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Abstract
Reflective systems allow their own structures to be altered from within. In a
programming system reflection can occur in two ways: by a program altering
its own interpretation or by it changing itself. Reflection has been used to
facilitate the production and evolution of data and programs in database and
programming language systems. This paper is concerned with a particular
style of reflection, called linguistic reflection, used in compiled, strongly
typed languages. Two major techniques for this have evolved: compile-time
reflection and run-time reflection. These techniques are described together
with a definition and anatomy of reflective systems using them. Two
illustrative examples are given and the uses of type-safe reflective techniques
in a database programming language context are surveyed. These include
attaining high levels of genericity, accommodating changes in systems,
implementing data models, optimising implementations and validating
specifications.

1 Introduction
Reflective systems allow their own structures to be altered from within. In a programming
system reflection can occur in two ways: by a program altering its own interpretation or by it
changing itself. The first of these, which is common in object-oriented systems, we call
behavioural reflection and the second we call linguistic reflection. Linguistic reflection
allows a program to generate code that is integrated into the program’s own execution. Given
that a language is Turing complete, adding linguistic reflection to the language does not add
any computational power but can cut out a level of interpretation and provide more succinct
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notation. Such reflection can be used to facilitate both the production and evolution of
programs. It is of special interest in database programming languages since in these
languages supporting evolution is a major requirement. Linguistic reflection provides a
mechanism that may encompass changes to the data, the programs that manipulate the data,
and the schema. An example of the use of linguistic reflection is the automatic generation of
user interface forms. In current systems it has also been used to attain high levels of
genericity [SFS+90], accommodate changes in systems [DB88, DCK89], implement data
models [Coo90a, Coo90b, CQ92], optimise implementations [CAD+87, FS91] and validate
specifications [FSS92, SSF92].

A number of independent mechanisms for reflection have evolved in programming systems,
the first of which appeared in Lisp [MAE62]. Here the concern is with the integration of
strong typing, compilation systems and reflective expression. Two techniques for type-safe
linguistic reflection have evolved: compile-time linguistic reflection and run-time linguistic
reflection. The importance of type-safe linguistic reflection is that it provides a convenient,
efficient and uniform mechanism for the production and evolution of database systems and
programs.

The introduction of a statically checked type system into a programming language reduces
run-time errors by restricting the class of programs that can be written. Where such a type
system has been found to be over-restrictive language designers have introduced constructs
to alleviate the restriction for some well-identified classes of problem. A good example of
this is polymorphism [Mil78] where an infinite class of computations is re-introduced using a
single mechanism. Like polymorphism, type-safe linguistic reflection extends the class of
algorithms that can be written in a type-safe manner. However, this extension can be made
without extending the type system itself.

Linguistic reflection involves defining representations of the syntactic structures of a
language within the same language. Compile-time linguistic reflection allows the
programmer to define generators which produce representations of program fragments. The
generators are executed as part of the compilation process. After the generators execute, their
results are then viewed as program fragments and become part of the program being
compiled.

In run-time linguistic reflection the mechanism is concerned with the construction and
binding of new components with old in an environment. The technique involves firstly the
use of a compiler that can be called dynamically to compile newly generated program
fragments, and secondly a linking mechanism to bind these new program fragments into the
running program.

In order to maintain type-safety each generated program must be type checked in both
compile-time and run-time linguistic reflection. Type checking the generators, as opposed to
the generated programs, for type correctness of all their generated programs is a second order
type checking problem and is undecidable in general.

This paper is concerned with a particular style of reflection which is constrained to be type-
safe and is used in compiled, strongly typed languages. Section 2 contains the definition and
the anatomy of linguistic reflection. Section 3 examines the dimensions of linguistic
reflection. Section 4 describes two examples of the use of type-safe linguistic reflection in
the context of the anatomy described. The examples are abstraction over types and the
accommodation of evolution in strongly typed persistent object stores. The section also
surveys some of the existing uses of linguistic reflection in database programming languages.
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2 Definition and Anatomy of Linguistic Reflection
2.1 Linguistic Reflection
Linguistic reflection is defined as the ability of a program to generate new program
fragments and to integrate these into its own execution. Given a language, L, and a domain of
values, Val, the nature of execution of a program in L will be discussed. The function eval is
the evaluation function:

eval : L −> Val

The domain of values, Val, differs for different languages. Examples of Val include numbers,
character strings, final machine states, the state of a persistent object store, and the set of
bindings of variables produced by the end of a program’s execution.

For linguistic reflection to occur, there must be a subset of Val, called ValL, that can be
mapped into L . For example, ValL could be the set of character strings containing
syntactically correct L expressions. Since ValL is a subset of Val that may be translated into
the language L it may be thought of as a representation of L.

A subset of L  consisting of those language constructs that cause reflective computation is
denoted by LR. LR is called the reflective sub-language and ValLR stands for its representation.
An evaluation of an expression in LR invokes a generator. In linguistic reflection the genera-
tors, the programs that produce other programs, are written in a subset of the language L
which will be denoted by LGen. LGen may include all of L but the programs written in LGen
must produce results in ValL. The major relationships among the language and value sets are:

LR ⊂ L
ValLR ⊂ ValL ⊆ Val
LGen ⊆ L

The significance of the proper subset relationships is explained below. Two functions are
required for a full description of linguistic reflection. The first, drop, takes a construct in LR
and transforms it into a generator in LGen. The second, raise, takes a value in ValL and
produces an expression in L:

drop : LR −> LGen

raise : ValL −> L

Linguistic reflection is defined as the occurrence of the following pattern of computation,
within the eval function, in the evaluation of a program in L:
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procedure eval (e : L) −> Val! This types e as L and
! eval as L −> Val

case e of
...
ConstructOfLR => eval (raise (eval (drop (e))))
...

Figure 2.1 The Linguistic Reflective Nature of eval

where the ellipses cover all the non-reflective evaluations. The construct eval (raise (eval
(drop (e))))  represents the intuition that during the evaluation of a reflective expression the
result of the evaluation is itself evaluated as an expression in the language.

