
Hosting Byzantine Fault Tolerant
Services on a Chord Ring

Alan Dearle, Graham NC Kirby, Stuart J Norcross

School of Computer Science
University of St Andrews

St Andrews
Fife

Scotland
al@cs.st-and.ac.uk, graham@cs.st-and.ac.uk, stuart@cs.st-and.ac.uk

Abstract

In this paper we demonstrate how stateful

Byzantine Fault Tolerant services may be hosted on a
Chord ring. The strategy presented is fourfold: firstly a
replication scheme that dissociates the maintenance of
replicated service state from ring recovery is
developed. Secondly, clients of the ring based services
are made replication aware. Thirdly, a consensus
protocol is introduced that supports the serialization of
updates. Finally Byzantine fault tolerant replication
protocols are developed that ensure the integrity of
service data hosted on the ring.

1. Introduction

In this paper we demonstrate how stateful
Byzantine Fault Tolerant (BFT) [1] services may be
provided on a Chord ring.

The approach is to implement a service as a number
of service components, each of which is hosted on a
node of the Chord network. A mapping is established
between the entities over which the service operates
and the key space of the peer-to-peer overlay. A
service component is responsible for the entities whose
keys route to the overlay host. Thus the ability to map
from service parameters to a key and hence to a ring
node hosting a service component responsible for that
key is a requirement of this technique.

Service components are discovered using standard
key based routing protocols and, once discovered,
clients interact directly with the service components to
obtain the desired service.

This paper makes several contributions. Firstly, we
demonstrate the problems that arise when the strategies
used to maintain Chord ring integrity are applied to the
service components hosted on the ring infrastructure.
We present an alternative strategy which may be used
to provide Byzantine Fault Tolerant services on a
Chord ring. We illustrate this by demonstrating how a

BFT distributed hash table (DHT) with update may be
provided on a standard non-BFT Chord infrastructure.

Our approach is fourfold: firstly a replication
scheme that dissociates the maintenance of replicated
service state from ring recovery is developed.
Secondly, clients of the ring based services are made
replication aware. Thirdly, a consensus protocol is
introduced that supports the serialization of updates.
Finally Byzantine fault tolerant replication protocols
are developed that ensure the integrity of the service
data hosted on the ring.

2. Background

A number of P2P overlay protocols have been
proposed that support the Key-based Routing (KBR)
abstraction [2-5]. Under a KBR scheme each
addressable application level entity has an associated
key value and each key value maps to a unique live
node in the overlay network. Upcalls from the routing
layer inform the application layers of changes to the
keyspace, thus allowing an application to become
aware of changes to the set of keys that map to the
local node.

Each scheme provides an overlay structure that
links a participating node to a small number of peer
nodes with which it can communicate. Each of these
systems provides routing mechanisms enabling nodes
to be addressed using a key value in log n time, where
n is the number of nodes. The P2P architectures are all
self-repairing in the face of host or network failures1.
The different overlay mechanisms differ considerably
in the way in which the routing algorithms are
implemented. However, the different systems may be
usefully be classified as being in one of three families:
Chord-like systems [2]; Plaxton-like systems [3]; and
CAN-like systems [4]. These systems offer a variety of

1 Up to some limit governed by the frequency of failures and the

amount of state maintained by the nodes.

abstractions [10] built on or related to the KBR
abstraction. Those most closely related to this work are
the Distributed Object Location and Routing (DOLR)
[6], and group anycast/multicast (CAST) abstractions.

The DOLR abstraction is concerned with the
implementation of a decentralised discovery service in
which applications may place objects on arbitrary
nodes within an overlay and announce their existence
using a key. It exports two operations: publish and
sendToObject. The former is used to publish the
association of an object with some key. The
sendToObject operation causes a message to be sent to
a number of copies of the object(s) with a specified
key. The CAST abstraction is used to implement
multicast groups. In its simplest form, it exports two
operations join and cast. The join operation permits a
node to join a multicast group specified by a key as a
parameter. This causes a message to be routed to the
node responsible for that key. Whenever a node is
encountered that is already a member of the group, the
node is added as a child of that node. Thus a multicast
tree is formed, rooted at the node responsible for the
specified group key. When a cast call is made, a
message is sent to the root for the key. The root
instructs its children to send the message to the nodes
in their dissemination tree. This process repeats
recursively until all the nodes in the group have been
sent the message.

