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ABSTRACT 

In recent years a range of single programming language systems have been 
developed that are supported by a persistent store. Examples of such systems 
include Argus, Galileo, PS-algol and Smalltalk. Although each of these 
systems is based on a subtly different concept of persistence a common 
approach is to utilise a layered architecture. This paper presents the design of 
one such layered architecture that can be used to support a persistent object 
store where the protection is enforced by a high level type system. The 
architecture has been used to construct the persistent programming system for 
Napier88 and is powerful enough to support languages with similar type 
systems. 

1.  INTRODUCTION 

In recent years a range of single programming language systems have been developed that 
are supported by a persistent store [2, 4, 6, 8, 28, 29]. Examples of such systems include 
Argus [17], Galileo [1], PS-algol [25] and Smalltalk [13]. Although each of these systems is 
based on a subtly different concept of persistence a common approach is to utilise a layered 
architecture. This paper presents the design of one such layered architecture that can be used 
to support a persistent object store where the protection is enforced by a high level type 
system. The architecture has been used to construct the persistent programming system for 
Napier88 [22] and is powerful enough to support languages with similar type systems, for 
example Galileo, Hope+ [24] and Staple [20]. 

The architecture is able to support programming languages that utilise the concept of 
orthogonal persistence. Orthogonal persistence requires the persistence abstraction to be 
applicable to all data types without regard to their lifetimes or patterns of use. That is, all data 
in a system may be manipulated independently of its physical location, size, storage format, 
storage media or any other physical property it may exhibit [3]. 

A persistent store that supports orthogonal persistence has certain perceived properties. For 
example, since the storage format of data is hidden, a persistent store may be viewed as a 
uniform store. Its size is also conceptually unbounded since the physical properties of the 



storage media are hidden. Furthermore, failures are hidden with the result that the store must 
appear failure free. 

In practice it is not possible to build a store of unbounded size or one that is failure free. 
However, a wide range of techniques is available that may be used to simulate the properties 
of unbounded size and absolute stability. In section 2 we will discuss some of these 
techniques and distinguish the architectural mechanisms required, namely an addressing 
mechanism, a storage management mechanism and a stability mechanism. The composition 
of a persistent store will then be described in terms of architectural layers that provide the 
required architectural mechanisms. 

An important feature of a persistent system is that all data within the system is subject to the 
protection mechanisms required by the programming languages that manipulate it. 
Consequently, the design of the system architecture must accommodate any interactions 
between the different protection mechanisms that may be applied to shared data. In section 3 
we discuss some possible protection mechanisms. 

Finally, we describe a layered architecture for a persistent system composed from an 
appropriate selection of the protection and storage mechanisms. The resultant architecture, 
that for Napier88, has been implemented on conventional hardware and makes use of a high 
level protection mechanism. 

The strength of the layered architecture is that it is flexible and allows a high degree of reuse 
without compromising efficiency. The architecture is generic in that layers may be replaced 
to expedite experimentation. Thus, many versions of the layers may exist as a set of tools and 
these may be composed, subject to the constraints of the layer interfaces, to yield an instance 
of the persistent architecture. This genericity, based on plug-in tool sets, allows a version of 
the architecture to be appropriately specialised to a particular implementation of a language. 

It is also intended that each of the layers, or groups of layers, may be reused as tools in other 
systems. Indeed, this is exactly what has happened in the implementation of the persistent 
store for the language Staple. 

Finally, in any implementation the layers may be virtual layers. The compiler may, for 
efficiency reasons, wish to avoid mapping through the interfaces. This may be achieved for 
any combination of the layers. Alternatively, as in the case of the Rekursiv [5], hardware can 
be used to implement a layer. 

2.  PERSISTENT STORES OF UNBOUNDED SIZE 

As described above, a store that supports orthogonal persistence has certain perceived 
attributes including uniformity, unbounded size and absolute stability. We shall now describe 
a number of techniques that may be used to simulate a uniform stable store of unbounded 
size. As part of the discussion we shall consider the issues of addressing the object store, 
managing the object store and making the object store stable. 



2.1.  Addressing the Object Store 

The first issue we will consider is how the store may be addressed. There are several levels of 
addressing that may be present in a computer system ranging from the symbolic addresses 
used by a programmer, to the logical addresses used by an instruction set, to the physical 
addresses that must be used by the hardware. 

Since a persistent store appears uniform, a single addressing mechanism is required at the 
external interface in order to provide an appropriate level of abstraction over the entire store. 
Although the store is addressed by this single mechanism, there may be several more 
primitive addressing mechanisms that support it as well as several higher level mechanisms 
that are mapped onto the store interface. For example, the store may be viewed as an object 
space supported by one or more mapping tables that record the physical location of each 
object. In this case access to an object is achieved using a lower level addressing mechanism 
that may be different for each kind of physical storage in which an object may reside. 