The expression produced by drop is a generator that is evaluated by the inner eval. The type
of a generator g in LGen is:

g : Val −> ValL

The result of the generator is an expression in ValL which is then translated into L by raise.
The result is finally evaluated by the outer eval. This is illustrated in Figure 2.2. The whole
diagram represents the eval function as does the box containing eval within the diagram. This
structure is a consequence of representing the recursive function eval by a flow diagram and
will be a feature of other diagrams.

reflection path

drop

LR

e : L

eval

Vale
in
LR

ValL

raise

LGen

non-reflective
part of eval

yes

no

Figure 2.2 eval in Linguistic Reflection

In order to make these concepts more concrete an example language is introduced. In this
language:

• ValL is the set of character strings that represent sentences in L;

• LR contains the single verb execute which initiates reflection;

• drop presents a string expression to the inner evaluation function;

• raise maps a string representation to the corresponding sentence in L;

• LGen is the set of expressions in L that result in character strings in ValL.
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In this example language, drop and raise are defined by:

drop (execute (stringExpression)) = stringExpression

raise ("expression") = expression

Figure 2.3 gives an example of linguistic reflection in this language. The symbol ++ denotes
string concatenation. The inner eval concatenates the strings to produce the string "2+3",
while the outer eval evaluates the expression execute ("2+" ++ "3") by the following
sequence:

eval (execute ("2+" ++ "3"))

! the reflection is recognised
=> eval (raise (eval (drop (execute ("2+" ++ "3")))))
=> eval (raise (eval ("2+" ++ "3")))
=> eval (raise ("2+3"))
=> eval (2+3)
=> 5

Figure 2.3 An Example of Linguistic Reflection

The above example shows that some reflective expressions may be evaluated statically, at
compile-time, since here all the information to perform the inner eval may be found
statically. Uses of this style of reflection are described later. This is not always the case
however and some reflective computation may have to be delayed until run-time. Figure 2.4
shows such a computation in which run-time input is solicited by the readString procedure.
The inner eval is thus constrained to execute at run-time.

execute ("2+" ++ readString ())

Figure 2.4 Example of Run-Time Linguistic Reflection

A reflective computation is well formed if it terminates and the output of each inner eval is
syntactically correct and typed correctly. Termination requires that the inner eval must
eventually result in a value in ValL-LR, the set of values that represent non-reflective program
constructs. Syntactic correctness requires that the result of eval (drop (e)) is in ValL for all
reflective expressions. A generated expression must be internally type consistent as well as
typed correctly for its context.

In general, type correctness must be checked for each individual generated expression. Type
checking generators for the types of all their possible outputs is a topic for further research
but it is undecidable in general.

2.2 Compilation
This paper is concerned with the mechanisms for linguistic reflection in compiled languages
and the anatomy given so far must be further refined to describe these. Figure 2.5 shows the
structure of eval as a composition of two functions: compile and eval'. The function compile
takes an expression in language L and produces another in a target language L'. The function
eval' is the evaluation function for L'. The types of the functions are defined by:
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compile : L −> L'

eval' : L' −> Val

Figure 2.5 eval as Function Composition

2.3 Compile-Time Linguistic Reflection
One way in which linguistic reflection can be accomplished in a compilation environment is
for reflective constructs to be compiled and executed during the compilation of a program
containing them. This is limited to cases where the reflection is over compile-time
information and cannot be used for reflection that depends on values that are only available
at run-time.

In such a system, generators are used to express computations over the syntactic elements of
a program. As in any form of linguistic reflection, the computations are expressed in the
subset LGen of the language L . The reflective sub-language LR contains the calls to the
generators. That is, the pattern of evaluation that defines L R is only initiated by these
reflective calls. A possible drop function in this architecture is a function that takes a
reflective call, finds its generator definition and uses the definition and the call arguments to
form a call to the generator. The inner eval executes the call at compile-time to produce a
new expression in ValL. This in turn is transformed to an L expression by raise and presented
to the outer eval. Figure 2.6 illustrates this model. Such a pattern of reflection is called static
or compile-time linguistic reflection since the reflection is performed at compile-time even
though the evaluator, eval', is called. The type checking of the generated expressions is
performed by the compiler. The pattern of eval is given by:

procedure eval (e : L) −> Val ! This types e as L and
eval' (compile (e)) ! eval as L −> Val.

procedure compile (e : L) −> L'

case e of
ConstructOfLR => compile (raise (eval' (compile (drop (e)))))
notConstructOfLR => translate (e)
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Figure 2.6 eval in Compile-Time Linguistic Reflection

The macro facilities in POP-2 [BCP71] and Scheme [RC86] contain this style of compile-
time reflection without the type checking.

2.3.1 Optimised Compile-Time Linguistic Reflection

An optimised variant of the previous architecture can be produced by having the parser
generate abstract syntax as values in Val. This choice of ValL allows the result of the inner
eval to be passed directly to the post-parse compiler called postParseCompile. The raise
function reduces to the identity function in this optimisation. The drop function here
produces a compiled version of the generator in the target language generator subset LGen.
This optimised drop function is denoted by dropOpt. The structure of eval in this case is
shown in Figure 2.7. Here ev denotes the parsed form of e expressed in ValL  and LRv the
parsed forms of LR. The pattern of eval is given by:
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procedure eval (e : L) −> Val ! This types e as L and
eval' (compile (e)) ! eval as L −> Val.

procedure compile (e : L) −> L'
postParseCompile (parse (e))

procedure postParseCompile (ev : ValL) −> L'
case ev of
ConstructOfLRv => postParseCompile (raiseOpt (eval' (dropOpt (ev))))
notConstructOfLRv => translate (ev)

Figure 2.7 eval in Optimised Compile-Time Linguistic Reflection

The two versions of the same eval' function in both Figure 2.6 and Figure 2.7 highlight some
implementation choices. For example, although both eval' functions are semantically the
same they may be implemented differently. The eval' within the compiler could be an
interpreter function and the right hand eval' could be the machine executing machine code.
The details of these implementations are not germane to our description.

An example of such an architecture is the implementation of TRPL [She90]. The TRPL
reflective constructs are TRPL context sensitive macro calls, the elements of LR. The dropOpt
function takes the parsed arguments of a macro call and passes them to the macro definitions
which have been compiled into target language functions (generators) ready for eval'. Thus a
call of the compiler is avoided in the reflective eval. The result of executing the compiled
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macro definitions is to produce new TRPL code expressed in the parsed form ValL. This code
can contain new function, type and even macro definitions. This new code is presented to the
post-parse compiler for compilation and evaluated using eval'. Type checking is performed
after each inner eval'.

