
1

This paper should be referenced as:
Morrison, R., Baker, C., Connor, R.C.H., Cutts, Q.I. & Kirby, G.N.C. “Approaching
Integration in Software Environments”. University of St Andrews Technical Report
CS/93/10 (1993).

2

Approaching Integration in Software Environments

R. MORRISON, C. BAKER, R.C.H. CONNOR, Q.I. CUTTS AND G.N.C. KIRBY
Department of Mathematical and Computational Sciences, University of St Andrews, North Haugh, St Andrews,
Fife KY16 9SS, Scotland

Persistent programming systems are generally recognised as the appropriate technology for the construction
and maintenance of large, long-lived object based application systems. Many successful prototypes have been
constructed, and a large body of application building experience is emerging. An essential attribute of
persistent systems is the referential integrity of data. That is, once a link (reference) to an object is
established, it persists over time. As a consequence no object can be deleted while another refers to it. Here
some of the advantages of providing all the support required for the software process within a persistent
object store with referential integrity are examined. It is shown how having system specifications, programs,
configuration management tools and documentation all within a single persistent environment leads to
powerful new techniques. This new power is achieved by sharing persistent data across the hitherto enclosed
boundaries of system components.

1. INTRODUCTION
In recent years considerable research has been
devoted to the investigation of the concept of persis-
tence and its application in the integration of
database systems and programming languages4, 5 . As
a result a number of persistent systems have been
developed including PS-algol1, Napier8828, Galileo2,
TI Persistent Memory System40, Amber16 and
Trellis/Owl35. In each of these systems persistence is
used to abstract over the physical properties of data
such as where it is kept, how long it is kept and in
what form it is kept, thereby simplifying the task of
programming. The benefits of orthogonal persistence
have been described extensively in the literature6-11,
14, 18, 20, 21, 26-28, 41. These can be summarised as
• improving programming productivity from sim-

pler semantics;
• removing ad hoc arrangements for data transla-

tion and long term data storage; and
• providing protection mechanisms over the whole

environment.
The persistence abstraction has been recognised as
the appropriate underlying technology for long lived,
concurrently accessed and potentially large bodies of
data and programs. Typical examples of such sys-
tems are CAD/CAM systems, office automation,
CASE tools and software engineering environ-
ments25, 27. Object-Oriented Database Systems such
as GemStone13 and O2

12 have at their core a persis-
tent object store; process modelling systems use a
persistent base to preserve their modelling activities
over execution sessions15.

Recently persistent programming systems have
been developed that allow the complete software
process to take place entirely within the persistent
environment13, 28. Thus each component of the soft-

ware process can take advantage of the persistent
environment. This paper focuses on one particular
advantage, that of referential integrity. Although
other integrated programming environments have
been developed30, 33, 37-39, either they do not support
referential integrity or it is not used to gain the bene-
fits described here.

The feature of referential integrity supported by
the persistent environment can be used to effect in
the following areas:
• construction and editing of programs;
• compilation of programs;
• linking of programs;
• execution of programs;
• configuration of applications from component

programs;
• versioning of application components; and
• documentation of application components.
For example, it enables naming schemes that operate
by convention to be replaced by links. to persistent
objects. The term link will be used here instead of
reference to avoid the connotation that reference has
in other contexts. These linking possibilities extend
to inter-component relationships and allow the soft-
ware components such as programs, configurations,
versions and documents to be cross-referenced by
immutable links. The advantage is that the overall
software process is more reliable since the conven-
tions used to name and define associations among
objects are replaced by links whose integrity is guar-
anteed by the persistent system.

When naming conventions are replaced by links,
the representations of the software components are
non-flat. This is because the representations them-
selves contain direct links to other components rather

3

than symbolic names for them. In the context of
documentation, this leads to hyper-text17, 29, where
documents contain links to other documents. In the
context of programs it leads to the concept of the
hyper-program24, where program representations
contain direct links to data objects of any type
including other program components.
2. REFERENTIAL INTEGRITY
The referential integrity of a link means that once a
link to an object in the persistent environment has
been established, the object will remain accessible
for as long as the link exists. In a strongly typed per-
sistent environment, such as Napier8828, this also
means that the type correctness of the links will be
maintained, i.e. once a link has been established the
type of the object linked to will not change.