In the following sections we show three different levels of addressing abstraction that may be 
used to provide a uniform store. In practice a system may support multiple levels of 
addressing where each level corresponds to one or more of these three abstractions, in any 
combination. 

2.1.1.  Symbolic Addressing 

A persistent store may be addressed purely in terms of symbolic addresses. At this level of 
abstraction the name of an object would be mapped onto a lower level address and a second 
mapping table would map a field name onto a location within the object. The result of the 
two mappings can then be combined to form the address of the desired data within the 
underlying storage. This is illustrated in Figure 1. 

 

Figure 1: Addressing a Field "B" of an Object "A" 

The main advantage of this uniform addressing mechanism is that it may abstract over many 
different physical storage mediums or lower level addressing mechanisms and it imposes no 
limits on the amount of storage that can be addressed. Furthermore, the dynamic name 
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resolution allows a program to operate over any objects that contain data with the required 
field names. 

One disadvantage of this abstraction is that the dynamic resolution of names may be 
inefficient, particularly if no restrictions are placed on the length of symbolic names. This 
disadvantage may be alleviated by only performing the address mapping once and thereafter 
using the lower level address. The optimisation may not always be appropriate since it 
implies the preservation of a binding from the symbolic name to the lower level address. An 
example of a system that utilises dynamic name resolution with this optimisation is the 
Multics system [12]. 

2.1.2.  Object Numbers 

An alternative to symbolic addressing is to view the object store as an object space where 
each object is identified by a number and each field of an object is identified by an offset into 
the object. Thus, an address consists of two components, an object number and an offset. 
These may be provided as a single partitioned integer or as separate integers depending on 
the implementation [5, 12]. This abstraction relies on a mapping table that maps object 
numbers to lower level storage addresses and is illustrated in Figure 2. 

 

Figure 2: Addressing Data Within an Object Using a Partitioned Address 

A major advantage of this addressing abstraction is that the decoding of the object address 
and the offset within the object may be efficiently performed in hardware. The partitioning of 
the address space also supports the dynamic growth and shrinkage of objects, up to the 
maximum length that can be addressed via an offset. Thus stack and file objects may be 
conveniently modelled using this approach. However, there are two potential disadvantages. 

Firstly, the fixed partitioning of the address space imposes a fixed relationship between the 
maximum number of objects that can be created and maximum size of objects that may be 
created. Depending on the chosen partitioning, this ranges from a few large objects to a large 
number of small objects. In the absence of an additional mechanism to concatenate objects 
[6, 9] or the use of large addresses, the abstraction may be unable to cope with a combination 
of a few large objects with large numbers of small objects. 
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The second disadvantage is that the choice of partition size may result in object numbers 
being exhausted before the store is filled. This problem may be overcome by using larger 
addresses with any increased overheads in storage or address translation being minimised by 
the appropriate use of contextual addressing. 

An example of a system that uses this approach is the Rekursiv. The hardware of the 
Rekursiv supports the efficient mapping of object numbers to physical addresses and the 
automatic caching of the first word of an addressed object. The Burroughs B5700/6700 series 
[23] is another example. 

2.1.3.  Virtual Addresses 

The addressing of an object store may also be performed by viewing the entire system 
storage, in all its physical forms, as a flat virtual store and providing a higher level 
architecture to support an object view of this virtual store. This level of abstraction is 
illustrated in Figure 3. There is only one address space at this level of abstraction and it may 
be supported by any one of a number of well known techniques. For example, a paged virtual 
memory mechanism could be used based on conventional hardware. 

The advantages of this scheme are that no mapping table is necessary to locate an object 
within the storage, locations within an object can be directly addressed, conventional 
hardware can be employed, alternative storage organisations can be implemented without 
affecting the addressing mechanism and the address space need not be larger than the 
available physical storage. 

 

Figure 3: Addressing Data Within an Object Using a Direct Address 

A disadvantage of this level of abstraction is that objects may be required to change address 
if the higher level architecture reorganises the mapping of objects onto virtual storage. 
Although a similar problem may arise in higher level addressing mechanisms, the higher 
level mechanisms abstract over the mapping of objects to storage thereby allowing an object 
to be relocated without altering its logical address. 

The MONADS-PC [26] is an example of a system that utilises this level of address 
abstraction within its hierarchy of addressing mechanisms. MONADS supports a very large 
virtual address space the organisation of which is the responsibility of a higher level 
architecture. 
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2.2.  Managing the Object Store 

Each of the above addressing abstractions require a mechanism to organise the available 
storage into objects. Addressing abstractions based on symbolic names or object numbers 
view the organisation of the store into objects as a function of a lower level architecture 
whereas, the virtual addressing abstraction assumes that objects are provided by a higher 
level architecture. In each case the addressing and organisation of the object store may be 
viewed as distinct architectural layers.  