Figure 2.8 gives an example of optimised compile-time reflection as it occurs in TRPL. ev
denotes the ValL form of e, while e denotes its compiled form.

eval (execute ("2+" ++ "3"))
=> eval' (compile (execute ("2+" ++ "3")))
=> eval' (postParseCompile (parse (execute ("2+" ++ "3"))))
=> eval' (postParseCompile ((execute ("2+" ++ "3"))v))

! the reflection is recognised
=> eval' (postParseCompile (raiseOpt (eval' (dropOpt ((execute ("2+" ++ "3"))v)))))

! dropOpt produces "2+" ++ "3"Gen which denotes the compiled generator of (2+3)v
=> eval' (postParseCompile (raiseOpt (eval' ("2+" ++ "3"Gen))))
=> eval' (postParseCompile (raiseOpt ((2+3)v)))

! raise is the identity function
=> eval' (postParseCompile ((2+3)v))
=> eval' (2+3)
=> 5

Figure 2.8 Optimised Compile-Time Linguistic Reflection in TRPL

The original expression, execute ("2+" ++ "3"), is parsed and then examined by the post-
parse compiler which recognises that it is a parsed form of a reflective construct. A generator
previously compiled into its L' form from a definition of execute is produced by dropOpt
using the parsed form of execute’s input. This generator, "2+" ++ "3"Gen, evaluates to the
ValL form of 2 + 3. The inner eval' executes the generator and the parsed form (2+3)v is
produced. This is passed to the post-parser compiler, which completes its compilation. It is
eventually evaluated in its compiled form by eval' as the completion of the original eval.

2.4 Run-Time Linguistic Reflection
Where reflection occurs at run-time the expression in LR, which causes the reflection, has
already been compiled. That is, it is the eval' function that recognises the expression in LR',
the compiled form of LR, to initiate reflection. The original expression e is in the process of
being evaluated by

eval (e)
=> eval' (compile (e))
=> eval' (e) ! where e is the compiled form of e

The pattern of eval' in this case is shown by
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procedure eval' (e : L') −> Val ! This types e as L' and
! eval' as L' −> Val.

case e of
...
ConstructOfLR' => eval (raiseRun (eval' (dropRun (e))))
...

Notice that the outer evaluation function is eval whereas the inner one is eval'. The outer eval
encompasses the compiler since it expands to eval' (compile (…)). The dropRun function has
the type LR' −> LGen'. This is illustrated in Figure 2.9.

Figure 2.9 eval in Run-Time Linguistic Reflection

An example of this form of reflection is the use of a run-time callable compiler together with
the ability to bind and execute newly compiled program fragments within the running
program. PS-algol [PS88] and Napier88 [MBC+89] with their callable compilers and
incremental loaders are examples of languages that provide run-time linguistic reflection.
The function eval in Lisp and the function popval in POP-2 are early examples of untyped
run-time reflection.

Figure 2.10 shows the evaluation of execute ("2+" ++ readString ()) in run-time reflection:
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eval (execute ("2+" ++ readString ()))
=> eval' (compile (execute ("2+" ++ readString ())))
=> eval' (execute ("2+" ++ readString ()))

! now the reflection is recognised
=> eval (raiseRun (eval' (dropRun (execute ("2+" ++ readString ())))))
=> eval (raiseRun (eval' ("2+" ++ readString ())))

! if "3" is input for the call of readString
=> eval (raiseRun ("2+3"))

! applying raiseRun and expanding eval
=> eval' (compile (2+3))
=> eval' (2+3)
=> 5

Figure 2.10 Run-Time Linguistic Reflection in Napier88

The original expression is first compiled and is in the process of being evaluated by eval'
when the reflection is discovered. The compiled form execute ("2+" ++ readString()) is
presented to dropRun which removes the execute verb. The inner eval' reads in the string and
concatenates it with "2+". If the string read in is "3" then the result of the concatenation is
"2+3". This expression is in ValL and is transformed into L  by raiseRun. Finally the
expression 2+3 is compiled and evaluated by compile and eval'.

3 Dimensions of Linguistic Reflection
So far three subtly different forms of linguistic reflection have been described. The pattern:

eval (raise (eval (drop (e))))

within the eval function represents the intuition given in the definition of linguistic reflection.
With optimised compile-time linguistic reflection the pattern of evaluation is given by:

eval' (postParseCompile (raiseOpt (eval' (dropOpt (ev)))))

with the reflection recognised within the post-parse compiler. The inner evaluation is
performed by eval' and dropOpt operates on the parsed form of the expression, ev.

In run-time linguistic reflection the pattern of evaluation is given by:

eval' (compile (raiseRun (eval' (dropRun (e)))))

within the eval' function. The eval' function operates over the compiled form of the
expression e and calls eval to compile and evaluate the result of the inner eval'. Here the
reflection is recognised during run-time (target language) evaluation, i.e., in eval', but entails
a call of the compiler in performing the outer eval.



12

The inner evaluation characterises linguistic reflection. This we have called generation and as
can be seen above the nature of generators can vary. Notice, however, that the generators are
always written in the subset LGen of the language, L. It is the nature of drop that differs in
that the form of the expression presented to it may be in the language itself (drop), its parsed
form (dropOpt) or its compiled form (dropRun).

The dimensions of linguistic reflection can be categorised by the following:

• What initiates linguistic reflection?

• How are the generators written?

• When are the generators executed?

• In what environment are the generators executed?

• How are the generated results bound?

For type-safe linguistic reflection there is one other dimension, namely

• When is the type checking performed?

3.1 What Initiates Linguistic Reflection?
Linguistic reflection is initiated by an expression in the reflective sub-language, LR, being
evaluated. The form of LR may be a simple verb, such as execute, or a more sophisticated
function or macro call as will be seen in section 4.

3.2 How are the Generators Written?
Since the generators are all written in the language subset LGen, it is the nature of the
language forms that they manipulate that distinguishes different linguistic reflective
languages. The generators compute over and produce expressions in ValL. In some systems
this may simply be strings.

