
Persistent Programming with Strongly Typed Linguistic
Reflection

G. N. C. Kirby

University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland.

Abstract

The technique of linguistic reflection is of particular interest in persistent systems because it
can allow long-lived data and programs to evolve in a type-safe manner. Existing reflective
languages are hard to use because programs contain a mixture of several different kinds of
code, with respect to their role in reflection. In some systems this problem is compounded by
the presence of a high level of syntactic noise. The paper discusses some uses of strongly
typed linguistic reflection in a persistent system and describes an attempt to improve the
programmer’s interface to reflection. This involves designing an extension to the strongly
typed persistent language Napier88, called TemplateNapier. The paper also identifies some
factors which make it difficult to write and to understand reflective programs.

2

1 Introduction
1.1 Linguistic reflection
A reflective language is one that has facilities for constructing and executing new code from
within a program. The following shows a simple example of reflection in a hypothetical
language:

let a = reflect("7") + 2

Here the function reflect is used at run-time to compile the representation "7" into executable
code and to execute that code to produce the integer value 7. The identifier a is assigned the
integer value 9 obtained using the result of the evaluation.

An alternative strategy is to interpret the representation, rather than to compile it and then
evaluate it. An example of this is the eval function of Lisp [MAE62]. This paper however is
concerned primarily with languages in which the reflective process involves compilation.

In general linguistic reflection involves taking some language value which represents source
code and evaluating it to produce another language value. In the example a string was used to
represent the code and an integer was produced. The reflection process can take place either at
run-time, as in the example above, or at compile-time, and may or may not be strongly typed.

1.2 Strong typing
Linguistic reflection is of particular interest in persistent systems because it provides a way for
long-lived data, including programs, to evolve in a type-safe manner. In any long-lived data-in-
tensive application the form of the data will inevitably be subject to change over time. As strong
typing is vital for maintaining the integrity of persistent data, this paper will be limited to the
consideration of strongly typed reflection, which has been called type-safe linguistic reflection
[SSS91]. With this form of reflection the type of any code produced by a program is checked
before it is used, to ensure that it is consistent with the intended use. The technique has been
used:

• to provide levels of genericity beyond conventional polymorphism [CW85,Str67] in
programming languages [She90];

• to build adaptive object browsers [DB88,DCK89,KD90]; and

• as an implementation technique for data models [CAD87, Coo90].

1.3 Benefits of reflection
Consider two strongly typed languages A and B with the same type system, where A supports
reflection and B does not. Given that they are both Turing complete, B can express any compu-
tation that can be expressed in A. However, some computations which describe highly generic
problems may admit a more efficient implementation in language A than in B. These are the
computations that cannot be fitted directly into the type system: any non-reflective
implementation of the computations must involve interpretation. Using the reflective capabilities
of language A may allow a more efficient compiled solution.

This can be illustrated with the natural join function. Assuming neither language has built-in
support for relational operations, the most direct way to represent relations might be as sets of
records. However in language B it is not possible to write a generic join function to operate
over arbitrary sets, because the type of the result set depends on the combination of attribute
names used in the records in the input sets but the program cannot compute over those names
as they are not values in the language. The only solution is to use a more flexible representation

3

for the tuples of the relations. Instead of records, arrays of (attribute-name,value) pairs can be
used, where the attribute names are strings, bringing them into the domain of computation. The
disadvantage of this approach is that some static type constraints are lost, so dynamic checks
must be made on each call of the generic function to ensure that the inputs represent valid
relations.

In language A, however, the set representation can be used. For every occurrence in the
program of a join on a particular pair of relations, the representation of a join function specific
to their types is generated. Using reflection the representation is transformed into an executable
function which is applied to the relations. So long as the type of the function is checked when it
is first produced it can be used repeatedly without further type checking.

1.4 Requirements for reflection
Mechanisms for the following activities are required to support strongly typed reflection in a
language:

• building and manipulating representations of the constructs of the language;

• transforming those representations into executable form (often achieved by the compiler
itself);

• and type checking the programs so constructed (often achieved by parts of the compiler).

For run-time linguistic reflection a further activity must be supported:

• strongly typed dynamic binding of the values created by reflection into running programs.

1.5 Goals
The goals of this paper are:

• to identify the advantages of strongly typed reflection and its relevance to persistent
programming;

• to describe an extension of Napier88 [MBC89] which represents an attempt to integrate
support for reflective programming into an existing language;

• and to identify factors affecting the understanding and construction of reflective programs.

2 Reflection and Persistence
It was stated earlier that reflection can allow solutions to a certain class of problems, highly
generic functions, to be implemented more efficiently than would otherwise be possible. This
section identifies the ways in which efficiency may be gained, describes an example of reflec-
tion in use, and examines the impact of persistence on a reflective language system.

2.1 Genericity with reflection
2.1.1 Features of reflective solutions

Section 1.3 gave an outline of the way in which reflection can be used to write a generic
function. To recap, it involves using a generator which, for each call of the function, produces a
representation of code for an instance of the function specialised for the appropriate types. This
representation is compiled to produce the specific function required. The key features of this

4

method are:

• Strong typing is preserved by a type check on the result so that no type errors can occur.

• The method is more efficient than interpretation because the type checking occurs only at
the time of the compilation while the result can be used many times. Other computations
may also be compiled away where they depend only on the types of the function arguments,
for example the construction of the algorithm that determines whether two tuples match in
natural join.

• The types of the values manipulated by the generic function may be specified more
precisely than with the interpretive method, reducing the number of dynamic checks
required and increasing efficiency. For example with the reflective implementation of
natural join there is no need to check for duplicate attribute names in the input relations as
each tuple is represented by a record. A check would be required with an interpretive
implementation.

• Using reflection allows bindings, checks and other computations to be made earlier than
with interpretation. This increases safety; the programmer can be more confident that the
generic function will execute correctly.