There is a wide variety of techniques that may be employed to organise a store into objects. 
Many of these techniques have been developed for use with programming languages that 
support objects whose lifetimes may be independent of the procedure activations that create 
them. Thus, each technique has had to address the problems of dynamic storage allocation, 
storage reclamation and any associated fragmentation. 

A store organisation can be designed to suit a particular application. However, the 
effectiveness of a particular choice of store organisation is dependent on both the scale of the 
store and the manner in which it is used. This may not be known at the design stage of a 
general purpose system. 

2.2.1.  Simulating Unbounded Size 

The simulation of unbounded size involves managing an object store in such a way that, 
conceptually, it is always possible to create more objects. However, since a physical store is 
of finite size it is necessary to reuse the storage allocated to objects that are no longer 
required. This may be achieved either by explicitly deleting objects or performing some form 
of automatic garbage collection. A further consideration is whether or not the addresses of 
deleted objects may be reused. 

The explicit deletion of objects is employed by systems that can statically determine the 
lifetime of data. For example, if first class procedures are not supported, the storage allocated 
to an activation record can be recovered when a procedure call returns. Explicit deletion of 
objects is also used by programming languages such as C [15] and Pascal [31]. 

A wide range of garbage collection algorithms has been developed and integrated with the 
storage allocation mechanisms of different store organisations [11]. Each of these algorithms 
and their host stores are designed to support a particular pattern of use or scale of data. For 
example, the garbage collector employed in the S-algol [21] heap storage uses a single list of 
free storage [19]. Since S-algol does not create objects at a very high rate the cost of object 
creation and garbage collection only has a small effect on overall system performance. In 
contrast, systems supporting first class procedures may make intensive use of a heap. Such 
systems require the support of sophisticated techniques, for example the buddy system [16] 
or generation scavenging [30], that minimise the overheads involved in storage allocation 
and garbage collection. 

The deletion of an object requires that all references to an object are invalidated. This can be 
achieved by searching the store for all references to the object and removing them. 
Alternatively, indirect addressing could be used and the address mapping for the object 
invalidated. This option requires that addresses not be reused so that the mappings remain 



invalid. In turn, this requires the number of available object addresses to be so large that they 
can never be exhausted. Examples of systems that support this technique include Hydra [10] 
and MONADS. 

2.3.  Simulating Stability 

The persistence abstraction attempts to hide all the physical attributes of data. Consequently, 
the components of a persistent store are also hidden, requiring any failures in the components 
to be hidden. Therefore the persistent store is conceptually failure free, that is, it is stable. 

The potential failures that may occur within a store can be categorised as either being hard 
failures or soft failures. A hard failure is a failure that results in physical damage to the store, 
such as a head crash on a disk. A hard failure destroys data. In contrast, a soft failure is a 
failure that may cause a system to halt, possibly resulting in some minor corruption of data. 
In general, it will not result in the wholesale destruction of data. 

The provision of a stable store must address the issues of protecting data from the potential 
side effects of both hard and soft failures. The techniques for recovering from hard failures 
range from taking complete dumps on removable media to maintaining multiple on-line 
copies. These techniques are out with the scope of this paper and are discussed elsewhere [8]. 
For the purposes of this paper we shall only consider techniques that allow the simulation of 
stability with respect to soft failures. 

2.3.1.  Soft failures 

A soft failure may occur during a series of updates thereby preventing a logical operation 
from completing. As a result, the data held in the store may not be self-consistent. To ensure 
that a store remains self-consistent, it is necessary to perform all updates to the store as some 
form of atomic transaction. That is, a modification either completes or it is totally undone. 
One mechanism for achieving a transaction is to maintain a record of which data has been 
changed, together with either its original value or its intended value. To ensure that the 
appropriate action can be taken on a failure, the record must be placed in stable storage 
before the update takes place. 

The complexity of transaction mechanisms provided by a system may be extremely varied. 
For example, consider a traditional database system such as IBM's System R [14]. System R 
supports several complex transactions operating concurrently, implemented by a combination 
of logging and checkpointing. Logging takes the form of recording all operations on stable 
storage before the operation is performed. In addition to the normal operations, a record is 
kept of any checkpoints. Thus, when a failure occurs, System R can determine from the log 
how to restore its database to a self-consistent state. 

