by clause : int | do clause : void => void

t : type, use clause : env with signature in clause : t =>t

use clause : abstype as identifier [witness_decls] in clause : void => void

62

t: type ; tl : nonvoid, case clause : tll of case_list
default : clause : t =>t

where case_list ::= clause_list ¢ clause : t 5 [case_list]

where clause_list = clause : tl [, clause_list]

raster_op clause : image onto clause : image => void

drop identifier from clause : env => void

t : type, project clause : any as identifier onto any_project_list
default : clause : t=>t

where any_project_list ::= type_id : clause : t 3 [any_project_list]

t 1 type, project clause : variamt as identifier onto variant_project_list
default : clause : t=>t

where variant_project_list ::= identifier ¢ clause : t § [variant_project_list]

t : nomvoid, name : t := clause : t => void

Expressions :

expl : bool or expl : bool => bool

exp2 : bool and exp?2 : bool => bool

[~] exp3 : bool => bool

t : momnvoid, exp3 : t eq_op exp3 : t => bool
where eq_op = = | ~=

t : ordered, exp3 : t co_op exp3 : t => bool
where co_op = <l<=l>l ==

expression : variant variant_op identifier => bool
where variant_op = is | isnt

t : monvoid, any (clause) : t => any

expression : €nv contains [constant] identifier [: type_id] => bool
t : arith, exp4 : t add_op exp4 :t=>t

t : arith, add_op exp6 : t =>t

exp5 :imt int_mult_op exp5 : int => int
where int_mult_op = # | div | rem

exp5 : real real_mult_op exp5 : real => real
where real_mult_op = #| /

exp5 : string string_mult_op exp5 : string => string
where string_mult_op ::= R

exps : pll@ pic_mult_op exp5 : pic => pll@
where pic_mult_op = A |

exp5 : pixel pixel_mult_op exp5 : pixel => pixel
where pixel_mult_op ::= R

63

PS () => amy
t : literal, literal : t=>t
t : nonvold, value constructor : t =>t
t : type, (clause : t) =>t
t : type, begin sequence : t end => t
t : type, {sequence : t} =>t
expression : string (clause : int | clause : int) => string
expression : image (clause : int | clause : int) => image
expression : pixel (clause : int | clause : int) => pixel
t : monvoid, expression : *t (clause : int) => t
Value constructors:
t : nonvoid, vector range of clause : t => *t
t : monvoid, vector range using clause : proc (int -> t) => *t

t : nonvoid, vector @ clause : int of [clause : t [, clause : t]*] => *t
where range ::= clause : int to clause : int

image clause : int by clause : int of clause : pixel => image
image clause : int by clause : int using clause : image => image

limit clause : image [to clause : int by clause : int]
[at clause : int ,; clause : int] => image

struct (struct_init_list) => structure
where struct_init_list ::= identifier init_op clause : nonvoid [; struct_init_list]

[clause : real ; clause : real] => pic

shift clause : pic by clause : real , clause : real => pic
scale clause : pic by clause : real , clause : real => pic
rotate clause : pic by clause : real => pic

colour clause : pic in clause : pixel => pic

text clause : string from clause : real , clause : real
to clause : real ; clause : real => pic

literals :
ladd_op) digit [digif)* => imt

int_literal.[digif]” [e int_literal] => real

64

true | false => bool

" [char]* " => string
on | off => pixel

nil => null

t : type, proc [type_parameter_list] ([named_param_list]
[=> type_identifier : t]); clause : t

nilpic => pic
nilimage => image

nilfile => file

65

Appendix III
Program Layout
Semi-Colons
As a lexical rule in Napier88, a semi-colon may be omitted whenever it is used as a
separator and it coincides with a newline. This allows many of the semi-colons in a

program to be left out. However, to help the compiler deduce where the semi-colons
should be, it is a rule that a line may not begin with a binary operator. For example,

a*

b

1s valid but,

is not.

This rule also applies to the invisible operator between a vector, structure or image and
its index list and between a procedure and its parameters. For example,

letb=a(1,2)

is valid but,

letb=a
(D)

will be misinterpreted since vectors can be assigned.
Comments

Comments may be placed in a program by using the symbol !. Anything between the !
and the end of the line is regarded by the compiler as a comment. For example,

a+b laddaandb

66

Reserved Words
abstype and
begin bool
case colour
default div
else end
false file
if in
let limit
nand nil
of off
pic pixel
real rec
scale shift
text then
use using
variant vector
while with
Xnor Xor

any
by
constant
do
env
for

int

nilfile
on
proc
rem
string

to

Appendix 1V

as

contains

drop

from

image

nilimage
onto
project
repeat
struct

true

67

at

Ccopy

is isnt

nor not nilpic

or
ror rand rotate

structure

type

null

Index

Abstract Data Types
abstract data type creation 45
abstract data type definition 45
equality and equivalence 47
using abstract data types 46
Any
equivalence and equality 50
injection 49
projection 49
arithmetic precedence rules (see Expressions)

assignment clause (see Clauses)
Backus-Naur form 8

brackets 26

case clause (see Clauses)

Clauses

assignment 28
case 29

for 30

if 28

repeat 29
while 29

comments (see Program layout)
comparison operators (see Expressions)
constancy 24

context free syntax 57
context free syntax specification 8
Declarations

data objects 24

procedures (see Procedures)

recursive objects 26

recursive types 27

type declarations 25
Environments

adding bindings 51

contains clause 53

creation 51

equality and equivalence 53

removing bindings 53

using bindings 52
Expressions

arithmetic 19

arithmetic precedence rules 20

boolean 17

comparison operators 18

evaluation order 17

expressions and operators 17

operator precedence table 23

picture 21

pixel 22

string 20

68

expressions and operators (see Expressions)

Files 48
equality and equivalence 48
for clause (see Clauses)

hyper-programming 7
identifiers 24
if clause (see Clauses)

Images
creation 38
depth selection 40
equality and equivalence 41
indexing 40
raster operations 38
is and isnt 42

Literals
boolean 14
file 16
image 16
integer 14
null 15
picture 15
pixel 15
procedure 16
real 14
string 14
lwb 35
Napier
John 4
Napier88
concurrency 5
layered architecture 6
Release 2.0 Installation Guide 7
semaphores 5

Standard Library Reference Manual 7, 17, 20, 23, 35, 48, 51
The Napier88 to the Persistent Abstarct Machine Compilation Rules 7

threads 5
transactions 5

operator precedence table (see Expressions)
Persistent Abstract Machine 7

Persistent store 23

PISA project 7

polymorphism 32

principle of data type completeness (see Types), 13

Procedures

call 31

declaration 31

equality and equivalence 33
polymorphic procedures 32
recursive declarations 32

Program layout
comments 66

69

semi-colons 66
raster operations (see Images)

repeat clause (see Clauses)
Reserved words 67

scope rules 26

separators 66

sequences 25

Structures

creation 36, 37
equality and equivalence 37

type rules (see Types), 62
Types
declarations (see Declarations)
first class citizenship 13
principle of data type completeness 9
recursive definitions 10
recursive operators 11
recursive type declarations (see Declarations)
structural equivalence 12
type algebra 10
type aliasing 10
type equivalence 12
type operators 11
type rules 12
universe of discourse 9

universe of discourse (see types)
upb 35
variables 24

Variants
equality and equivalence 44
is and isnt 42
projection 43
types 42
variant values 42

Vectors

creation 34

equality and equivalence 36
indexing 36

lwb 35

upb 35

while clause (see Clauses)

70