2.1.2 Example: natural join

This section shows how a generic natural join function can be implemented using reflection in
the language Napier88 [MBC89]. This language supports run-time reflection only, although it
will be described in Section 2.2 how run-time reflection coupled with persistence gives all the
power of compile-time reflection. Stemple et al. give a description of generic natural join using
compile-time reflection in the language TRPL [SFS90].

The problem involves writing a generic natural join procedure which will work for relations with
tuples of any record type. The difficulty for any non-reflective strongly typed language is in
expressing the constraints that the join procedure should be defined only over sets of record
types and that the type of the result relation depends on the types of the input relations.
Another problem is expressing the algorithm which computes that result type.

Figure 2.1 shows the outline of a Napier88 program which defines a generator procedure that,
given representations of the types of a pair of input relations, produces the representation of a
join procedure specific to those types. This representation is then compiled and the resulting
procedure can be used to perform a join on any relations of those types. The reserved words in
the program are written in bold type.

The program starts with definitions of the types typeRep and codeRep. The details are not
shown: any representations of Napier88 types and source code can be used, so long as they are
agreed upon by the writers of the generator, the compiler and the code that constructs the type
representations passed to the generator. The type definitions are followed by the definition of
the procedure joinGenerator. The procedure takes two parameters relation1Type and
relation2Type of type typeRep. The result of the procedure is a value of type any which is the
infinite union of all Napier88 types. The body of the procedure constructs a representation of a
procedure to perform the join for the particular relation types specified by the parameters, and
assigns it to the identifier joinProcedureRepresentation. The code which constructs this
representation has not been shown for brevity as it is fairly complex. It must analyse the type
representations in order to synthesise the result type of the join and the algorithms to determine
when pairs of tuples match on their common attributes and to construct new tuples from those
which do match.

5

type typeRep is … ! Representation of Napier88 types.
type codeRep is … ! Representation of Napier88 code.

let joinGenerator = proc(relation1Type,relation2Type : typeRep → any)
begin

! Construct representation of a join procedure for this particular pair of relation types.
let joinProcedureRepresentation =

… ! Of type codeRep.

compile(joinProcedureRepresentation) ! Return the compiled result.
end

Figure 2.1: A generic reflective procedure

The reflection is contained in the call to the procedure compile which compiles the code
representation to produce an executable procedure and injects it into the infinite union type any.
This allows compile to have a well defined type, proc(codeRep → any), even though the actual
type of its result is not known statically. The any value is returned as the result of
joinGenerator. To use that result it must be projected onto its specific type, shown in
Figure 2.2 where the reflective procedure is used to perform a natural join on two relations. The
program begins by defining the tuple types of the two relations to be joined, part and supplier,
and the expected tuple type of the result, partSupplier. It is assumed that the type Relation,
parameterised by a tuple type, has been previously defined. The program next constructs
representations of the input relation types and passes them to the generator joinGenerator to
obtain an any containing a join procedure specific to those types. The identifier psJoin is
bound to that procedure. To do this the any must be projected onto a specific type: the
program specifies the expected type of the procedure, written after the reserved word onto. If
the type is correct it is the new procedure value, renamed join, which is bound to psJoin.
Otherwise an error is reported and a dummy procedure (dummyJoin, assumed to have been
defined earlier) is bound. Such a failure would only occur if there was an error in the generator
procedure which produced the join procedure representation.

type part is structure(partName : string ; partNumber : int)
type supplier is structure(supplierName : string ; partNumber : int)
type partSupplier is structure(partName : string ; partNumber : int ;

supplierName : string)

! Representations of Relation[part] and Relation[supplier].
let partRelationRep = …
let supplierRelationRep = …

let wrap = joinGenerator(partRelationRep,supplierRelationRep)
let psJoin = project wrap as join onto

proc(partRelation,supplierRelation → partSupplierRelation) : join
default : { write("compilation failure") ; dummyJoin }

let parts = … ! Construct instance of Relation[part].
let suppliers = … ! Construct instance of Relation[supplier].

let partsAndSuppliers = psJoin(parts,suppliers)

Figure 2.2: Using a reflective procedure

A new program like that in Figure 2.2 must be written and compiled for each different pair of
relation types to be joined. Though the types of the inputs and of the result must be written

6

down in each case, the algorithms to perform the different joins are synthesised automatically.

The dynamic type check which takes place at the projection of the any value ensures that the
reflection process is entirely strongly typed: even if the representation produced by
joinGenerator was not valid code there would be no threat to the integrity of the language
system as the default branch would be followed. This illustrates a restriction of this style of
reflection. Although it is possible for a generator to produce the representation of some value
whose type is not known statically, such a value cannot be used in a program because a static
type assertion must be made at the point of the projection from any.1

2.2 The impact of persistence
Persistence allows the programmer to view data as having a single form throughout its life,
removing the need for explicit translations between short-term program formats and long-term
storage formats. The language Napier88 provides orthogonal persistence, that is any data value
may persist for an arbitrary length of time irrespective of its type. This has the benefits that:

• it removes the need to write code to translate long-term data between different formats;

• and it allows values of all types including closures and abstract data types to persist beyond
a single program execution. It is not possible to arrange this in a strongly typed language
without a built-in persistence mechanism as there is no way to access all the details of such
values in order to ‘flatten’ them to write them to the file system, or to reconstruct the values
from flattened representations.

Persistence is relevant to reflection in several ways: reflection can be used to solve some prob-
lems associated with large persistent systems; the use of persistence allows some reflective
algorithms to be implemented more efficiently; and persistence allows run-time reflective lan-
guages to simulate the capabilities of compile-time reflective languages. These will be
illustrated in turn.