To complement the logging mechanism, System R also provides a simple checkpointing 
mechanism that places the entire stable storage in a self-consistent state. The implementation 
of the checkpointing mechanism is based on shadow paging [18]. In normal operation, 
System R accesses its database via a paging mechanism. When a virtual page is modified, a 
copy of it is written to a new physical page and a mapping created between the two versions 
of the page. The effect of the checkpoint is to update the page mappings so that the modified 



version of each page is treated as the original version. The paging mechanism as described is 
continually forming a record of the changes to the system by preserving the original versions 
of each page. 

In contrast to the complexities of a traditional database system, a persistent object store can 
adopt a much simpler transaction mechanism. Since stability is an orthogonal property of the 
data within a persistent store, a simple checkpointing mechanism is sufficient to ensure that 
the object store remains self-consistent with respect to failures. The checkpointing 
mechanism records incremental changes to the persistent store and may operate on individual 
objects or the storage in which the objects reside. 

Shadow paging is used by the PS-algol/ Shrines system implemented under VAX/VMS [28]. 
Shrines operates by mapping a file holding the persistent store onto the virtual address space 
of a running program. This is achieved by directly manipulating the VMS page tables using a 
special purpose paging algorithm. The purpose of the paging algorithm is to ensure that when 
a page is to be modified, it is first copied and then the copy is modified. In this way, the 
original version of the persistent store is preserved while a new version is incrementally 
constructed. The checkpointing mechanism supported by Shrines allows the new version of 
the persistent store to become the original in a single atomic action. A similar scheme is 
proposed to support stability in the MONADS machine [27]. 

The alternative approach, adopted by systems such as the PS-algol/ CPOMS system [6], is to 
record different versions of an object rather than different versions of a page. In these object 
based systems, the record of changed objects may be in one of two forms. Either it is a record 
of the original versions of the objects, known as a before look, or it is the new versions of the 
objects, known as an after look. A before look may be used to restore the store to a previous 
consistent state, whereas an after look may be used to complete the recorded updates and 
establish a new consistent state. In both cases, an update to the store is not performed until 
the entire before or after look is complete. Hence, the size of a before or after look is 
dependent on the number of updates performed between each checkpoint. 

The choice between a before or after look will depend on the particular use made of a store. 
For example, the design of the CPOMS anticipated that updates to the persistent store would 
contain a large proportion of new objects. Thus, a before look was chosen since it would 
have to record less data than an after look. The act of forming a before look may be 
expensive if additional accesses to a disk are necessary to retrieve the original value. Hence, 
the configuration of a system's buffering mechanisms may determine that an after look is 
more efficient. Ideally, a system using a before look or after look strategy should be able to 
switch between the two depending on the current use of the system. 

2.4.  Composing a Persistent Object Store 

A persistent object store may be implemented by composing a suitable selection of the 
techniques described above. For example, any combination of the three levels of addressing 
abstraction can be adopted to provide a uniform store. The selected addressing abstractions 
can then be combined with a storage management scheme that is able to simulate unbounded 
size. This composition will result in a uniform store of unbounded size. Finally, a stability 
mechanism may be integrated with the store that operates in terms of objects or the storage in 
which the objects reside. In either case stability is an orthogonal property of the store and as 



such it may be viewed as a distinct architectural layer. The result of the composing the three 
architectural layers namely, the addressing abstraction, the storage management and the 
stability mechanism, is the simulation of a uniform, stable, object store of unbounded size. 

Although the result of a particular implementation strategy may be to merge or otherwise 
integrate the three architectural layers, the functionality of the layers can still be 
distinguished. In the architecture to be described these distinctions are preserved by forcing 
the separate implementation of the architectural layers. The resulting architecture is flexible 
enough to allow each layer to be reimplemented independently of the others. An instance of 
the layered architecture may be composed from an arbitrary choice of layer implementations 
even if some of the layers make use of special purpose hardware. This permits cost effective 
experimentation with implementation techniques and the manner in which these techniques 
interact within the context of the architecture. 

3.  TYPE SECURITY 

All data within a persistent object store may be manipulated without regard to its physical 
attributes. Hence, the data may be manipulated by any programming language supported by 
the system architecture. This requires the data to be subject to the protection mechanisms 
required by those programming languages that manipulate it. Furthermore, the protection 
mechanisms applied to shared data must not be able to compromise each other. 

3.1.  Store Level Protection 

The protection mechanisms provided by a persistent system are dependent on the kinds of 
programming language that are supported. For example, if programming languages such as C 
or assembly language are supported then the protection mechanism must be applied at the 
storage level. These languages may arbitrarily manipulate addresses and thereby access the 
implementation of an object. Thus, every operation on the store must be dynamically 
checked to ensure that it is safe. That is, an attempted store operation must conform to a 
predefined set of type rules and it must not allow a program to gain unauthorised access to 
data. A store may be described as type secure if all the permitted operations are safe. 

