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Abstract 

 
In this paper we demonstrate how stateful 

Byzantine Fault Tolerant services may be hosted on a 
Chord ring. The strategy presented is fourfold: firstly a 
replication scheme that dissociates the maintenance of 
replicated service state from ring recovery is 
developed. Secondly, clients of the ring based services 
are made replication aware. Thirdly, a consensus 
protocol is introduced that supports the serialization of 
updates. Finally Byzantine fault tolerant replication 
protocols are developed that ensure the integrity of 
service data hosted on the ring. 
 
1. Introduction 

In this paper we demonstrate how stateful 
Byzantine Fault Tolerant (BFT) [1] services may be 
provided on a Chord ring.  

The approach is to implement a service as a number 
of service components, each of which is hosted on a 
node of the Chord network. A mapping is established 
between the entities over which the service operates 
and the key space of the peer-to-peer overlay. A 
service component is responsible for the entities whose 
keys route to the overlay host. Thus the ability to map 
from service parameters to a key and hence to a ring 
node hosting a service component responsible for that 
key is a requirement of this technique.  

Service components are discovered using standard 
key based routing protocols and, once discovered, 
clients interact directly with the service components to 
obtain the desired service. 

This paper makes several contributions. Firstly, we 
demonstrate the problems that arise when the strategies 
used to maintain Chord ring integrity are applied to the 
service components hosted on the ring infrastructure. 
We present an alternative strategy which may be used 
to provide Byzantine Fault Tolerant services on a 
Chord ring. We illustrate this by demonstrating how a 

BFT distributed hash table (DHT) with update may be 
provided on a standard non-BFT Chord infrastructure. 

Our approach is fourfold: firstly a replication 
scheme that dissociates the maintenance of replicated 
service state from ring recovery is developed. 
Secondly, clients of the ring based services are made 
replication aware. Thirdly, a consensus protocol is 
introduced that supports the serialization of updates. 
Finally Byzantine fault tolerant replication protocols 
are developed that ensure the integrity of the service 
data hosted on the ring. 

 
2. Background 

A number of P2P overlay protocols have been 
proposed that support the Key-based Routing (KBR) 
abstraction [2-5]. Under a KBR scheme each 
addressable application level entity has an associated 
key value and each key value maps to a unique live 
node in the overlay network. Upcalls from the routing 
layer inform the application layers of changes to the 
keyspace, thus allowing an application to become 
aware of changes to the set of keys that map to the 
local node. 

Each scheme provides an overlay structure that 
links a participating node to a small number of peer 
nodes with which it can communicate. Each of these 
systems provides routing mechanisms enabling nodes 
to be addressed using a key value in log n time, where 
n is the number of nodes. The P2P architectures are all 
self-repairing in the face of host or network failures1. 
The different overlay mechanisms differ considerably 
in the way in which the routing algorithms are 
implemented. However, the different systems may be 
usefully be classified as being in one of three families: 
Chord-like systems [2]; Plaxton-like systems [3]; and 
CAN-like systems [4]. These systems offer a variety of 

                                                           
1 Up to some limit governed by the frequency of failures and the 

amount of state maintained by the nodes. 



abstractions [10] built on or related to the KBR 
abstraction. Those most closely related to this work are 
the Distributed Object Location and Routing (DOLR) 
[6], and group anycast/multicast (CAST) abstractions. 

The DOLR abstraction is concerned with the 
implementation of a decentralised discovery service in 
which applications may place objects on arbitrary 
nodes within an overlay and announce their existence 
using a key. It exports two operations: publish and 
sendToObject. The former is used to publish the 
association of an object with some key. The 
sendToObject operation causes a message to be sent to 
a number of copies of the object(s) with a specified 
key. The CAST abstraction is used to implement 
multicast groups. In its simplest form, it exports two 
operations join and cast. The join operation permits a 
node to join a multicast group specified by a key as a 
parameter. This causes a message to be routed to the 
node responsible for that key. Whenever a node is 
encountered that is already a member of the group, the 
node is added as a child of that node. Thus a multicast 
tree is formed, rooted at the node responsible for the 
specified group key. When a cast call is made, a 
message is sent to the root for the key. The root 
instructs its children to send the message to the nodes 
in their dissemination tree. This process repeats 
recursively until all the nodes in the group have been 
sent the message. 