Where some processing of the expressions has already taken place, there is a possibility of
using more structured forms for ValL. In optimised compile-time linguistic reflection the
generators operate over parsed forms of L. Thus ValL can be the abstract syntax trees
constructed by the parser. The generators then have the possibility of computing over these
abstract syntax trees forming new ones to construct new program fragments.

3.3 When are the Generators Executed?
In current implementations, type-safe linguistic reflection takes place at fixed points in the
evaluation process. To allow the reflective evaluation time to be under the user’s control at
least two LR constructs are necessary. Both perform the same function but differ temporally
and therefore in the environments in which they operate. They are:

• force which forces the reflective evaluation on the first encounter and replaces
the force construct with the generated result. It therefore performs the inner
eval and the drop.

• delay which delays reflective evaluation. That is the inner eval and drop are not
performed until the program is executing after the initial compilation
phase.
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Compile-time linguistic reflection uses force implicitly whereas run-time linguistic reflection
uses delay. Further investigation of the means of bringing the reflective evaluation time
under users’ control is needed.

3.4 In What Environment are the Generators Executed?
The time of reflective evaluation affects the environment that is available to the generator.
There are two environmental issues here. First of all the generators may need access to the
details of the compilation such as a symbol table containing type, scoping and identifier
definitions. This is trivially available in compile-time linguistic reflection but it is also
possible to parameterise the generators, with an environment, and to arrange that the
compiler environment is preserved and available at run-time for run-time linguistic
reflection.

The second issue is that generators may bind to existing values in a database or persistent
store. This may be to R-values, by copy, or L-values, by reference, and may be immediately
resolved, by force, or delayed until run-time, by delay. Means of implementing and
exploiting such bindings are under investigation.

3.5 How are the Generated Results Bound?
In compile-time linguistic reflection the result of the generation is bound into the compilation
taking place. In run-time linguistic reflection the result of the generation is bound into the
executing program. The mechanisms chosen for this in both TRPL and Napier88 are quite
simple and only accommodate the binding of generated fragments into the programs
containing them. Other aspects involve the binding of free identifiers within both the
generated fragment and the original program. The range of binding choices along with their
use and implementation are topics for research.

3.6 When is the Type Checking Performed?
In optimised compile-time linguistic reflection the result of the generation is integrated into
the program being compiled. The internal type consistency of the new program fragment and
its type compatibility with the environment into which it is placed are both checked by the
post-parse compiler before execution. In the implementation of TRPL the control of
reflection is located in the type checker.

In run-time linguistic reflection the result of the generation is type checked when it is
presented to the compiler as part of the outer eval. This checks for the fragment’s internal
consistency. The type compatibility of the fragment with its environment is checked when it
is incrementally bound. Thus type checking forms part of the binding phase.

4 Uses of Linguistic Reflection
Here two examples of linguistic reflection are presented in detail. They are examples of:

• abstraction over types, and

• accommodating evolution in strongly typed persistent systems.

Both examples involve reflective access to types in order to achieve the required behaviour.
It is somewhat ironic that strong typing, which makes it difficult to integrate reflection with
strongly typed programming languages, plays a key role in making linguistic reflection
effective in cases exemplified in this section. Linguistic reflection without strong typing,
such as in Lisp macro evaluation, has little systematic information available about the
structures involved in computation. Types in a strongly typed language constitute
systematically required information about all computations. This information can be used in
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linguistically reflective programming to automatically adjust to specific details such as the
names of attributes and to the creation of new types during system evolution.

Following the detailed explanation of the two examples other applications of linguistic
reflection are given.

4.1 Abstraction Over Types
4.1.1 The Example

In this section an example of creating an abstraction over types is given using the TRPL style
of optimised compile-time linguistic reflection. Abstractions over types are useful when the
details of a computation depends significantly on the details of its input types. A generic
natural join function provides an example of such abstraction. Here the details of the input
types, particularly the names of the tuple components, significantly affect the algorithm and
the output type of the function, determining:

• the result type,

• the algorithm to test whether tuples from both input relations match on the
overlapping fields, and

• the code to build a relation having tuples with the aggregation of fields
from both input relations but with only one copy of the overlapping fields.

The specification of a generic natural join function may be achieved by compile-time
linguistic reflection as long as the types of the input relations are known at compile-time.
One approach is to generate individual natural join functions for each distinct call. A second
approach is to write a generator that produces a call to a parametric polymorphic join
function for each unique call to natural join. The reflective ability required for this approach
is the same as for the first but the details are simpler. Thus the second approach is chosen to
facilitate presentation. A parametric polymorphic join is one in which both the match
function and the concatenation function are given as arguments.

The following gives the partial specification of such a join function using TRPL syntax:

function (alpha, beta, gamma)
join( r1 : set (alpha),

r2 : set (beta),
match : [alpha, beta] −> boolean,
concat : [alpha, beta] −> gamma) : set (gamma);

This function is polymorphic over types alpha, beta and gamma. It uses the match input
function to qualify pairs of tuples for inclusion in the result and the concat function to
construct elements in the result set. With an arbitrary match function this function is a theta-
join [Cod79]. By supplying the correct match and concat functions it can be specialised to a
natural join. The point to notice is that all the information necessary for constructing match
and concat for a natural join is obtainable from the types alpha and beta, which in TRPL are
inferred. Linguistic reflection allows the generation of the correct match and concat functions
from the representations of these types.

Consider computing the natural join between variables of types rtype and stype, defined by
the equations
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rtype = set (struct make_a_b_c (a : integer, b : boolean, c : integer));
stype = set (struct make_a_d (a : integer, d : boolean));

The TRPL type equations involving the definition of struct types define constructor
functions for values (tuples) of the types, in this case make_a_b_c and make_a_d, and
selector functions, e.g., a, b, c and d. For variables r and s of types rtype and stype the
following expression for the natural join of r and s may be written:

NATJOIN (r, s)

This is a TRPL reflective construct, recognised by virtue of its being fully capitalised, and its
inner eval generates an appropriate call of the generic join, in its ValL  form. The linguistic
reflective process also generates a new type equation to define the type of the join’s output
and then generates the appropriate match and concat functions. For example:

jointype = set (struct make_a_b_c_d (a : integer, b : boolean, c : integer, d : boolean));

join( r, s,
[x, y] −> x.a = y.a,
[x, y] −> make_a_b_c_d (x.a, x.b, x.c, y.d))

Forms such as [x, y] −> x.a = y.a represent lambda functions in TRPL. This example stands
for the boolean function of two variables that returns true if the a components are equal.