2.2.1 Data evolution

One problem with large, data-intensive, strongly-typed systems is that of data evolution: the
form of the data will change as the applications which use it are inevitably modified. With large
amounts of data there is a need for generic tools to organise the update of existing data and
ensure that it remains consistent. Some of these tools can be built using reflection.

For example, it might be necessary to change an attribute name of a relation in the persistent
store. A non-reflective procedure could be written to create a new relation with appropriate
attribute names and copy the data into it from the existing relation. However, that procedure
would have built into it the types of both the existing and new relations, giving it little potential
for reuse.

Instead a generator can be written, parameterised by a representation of the type of the existing
relation and the attribute name to be changed, which generates the representation of a procedure
to perform the update. Reflection can then be used to convert that representation to an exe-
cutable form. The benefit of this approach is that the same generic procedure can be used for
changing any attribute name in any other relation.

2.2.2 Reflective algorithm implementation

The process of compilation is relatively expensive—so the reflective technique described gives

1In fact this is not quite true: the value could be stored or manipulated in its any form, thus browser technology
[DB88,DCK89,KD90] could be used to discover its structure.

7

the greatest efficiency gains over interpretation in cases where the value produced by reflection
is used many times after its creation. Persistence allows the compilation cost to be amortised
over many program executions rather than a single one. This can be done by storing the
compiled forms of all calls to a generator in a persistent table, keyed by the type representations
used to create them. Before another call to the generator is made the table is scanned to
discover whether the current type representations have been used before. If so the
corresponding value in the table is used and no compilation is necessary.

This technique can be applied to the examples of natural join and data evolution given earlier.
The degree of efficiency gained depends on several factors including the size to which the tables
grow, the frequency of hits, and the cost of scanning the tables. Note that entries can be deleted
from the tables if necessary without affecting anything other than the speed of future calls.

2.2.3 Run-time and compile-time reflection

Orthogonal persistence allows generators to be persistent, giving control over the time at which
the compilation costs are incurred. There is as always a trade-off between flexibility and
efficiency. Consider for example a generator which produces procedures to display values of
any type, as might be used in a store browser application. One strategy is to keep the generator
in the persistent store and evaluate it whenever the browser is executed, giving a procedure
specific to the required type which can then be called. This gives high flexibility and low
storage overhead, at the cost of a compilation on every execution.

Alternatively the generator can be evaluated repeatedly for selected types at the time the applica-
tion is built, and only those procedures produced made persistent. This gives greater efficiency
at execution time, but the browser is now less flexible: it will only work for the types which the
programmer thought of at the outset. The storage required is also greater, with wastage if some
of those types are never encountered. Finally a persistent cache can be used, as described in
Section 2.2.2. This is a scheme which has been used to build browsers [DB88,DCK89,KD90].

There exist applications of run-time reflection which cannot be implemented with compile-time
reflection: one example will be shown in Section 3. Furthermore, run-time reflection has all the
power of compile-time reflection. Because generators can be persistent, the reflection can be
performed as early or as late in the program construction process as required.

3 The Language TemplateNapier
A major problem with existing reflective languages is that it is difficult to write and to
understand reflective programs in these languages. The messier details of the generator
procedure in Figure 2.1 were omitted but further examples of reflective programming in several
languages are given in Section 4, where issues affecting the programs’ understandability are
discussed. This section describes a new version of the Napier language designed to improve
the interface to the reflective facilities.

The language TemplateNapier is derived by extending Napier88 with a new language construct,
the template. A template is a generator: it takes as parameters both types and values and
produces source code representations. When a template is evaluated at run-time the
TemplateNapier source code produced is compiled and, if successful, the result bound into the
program. In the current version of TemplateNapier the type string is used to represent source
code and the form of the language reflects this. Future experiments will involve other represen-
tations such as abstract syntax graphs.

3.1 Template definitions
A template definition begins with the reserved word template followed by any number of type
parameters enclosed in square brackets and value parameters in round brackets. Following the

8

template header is a body whose type is string (or whatever other form of code representation
is used). The last expression in the body defines the code representation produced by the
template.

The example in Figure 3.1 shows the definition of a template that takes as parameters a
structure type2 and the name of one of its fields, and generates the representation of a procedure
to write out the value of that field for given instances of the structure type. This could not be
implemented without reflection in any language that requires structure field names to be known
statically.

The program binds the identifier mkWriteField to a template with one type parameter, T, and
one value parameter, field, of type string. Inside the body of the template the identifier repn is
bound to a representation of the type parameter, obtained by writing the reserved word repof
before the type identifier. The type representation obtained is of type typerep, a base type in
the language. The programmer cannot examine the structure of a type representation directly;
instead, a number of standard procedures which operate over type representations are brought
into scope automatically at the beginning of each template definition. In the fifth line of the
program the standard procedure constructorName is used to discover what kind of type is
represented by the type parameter. If the parameter is not a structure type an error is reported,
and the string produced by the template will not represent valid code.

The resulting code representation lies at the end of the template body. The first line of it
contains a type definition for the type which was passed to the template, binding it to the name
T1. The rest contains the definition of a procedure which takes a value of type T1 as its param-
eter. Embedded within the code representation are two string expressions enclosed by the
markers code< and >. When the template is evaluated these expressions are themselves
evaluated and the resulting strings concatenated with the surrounding code. The first
expression uses the standard procedure typerepDefn to obtain a string representation of the
typerep while the second inserts the value of the parameter field into the code. The code
markers thus provide syntactic sugar for string concatenation. Note that TemplateNapier, like
Napier88, uses brackets to denote structure dereference e.g. a(b) to denote the field b of
structure a.

let mkWriteField = template[T](field : string)
begin

let repn = repof T ! Get representation of type.
if constructorName(repn) ~= "structure" do

write("not a structure type")

! The source code produced.
"type T1 is code< typerepDefn(repn) >
proc(instance : T1)

write(instance(code< field >))"
end

Figure 3.1: A template definition
3.2 Evaluating templates
Reflection is achieved in TemplateNapier by use of the evaluate clause; this is the only
reflective construct in the language. Execution of an evaluate clause causes the execution of a
template body to produce some source code, compilation of the source code to give a language
value (or failure), a type check on the value, and if successful the binding of the value into the

2Structure type in Napier88 and TemplateNapier is synonymous with record type.