 
2.1 Chord 

In this paper we focus on one particular peer-to-
peer routing protocol – Chord. Chord is a ring based 
protocol that supports KBR. At its most basic level, 
Chord only requires each node to maintain a pointer to 
its immediate successor in the ring. Each node N is 
assigned a unique m-bit identifier key KN and the ring 
is arranged in key order where keys are ordered on an 
identifier circle modulo 2m. Every key value maps to a 
unique live node in the overlay network.  

The Chord protocol supports a lookup operation 
which takes a key value and returns the network 
address of the Chord node in the overlay network to 
which the key value maps. Each node N is responsible 
for the region [Kpred(N), KN) where KN is the node’s key 
and Kpred(N) that of its predecessor. Thus, a lookup on 
key k will yield the address of the node N whose key 
KN is the first key in the ring that is equal to or greater 
than k in the keyspace (modulo keyspace). In this way, 
the Chord protocol provides a lookup service mapping 
keys to overlay nodes. We call the Chord node N that 
is returned by Chord’s lookup method when called 
with key k the primary node for k.  

In order to guarantee correct lookups each node 
need only know its correct successor and as such the 
lookup request can be passed around the ring until the 
appropriate node is found. With such a simple scheme 
lookup times vary linearly with the number of nodes in 
the ring. To improve lookup times each node maintains 
additional routing state called the finger table which 
contains up to m entries. From [2]: 

“The ith entry in the table at node N 
contains the identity of the first node S 
that succeeds N by at least 2i-1 on the 
identifier circle,…” 

The finger table is consulted during the iterative 
lookup process in which, at each stage, the node 
referenced from the current node and with the closest 
preceding key to the desired key is chosen to be used 
in the next stage of the iteration. This reduces lookup 
time to O(log X) where X is the number of nodes in the 
ring. To support self-repair of the ring, each node also 
maintains a successor list of k nodes which 
immediately follow the node in the ring order.  

The successor list permits a node to find its new 
correct successor should its successor fail. For a 
successor list of size k the system is resilient to up to 
k-1 successive nodes failing within a given interval. 
This provides resiliency of the ring and the look-up 
protocol, but does not ensure the integrity of the data 
structures hosted by ring nodes. We will return to this 
issue momentarily. 

Figure 1 shows a simple Chord ring. Each node 
contains references to its successor (single filled arrow 
head) and its predecessor (dashed line and open 
arrowhead). Node 1 has been elaborated to show its 
successor list (double headed arrows) and its fingers 
(bold chords across ring).  
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Figure 1 

2.2 Providing Services on Chord 

In this paper we demonstrate how a distributed 
service may be implemented on a Chord ring. To 
illustrate our approach, we focus on an updatable 



distributed hash table (DHT) service mapping keys to 
values. This simple service has sufficient attributes to 
illustrate the more general approach. In particular, it 
requires serialization of updates. 

The approach is to co-locate the service component 
responsible for some key range on the primary node 
responsible for that range. In order to make the global 
service resilient to failure, it is necessary to replicate 
the state of the service components that implement it. 
The obvious approach is to co-locate the replicas on 
the successors of the primary. However, this simple 
approach of conflating the resilience of service 
components hosted on the ring with the resilience of 
the ring itself can be dangerous. 

To understand why this is so, some examination of 
the Chord protocol is necessary. Using Chord, each 
node N is responsible for the region of keyspace 
[Kpred(N), KN), that is the keyspace up to its own key and 
following the key of its predecessor. Consider a lookup 
starting at Node N1 of key k where K5 < k < K6. In this 
case, as described in [2], the lookup algorithm visits 
the following nodes: N3, N4, N5 and returns N6. Note 
that although node N1 has a finger table entry referring 
to the hosting node, N6, it cannot be used since the K6 
is not less than the key being searched for and to use it 
would (always) risk overshooting the target. Due to 
this and in general, all Chord lookup operations are 
always routed via the predecessor of the node 
responsible a given key.  

In the event of a failure of node N1 in Figure 1, the 
ring will self repair using the Chord repair protocols 
and node N2 will become the successor of node N9. 
However, consider the case in which node N1 starts to 
operate incorrectly either maliciously or simply 
erroneously. Since no ring failure has occurred, the 
successor and predecessor references will remain as 
shown in Figure 1 and all lookup operations for keys 
in the range [K8, K1) will be routed to N1. Furthermore, 
any attempts to access the successor list of N1 will also 
be routed via N1 since other nodes elsewhere in the 
ring have no knowledge of the node topology or key 
space in the vicinity of node N1. Of course, the 
successors of node N1 are mostly in the successor list 
of N9, however, they are not used for addressing unless 
N1 is known to be faulty which, in general, it cannot be 
assumed to be. Furthermore, a node may operate 
correctly at the P2P level and erroneously at the 
service level. Thus, using standard Chord protocols, a 
single erroneous node in the ring can prevent access to 
the services for which it is responsible both on the 
primary and on its replicas. 