4.1.2 Details of TRPL Optimised Compile-Time Reflection

In this section the definition of a natural join context sensitive macro in TRPL is presented in
considerable detail and related to the general picture of linguistic reflection presented in
Section 2. In TRPL, ValL comprises values of two types, one for representing types,
type_rep, and one for expressions, exp_rep. Figure 4.1 gives the TRPL type definitions for
these. Both are defined as unions of choices for the different types and syntactic categories.
The type constructors include struct, as described above, list, pair , and singleton, for
constructing a type consisting of a single value such as the empty list nil. Expression
categories are the syntactic categories of the language and include identifier, integer constant,
selection of a structure component and function call.
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type_rep =
union ( int_type : singleton int_rep,

struct_type : struct struct_rep ( constructor_name : string,
struct_components : list (pair (string, type_rep))),

parametric_type : struct parametric_rep ( parametric_constructor_name : string,
parameters : list (type_rep)),

...)

exp_rep =
union ( identifier : struct make_identifier (identifier_name : symbol),

integer_constant : struct make_integer_constant (integer_value : integer),
selection : struct make_selection ( structure_value : exp_rep,

attribute : string),
function_call : struct make_function_call ( function_name : string,

parameter_list : list (exp_rep)),
...)

Figure 4.1 Types of TRPL ValL for Representing the Language

The TRPL reflective sub-language consists of calls of context sensitive macros such as
NATJOIN above. Calls of these macros initiate linguistic reflection. Macros are called
context sensitive since they have access to the types defined at the point of their compilation.
The generators invoked by the macro calls are defined in macro definitions and are functions
from the parsed input to the macro calls (in ValL) and types contained in the compiler
environment (also in ValL). They generate inline expansions as well as new function and type
definitions. The new definitions augment the compiler environment at the time of the
generation, i. e., at the time of the inner eval.

A TRPL macro definition consists of three parts: the header, the units and the inline
expansion. The units section generates the new function and type definitions. Figure 4.2
shows the outline of a TRPL macro for a natural join function.

macro NATJOIN (r, s) ;
1 get and expand types for r and s; generate new names
2 compute the set of unique and overlapping components of r and s
3 compute the output type definition and add it to environment via units
4 compute the representations of the match and concat functions
5 build the representation of the inline expansion

Figure 4.2 Outline of a TRPL Natural Join Macro Definition

Figure 4.3 shows the header and a segment for accomplishing task 1 in a TRPL macro
definition for a natural join function.
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macro NATJOIN (r, s) ; env e;
let ertype := type_of (r, e), @ get the types of r and s

estype := type_of (s, e),
rtype := expandtype (ertype, e), @ expand set types to
stype := expandtype (estype, e), @ remove any type variables

@ build component lists for r and s
rcomps := case rtype

{parametric_rep ("set", cons (struct_rep (?, rcompslist), nil))
−> rcompslist, @ ? indicates tuple constructor name unimportant

others −> warning ("first argument not a set of tuple", nil)},
scomps := case stype

{parametric_rep ("set", cons (struct_rep (?, scompslist), nil))
−> scompslist,

others −> warning ("second argument not a set of tuple", nil)},

@ generate symbols for new type
tn := genstring ("type$"),

@ and constructor function for output tuples
constr := genstring ("constr$"),

Figure 4.3 Natural Join Definition Segment for Type Extraction

First the types of r and s are extracted from the current compilation environment e using a
built-in function type_of. This uses an environment variable defined in the header as the
current compiler environment. These types are expanded using another built-in function
expandtype. This expands all type variables contained in a type representation into their
structural forms. The next two equations extract the list of component names by using pattern
recognition on the representation of the input types. A representation of a legal type for this
macro call is of the form parametric_rep ("set", cons (struct_rep ("constrName",
componentList), nil)). The case statement either matches this for each type representation or
returns an error. When a match is made the variables in the pattern are bound to their
matched components and the case body is evaluated. Question marks stand for parts of the
value to be matched by anything and ignored. The case bodies here are just the extracted list
of component name and type pairs. This section ends with the generation of new names for
the output type and a constructor function for its tuples.

Figure 4.4 shows tasks 2 and 3: the computation of the unique and overlapping components
of the two input relations, along with the units section containing the generation of the output
type definition.



18

runique :=
set_difference (rcomps, scomps, [x & ?, y & ?] −> string_eq (x, y)),

sunique :=
set_difference (scomps, rcomps, [x & ?, y & ?] −> string_eq (x, y)),

overlap :=
set_intersection (scomps, rcomps, [x & ?, y & ?] −> string_eq (x, y))

in
units

LIST ( @ the new type definition
define_type ( tn,

parametric_rep ("set", LIST (struct_rep (constr,
append3 (overlap, runique, sunique))))))

Figure 4.4 Computing Component Overlap and the Output Type

This code uses pattern matching lambda expressions, the expressions starting with
[x & ?, y & ?]. In these functions the input arguments are first matched with the patterns in
the brackets. The patterns here are pairs since & is the infix pair construction operator. The
values are struct_components defined as pairs in Figure 4.1. As before, successful pattern
matching causes the variables in the patterns to be bound to the matching components of the
values. In this case x and y are bound to the names of the components.

The unique and overlapping components are computed by set_difference and set_intersection
utilising the lambda functions over the component lists. Pattern matching lambda expressions
capture the criterion that components are equal when their names represented as strings are
equal. If the names are equal but the types are not, the match function will produce a type
error when it is passed to the compiler. The units section contains only the output type
definition using another built-in function define_type. The first parameter gives the computed
type name and the second supplies the representation of the type expression including the
tuple constructor function name, bound to constr. Note the use of the constructor functions,
parametric_rep and struct_rep, to construct the typed representation of the new type.