At the store level type security must be enforced in two ways. Firstly, since programming 
languages such as C may exhibit arbitrary behaviour, a mechanism is required to prevent 
programs manufacturing or capturing addresses that could be used to gain unauthorised 
access to data. Secondly, the interpretation of the accessible data must also be controlled so 
that programs only apply appropriate operations to the data. Systems that provide this form 
of store level protection are known as capability systems and require some level of hardware 
support. 

One technique that is used to prevent addresses being manufactured is to segregate address 
from non-address data and to only permit certain operations on the addresses. The operations 
may be limited to the creation of new objects and to copying an address between address 
only storage areas. An alternative technique is to tag locations containing addresses and to 
automatically reset the tags if the locations are updated. In this way an address is invalidated 
if it is illegally altered. The address manipulation facilities provided by the system preserve 
the tags. 



To complement the controlled creation of addresses capability systems may provide 
mechanisms to limit the propagation of addresses. For example, a limited copy access right 
might be used to copy an address but the copy of the address may not be copied. Another 
technique is to associate a key with an address. The address may be freely passed around 
between programs but it may only be used in conjunction with the original key. This limits 
the context in which an address may be used. 

In addition to controlled address propagation a capability system may support the revocation 
of addresses. That is, an address may be invalidated and all access to the object to which it 
refers can be removed. This may be expensive to implement since it may require the support 
of indirect addressing or the ability to find all references to an object. 

The control of address creation and propagation is just a special case of the controlled 
interpretation of data. In the non-address case this is usually of a very limited nature. For 
example, access to an object may be restricted to read, write or execute, without any 
additional constraints on how the data should be interpreted. Thus, an object containing a 
floating point number may be erroneously viewed as an integer without an error being 
detected. 

A less primitive approach is to tag individual locations within an object and thereby specify 
the type of data each location contains. This allows simple data types such as integers and 
floating point numbers to be differentiated. Other supported data types may include pixels, 
addresses, character strings, arrays, structures and procedure closures. 

The main advantages of store level protection are that it can support programming languages 
such as assembly language and C, it can allow arbitrary combinations of programming 
languages and segregate them if necessary, it can dynamically alter access to and 
interpretation of data, and for simple data types it can be efficiently implemented in 
hardware. However, on their own, store level protection mechanisms may not be able to 
efficiently support recursively typed data structures since the necessary run time checks can 
prove extremely expensive. Furthermore, once a particular mechanism has been implemented 
in hardware it may be very costly to alter.  

Finally, in isolation, this approach to protection limits the programmer's confidence that a 
program is correct. That is, certain programming errors may not be detected until runtime and 
any programming language data types not supported by the protection mechanism may be 
misinterpreted resulting in erroneous program behaviour. 

3.2.  High Level Protection 

Type security may be enforced at a higher level of abstraction by a programming language 
hiding the implementation of objects. In this case, a compiler may check the operations to be 
performed by a program to see if they conform to the type rules. This allows a program to 
run without the overheads of dynamic checking and may permit optimisations to be 
performed. For example, accessing a structured object may involve checking that the object 
exists, checking that the object contains the required data and finally indexing the object. If 
the result of the two checks can be determined by a compiler then the data may be directly 
addressed. 



A further advantage of high level protection is that very sophisticated type systems may be 
used. These type systems may require expensive type checks to be performed but, the type 
checking need only be performed once at compile time and not each time a program accesses 
data of a particular type. 

Not all operations may be fully checked at compile time. For example, a vector indexing 
operation may require a run time check to ensure that a legal index is used. In cases such as 
this, the compiler is able to generate additional code to dynamically check the operation. 
However, the dynamic checking may be simplified by removing from it any component 
checking that may be statically determined. 

Statically determining the type correctness of a program reduces the range of potential errors 
that may occur at runtime. For example, any attempt to misinterpret a programming language 
data type will be detected at compile time. In comparison with purely dynamic checking, this 
increases the programmer's confidence in the correctness of a program. 

Although high level protection mechanisms can provide sophisticated control over the 
interpretation of data they are not well suited to controlling access. One reason for this is the 
assumption that once access to an object has been established it is permanently available. 
This problem may be alleviated by extending the type rules to include data types that must be 
dynamically checked for availability. However, this may reduce a programmer's confidence 
in a program being correct in that it introduces a potential source of programming errors. 

The combination of programming languages requires any shared data to have an equivalent 
interpretation under both type systems. If this is not possible the programming languages 
must be totally segregated from each other. The segregation need only be a logical 
structuring of an object store if high level protection is sufficient for each programming 
language, otherwise the segregation must be enforced by a store level protection mechanism. 