9

program.

An evaluation of the template defined in Figure 3.1 is shown in Figure 3.2. The program
begins with a definition of the structure type Person which will be used as the type parameter.
An instance of Person, fred, is created and the procedure readString is used to prompt the user
for the name of the field to be written out, bound to the string identifier desiredField. The
template is then evaluated. Note that this takes place at run-time. The template is passed the
appropriate number of type and value parameters, in this case Person and desiredField
respectively, and the name writeTheField is given to denote the result of the evaluation. The
type Person is passed directly rather than the programmer having to obtain a value which
represents it, a problem which was glossed over in Section 2.1.2.

Following the reserved word to is a list of type expressions, each followed by a program clause,
and the word default also followed by a program clause. In the example there is only one type
expression in the list, proc(Person). The name for the result of the evaluation, writeTheField,
is in scope in the program clauses up until default. The body of the template is executed to
produce some source code representation which is then compiled and writeTheField initialised
with the result. The type of the result is compared with the types in the list and the clause
following the first type to match is executed. If no types match the result the code following
default is executed. Thus a dynamic type check on the result of the reflection takes place,
ensuring strong typing.

! The type the result procedure will work for.
type Person is structure(name,address : string)

let fred = Person("alfred","32 south street") ! An instance of Person.
write("Which field?") ! Prompt user for a field name.
let desiredField = readString() ! Get the field name as a string.

evaluate mkWriteField[Person](desiredField) as
writeTheField to

proc(Person) : writeTheField(fred) ! Result had expected type.
default : write("invalid field name entered") ! Compilation failed.

Figure 3.2: Evaluating a template

If this program is executed and the user types in “address” the template is evaluated to produce
the code representation shown in Figure 3.3. If the user supplies any string other than “name”
or “address” the code fails to compile and the error following default is reported.

"type T1 is structure(name,address : string)
proc(instance : T1)

write(instance(address))"

Figure 3.3: Code produced by evaluation of template mkWriteField

The code representation produced by the evaluation of the template in this example does not
itself contain any template definitions or evaluations. However, templates are first class values
in the language and may in general produce code that contains other templates, that are them-
selves evaluated when that code is executed.

In the current version of TemplateNapier the evaluation of templates always takes place at run-
time. However it might be possible to implement a version in which evaluation could occur at
compile-time in cases where the template parameters and all the identifiers referred to in the

10

template body were manifest. This could allow compile-time and run-time reflection to be inte-
grated using a single mechanism—this is the subject of current research.

3.3 Bindings within templates
It has been shown how the values produced by templates can be bound into running programs
using the evaluate construct. It is also possible to bind values from a running program into a
template, using the eval construct illustrated in Figure 3.4. If the template t is evaluated then
when the execution of the template body reaches the point ① where the code representation is
defined, the current R-value of the identifier anInt is bound into the code representation. Thus
when the resulting procedure is executed the identifier intValue is initialised with the value 3
which is then written out.

let anInt = 3
let t = template[T]()
begin

…

① "proc() ; begin
let intValue = eval< anInt >
writeInt(intValue)

end"
end

Figure 3.4: Use of the eval construct

The eval mechanism can be used to bind to the value of any identifier or expression in the static
scope at the point of the definition of a template result. Note the difference between this and the
code mechanism which enables pieces of code representation to be joined together.

3.4 Templates: miscellaneous
3.4.1 Viewing code generated by a template

For debugging purposes it may be useful to examine the code representation constructed in the
evaluation of a template. This can be achieved using the textof construct shown in Figure 3.5.
Executing this program results in the identifier procedureText being bound to the code string
shown in Figure 3.3.

… ! Code as in Figure 3.2.
let procedureText = textof mkWriteField[Person](desiredField)

Figure 3.5: Obtaining the code produced by an evaluation

3.4.2 Equality of typereps

Equality over type representations, instances of the base type typerep, is defined as structural
equivalence3. This allows the programmer to test a type parameter for equivalence to some
other type, even though the definition of that type may lie in another program. For example a

3There are some exceptions to this; they are the same exceptions that are specified in the Napier88 type matching
rules.

11

template definition might begin as follows:

let x = template[A]()
begin

if repof A = repof structure(name : string)
then …
…

Here the type A is tested for structural equivalence with the given anonymous structure type.

3.4.3 Escapes in string literals

The strings "code<", "eval<" and ">" are used as markers to indicate special regions of string
literals. They can be included without being interpreted as markers by preceding them with
apostrophes. For example the string "a '> b" written in a template denotes the string "a > b".

3.4.4 Template types

In order to pass a template as a procedure parameter or bind to it in the persistent store it is
necessary to be able to write its type. For example the types of the templates mkWriteField and
t defined in Figures 3.1 and 3.4 respectively are written:

template[T](string)

and template[S]()

Any names could be used here in place of T and S. Two templates have the same type if they
have the same number of type parameters and value parameters and the corresponding value
parameters in both templates have the same type. The names of the parameters do not have to
be the same.

3.4.5 Standard procedures

The essence of reflection is the analysis of existing programs and the synthesis of new ones:
many of the computations involved can be pre-coded and made available to the programmer. In
TemplateNapier this is achieved by bringing a set of standard procedures into scope
automatically at the beginning of each template. Some of these manipulate type representations;
they are implemented at a level below TemplateNapier and cannot be written in the language.
The other procedures are written in TemplateNapier and are provided for convenience rather
than by necessity. Some manipulate other source code constructs besides type representations;
others perform utility functions such as vector manipulation. A description of the full set of
standard procedures is given in the Appendix.