Figure 4.5 gives the code for generating the representations of the match and concat function
bodies. The match body is an expression of the form rt.a=st.a && rt.b=st.b && ... && true,
where && denotes logical and. It is to be used in the inline expansion as the body of a
lambda function having rt and st as variables standing for the tuples of the input relations, r
and s.
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@ build bodies of match and concat
@ first a representation for the body of the match lambda
@ expression which looks like rt.a=st.a && rt.b=st.b && ... && true

let eqterm := [x & ?] −> EREP ((rt.field) = (st.field), field := s2id (x)),
match := listreduce ( listmap( overlap, eqterm),

[term, exp] −> EREP (t && e, t := term, e := exp),
EREP (true)),

@ build a representation for the body of the concat
@ lambda expression which looks like
@ construct (rt.common1, … rt.unique1, … st.unique1, …)

concat := EREP ( con ( …args),
con := s2id (constr),
args := append3 ( listmap (overlap, [x & ?] −> EREP (rt.f, f := s2id (x))),

listmap (runique, [x & ?] −> EREP (rt.f, f := s2id (x))),
listmap (sunique, [x & ?] −> EREP (st.f, f := s2id (x)))))

Figure 4.5 Generating the match and concat Representations

This portion of the definition uses a macro, EREP, to facilitate the generation of expression
representations. EREP takes as its first argument an expression which gives a pattern for the
representation it generates. Optional arguments may follow which give values to be
substituted in the representation of the first argument. This allows computed representations
to be inserted into constant expressions. A simple example of this is EREP (f (x), x := s2id
("y")), where s2id is a function that converts a string value into the representation of an
identifier. This evaluates to the representation of f (y). The match body is produced by
mapping the eqterm function over the overlapping component name and type pairs. The
eqterm function takes a component pair, extracts the component name and constructs an
equality expression that compares the named projection of rt and st tuples. The list of these
terms is used to construct a boolean expression anding all the equality terms with true. This
uses a reduction function over the mapped list. The reduction uses a binary lambda function
and EREP to build the representation of the and expression. Starting the reduction with true
defines the base case of no common component names to be the cartesian product.

The concat body is generated by using EREP and listmap, together with a feature that allows
variable length constructs in the pattern used in EREP. The ellipsis before args marks it as a
parameter that accepts a list for its substitution. The list of representations of component
names is produced by the append3 and listmap functions, the former a function that appends
three lists. An example of a concat body is make_a_b_c_d (rt.a, rt.b, rt.c, st.d).

Figure 4.6 gives the definition of the inline expansion to be generated. It uses EREP and the
computed bodies of match and concat to generate the representation of a call to join.

@ the inline expansion is a call to join with lambda functions for match and
concat
in

EREP ( join (r, s, [rt, st] −> mtch, [rt, st] −> cnct),
mtch := match,
cnct := concat)

Figure 4.6 Defining the Inline Expansion
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Figure 4.7 shows the evaluation of a call to NATJOIN. The types of r  and s are rtype and
stype as given in Section 4.1.1.

NATJOIN (r, s)
=> eval (NATJOIN (r, s))
=> eval' (compile (NATJOIN (r, s)))
=> eval' (postParseCompile (parse (NATJOIN (r, s))))
=> eval' (postParseCompile ((NATJOIN (r, s))v))

! the reflection is recognised
=> eval' (postParseCompile (raise (eval' (drop ((NATJOIN (r, s))v)))))

! drop produces a call to the compiled NATJOIN definition
=> eval' (postParseCompile (raise (eval' (NATJOIN_generator (rv, sv)))))
=> eval' (postParseCompile (raise ((join (r, s,[x, y] −> x.a = y.a,

[x, y] −> make_a_b_c_d (x.a, x.b, x.c, y.d)))v)))

! raise is the identity function
=> eval' (postParseCompile ((join (r, s, [x, y] −> x.a = y.a,

[x, y] −> make_a_b_c_d (x.a, x.b, x.c, y.d)))v))
=> eval' (join (r, s, [x, y]     −>      x.a = y.a,

[x, y]     −>      make_a_b_c_d (x.a, x.b, x.c, y.d)))
=> natural join of r and s

 Figure 4.7 Natural Join Using Optimised Compile-time Linguistic Reflection

By the time the compilation of NATJOIN starts, the definition given in Figures 4.3 through
4.6 has been compiled into a generator comprising the call to define_type and the code that
constructs the inline expression. NATJOIN_generator stands for the compiled form of this
generator. drop produces a call to this generator with the parsed form of the macro’s
arguments as input. The output of this generator is bound into the original computation
simply by being passed to the post-parse compiler.

While the types of the input of a natural join are inferred by the underlying type system,
which is non-reflective, the inference of the output type is beyond the type system’s
capabilities. Reflection has been, in effect, used to perform this inference. Note however that
neither having the programmer provide the output type nor building the ability to do this
particular inference into the type system solves the problem. The match and concat functions
would still need to be synthesised and this is beyond the scope of type inference. Natural join
is not the only problematical operation in relational database systems. The nest and unnest
operations of nested relational systems make similar demands on a programming language
[JS82].

4.2 Evolution in Strongly Typed Persistent Systems
Another way linguistic reflection may be used is in accommodating the evolution of strongly
typed persistent object stores. Characteristics of such stores are that the type system is
infinite and that the set of types of existing values in the store evolves independently from
any one program. This means that when a program is written or generated some of the values
that it may have to manipulate may not yet exist, and their types may not yet be known for
inclusion in the program text. For strong typing these values must have a most general type
but in some applications their specific types can only be found once they have been created.

An example of such a program is a persistent object store browser [DB88, DCK89] which
displays a graphical representation of any value presented to it. The browser may encounter
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values in the persistent store for which it does not have a static type description. This may
occur, for example, for values which are added to the store after the time of definition of the
browser program. For the program to be able to denote such values, they must belong to an
infinite union type, such as Amber’s dynamic [Car85], PS-algol’s pntr [PS88] or Napier88’s
any [MBC+89].

Before any operations may be performed on a value of an infinite union type it must be
projected onto another type with more type information. This projection typically takes the
form of a dynamic check of the value’s type against a static type assertion made in the
program that uses it. A projection of a Napier88 any value is shown in the example below:

proc (val : any)
project val as specific onto
int : writeInt (specific )
string : writeString (specific )
default : writeString ("not a string or int") ! specific not in scope here

This shows a procedure that takes a parameter val of type any. In the body of the procedure
the specific type of val is matched against two alternatives. If a match occurs the name
specific, denoting the value with the specific type, enters scope in the corresponding branch.
If the type of val does not match either of the statically specified types int or string then the
specific type of val is unknown and the default branch is executed.