In systems with explicit deletion, an object ceases
to exist only if the last link to the object is removed
(cf the UNIX link command). Thus although the
object may not be available for new links to be made
to it, all extant links still point to it. In systems with-
out explicit deletion, garbage collection may be used
to determine when an object may be finally removed.

Using links with referential integrity may
improve the safety of a system. Instead of referring
to objects by some naming convention, anonymous
links can be used*. Once a link to an object is
obtained access to it is guaranteed for as long as the
link exists. For example, the configuration manage-
ment tool make22 and the version control tool SCCS34

both rely on a name space to identify the components
of an application. If the conventions of the name
space are improperly used (such as changing the
name of a file from outside the tool) the tool will fail.
This possibility could be prevented if the tools used
links instead of names.

A further advantage of using links instead of
names is that since access to objects is independent
of the naming scheme, any number of naming
schemes (including zero) may be layered on top of
the linking graph for user convenience. Clearly
object access mechanisms involve a trade-off
between safety and flexibility. Where names are
replaced by links to give greater safety, flexibility is
reduced since decisions about which particular
objects to access are taken earlier. In applications
where such flexibility is required it may be provided
through user naming schemes.

The use of names and their role in the software
construction process may now be re-examined.
3. CAUSATIONS, ASSOCIATIONS
AND LINKS
Several varieties of relationship between the compo-
nents of a software system may be identified. These
are causations, associations and links.

*A close analogy in UNIX is referring to objects by inode
number rather than a path name.

Causations are ‘cause and effect’ relationships. A
causation between a component A and another com-
ponent B is a relationship mediated by some process
having A as input and B as output. This means that a
change to A results in a corresponding but indirect
change to B. An example of a causation is the rela-
tionship between a source program and the corre-
sponding compiled version, mediated by the com-
piler which takes the source program as input and
produces a compiled version. A modification to the
source program causes a corresponding change in the
compiled program but only after the process of com-
pilation.

Figure 1. Example of a causation
Associations are more general relationships between
components. An example is an association between
an executable program and the corresponding source
program, maintained by a source level debugging
system. This information is not intrinsic to the asso-
ciated components themselves but is maintained by
an external mechanism. The accuracy of associations
depends on adherence to conventions: if changes to
the components are made outside the control of the
external mechanism the associations may become
invalid. In the example the source program could be
updated without notifying the debugging system, in
which case its association with the executable
program would become invalid.

compiled
program

source
program

association

Figure 2. Example of an association
Links are references between components. A link
from a component A to another component B exists
if a change to B can be immediately detected from A
without the need for any intermediate process. In
systems that support referential integrity a link from
A to B always remains valid regardless of the opera-
tions performed on B.

Figure 3. Example of a link
The software process is made safer whenever an
association can be replaced by a link. The methodol-
ogy that will be described in Section 4 is to replace
the associations found in traditional software systems
by links and reverse links. This means that the soft-
ware components and the objects to which they link
are in lock-step, guaranteed by the referential
integrity of the persistent system.

4

For simplicity, most of the relationships in
Section 4 are one-to-one. The technique does how-
ever extend to many-to-many relationships.
4. NEW PARADIGMS FOR THE
SOFTWARE PROCESS
This section shows how the use of links to persistent
objects whose referential integrity is guaranteed
gives rise to new techniques for the software process.
Four examples are given: programs, version control,
configuration management and documentation. By
using the same technique, similar advantages accrue
to the other components of the software process
which are not discussed here.
4.1 Hyper-programming
Traditionally programs are represented as linear
sequences of text. Where a program accesses
another object during its execution, it contains a tex-
tual description of that object, describing how to
locate the object. At some stage during the software
process the description is resolved to establish a link
to the object itself. Commonly this occurs during
linking for code objects and during execution for
data objects, and the environment in which the reso-
lution takes place varies accordingly. There is no
guarantee that a textual description of an object will
remain valid until the time of its resolution, even if it
is valid at the time that the program is written.