 

3. Dissociating Replicated Service State 
Maintenance from Ring Recovery 

Consider the Chord ring shown in Figure 2. For 
brevity no finger tables, predecessors, successors or 
successor lists have been shown. Node N1 at the top of 
the figure has key K1 and is responsible for the range 
[K15, K1) which is shown by the dark gray segment. 
Our strategy for dissociating the maintenance of 
replicated service state from the ring infrastructure is 
to replicate that state on nodes located around the ring. 
For a replication factor of r, the state associated with 
key k is replicated on r–1 nodes associated with keys k 
+ nKS/r where n ranges from 1 to r–1 and KS is the 
size of the keyspace. For a replication factor of four, 
the regions of keyspace corresponding to the replicas 
of N1’s keyspace are shown in light gray and labeled 
R1, R2 and R3. For a given key k we call the nodes 
responsible for keys {k, k + KS/r, k + 2KS/r… } the 
peer set of k.  

 
Figure 2 

In Figure 2, it is clear that replica key ranges do not, 
in general, map onto single nodes. For example, 
replica range R1 is part-owned by three nodes, N4, N5 
and N6. Similarly R3 is part-owned by N11, N12 and N13. 
Thus the replica state of a node is not found in its 
entirety on (r-1) other nodes; instead, it is spread 
through a collection of nodes. However the state 
corresponding to a given key k may be always found 
on exactly (r-1) replica nodes barring failures. Thus, as 
shown in Figure 2, replicas of (part of) the service state 
hosted by node N1 are stored on nodes N4, N5, N6,  N8, 
N9, N11, N12 and N13. We call the key ranges R1, R2 and 
R3 peer key ranges. This does not add complexity to 
client discovery of replicas but does impact on the 
complexity of the fault tolerant protocols that maintain 
the replicated state. The service component hosted by a 
node typically only supports interaction with entities 



whose keys map to that node, e.g. the service 
component on node N1 is associated with entities with 
keys in the range [K15, K1). We refer to such a key as 
the natural key of an entity. Without considering 
replication, keys in this range would not normally be 
stored on the replica nodes. Two different approaches 
may be taken to replicating service component state on 
replica nodes: 
• Associate service component replica state with 

natural keys, and, 
• Associate service component replica state with 

calculated replica keys. 
The first of these approaches means that service 

components are associated with replica nodes with 
keys outwith the key range managed by the replica. 
For example, in Figure 2, replica state corresponding 
to key K1 might be associated with node N6. By 
contrast, using the second scheme, each replica state is 
associated with a key calculated by shifting the 
original key by an appropriate fraction of the keyspace. 
In Figure 2 the replica of the state associated with key 
K1 would be associated with key K1 + KS/4 on Node 
N6 which is in the normal key range managed by that 
node. In general, the key is calculated by taking the 
natural key of the service and adding nKS/r to it. Using 
the first approach server-side checks need to be relaxed 
to permit state to be stored that corresponds to the peer 
key ranges. By contrast, if the second option is chosen, 
no such relaxation is necessary. In our 
implementations we always associate replica state with 
a calculated key since it makes server code less 
complex. 

 
4. Making Clients Replication Aware 

Some BFT approaches, notably that of Castro and 
Liskov [7], require a primary to be identified which 
coordinates the protocols. Having a primary makes the 
serialization of operations simpler but adds complexity 
in that election protocols for primaries are required in 
the face of failure. We believe that a symmetric 
scheme is simpler overall by avoiding the need for 
election protocols and does not rely on the immediate 
detection of a Byzantine primary. Our algorithms 
remove the need for a primary by making the client 
replica aware. Using the scheme described in this 
paper, each client needs to be aware of the replication 
factor and needs to be able to independently address 
ring nodes.  