High level protection may allow a type secure store to be efficiently implemented without the 
need for special purpose hardware. If this is the case, the protection mechanism may be 
altered relatively cheaply since no hardware need be modified. However, dynamic checking 
may be delegated to a store level protection mechanism if one is available. Finally, a high 
level protection mechanism enables a program's view of data to be an abstraction over the 
physical storage of the data. 

To summarise, high level protection provides the following benefits: 

• There are no unnecessary dynamic checks. 
• Optimisations may be possible as a result of static checking. 
• Sophisticated type systems may be supported. 
• The range of potential runtime errors is reduced. 
• Special purpose hardware is not required to support an efficient implementation. 
• An abstract view may be imposed over the physical storage of data. 

4.  DEVELOPING THE LAYERS 

In the preceding discussions the distinct architectural mechanisms required to support a 
persistent object store have been identified. They include, a uniform addressing mechanism, 



a storage management mechanism, a stability mechanism and a protection mechanism. We 
shall now present the design of a layered architecture that provides the above mechanisms as 
a set of distinct architectural layers. The architecture to be described supports orthogonal 
persistence and has been used to implement the persistent programming language Napier88 
and the functional programming language Staple. 

4.1.  The Basic Layers 

The layered architecture has been designed with the aim of supporting cost effective 
experimentation with the implementation of persistence. The key to achieving this aim is the 
separation of the distinct architectural mechanisms into well defined layers. Thus, each 
architectural mechanism is provided by a distinct architectural layer that must conform to a 
particular specification. In this way, individual layers may be independently reimplemented 
without reference to the implementation of the other layers. It is also possible to merge 
adjacent layers provided that the interface to the top-most layer is preserved. 

The architectural layering has been chosen to take advantage of the persistence abstraction by 
ensuring that programs are not able to discover details of how objects are stored. This divides 
the architecture between the architectural layers that provide the persistent object store and 
the those facilities that may be programmed by a supported programming language. The 
architectural layering is shown in Figure 4. 

 

Figure 4: The Basic Architectural Layers 

The division has an important consequence for the provision of concurrency, transactions and 
distribution. Since each of these three mechanisms are essentially modelling techniques they 
may be implemented by the programming language level and need not be primitive facilities 
provided by the persistent store. This allows experimental implementations to be constructed 
without the need to redesign the entire architecture. However, once a particular 
implementation technique has been identified as essential one or more layers of the persistent 
store may be reimplemented to incorporate the mechanism. If a layer interface is changed the 
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change is only visible to the layer immediately above thereby limiting the required 
reimplementation. 

4.2.  The Persistent Object Store 

The layer of the persistent object store which is visible to the programming language level, is 
the heap of persistent objects shown in Figure 4. The heap layer provides a view of the 
persistent store that appears stable, is conceptually unbounded in size and may be uniformly 
addressed. All objects in the heap are reachable from a single distinguished root object and 
conform to a single object format that distinguishes object addresses from non-address data. 
The interpretation of an object is responsibility of the higher level architecture. The persistent 
object store does not support object formats specific to any particular programming language, 
thereby allowing the persistent object store to operate independently of the supported 
programming languages. 

Within the persistent store, stability is simulated by a simple checkpointing mechanism. This 
mechanism is provided as part of the heap interface for two reasons. Firstly, it may be made 
available to the programming language level to support user level transactions. For example, 
a transaction may maintain a log of operations to be performed and may wish to ensure that 
the log is preserved in stable storage prior to performing the actual operations. Another 
reason for making the checkpoint explicit is that it allows the higher level architecture to 
cache data outwith the persistent store. When a checkpoint is required any data held in 
registers or other special purpose hardware is copied back to the persistent store. Thus 
specialised code generation techniques can be used without impacting on the implementation 
of the persistent store. 

The heap is implemented as a set of object management procedures that organise a single 
contiguous stable store. To ensure that the heap is correctly used, its interface includes a set 
of five conventions to which the higher level architecture must conform. They are: 

• objects will only be created by the heap management procedures, 
• addresses will not be manufactured, 
• all addresses will be held in the address fields of an object, 
• all addressing is performed by indexing object addresses and 
• a reachable object will not be explicitly deleted. 

These conventions ensure that objects can only be accessed by following object addresses 
starting from the root object of the persistent store. They also ensure that all object addresses 
are held in the persistent store and can be easily located. This facilitates the implementation 
of storage utilities such as garbage collectors that may be used to simulate the perceived 
property of unbounded size. 

Adherence to the heap interface requires the higher level architecture to address the store in 
terms of indexing object addresses. However, it does not define the level of addressing 
abstraction employed. Thus, a particular heap implementation may treat object addresses as 
object numbers and perform all addressing via table lookups to determine an object's address 
in the stable storage. Alternatively, object addresses may be in the form of stable storage 
addresses and not require mapping by the heap implementation. In either case the higher 



level architecture is constrained to address objects using an object address and a separate 
index. This corresponds to the addressing abstraction described in section 2.1.2. 