In such systems programs are constructed and
stored in some long-term storage facility, such as a
file system, separate from the run-time environment
which disappears at the end of each program execu-
tion. By contrast, in persistent systems, programs
may be constructed and stored in the same environ-
ment as that in which they are executed. This means
that objects accessed by a program may already be
available at the time that the program is composed.
In this case links to the objects can be included in the

program instead of textual descriptions. A program
containing both text and links to objects is called a
hyper-program.

Figure 4 shows an example of a hyper-program.
The links embedded in it are represented by light
buttons which when pressed will cause the corre-
sponding objects to be displayed. The first link is to
a first class procedure value which when called
writes a prompt to the user. The program then calls
another procedure to read in a name, and then finds
an address corresponding to the name. This is done
by calling a lookup procedure which is one of the
components of a table package linked into the hyper-
program. The address is then written out. Note that
code objects (readString and writeString) are treated
in exactly the same way as data objects (the table).

More than one program may contain links to a
particular component, and the graph of program
components can become highly interconnected. The
benefits of hyper-programming are discussed in23.
They include:
• being able to perform program checking early—

access path checking and type checking for
linked components may be performed at
program construction;

• support for source representations of all proce-
dure closures—
free variables in closures may be represented as
links, thus hyper-programs may be used for both
source and run-time representations of
programs;

• being able to enforce associations from exe-
cutable programs to source programs—
links between source and compiled versions
may be used;

• increased program succinctness—

persistent store

writeString

hyper-program

 ("enter name: ")

let name = ()

let address = (lookup)(name)

 ("address is: ")

 (address)

table of names
and addresses

readString

Figure 4. A hyper-program

5

access path information, specifying how a com-
ponent is located in the environment, may be
elided; and

• increased ease of program composition—
links may be inserted by programmer gesture as
well as by typing.

The major pay-off comes when the hyper-program
itself is considered as an object. It may then contain
links, perhaps hidden to the user, to any compiled or
executable form. It is equally simple to arrange that
the compiled or executable forms contain reverse
links to the hyper-program. Thus the source object,
the compiled object and the executable object may
be kept in lock-step by a mechanism that is enforced
by the referential integrity of the persistent system.
Update in place is controlled by editing a copy of a
component’s source code and replacing both the
component and its source code in one atomic step.
Figure 5 illustrates the relationships among software
components in a hyper-programming system. Notice
that the associations found in a traditional system
have been replaced by links.

In Figure 5, the software component v1 has been
created by the execution of e1. The component v2 has
a link to it from both the source hyper-program and
the executable form of the program. Notice also that
the executable form has a reverse link to the hyper-
program.

Since the system exhibits referential integrity,
altering one of the components does not invalidate
the links of the others. Changes to either the hyper-
program or the executable form require new
versions, perhaps with the same identity, to be con-
structed. Thus a new hyper-program will not be

linked to by the old executable program and new
executables will not be linked to the old hyper-
program. Changes to hyper-programs and executa-
bles can therefore only be made in lock-step.
4.2 Hyper-code
One of the advantages of hyper-programming listed
above is the ability to use the hyper-program repre-
sentation for both source and run-time representa-
tions of programs. At program composition time, the
user may construct a hyper-program using a tool
which is a combination of an editor and a browser.
The editor allows text to be entered and the browser
allows the persistent store to be explored for compo-
nent parts of the hyper-program. When found the
components may be included in the hyper-program
by some user gesture, such as drag and drop. Again
this saves writing code, enhances safety by early
linking and promotes software re-use.

At run-time the hyper-program may also be used
to represent an active computation. This is possible
due to the non-flat nature of the hyper-program rep-
resentation. Free values in objects and procedures
may be represented as links and the inherent sharing
of values and locations referred to by links is pre-
served. This is not possible with textual representa-
tions of programs since the sharing is lost. The use of
hyper-program source representations allows brows-
ing and debugging tools to display meaningful repre-
sentations of procedure closures, showing both
source code and direct links to other components.
This aids software re-use since documentation in the
form of the original source code and documentation
text—see later—can be made available for every
procedure value in the persistent environment. More
importantly the unification of program representation

Figure 5. Relationships in a hyper-programming system

6

leads to the possibility of a conceptual simplification
of the programming activity.