As stated earlier the browser program takes as parameter an infinite union type to allow it to
deal with values whose types were not predicted at the time of implementation. However the
program cannot contain static type assertions for all the types that may be encountered as
their number is unbounded. There are two possibilities for the construction of such a
program: it may either be written in a lower-level technology [KD90] or else be written using
linguistic reflection.

To allow a reflective solution the program must be able to discover dynamically the specific
type of a value of the union type. Such functionality may be provided in a strongly typed
language without compromising type security by defining representations of types within the
value space of the language, i.e., within ValL. An example of such a representation in TRPL
was shown in Figure 4.1. Access to type representations may be provided by a function such
as the Napier88 procedure

getTypeRep : proc (any −> TypeRep)

which allows a program to discover type description information by the manipulation of
values of the representation type.

4.2.1 Details of Browser Implementation

The linguistic reflective implementation of the browser program has a number of
components. First of all the value of the union type passed to the program is interrogated to
yield a representation of its specific type. Using this information the browser constructs a
representation of some appropriate Napier88 code. The compiler is called dynamically with
this code representation as its argument, and returns some executable code which is capable
of performing the appropriate projection of the union type, along with the required operations
to browse the value. This new code is type-safe since it has been checked by the compiler. A
different program will need to be generated for each different type of value which is
encountered during the browsing of the persistent store.
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An example of the operation of a Napier88 browser program will now be given in the context
of the anatomy of run-time reflection defined in Section 2.4. Assume that a value of the
following type, injected into the union type any, is passed to the browser:

type Person is structure (name : string ; age : int)

To display the value the browser needs to be able to construct and display a menu window
such as that shown below:

age : int

structure

name : string

It must also be able to extract the field values for further browsing should the user select one
of the menu entries. The browser has built into it methods for displaying instances of the base
types such as string and int. An outline of the browser code is shown in Figure 4.8.
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let browser = proc (val : any)
begin

let valTypeRep = getTypeRep (val)

if valTypeRep denotes a base type then use built-in method else
begin

case true of
valTypeRep denotes a structure type :
begin

let new = evaluate (makeCode (valTypeRep))

! new is of type any.
! makeCode builds up a string program representation through
! analysis of valTypeRep.

! For the example the result will be
! "type T is structure (name : string ; age : int)
! proc (x : any)
! project x as specificX onto
! T : menu2 ('"name : string'", '"age : int'",
! proc() ; browser (any (specificX (name))),
! proc() ; browser (any (specificX (age))))
! default : writeString ('"error'")"

! single quote is used as an escape to allow the inclusion
! of double quotes in the string.

project new as newDisplayer onto
proc (any) : newDisplayer (val)
default : writeString ("error in compilation")

end

other cases : use similar methods for other type constructors
end

end

Figure 4.8 Browsing Using Run-Time Linguistic Reflection

When the browser program is called it first obtains a representation of the type of the value
passed to it. If it is one of the base types the browser has built-in knowledge of how to
display it. Otherwise the type must be an instance of one of a fixed number of type
constructors. In the example it is a structure type. The browser displays structures using a
generic method. The method involves constructing a program that defines a procedure to
display instances of the particular structure type, evaluating it and calling the resulting
procedure to display the structure.

For brevity the definitions of the procedures getTypeRep, makeCode, menu2 and writeString
have not been shown. Note that the program produced by the generator itself contains a call
to the browser program. This is achieved by binding the browser program into the persistent
store where it can be accessed by the generated program. The details of this access have also
been omitted.

Figure 4.9 shows the mode of evaluation of the reflective part of the browser program, the
call to the evaluate procedure.



24

evaluate (makeCode (valTypeRep))
=> eval (evaluate (makeCode (valTypeRep)))
=> eval' (compile (evaluate (makeCode (valTypeRep))))
=> eval' (evaluate (makeCode (valTypeRep)))

! now the reflection denoted by the call to evaluate is recognised
=> eval (raiseRun (eval' (dropRun (evaluate (makeCode (valTypeRep))))))
=> eval (raiseRun (eval' (makeCode (valTypeRep)))

=> eval (raiseRun ("type T is … writeString ('"error'")"))
=> eval' (compile (type T is … writeString ("error")))
=> eval' (type T is … writeString ("error"))

! the procedure value produced
=> proc( x : any ) ; …

Figure 4.9 Reflective Evaluation within the Browser

The algorithm shown is potentially inefficient as it requires reflection to be performed on
every encounter with a structure type. In practice the persistent store is used to cache the
results of reflection so that the code generation and reflection need not occur for types
encountered previously.

This style of reflection can be analysed in the context of the dimensions of reflection
described in Section 3, as follows. The linguistic reflection is initiated at run-time when the
evaluator eval' encounters the compiled form of the LR construct evaluate. Generators are
procedures that produce strings. In the cases that the generators execute without errors the
strings represent fragments of Napier88 code, i.e., they are in ValL. The generators are
executed at run-time and may access values in the persistent store but have no direct access
to compilation information. In the example type information is passed to the generator as a
parameter; this is obtained using a pre-defined procedure that produces a representation of
the type of any value injected into an any union. The result of the generation is compiled
using the run-time callable compiler and the result of executing the new compiled code
bound into the original computation using Napier88’s any projection mechanism. This
mechanism supports dynamic incremental binding. Finally, type checking occurs in two
stages. In the first the internal type consistency of the generated program fragment is verified
during the operation of the compiler at run-time. In the second the type compatibility of the
existing program and the value produced by evaluation of the compiled fragment is checked
during evaluation of the any projection clause. Note that two uses of the infinite union are
required. One is to give a type to the getType procedure so that it may be statically typed and
yet permit type inquiry over values of any type, and the other to give a type to the evaluate
procedure so that it can evaluate any expression.

This example illustrates the use of linguistic reflection to define programs that operate over
values whose type is not known in advance. These programs potentially perform different
operations according to the type of their operands but without endangering the type security
of the system. The requirement for such programs is typical of an evolving system where
new values and types must be incrementally created without the necessity to re-define or re-
compile existing programs.

4.3 Applications of Linguistic Reflection
Applications of reflection in the context of database programming languages have stimulated
the development of the technology described above. These applications address the following
problems:
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• attaining high levels of genericity,

• accommodating changes in systems,

• implementing data models,

• optimising implementations, and

• validating specifications.