3.4.6 Current implementation

The current prototype of TemplateNapier is written in Napier88 and is implemented as a
reflective layer above Napier88. It translates TemplateNapier programs into Napier88 programs
which are then compiled. This prototype version does not allow templates to produce reflective
code.

4 Analysis of Reflective Programming
In this section an attempt is made to identify some factors that make it more difficult to write
and understand reflective programs than conventional programs.

12

4.1 Code categories
A reflective program contains a mixture of several different kinds of code with respect to their
role in reflection. The infinite set of valid TemplateNapier expressions can be grouped into a
series of categories of decreasing generality. The first contains the entire set of TemplateNapier
expressions, the second contains the non-reflective expressions from the first, while the last two
sets contain only expressions which themselves represent other code. These categories will be
referred to by the following names respectively: the general category, the general non-
reflective category, the codeRep category and the manifest codeRep category. There is a
subset relation between these categories:

manifest codeRep ⊂ codeRep ⊂ general non-reflective ⊂ general

The definitions of the categories are now elaborated:

manifest codeRep

contains any manifest code which has the type used to represent source code, type string in the
current version of TemplateNapier. Expressions in this category are themselves representations
of code and because they are manifest, i.e. fixed at compile-time, they always produce the same
code representation when evaluated.

example: "proc(x : int → int) ; x * x"

codeRep

contains all expressions which represent source code. The category includes arbitrary
expressions and so the code represented by an expression may vary between evaluations.

example: "let x = y + " ++ readString()

Here the ‘++’ indicates string concatenation, and the standard procedure readString
returns a string input by the user. The code represented by this expression will vary
depending on what string is input.

general non-reflective

This contains any code of any type so long as it does not include template definitions or evalua-
tions. This category includes all legal Napier88 code.

example: proc(x : int → int) ; x * x

This is a procedure literal whereas the example of manifest codeRep code was a
string representation of that literal.

general

contains all TemplateNapier code of any type. Code may contain reflective constructs.

example: evaluate x[int]() as result to …

13

4.2 Interactions between categories
A TemplateNapier program consists of general code. Template definitions within it contain a
combination of codeRep and manifest codeRep code. They may also contain general code.
When the codeRep and manifest codeRep code is evaluated, due to the execution of an
evaluate clause at run-time, it produces the representation of new general code, which is then
compiled and evaluated. If that new code itself contains reflective constructs its evaluation will
involve further compile/evaluate cycles which continue until general non-reflective code is
produced. The value obtained by evaluating that code is bound to by the running program.
This is shown in Figure 4.1:

Reflective Program
(general level)

codeRep level

manifest
codeRep level

general non-
reflective level evaluate representation

of general level
compile

evaluatelanguage
value

bind back into program

template definition

general non-
reflective level

executable
code

reflective
constructs?

N

Yevaluate

Figure 4.1: Interactions between code categories

In examining even a simple reflective program the user is presented with a mixture of 3 cate-
gories of code with different roles in the reflective process. Consider the categories of code in
the template definition shown in Figure 4.2. The manifest codeRep code is shown in outline
style, the codeRep code in italic and the general code in plain text. In order to reduce
confusion the reserved words have not been emboldened.

let mkWriteField = template[T](field : string) ! Plain text is general code.
begin

let repn = repof T

"type T1 is code< typerepDefn(repn) > ! Italic text is codeRep code.
proc(instance : T1) ! Outline text is manifest codeRep code.

write(instance(code< field >))"
end
…
evaluate mkWriteField[Person](desiredField) as writeTheField to
…

Figure 4.2: Code categories in a template definition

The string literal denoting the result of the template contains manifest codeRep code, except
for the parts enclosed in code brackets, which contain codeRep code. The general code before
the string literal is executed when the template is evaluated. The codeRep code is also executed
then, to produce the representation of some new general code, but the manifest codeRep code
is not executed at that stage. It is composed with the new code produced by the codeRep code.

14

Consider the evaluation, at run-time, of a template which produces non-reflective code. Two
distinct code execution phases occur. The first is that described above, producing the represen-
tation of some general code. That representation is then compiled, and, if the compilation is
successful, executed to give the result value. Thus in the first phase it is the existing general
non-reflective code and the codeRep code which is executed, while in the second phase it is
the manifest codeRep code and the new general non-reflective code. If the template
constructs reflective code there is an evaluation cycle which continues until non-reflective code
is produced.

The different code categories within a template definition appear different to the programmer.
The general code and manifest codeRep code looks similar, the only difference being that the
code in the two categories is executed during different evaluation phases. However, the
codeRep code looks different because it may encode an infinite number of different segments
of general code, depending on the environment in which it is evaluated. In trying to understand
a template definition, the programmer attempts to visualise the code which it would produce for
a particular set of input types and values. To do this it is necessary, mentally, to compute the
resulting general code and to compose it with the manifest codeRep code. Even if the
computation itself is not hard, the composition is, because of the discontinuity between the cate-
gories. Some parts of the resulting code are derived directly from the manifest codeRep code
in the program, whereas the other adjoining parts are obtained only as a result of computation.
The visualisation task is even more difficult where multiple levels of reflection take place and it
is not clear whether that facility will find practical applications. It may be possible to produce
tools which aid the programmer in understanding reflective programs: one idea is described in
Section 4.5.

4.3 Code categories in other languages
4.3.1 TRPL

TRPL is a statically typed language that supports compile-time reflection [She90]. Figure 4.3
shows the code categories in a fragment of TRPL code which performs a function similar to
that of the template mkWriteField shown in Figure 3.1:

macro WRITEFIELD(field); @ Plain text is general code.
EREP(fred.f, f := field); @ Italic text is codeRep code.