The hyper-code abstraction is one such concep-
tual simplification. It is a development of hyper-
programming where only one representation of a
program is required to be understood by the
programmer. In constructing the program the
programmer writes hyper-code. During execution or
when a run time error occurs the programmer is
presented with, and only sees, the hyper-code repre-
sentation. Thus the programmer need never know
about entities that the system may support for effi-
ciency only, such as object code, executable code,
compilers and linkers. These are maintained and
used by the underlying system but are artefacts of
how the program is stored and executed and as such
are completely hidden from the programmer. This
permits concentration on the inherent complexity of
the application rather than that of the underlying
system.

Figure 6 shows the links between two procedures,
their hyper-code source representations and a shared
location. Notice that the hyper-code could be a repre-
sentation constructed by the programmer, if location
i already existed, or by program execution, or a com-
bination of both. The distinction is immaterial.

Programmers may copy hyper-code, compose
hyper-code using text and links, install hyper-code in
the persistent store and run hyper-code. The mechan-
ical aspects, such as compilation and linking, are
maintained by the system thereby relieving the pro-
grammer or configurer of the burden of maintaining
associations. The conceptual simplification of hyper-
code is that the programmer only sees one represen-
tation of the program throughout its life cycle.

4.3 Version control
Different styles of version control are provided in
different systems. Referential integrity within a
persistent system allows the traditional role of
version control to be extended to provide an abstract
view of the objects being versioned. One mechanism
for this will now be described.

The mechanism involves the concept of a version
controller, which is self contained and solely respon-
sible for the organisation of the versions of a particu-
lar object. Initially an object is registered with a
version controller at the time of creation of the
controller. Thereafter copies of versions may be
checked out of the version controller and later
checked in again after having being edited, thus
creating new versions. The decision as to what is
placed under version control is left to the application
builder but typically only relatively large grained
application components are versioned.

Hyper-code, version controllers, configurations
and documentation are all software components and
may therefore be versioned. The definition is recur-
sive in that hyper-code may have links to version
controllers; version controllers may provide version-
ing of other version controllers; configurations may
be versioned; configurations may have links to
hyper-code and version controllers, etc.

Each version controller presents two interfaces:
• one interface to the application builder, who

specifies the initial object to be versioned and
causes the evolution of new versions from exist-
ing versions; and

• another interface to the user of the version con-
troller, who is only allowed to access the
versions.

Figure 6. Hyper-code procedure representations with a shared location

7

Access to the privileged application builder’s inter-
face is controlled by some mechanism such as pass-
word protection19.

A version controller is used to give an abstract
view of a software component, providing a logical
grouping of its various concrete versions. For exam-
ple a version controller may group together the
versions of a compiler component. There is also a
need for abstract views of the versions within a
version controller, so that the user of the version
controller may specify which version is required
without knowing about the data structures that allow
navigation between versions. This is provided by an
access path mechanism known as a version window.
This allows versions to be specified logically rather
than with reference to the temporal order in which
they were created32.

The version controller provides a number of
version windows; these provide logical views of the
versions and they are the only means of access to the
versions for the user. Each version window views (is
mapped to) a particular version and this mapping is
controlled by the version controller. Thus to access a
versioned object the user links to a version window
which corresponds to a version.

The mapping from version window to version
may be frozen, i.e. constant, or may change through
time to provide access to different versions as the
versions evolve. Figure 7 shows the structure of a
version controller, its windows and its versions.

In this example the version window called
release2.0 is frozen and bound to a particular fixed
version: the version for release 2.0 presumably. The
w i n d o w s l a t e s t R e l i a b l e 3 . 4 . 2 and
latestExperimental4.2, however, provide access to
different versions as the system evolves.

Note that the names of the concrete versions, v0.0
etc, are visible only to the application builder. This
is an example of a name space being layered on top

of the linking graph for convenience (of the applica-
tion builder).