We sketch the algorithms used for the two primary 
DHT operations – put and get. As is traditional a 
put(key, value) will update the value associated with 
some key and a get(key) will return that value. As 

described in [1], we require at least 3f+1 replicas to 
provide BFT in which up to f replicas are faulty (since 
it must be possible to complete operations after 
communicating with n–f replicas). In this paper, to 
simplify explanation, we assume the simplest case of at 
most 1 faulty node and thus a system with four copies 
of service component state. In our implementations we 
follow a generative approach permitting a (statically 
determined) arbitrary number of faulty nodes to be 
tolerated. 

The general approach followed is that clients send 
requests to all peers in the peer set. Each of the replica 
peers is discovered by routing to the node responsible 
for the corresponding replica key; such routing may be 
made via an arbitrary ring node. This obviates the 
possibility that one faulty node may prevent the 
discovery of replica nodes and hence the operation 
from being carried out. The client waits for replies 
from the replica nodes and when an appropriate 
number of consistent replies are received the operation 
is considered to be complete. It is sufficient for the 
client to receive f+1 consistent replies since at most f 
nodes may be faulty. 

The algorithms for put and get are similar in nature. 
For brevity we only show the pseudo code for put in 
Figure 3. The client calculates the set of keys to which 
data must be written and attempts to store the data on 
the appropriate nodes. Routing to nodes may fail as 
may individual nodes and so the process is repeated 
until an appropriate number of puts have been made on 
the replica nodes according to BFT assumptions. From 
the client perspective, it appears that no server 
coordination is being performed. However, as 
discussed in the next section, this is not always the 
case. 

 
UID ClientPut(Data data) throws Exception { 
 int MAX_FAULTY = floor((REP_FACTOR - 1)/3) 
 UID uid= hash(data) 
 Set<Key> keys_not_stored = 
   calculateKeys(uid) 
 while size(keys_not_stored)>MAX_FAULTY { 
  parforeach Key k in keys_not_stored { 
  try { 
   Server node = routeTo(k) 
   node.put(data) 
   remove k from keys_not_stored 
  } 
  catch(TimeoutException,CommsException) { 
   // try again – up to policy limit 
  } 
 } 
 return uid 
} 

Figure 3 
 



5. BFT Consensus Protocol 

Since the algorithms do not have a primary node, a 
consensus protocol is needed in cases where a serial 
ordering of operations is important. This is the case 
with the put operation which is an update operation 
and subject to race conditions. To satisfy this 
requirement, we have developed a consensus protocol 
which is essentially a counting algorithm. Space 
prohibits the algorithm from being described in full 
and we will sketch out the mechanisms here; further 
details may be found at [8]. 

In the algorithm sketched below, each server 
interacts with the other servers in its peer set that are 
responsible for a specified unique id uid. The peer set 
members are calculated using the address arithmetic 
described in Section 2. The underlying routing 
protocols provided by Chord are used for discovering 
these nodes.  

At a high level, a two-phase algorithm is executed 
on each server. The phases involve counting both votes 
and commits for an update request. Each phase 
completes when the BFT message thresholds2 have 
been received. The first phase is initiated by the receipt 
of a put message on a server. However, this phase is 
only entered into if the server is not already engaged in 
an update of the specified uid. If it is, the request is 
queued until the previous update has been completed 
successfully or otherwise. Each server maintains a per 
uid state machine which records the following 
information: if a put has been received, a count of 
votes received, whether a vote has been sent, a count 
of commits received, whether a commit has been sent, 
whether the node is already engaged in a put, and, 
whether the server has chosen the update to which the 
state machine pertains. 

The state machine is relatively complex with 33 
states necessary to capture the asynchrony in the four 
way replication scheme shown in Figure 2. However 
the algorithm is conceptually simple: each node 
communicates with its peer set sending vote messages 
in response to the receipt of a put from a client. When 
the BFT threshold of votes has been received by a 
server, a commit message is sent to its peer set. When 
enough commit messages have been received from 
other peers, the transaction is made and the client is 
notified. 

Consistent serialization is achieved by allowing an 
update voted for by a sufficiently high number of other 
servers to proceed ahead of a previous locally selected 

                                                           
2 The BFT thresholds are in fact different for vote and commit 

messages – we require 2f+1 vote messages and f+1 commit 
messages. 

update. Since there is no guarantee that any one of a 
set of concurrent updates will gain enough votes to 
reach this threshold, the algorithm may deadlock. This 
may be handled by a timeout/retry mechanism with a 
randomized backoff. 