@ Outline text is manifest codeRep code.
person = struct make_person(name:string,address:string);
variable fred : person := make_person("alfred","32 south street");
PRINT(WRITEFIELD(address));

Figure 4.3: Code categories in TRPL

The reflection occurs in the macro WRITEFIELD. The body of the macro consists of a call to
the pre-defined macro EREP, which expands to a graph representation of the code passed to it.
That code is fred.f, where f is substituted by whatever field name has been passed to
WRITEFIELD. Although a graph form of code representation is used this is disguised by
EREP which allows the manifest codeRep code to be written textually. The optional
substitutions written after the main code fred.f provide the means for linking in the codeRep
code. In this case there is one substitution for f. Following the macro definition there is the
definition of type person and the creation of an instance fred. Finally the macro WRITEFIELD
is called to produce code to dereference a field of fred, and the pre-defined macro PRINT used
to write out the result. The expansion of these macros takes place at compile-time; after their
expansion the program contains no reflective constructs. The type checking that is necessary
for strongly typed linguistic reflection occurs as normal during compilation of the expanded
program.

15

For simplicity this trivial example has been used; it does not demonstrate the full power of
TRPL. Here the field name address has to be manifest so the field to be written out cannot
depend on user input at run-time, unlike the TemplateNapier example. Some more useful ex-
amples of reflection in TRPL are given in [SS91].

4.3.2 PS-algol and Napier88

The language PS-algol [PS88] is a predecessor of Napier88. Both languages handle reflection
in a similar way and reflective programs written in PS-algol and Napier88 have the same
categories as TemplateNapier. Figure 4.4 shows how the field selection example can be written
in PS-algol.

The program begins with the definition of the procedure mkWriteField which takes as
parameters string representations of a structure class and a field name, and produces a string.
The structure class representation plays the same role as the structure type representation in the
TemplateNapier implementation. The string produced by mkWriteField is the representation of
another procedure which itself takes a single parameter of type pntr, the infinite union of all
structure types, and writes out the value of one of its fields.

let mkWriteField = proc(string structureClass,field → string)
begin

let structureDefn = … ! Construct string representation of
! structure definition using structureClass.

"structure T1 " ++ structureDefn ++ ! Italic text is codeRep code.
"proc(pntr instance) ! Outline text is manifest codeRep code.

write(instance(" ++ field ++ "))"
end
structure Person(string name,address)
let fred = Person("alfred","32 south street")
write("Which field?")

let desiredField = readString() ! Get the field name as a string.

let procText = mkWriteField(class.identifier(fred),desiredField)
structure procHolder(proc(pntr) writeProc)
let dummyProcHolder = procHolder(proc(pntr a) ; {})
let resultHolder = compile(procText,dummyProcHolder)
let writeTheField = resultHolder(writeProc) ! writeTheField is of type proc(pntr).

writeTheField(fred)

Figure 4.4: Code categories in PS-algol

After the definition of mkWriteField the structure class Person is defined, an instance created,
and a field name obtained from the user. The standard procedure class.identifier is used to
obtain a representation of the structure class Person which is then passed to mkWriteField to
produce a procedure representation. The interface to the compiler is more complex than in
Napier88: as well as the source representation it takes a pointer to a structure of the appropriate
type to contain the compilation result. The compiler checks the type of the result against it and
then returns another instance of that structure type containing the result. Finally the structure is
dereferenced to give the procedure writeTheField which is called with the parameter fred.

The main point of this example is to show how the categories are differentiated. The manifest
codeRep code is that enclosed by quotes, and the codeRep code is composed with it using
string concatenation. There is no convention dictating where the codeRep and manifest

16

codeRep code should occur within the program, and the user may not be able to tell from a
superficial examination of the program which string expressions are involved in reflection and
which are used in other ways.

4.3.3 PS-algol with place-holders

Cooper has used reflection in PS-algol for, among other things, constructing data models
[CAD87,Coo90]. To improve the readability of reflective programs he created a variant of the
language in which place holders can be used to indicate the variable parts of a generator, the
codeRep code. Figure 4.5 shows the example from Figure 4.4 written in this way. The
procedure mkWriteField now returns a pointer to a structure containing the compiled procedure,
rather than the source text. When the ‘procedure’ replace is called the place holders, written in
capital letters preceded by #, are replaced by the specified text.

structure procHolder(proc(pntr) writeProc)
let mkWriteField = proc(string structureClass,field → pntr)
begin

let structureDefn = … ! Construct string representation of
! structure definition using structureClass.

let program =
begin

structure T1 #STRUCTUREDEFN
proc(pntr instance)

write(instance(#FIELD))
end
replace(program,#STRUCTUREDEFN,structureDefn)
replace(program,#FIELD,field)
let dummyProcHolder = procHolder(proc(pntr a) ; {})
compile(program,dummyProcHolder)

end
… ! Definitions of Person, fred and desiredField.

let resultHolder = mkWriteField(class.identifier(fred),desiredField)
let writeTheField = resultHolder(writeProc) ! writeTheField is of type proc(pntr).
writeTheField(fred)

Figure 4.5: Code categories in PS-algol with place holders

The advantage of this approach is that the generator is easy to read: the manifest codeRep
code within the definition of program looks just like normal general code. It is also easy to
pick out the codeRep code, the parts of the generic definition which vary between instantiations,
as each section is indicated by a place holder.

The cost is in complicating the type system. In the example program and the place holders do
not have well-defined types, replace is a macro rather than a procedure and program is defined
as though it were a procedure but treated as a string. This may be confusing to the pro-
grammer. In the design of TemplateNapier the intention was to use a similar method to improve
readability while conforming to the spirit of the type system of the parent language.

4.4 Decisions in designing a reflective language
This section identifies desirable features in a reflective language and some of the choices to be
made in designing such a language.