Changing the mapping between a version window
and its corresponding version may only be
performed by the application builder, through the
protected interface. A graphical user interface
allows this to be done by gesture, by dragging a
window icon from one version icon to another. For
example a mapping change may be performed when
a new version is created, if a window corresponds to
the latest version, or when some verification of a
component has been carried out, if a window
corresponds to the latest reliable version. Other
change strategies may also be used by the application
builder as appropriate. Some mapping changes may
be performed automatically by the version controller,
for example a latest version window may be
automated.

The version controller imposes some restrictions
on the way mapping changes may be performed, in
order to preserve type safety. A particular version
window may only ever view versions of one type, so
the viewable type is fixed at the time a window is
created. This ensures type safety without the need
for dynamic type checking. If a new version has a
different type from previous versions, new windows
must be created to allow access to it by the user.

The ability to create new windows also allows the
application builder to provide ‘frozen’ version win-
dows. This is done by copying an existing, movable,
version window—here movable means that the
mapping from window to version may be
changed—and specifying that its mapping is frozen
and cannot be changed. Users of this window will
now always access the same version. In contrast,
users of a movable window will access a new
version on the first access after the mapping is
changed.

The version controller gives an abstract view of
the versions of a component. A good analogy for

Figure 7. A version controller

8

version windows is that of snapshots and views in
query languages 3, 31, 36 . The snapshots are analogous
to fixed version windows and the views are analo-
gous to movable version windows that provide
different versions as the system evolves.

The concurrent use of the version control system
to ensure atomicity of change is orthogonal to the
design of version controllers. It is provided by a
transaction mechanism and is not part of the version
controller.

An essential part of this technology is that
versions and version windows can always identify
their version controller via a link, thereby replacing
the associations of traditional systems and ensuring
the lock-step nature of change.
4.4 Configuration management
The presence of the persistent environment also
allows re-evaluation of application configuration
management.

There are two different kinds of configuration to
deal with in a configuration management system.
One is the logical configuration of an application
which refers to the components used in the applica-
tion; the other is the physical configuration which
concerns the particular versions of each component.
Both the logical and physical configurations must be
recoverable from the system. Again, the term com-
ponent refers to all entities in the software process,
not just source code.

Persistent applications are built from locations,
un-versioned values and version controllers. Since
version controllers and configurations are values, the
definition is recursive. Within a configuration the
specification of the components may be by name or
by link and in this respect the configurations are sim-
ilar to hyper-code.

The configuration technique is to develop
applications from a target configuration which is a

logical view of the components of the application
and their inter-relationships. The components are
subsequently developed. The target configuration
describes all of the components of the application
whereas the components only contain links to the
components that they use directly. Since the system
has referential integrity these links can be used to
discover the actual configuration of a component by
inspecting the transitive closure of its hyper-code.
The actual and target configurations, which may
have diverged as the component evolved, can now be
compared. This process is described in an example
below. It is also possible to enforce target
configurations on the application builders by dis-
allowing components that do not conform to the
target configuration. This may be appropriate in
some circumstances but in general it is too
restrictive.

The first step in constructing an application is to
specify the target configuration, which may be con-
structed graphically. The target configuration is
purely a guide to the proposed configuration of the
application and it enforces no restrictions on the
actual construction. The target configuration can be
constructed from existing values or it may contain
representations of proposed components. For exam-
ple, Figure 8 shows the target configuration for a
simplified compiler. Diamonds represent version
controllers and rectangles represent un-versioned
values. Shaded objects signify objects that do not yet
exist and unshaded objects are links to existing
objects. The arrows represent intended links only:
they do not represent any actual links between com-
ponents. The compiler uses the standard procedures
readString and writeString, these are un-versioned
and exist already. The other major components are
intended to be under version control, and either do
not yet exist or links to them from the diagram have
not yet been established.

9

The target configuration itself may now be placed
under version control to cater for refinements to the
design. When the compiler component is created it
will contain a link to the version controller of the
target configuration, which may then be used as a
guide for further evolution of the compiler. Thus
configuration management and version control
information, hyper-code and applications may be
kept in lock-step with each other.

Once the design is created, the hyper-code is writ-
ten. It may contain text, links to version controllers,
and links to un-versioned values. Figure 9 illustrates
the hyper-code for the compiler.