 
6. BFT Node Recovery 

The final mechanism needed to provide BFT is a 
recovery mechanism to ensure the integrity of service 
component state when the underlying ring changes. 
There are two categories of change that must be 
accommodated: (a) nodes joining and (b) nodes 
leaving the ring; the latter may be orderly or due to 
failure. When a new node is added to a ring, the effect 
is to reduce the keyspace of the new node’s successor. 
Conversely, a node leaving a ring causes the keyspace 
of the leaving node’s successor to be increased. When 
the topology changes, the standard Chord protocol 
provides upcalls from the P2P routing layer to notify 
the software hosted on nodes of a change of ring 
topology. In both cases (a) and (b) above, the upcall 
mechanism provides the service layer with the old and 
new key ranges for which the node is responsible and 
initiates the algorithms that repair the services hosted 
on the ring. In practice it is useful to separate the 
upcalls, and in our implementations two different 
upcalls are used to start the repair process: 
release(old_range) and takeOver(extra_range). 

 
On the failure of Y, X takes over all 
keys in the range [lower , upper)

R1

R2

R3

N1

N3

N2

X

R

Y

rangeX
lower+ KS/r

lower

upper

upper+ KS/r

 
Figure 4 

 
Again, space precludes a full exploration of the 

algorithms that are invoked in response to these 
upcalls; they will therefore be sketched out here. The 
difficult case is when a node fails and we therefore 
concentrate on that case. When a takeOver upcall is 
received, the algorithm calculates the address ranges of 
the (non-failing) nodes in the peer set. Consider the 
example shown in Figure 4 in which node Y has failed 
and node X has taken over the key range 
R=[lower, upper). In order to recover, X needs to 
obtain all service component data in range R from the 
peerset of the range. This task is slightly more complex 



that it might seem since (a) X has no knowledge of 
what extant keys lie in this range; and (b), the replica 
ranges of R will, with high probability, be split 
between multiple replica nodes for each of the regions 
{ [lower+ KS/r, upper+ KS/r), [lower+ 2KS/r, upper+ 
2KS/r)… } as shown in Figure 4 with nodes N1, N2 and 
N3 which all manage replica keys in the range [lower+ 
KS/r, upper+ KS/r). Thus the recovery process is 
multi-phased. First a set of the peer servers holding 
replica data is constructed by repeatedly routing to the 
lowest key in each of the replica key ranges and 
following their successor links. Next, each of the peer 
servers is requested to return the set of keys they hold. 
By counting and matching replies, a list of keys may 
be constructed on the node performing the 
reconstruction. This set will contain keys in the range 
R and from the corresponding peer sets of R. Finally, 
the data corresponding to these keys is asynchronously 
fetched from enough replica servers to be safe under 
BFT assumptions. 

Within this algorithm there are many subtleties 
which have been glossed over here for brevity. These 
include: the policy choice of which servers from which 
to fetch data, the exploitation of self-verifying data to 
avoid multiple fetches, the avoidance of fetching more 
data than is required and dealing with transient 
failures. A final complexity is that if the ring is not 
stable, not all the nodes that may be requested for data 
will actually have it. 

 
7. Summary and Conclusions 

The techniques demonstrated in this paper make 
several novel contributions. Primarily we demonstrate 
that a Chord-like P2P system may be used to host 
Byzantine Fault Tolerant services. The techniques 
described are applicable in other KBR systems 
although the specific problems of primary node failure 
are not as critical in other systems, for example, those 
based on Plaxton routing. In many ways, the 
dissociation of the maintenance of replicated service 
state from the underlying KBR mechanism increases 
the applicability of the techniques. Making clients 
aware of the addressing mechanisms used to address 
nodes is a critical element in the establishment of BFT 
mechanisms. The consensus protocol used to support 
the serialization of updates is an optional part of the 
scheme that may be applied when serialization is 
required.  

The algorithms sketched in this paper have all been 
implemented as part of the Autonomic Storage 
Architecture (ASA) project. The state machine 
corresponding to the consensus protocol described in 
Section 5 is dependent on the replication factor used. 

We have therefore applied generative techniques to 
automatically generate state machines for a given 
replication factor. 

 
8. Ongoing work 

The algorithms sketched in this paper are being 
applied in the ASA project which is constructing a 
distributed autonomic file system. In particular, the 
BFT protocols are being applied to the management of 
data structures that maintain mappings from globally 
unique file identifiers to sequences of file versions. We 
also currently investigating programming language 
constructs which present resilient service abstractions 
implemented by the mechanisms described in this 
paper. 
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