The heap layer forces the higher level architecture to view the persistent object store as a 
uniform stable store of unbounded size. To extend this view to that of a type secure persistent 
object store a protection mechanism is required to ensure that the higher level architecture 
conforms to the specified conventions and correctly interprets the data held in the store. The 
architectural layering can support both high level and low level protection mechanisms.  

Low level protection may be supported by encoding the appropriate checking mechanisms 
into the heap implementation. This may be further complemented by tagged memory 
locations. For example, the implementation of the architecture on the Rekursiv enforces the 
interface definition using a hardware address translator that only accepts object number, 
index pairs and by tagging addresses to prevent their unauthorised manufacture. Similar 
approaches to store level protection may be employed by alternative implementations of the 
heap layer. 

High level protection may be provided by compiling all supported programming languages 
against a compatible type system with suitable dynamic checks being planted to 
accommodate those situations that cannot be statically checked. This approach allows the 
persistent object store to assume that all attempted operations are type correct. However, to 
achieve an efficient implementation without hardware support an instance of the architecture 
is constrained to use programming languages that make exclusive use of high level 
protection. Otherwise, some hardware support may be necessary to efficiently implement the 
dynamic checking. 

The provision of a low level protection mechanism must be specified as part of the heap 
interface. For example, if a heap implementation does not provide a low level protection 
mechanism then it can only support programming languages that rely on high level 
protection. Thus, the heap interface must specify the supported protection mechanism to 
ensure that an instance of the architecture is composed from compatible layer 
implementations. 

The architecture implementation for Napier88 relies on high level protection and requires all 
programs to be compiled by the one compilation system. 

4.3.  The Stable Store 

The heap layer is directly supported by a single contiguous stable store, see Figure 4. The 
stable storage layer provides the required stable storage mechanism described in section 2.3. 
It also supports a uniform addressing mechanism over the stable storage that corresponds to 
the virtual addressing abstraction described in section 2.1.3. In practice the virtual addressing 
is supported by lower level addressing mechanisms that give access to the non-volatile 
storage, the main memory and any other physical storage devices provided by the underlying 
hardware. 

The interface to the stable storage has been designed to provide a contiguous range of virtual 
addresses that is always in a self consistent state. This is achieved by implementing a 
checkpointing mechanism that preserves the current state of the store on non volatile storage. 



At any point in time the non volatile storage contains a self consistent version of the store. 
The act of performing a checkpoint replaces the previous recorded state in a single atomic 
action. When a failure occurs the store is automatically restored to the state recorded by the 
most recent checkpoint. This simple checkpointing mechanism is sufficient to simulate a 
stable store. 

Although the semantics of the required checkpointing mechanism are simple, the actual 
implementation may be quite sophisticated. To accommodate as much flexibility as possible 
the interface includes a set of procedures that allow the use of the virtual address space to be 
dynamically configured. For example, the implementation of the heap layer may use some 
temporary data structures that are reconstructed each time the system is restarted. In this case, 
changes to the storage containing these data structures need not be recorded between 
checkpoints and the data itself need not be recorded by a checkpoint. In contrast, any changes 
to user data must be recorded between checkpoints to support the reconstruction of the 
previous consistent state and the new values of the data must be recorded by a checkpoint. 

The range of storage uses that are supported include: 

• Read-only This is the default state for all user data. 

• Save-only This describes an area of store that must be saved at the next checkpoint but 
it does not form part of the previous checkpoint. 

• Shadow All changes to the specified area of storage must be recorded. It contains 
data that is part of the previous checkpoint and must be part of the next 
checkpoint. This requires the allocation of non volatile storage to record any 
changes. 

• Scratch The specified area of storage is for use by temporary data. The data is not 
part of the previous checkpoint and need not be protected from store 
failures. 

• Reserve The specified area of storage may be required following the next checkpoint 
operation. It must be allocated non volatile storage but the storage may be 
used for other purposes prior to the next checkpoint. 

• Not-required The area of storage is no longer required to contain data. The non volatile 
storage allocated to the area may be reallocated for other purposes. 

Given this detailed information on the desired use of the virtual address space the layer 
implementation may be able to optimise its checkpointing and storage allocation strategies. 
Thus it may be possible to use the available physical resources to their full effect. 

4.4.  Napier88 

To conclude we shall now briefly describe the persistent programming language Napier88 
and how it has been implemented using the layered architecture. 