The window has a button to examine the actual
configuration. This may then be compared with the
target configuration, either manually or by the
system. Notice that even for a single version of an
application its configuration may change through
time. Figure 10 illustrates the stage of development
where the type checker and lexical analyser have not
yet been constructed.

The novelty of the actual and target configuration
approaches is that by using the links, real rather than
perceived configurations can be discovered automat-
ically. This allows the checking that is inevitable in
evolving systems to be performed. Secondly, since

Figure 8. Compiler target configuration

Figure 9. The compiler source

10

all the system components may now be placed under
version control, generic configurations may be con-
structed from which families may evolve.
4.5 Documentation
One of the most problematic aspects of system doc-
umentation is to ensure that it is consistent with the
application that it is supposed to describe.
Traditionally keeping the documentation with the
application is done by association. By using the
method described, these associations can be replaced
by links and the relationship between application and
documentation enforced by referential integrity.

Documents may contain links to objects such as
target configuration or hyper-code. In turn the docu-
ments are considered as objects and links to the doc-
uments can be placed in the target configurations and
hyper-code. Figure 11 illustrates such a scheme.

The links between documents, version
controllers, hyper-code and configuration
information ensure that all are kept in lock-step and
consistent with one another. This does not ensure
that documentation is accurate, since that requires

semantic interpretation, but does avoid the
possibility of accidental loss while promoting
documents to first class entities.
5. CONCLUSIONS
The provision of orthogonal persistence in a pro-
gramming language simplifies the programming task
by abstracting over the lifetime and physical location
of data. Most persistent language implementations
support the concept of persistence within a standard
operating system environment, by adding commands
to compile, link and execute programs which are rep-
resented as files within that system; executable
programs then operate within the closed environment
of the persistent store. This paper describes an
approach to the provision, within the persistent envi-
ronment, for the entire software process. It is clear
that the same activities can be supported in both
environments. The stronger hypothesis is that the
same activities may be modelled with advantage in a
strongly typed environment with referential integrity.

Orthogonally persistent environments are by
definition strongly typed, highly structured, and

Figure 10. The compiler actual configuration

hyper-code
target

configuration

documentation
link back to documentation

links to related
hyper-code

links to
components

another
version

Figure 11. System documentation with links

11

enforce referential integrity. File systems are tradi-
tionally composed of weakly typed, weakly struc-
tured components, and do not enforce referential
integrity. The advantages to the software process
described here all rely upon these differences in the
objects manipulated by the program editors, compil-
ers, linkers, version controllers and configuration
managers. Thus hyper-programs are possible only
because the typed links in the programs are guaran-
teed to be maintained during and after manipulation
by an editor. Hyper-code is possible only because the
compiler can cause source and executable versions
of the same code to be reliably linked to each other,
thus enabling them to be presented as a unified view
of the program. The version control and configura-
tion management strategy outlined is possible only
because links placed in versions of code and data by
the version controllers can be reliably interpreted to
discover the dynamically changing configuration of a
component.

The combination of these new concepts yields a
software engineering environment in which a
programmer need understand only the programming
task. Hyper-programming removes any complexity
introduced by an explicit linking mechanism; hyper-
code removes the unnecessary conceptual gap
between source and executable code, and the version
control mechanism avoids the description of
complex configuration information by allowing
configuration details to be discovered as well as
imposed.
Acknowledgements
We thank David Stemple for his constructive com-
ments regarding this paper. This work was sup-
ported by ESPRIT III Basic Research Action 6309 –
FIDE2. The original hyper-programming research
was carried out in conjunction with Alan Dearle and
Alex Farkas of the University of Adelaide.

REFERENCES

1. PS-algol Reference Manual, 4th edition.
Technical Report PPRR-12-88, Universities of
Glasgow and St Andrews (1988).

2. A. Albano, L. Cardelli and R. Orsini, Galileo: a
Strongly Typed, Interactive Conceptual
Language. ACM Transactions on Database
Systems 10 (2), 230-260 (1985).