17

4.4.1 What are the goals?

The language should be powerful and understandable. This suggests the following:

• The type system should be coherent and simple.

• Code in different categories should be linked together without undue syntactic noise. At the
same time it should be easy to identify the role of a given section of code in the reflective
process, and to distinguish which code is fixed and which is produced as the result of
computation.

• There should be mechanisms allowing programs to bind to values created by reflection, and
allowing those values to contain bindings to values in the programs which created them.
Ideally a simple mechanism will support a wide spectrum of binding times.

4.4.2 What are the choices to be made?

• In what form is code represented in the language? Some possibilities are the string, as used
in PS-algol, Napier88 and TemplateNapier, the abstract syntax graph as used in TRPL, or a
combination of both.

• When can reflection take place? The possibilities are at compile-time, at run-time, or a com-
bination of both. It is not known of any languages which support both facilities; this is a
current research topic.

• How is the code produced by generators distinguished from normal code and the different
categories of generated code distinguished from one another?

• Does the definition of the code produced by generators appear at predictable points within a
program? In the languages described this is under the control of the programmer who
decides whether the definitions occur at the end of the generators (templates or procedures),
which is probably the most understandable, or are distributed throughout the program.

• What pre-defined abstractions are available to the programmer for manipulating code repre-
sentations? PS-algol and Napier88 have none built in, while the sets of abstractions
provided by TRPL and TemplateNapier are broadly similar.

• Is meta-reflection possible? This occurs when the code produced by a generator itself
contains reflective constructs. It is possible in all the languages that have been discussed
but whether it is of practical use is not clear.

4.4.3 What factors affect understanding?

Practical experience in writing reflective programs has shown that they are considerably more
difficult to write and understand than conventional ones. Some reasons for this are:

• A reflective program describes a potentially infinite class of programs rather than a single
one. To understand it the programmer first must analyse the computation which constructs
the resulting program and then abstract out the essential features of all the possible results.
It is the existence of manifest codeRep code which makes this possible at all. It provides a
constant framework around which the variable parts of the target computation are
distributed.

• The codeRep and manifest codeRep categories appear different even though they both
represent parts of the target computation. Once evaluated their results are integrated seam-
lessly but this is not apparent from the source program.

• Different code categories are evaluated at different times in the evaluation of a generator. In

18

the situation without meta-reflection there are two stages: during the first the general and
codeRep code is evaluated to produce general non-reflective code, and during the second
that code is evaluated together with the original manifest codeRep code to give a final
result. The user has to remember that adjacent parts of the reflective program may not be
evaluated together. They may also be evaluated in different environments; the code and
eval mechanisms in TemplateNapier exist to allow values from the environment in which
the source code is evaluated to be bound into the result code.

• The programmer must understand several mappings between code categories. These are:

• between general code and its representation as used in manifest codeRep;
• between general code and its representation used in code manipulation functions;
• and between codeRep code and the general code to which it evaluates.

The first two are normally the same but they could be different. It might be more con-
venient to view the code as text in manifest codeRep and as abstract syntax for
manipulating it.

• It is hard to read abstract syntax in textual form. This was used for the manifest codeRep
code in early versions of TRPL, but the current version provides automatic conversion from
a normal textual representation to abstract syntax.

4.5 Graphical interfaces
One way to reduce the syntactic noise in a reflective program might be through the provision of
graphical tools. Figure 4.6 shows how a tool for editing template definitions in TemplateNapier
might look (it has not yet been implemented). A group of windows displays the definition of
the template from Figure 4.2. The main window contains edit-able sub-windows labelled types,
parameters and prelude which show respectively the names of the type parameters, the names
and types of the value parameters, and the main template code. The code sub-window shows
the definition of the result code: the manifest codeRep code with a number of embedded
buttons, one for each section of codeRep code. When one of these is pressed, another window
containing the corresponding code appears.

19

types: parameters:

prelude:

code:

field : stringstructureType

type T1 is typeDefn
proc(instance : T1)
 write(instance(fieldName))

typeDefn:

typerepDefn(repn)

let repn = repof structureType
if constructorName(repn) ~= "structure" do write("not a structure type")

fieldName:

field

Figure 4.6: Window interface for a template

The advantages of using this interface to edit template definitions are:

• The generic form of the template is emphasised through the display of the manifest
codeRep code in the main window. This shows the parts which are common to all instan-
tiations of the template.

• Because that code is displayed in a separate window from the general code, it does not need
to be enclosed in quotation marks. This makes it look more like real code and less like the
representation of code.

• Using separate windows for the codeRep code removes the necessity for awkward markers
embedded within the manifest codeRep code. The buttons within the main window make
it obvious where the evaluation dependent code lies.

5 Conclusions
This paper has described how the technique of strongly typed linguistic reflection can be useful
in implementing efficient generic code. This is relevant to persistent systems in that the
technique can be used to build generic tools for manipulating strongly typed data. The facility
of orthogonal persistence also allows the use of cacheing to further improve the efficiency of
the technique.

Some short-comings in several existing reflective languages have been identified, and a new per-
sistent reflective language based on Napier88 introduced. A prototype implementation of the
language, TemplateNapier, has been completed. The design aim is to provide reflective con-
structs which are integrated harmoniously with the other language features inherited from
Napier88.

20

The paper concludes with an attempt to analyse the reasons why reflective programs are hard to
understand, and identifies a number of choices facing the designer of a reflective language.

6 Acknowledgements
I thank Ron Morrison, Richard Connor and Quintin Cutts at St Andrews, and Tim Sheard, Dave
Stemple and Leo Fegaras at Amherst, for helpful comments, advice and discussions.

This work was supported by an SERC PhD studentship and by SERC Grant GR/F 02953.