4.3.1 Attaining High Levels of Genericity

The examples given in sections 4.1 and 4.2 both address the problem of attaining a high level
of genericity. In each, the type dependent details of instances of a family of functions are
generated. Thus the generators can be thought of as highly generic abstractions over the
functions. Another example of this approach is a set of four traversal functions over recursive
data types [She91]. These functions generalise the list map and fold functions allowing them
to be applied to any recursive data type. Sheard has also used the technique to define a deep
equality test for any type [She90]. Similarly, forms systems for data entry and access can be
automatically generated from type definitions. Cooper has used such a technique to provide a
rich repertoire of interaction modes over any structures that may be defined in a range of data
models [Coo90a]. There is frequently a greater range of type dependent algorithms required
than can sensibly be provided by built-in system programs. Linguistic reflection allows
programmers to tailor their own style of presentation without requiring them to use a separate
language or to penetrate the internal properties of the system.  Ease of use of reflective
systems remains a significant problem; there have been several attempts to develop more
suitable notations for expressing generators and the calls to them [Kir92, She90].

As demonstrated by the examples, the genericity achievable via linguistic reflection has often
depended on the ability of a generator to access type details and generate program fragments
that are tailored to the types given when the generator is executed. This constitutes a form of
ad hoc polymorphism [Str67], but the genericity attained in these examples exceeds the
capabilities of current polymorphic type systems [SFS+90]. In most polymorphic systems,
the behaviour of polymorphic functions must be essentially invariant over the range of input
types. The examples listed above have behaviour that varies too much to be accommodated
by polymorphic systems.

4.3.2 Accommodating Changes in Systems

The browser described in section 4.2 illustrates the way in which programs can adjust to
system evolution, in this case the creation of values of previously unencountered types.
Linguistic reflection can be used to accommodate a wide range of system changes. For
example the schema changes of typical database applications become type changes in
database programming languages, and reflective programs that are based on type details can
regenerate code whenever a schema changes. If algorithms such as joins or form generation
are systematically derived from the type information these derivations will be re-computed.
With run-time reflection this happens lazily which may save computation since many
systems undergo a sequence of changes between runs of many of their applications. In
contrast the hand-crafted method of providing the same functionality requires that a
programmer locate all the places where changes are necessary, perform all the changes
correctly and then re-validate the software. The reflective method gains particularly well in
this case as it may avoid the need for re-validation as is discussed below.

4.3.3 Implementing Data Models

A data model is typically defined by a data description language and by one or more data
manipulation languages (including query languages). Linguistic reflection allows these
languages to be implemented efficiently, avoiding any additional levels of interpretation.
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Sentences in the data description language introduce new model constructs. The reflective
generator translates these sentences into type declarations and declarations of associated
procedures and introduces these into the computational context. Sentences in the data
manipulation language are then translated into corresponding algorithms against these
representational types and executed via reflection. In a persistent language this provides a
very rapid means of prototyping and evaluating a data model [Coo90a, Coo90b, CQ92]. With
the optimisation strategies discussed below this can be developed into a reasonable quality
implementation of a DBMS for the data model.

This use of reflection to implement languages is not confined to data models. The technique
is applicable to any language and has been used in a commercial system to develop
requirements analysis tools based on process modelling [BPR91, GGR92, War89]. Philbrow
has used the same technique to provide polymorphic indexing mechanisms over arbitrary
collections [Phi90].

4.3.4 Optimising Implementations

Using linguistic reflection to avoid a level of interpretation is a form of optimisation. In
addition to this optimisation, a generator that develops concrete code for high level
abstractions can choose from implementation strategies in order to minimise costs
[CAD+87]. Relational query optimisation, for example, can be integrated directly into the
compilation process via linguistic reflection. Run-time reflection allows re-compilation and
new optimisation as the statistics of the database change. More general transformations of
high level specifications into implementations can also be accomplished using linguistic
reflection [FS91].

4.3.5 Validating Specifications

There are various ways linguistic reflection can be used to support validation of programs.
The first derives from the fact that generated program fragments are stereotyped in their
form. This stereotyping can be aimed toward producing forms that facilitate verification
efforts [FSS92, SSF92]. Generators themselves can be analysed in order to verify properties
of all generated expressions. Though this is a second order problem, there is the possibility of
stereotyping the generator programs themselves to produce sub-languages that support the
second order reasoning. Validating generators would be especially useful since it would
mean that programs that were regenerated as a result of system evolution such as changes to
types would not need to be re-validated.

Theorem proving itself can be integrated with compilation using linguistic reflective
capabilities. A version of the Boyer-Moore theorem prover kernel has been implemented in
TRPL working over the parsed form of TRPL’s functional core language. Using this kernel
validation of properties of TRPL functional programs can be performed as a part of the
compilation process. For example, the problem of verifying that database integrity
constraints are invariants of transactions can be addressed by this approach [SS89].

5 Conclusions
A style of reflection appearing in strongly typed programming languages has been identified,
defined and described. This style of reflection, termed type-safe linguistic reflection, can
extend the class of algorithms that can be written in a type-safe manner. Linguistic reflection
is characterised by the ability of a program to generate code in its language that is to be
integrated into its own execution. This ability provides a base for generator technology that
can be integrated with a programming language in a uniform and type-safe manner. While
this capability has been a feature of many interpreter based languages with weak type
systems, it is relatively new in compiler based, strongly typed systems. Two styles of
linguistic reflection have arisen in database programming languages, compile-time and run-
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time. Both have been described in detail, allowing a comparison of the mechanisms as
currently implemented.

Many uses have been found for linguistic reflection in the database programming area. These
uses are characterised by a need for a high level of genericity in specifying data and
procedures, a requirement that has proved problematical to meet using programming
language type systems alone. Two such uses have been detailed and several more discussed.

Type safety has been achieved in PS-algol, Napier88 and TRPL by type checking each
generated program segment, which is necessary when the complete programming language
can be used to write generators. Limiting the language subset available for writing generators
may allow the generators to be type checked for the type of all output at one time. This is a
topic for future research. Other work to be done includes combining the two styles of
reflection presented here, finding well engineered means of writing linguistically reflective
code, and exploring the relationship of linguistic reflection with other kinds of reflection.
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