3. M. M. Astrahan, M. W. Blasgen, D. D.
Chamberlin, K. P. Eswaran, J. N. Gray, P. P.
Griffiths, W. F. King, R. A. Lorie, P. R.
McJones, J. W. Mehl, G. R. Putzolu, I. L.
Traiger, B. W. Waid and V. Watson, System R:
A Relational Approach to Database
Management. ACM Transactions on Database
Systems 1 (2), 97-137 (1976).

4. M. P. Atkinson, Programming Languages and
Databases. In Proceedings of the 4th IEEE
International Conference on Very Large
Databases, pp. 408-419 (1978).

5. M. P. Atkinson, P. J. Bailey, K. J. Chisholm,
W. P. Cockshott and R. Morrison, An
Approach to Persistent Programming.
Computer Journal 26 (4), 360-365 (1983).

6. M. P. Atkinson, P. J. Bailey, W. P. Cockshott,
K. J. Chisholm and R. Morrison, Progress with
Persistent Programming. Technical Report
PPRR-8-84, Universities of Glasgow and St
Andrews (1984).

7. M. P. Atkinson and O. P. Buneman, Types and
Persistence in Database Programming
Languages. ACM Computing Surveys 19 (2),
105-190 (1987).

8. M. P. Atkinson, K. J. Chisholm and W. P.
Cockshott, PS-algol: An Algol with a Persistent
Heap. ACM SIGPLAN Notices 17 (7), 24-31
(1982).

9. M. P. Atkinson and R. Morrison, Procedures as
Persistent Data Objects. ACM Transactions on
Programming Languages and Systems 7 (4),
539-559 (1985).

10. M. P. Atkinson and R. Morrison, Types,
Bindings and Parameters in a Persistent
Environment. In Data Types and Persistence
(eds. M. P. Atkinson, O. P. Buneman and R.
Morrison), pp. 3-20, Springer-Verlag, (1988).

11. M. P. Atkinson, R. Morrison and G. D. Pratten,
A Persistent Information Space Architecture. In
Proceedings of the 9th Australian Computing
Science Conference, Australia (1986).

12. F. Bancilhon, G. Barbedette, V. Benzaken, C.
Delobel, S. Gamerman, C. Lécluse, P. Pfeffer,
P. Richard and F. Valez, The Design and
Implementation of O2, an Object-Oriented
Database System. In Lecture Notes in
Computer Science 334 (ed. K. R. Dittrich), pp.
1-22, Springer-Verlag, (1988).

13. B. Bretl, A. Otis, J. Penney, B. Schuchardt, J.
Stein, E. H. Williams, M. Williams and D.
Maier, The GemStone Data Management
System. In Object-Oriented Concepts,
Applications, and Databases (eds. W. Kim and
F. Lochovsky), Morgan-Kaufman, (1989).

14. A. L. Brown, Persistent Object Stores. Ph.D.
Thesis, University of St Andrews (1989).

15. R. F. Bruynooghe, J. M. Parker and J. S.
Rowles, PSS: A System for Process Enactment.
In Proceedings of the 1st International
Conference on the Software Process:
Manufacturing Complex Systems (1991).

16. L. Cardelli, Amber. Technical Report AT7T,
AT&T Bell Labs, Murray Hill (1985).

17. J. Conklin, Hypertext: A Survey and
Introduction. IEEE Computer 20 (9), 17-41
(1987).

18. R. C. H. Connor, Types and Polymorphism in
Persistent Programming Systems. Ph.D. Thesis,
University of St Andrews (1990).

12

19. R. C. H. Connor, A. Dearle, R. Morrison and A.
L. Brown, Existentially Quantified Types as a
Database Viewing Mechanism. In Lecture
Notes in Computer Science 416 (eds. F.
Bancilhon, C. Thanos and D. Tsichritzis), pp.
301-315, Springer-Verlag, (1990).

20. A. Dearle, Constructing Compilers in a
Persistent Environment. In Proceedings of the
2nd International Workshop on Persistent
Object Systems, Appin, Scotland (1987).

21. A. Dearle, On the Construction of Persistent
Programming Environments. Ph.D. Thesis,
University of St Andrews (1988).