Napier88 is a persistent programming language with a sophisticated type system that permits 
the recursive definition of data structures including abstract data types and polymorphic first 



class procedures. As far as possible the Napier88 compilation system performs static type 
checking. That is, the compiler will determine whether or not an attempted operation is type 
correct. However, there are certain situations where this is not possible. 

Firstly, dynamic checks are generated by the compiler for vector indexing operations and 
field updates to dynamically created data structures. The first check is to ensure that a vector 
index is legal and the second check ensures that constant locations are not updated. Neither 
of these checks may be statically determined from the type system. 

The second situation that cannot be statically checked is the use of a value from an infinite 
union. Napier88 provides a type any that is the infinite union of all data types. A value 
obtained from a variable of type any must be projected onto its actual type before it can be 
used. The projection must be performed dynamically since, in general, it is not possible to 
statically determine the actual type of the value. 

To aid the separate preparation of programs and data the type checking is based on structural 
equivalence. This allows the Napier88 system to perform dynamic type checking without the 
use of a centralised type dictionary. However, if available, a centralised dictionary can be 
used to optimise the dynamic checking. 

Napier88 supports first class procedures via a block retention mechanism. The block 
retention mechanism implements a program stack with a separate object for each activation 
record. A garbage collector is relied on to automatically determine which activation records 
are not part of a procedure closure and can be discarded. Consequently, the block retention 
mechanism can be directly supported by a persistent object store without the need to provide 
large extensible objects to model a stack. 

Polymorphism and abstract data types are supported by a combination of compilation 
abstraction and a set of adhoc primitive operations. The adhoc primitives use an integer key 
to identify the size of stack elements to manipulate and the rules for performing equality. The 
integer keys are made available to polymorphic code as part of the static environment 
provided by the block retention. 

The Napier88 compilation system maps programs onto an abstract machine [7]. The abstract 
machine is based on block retention and is responsible for implementing those primitives 
necessary to support the polymorphism and abstract data types. In turn, the abstract machine 
views the persistent object store as a single heap of persistent objects that is assumed to be a 
stable store of unbounded size. Since the abstract machine does not allow direct access to the 
persistent store it ensures that the compilation system is unaware of the implementation of 
the object storage thus separating the use of an object from the way it is stored. 

4.5.  The Napier88 Implementation 

The implementation of Napier88 on the layered architecture is a simple matter of interfacing 
the abstract machine to the persistent object store. The resulting architectural layers are 
shown in Figure 5. 



 

Figure 5: The Architectural Layers Used to Implement Napier88 

The Napier88 compilation system ensures that all operations attempted by a program are type 
correct. The operations that perform the dynamic checking are also type correct and are 
implemented by language level operations. Thus, the Napier88 compilation system performs 
the task of a high level protection mechanism. 

The abstract machine to which Napier88 is compiled operates against the heap layer of the 
architecture and adheres to the conventions specified by the heap interface. For efficiency 
reasons it maintains some data and object addresses in special purpose registers. However, in 
keeping with the interface specification it copies all the cached data back to heap objects 
prior to requesting garbage collection or checkpoint operations. 

Since the compilation system provides a high level protection mechanism the heap layer of 
the architecture does not attempt to enforce any form of protection. Thus, it is able to perform 
the task of organising the stable storage without the support of special purpose hardware. It is 
also possible to optimise the addressing of objects since the attempted operations may be 
assumed to be type correct. 

There are currently two functionally equivalent implementations of the stable storage layer 
that support the heap layer. One implementation performs its own address translation and 
input/ output buffering. The resulting performance is poor but is acceptable if the abstract 
machine maintains an object cache in main memory. An alternative implementation is 
available on Sun workstations using memory mapped files. This implementation performs all 
addressing using the Sun memory management hardware to provide efficient access to the 
stable storage. 

The efficiency of the second implementation has been greatly enhanced through the effective 
use of the dynamic configuration procedures provided by the stable storage interface 
described in section 4.3. In future implementations increased control over the paging 
algorithms will further improve the system performance. Thus, it is possible to construct an 
efficient implementation of a persistent object store on conventional hardware. 
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5.  CONCLUSIONS 

We have briefly described the architectural mechanisms required to support a type secure 
persistent object store and shown how they may be modelled as separate architectural layers. 
A layered architecture has also been described that provides the architectural mechanisms as 
separate architectural layers that must conform to a specified interface. The benefits of the 
layered architecture include the ability to easily construct experimental systems based on new 
implementation techniques for one or more of the architectural layers and the ability to 
construct efficient implementations on conventional hardware where a high level protection 
mechanism may be employed. 

Examples of the layered architecture include the Napier88 system described above and the 
Staple functional programming system. Implementations of the stable storage and heap layers 
are available on Sun workstations and the Apple Macintosh for experimental use. 
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