7 References
[CAD87] R. L. Cooper, M. P. Atkinson, A. Dearle and D. Abderrahmane, “Constructing

Database Systems in a Persistent Environment”, Proc. 13th Int. Conf. on Very
Large Data Bases pp 117-125 (1987).

[Coo90] R. L. Cooper, “On The Utilisation of Persistent Programming Environments”, PhD
Thesis, University of Glasgow Research Report CSC 90/R12 (1990).

[CW85] L. Cardelli and P. Wegner, “On Understanding Types, Data Abstraction, and
Polymorphism”, ACM Computing Surveys Vol 17 No 4 pp 471-523 (1985).

[DB88] A. Dearle and A. L. Brown, “Safe Browsing in a Strongly Typed Persistent
Environment”, Computer Journal Vol 31 No 6 pp 540-544 (1988).

[DCK89] A. Dearle, Q. I. Cutts and G. N. C. Kirby, “Browsing, Grazing and Nibbling
Persistent Data Structures”, In “Persistent Object Systems”, J. Rosenberg and D.
Koch (eds), Springer-Verlag pp 56-69 (1989).

[KD90] G. N. C. Kirby and A. Dearle, “An Adaptive Graphical Browser for Napier88”,
University of St Andrews Research Report CS/90/16 (1990).

[MAE62] J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart and M. I. Levin, “The
Lisp Programmers’ Manual”, M.I.T. Press, Cambridge, Massachusetts (1962).

[MBC89] R. Morrison, A. L. Brown, R. C. H. Connor and A. Dearle, “The Napier88
Reference Manual”, Universities of Glasgow and St Andrews PPRR-77-89 (1989).

[PS88] “PS-algol Reference Manual, 4th edition”, Universities of Glasgow and St
Andrews PPRR-12-88 (1988).

[SFS90] D. Stemple, L. Fegaras, T. Sheard and A. Socorro, “Exceeding the Limits of
Polymorphism in Database Programming Languages”, Lecture Notes in Computer
Science Vol 416, Springer-Verlag, pp. 269-285 (1990).

[She90] T. Sheard, “A user’s Guide to TRPL: A Compile-time Reflective Programming
Language”, University of Massachusetts COINS Technical Report 90-109 (1990).

[SS91] T. Sheard and D. Stemple, “Examples in TRPL”, University of Massachusetts
COINS Technical Report (1991).

[SSS92] D. Stemple, R. B. Stanton, T. Sheard, P. Philbrow, R. Morrison, G. N. C. Kirby,
L. Fegaras, R. L. Cooper, R. C. H. Connor, M. P. Atkinson and S. Alagic, “Type-
Safe Linguistic Reflection: A Generator Technology”, in preparation.

21

[Str67] C. Strachey, “Fundamental concepts in programming languages”, Oxford
University Press, Oxford (1967).

Appendix: Standard Code Manipulation Procedures
This Appendix shows the types of the standard code manipulation procedures which are
automatically brought into scope at the beginning of each template definition.

!*** Determines whether the type is a base type.
let baseType = proc(repn : typerep → bool)

!*** Returns type name if a base type, null string otherwise.
let baseName = proc(repn : typerep → string)

!*** Returns the text of a definition of the type.
let typerepDefn = proc(repn : typerep ; name : string → string)

!*** Returns constructor name if a constructed type, null string otherwise.
let constructorName = proc(repn : typerep → string)

!*** Returns the field names of a structure type.
let structureFieldNames = proc(repn : typerep → *string)

!*** Returns the field types of a structure type.
let structureFieldTypes = proc(repn : typerep → *typerep)

!*** Returns the constancies of the fields of the given structure.
let constancyMap = proc(structureInst : any → *bool)

!*** Returns the branch names of a variant type.
let variantBranchNames = proc(repn : typerep → *string)

!*** Returns the branch types of a variant type.
let variantBranchTypes = proc(repn : typerep → *typerep)

!*** Returns the type of the value injected into an any.
let injectedType = proc(a : any → typerep)

!*** Returns element type for a vector type, niltyperep otherwise.
let vectorElementType = proc(repn : typerep → typerep)

!*** Returns argument types for a procedure type, vector containing niltyperep otherwise.
let procArgumentTypes = proc(repn : typerep → *typerep)

!*** Returns result type for a procedure type, niltyperep for void or non-proc type.
let procResultType = proc(repn : typerep → typerep)

!*** Makes the representation of a structure type from vectors of names and types.
let mkStructType = proc(fieldNames : *string ; fieldTypes : *typerep → typerep)

!*** Makes the representation of a variant type from vectors of names and types.
let mkVarType = proc(branchNames : *string ; branchTypes : *typerep → typerep)

22

!*** Makes the representation of a procedure type from the argument and result types.
let mkProcType = proc(args : *typerep ; result : typerep → typerep)

!*** Makes the representation of a vector type from the element type.
let mkVectorType = proc(element : typerep → typerep)

!*** Concatenates the elements of the vector separated by the given string.
let iterate = proc(separator : string ; elements : *string → string)

!*** Concatenates the elements of the vector, after transformation, separated by given string.
let iterate2 = proc(separator : string ; elements : *string ;

transform : proc(string → string) → string)

!*** Constructs new vector from all the first elements, another from all second elements, etc.
!*** Concatenates each new vector and concatenates the results, separated by the given string.
let iterate3 = proc(separator : string ; elements : **string ;

concat : proc(*string → string) → string)

!*** Returns all the elements of the first vector which are also present in the second.
let intersect = proc[T](first,second : *T → *T)

!*** Returns all the elements of the first vector which aren’t present in the second.
let diff = proc[T](first,second : *T → *T)

!*** Returns index at which target occurs in vector, or zero if not found.
let position = proc[T](target : T ; vec : *T → int)

!*** Appends one vector to another.
let concat = proc[T](first,second : *T → *T)