22. S. I. Feldman, Make – A Program for
Maintaining Computer Programs. Software –
Practice and Experience 9 255-265 (1979).

23. G. N. C. Kirby, Reflection and Hyper-
Programming in Persistent Programming
Systems. Ph.D. Thesis, University of St
Andrews (1992).

24. G. N. C. Kirby, R. C. H. Connor, Q. I. Cutts, A.
Dearle, A. M. Farkas and R. Morrison,
Persistent Hyper-Programs. In Persistent
Object Systems (eds. A. Albano and R.
Morrison), pp. 86-106, Springer-Verlag,
(1992).

25. R. Morrison, P. J. Bailey, A. L. Brown, A.
Dearle and M. P. Atkinson, The Persistent
Store as an Enabling Technology for an
Integrated Project Support Environment. In
Proceedings of the 8th IEEE International
Conference on Software Engineering, pp. 166-
172, London (1985).

26. R. Morrison, A. L. Brown, R. C. H. Connor, Q.
I. Cutts, G. N. C. Kirby, A. Dearle, J.
Rosenberg and D. Stemple, Protection in
Persistent Object Systems. In Security and
Persistence (eds. J. Rosenberg and J. L.
Keedy), pp. 48-66, Springer-Verlag, (1990).

27. R. Morrison, A. L. Brown, R. C. H. Connor and
A. Dearle, Polymorphism, Persistence and
Software Reuse in a Strongly Typed Object-
Oriented Environment. Software Engineering
Journal (December), 199-204 (1987).

28. R. Morrison, A. L. Brown, R. C. H. Connor and
A. Dearle, The Napier88 Reference Manual.
Technical Report PPRR-77-89, University of St
Andrews (1989).

29. J. Nielsen, Hypertext and Hypermedia.
Academic Press, New York (1990).

30. P. D. O’Brien, D. C. Halbert and M. F. Kilian,
The Trellis Programming Environment. In
Proceedings of the International Conference on
Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’87), pp.
91-102, Orlando, Florida (1987).

31. M. S. Powell, Adding Programming Facilities
to an Abstract Data Store. In Proceedings of the
1st International Workshop on Persistent
Object Systems, pp. 139-160, Appin, Scotland
(1985).

32. C. Reichenberger, Orthogonal Version
Management. In Proceedings of the 2nd
International Workshop on Software
Configuration Management, pp. 137-140,
Princeton, New Jersey (1989).

33. S. P. Reiss, Graphical Program Development
with PECAN Program Development Systems.
ACM SIGPLAN Notices 19 (5), 30-41 (1984).

34. M. J. Rochkind, The Source Code Control
System. IEEE Transactions on Software
Engineering SE-1 (4), 364-370 (1975).

35. C. Schaffert, T. Cooper and C. Wilpot, Trellis
Object-Based Environment Language
Reference Manual. Technical Report 372, DEC
Systems Research Center (1985).

36. M. Stonebraker, E. Wong, P. Kreps and G.
Held, The Design and Implementation of
INGRES. ACM Transactions on Database
Systems 1 (3), 189-222 (1976).

37. R. E. Sweet, The Mesa Programming
Environment. In Proceedings of the ACM
SIGPLAN Symposium on Programming
Languages and Programming Environments,
pp. 216-229 (1985).

38. T. Teitelbaum and T. Reps, The Cornell
Program Synthesizer: A Syntax-Directed
Programming Environment. Communications
of the Association for Computing Machinery 24
(9), 563-573 (1981).

39. W. Teitelman and L. Masinter, The Interlisp
Programming Environment. In Interactive
Programming Environments (eds. D. R.
Barstow, H. E. Shrobe and E. Sandewall),
McGraw-Hill, New York (1984).

40. S. M. Thatte, Persistent Memory: A Storage
Architecture for Object Oriented Database
Systems. In Proceedings of the ACM/IEEE
International Workshop on Object-Oriented
Database Systems, pp. 148-159, Pacific Grove,
California (1986).

41. F. Wai, Distribution and Persistence. In
Proceedings of the 2nd International Workshop
on Persistent Object Systems, pp. 207-225,
Appin, Scotland (1987).