2.1 Chord

In this paper we focus on one particular peer-to-
peer routing protocol – Chord. Chord is a ring based
protocol that supports KBR. At its most basic level,
Chord only requires each node to maintain a pointer to
its immediate successor in the ring. Each node N is
assigned a unique m-bit identifier key KN and the ring
is arranged in key order where keys are ordered on an
identifier circle modulo 2m. Every key value maps to a
unique live node in the overlay network.

The Chord protocol supports a lookup operation
which takes a key value and returns the network
address of the Chord node in the overlay network to
which the key value maps. Each node N is responsible
for the region [Kpred(N), KN) where KN is the node’s key
and Kpred(N) that of its predecessor. Thus, a lookup on
key k will yield the address of the node N whose key
KN is the first key in the ring that is equal to or greater
than k in the keyspace (modulo keyspace). In this way,
the Chord protocol provides a lookup service mapping
keys to overlay nodes. We call the Chord node N that
is returned by Chord’s lookup method when called
with key k the primary node for k.

In order to guarantee correct lookups each node
need only know its correct successor and as such the
lookup request can be passed around the ring until the
appropriate node is found. With such a simple scheme
lookup times vary linearly with the number of nodes in
the ring. To improve lookup times each node maintains
additional routing state called the finger table which
contains up to m entries. From [2]:

“The ith entry in the table at node N
contains the identity of the first node S
that succeeds N by at least 2i-1 on the
identifier circle,…”

The finger table is consulted during the iterative
lookup process in which, at each stage, the node
referenced from the current node and with the closest
preceding key to the desired key is chosen to be used
in the next stage of the iteration. This reduces lookup
time to O(log X) where X is the number of nodes in the
ring. To support self-repair of the ring, each node also
maintains a successor list of k nodes which
immediately follow the node in the ring order.

The successor list permits a node to find its new
correct successor should its successor fail. For a
successor list of size k the system is resilient to up to
k-1 successive nodes failing within a given interval.
This provides resiliency of the ring and the look-up
protocol, but does not ensure the integrity of the data
structures hosted by ring nodes. We will return to this
issue momentarily.

Figure 1 shows a simple Chord ring. Each node
contains references to its successor (single filled arrow
head) and its predecessor (dashed line and open
arrowhead). Node 1 has been elaborated to show its
successor list (double headed arrows) and its fingers
(bold chords across ring).

N9

N1

N2

N3

N8

N4

N5N6

N7

Figure 1

2.2 Providing Services on Chord

In this paper we demonstrate how a distributed
service may be implemented on a Chord ring. To
illustrate our approach, we focus on an updatable

distributed hash table (DHT) service mapping keys to
values. This simple service has sufficient attributes to
illustrate the more general approach. In particular, it
requires serialization of updates.

The approach is to co-locate the service component
responsible for some key range on the primary node
responsible for that range. In order to make the global
service resilient to failure, it is necessary to replicate
the state of the service components that implement it.
The obvious approach is to co-locate the replicas on
the successors of the primary. However, this simple
approach of conflating the resilience of service
components hosted on the ring with the resilience of
the ring itself can be dangerous.

To understand why this is so, some examination of
the Chord protocol is necessary. Using Chord, each
node N is responsible for the region of keyspace
[Kpred(N), KN), that is the keyspace up to its own key and
following the key of its predecessor. Consider a lookup
starting at Node N1 of key k where K5 < k < K6. In this
case, as described in [2], the lookup algorithm visits
the following nodes: N3, N4, N5 and returns N6. Note
that although node N1 has a finger table entry referring
to the hosting node, N6, it cannot be used since the K6
is not less than the key being searched for and to use it
would (always) risk overshooting the target. Due to
this and in general, all Chord lookup operations are
always routed via the predecessor of the node
responsible a given key.

In the event of a failure of node N1 in Figure 1, the
ring will self repair using the Chord repair protocols
and node N2 will become the successor of node N9.
However, consider the case in which node N1 starts to
operate incorrectly either maliciously or simply
erroneously. Since no ring failure has occurred, the
successor and predecessor references will remain as
shown in Figure 1 and all lookup operations for keys
in the range [K8, K1) will be routed to N1. Furthermore,
any attempts to access the successor list of N1 will also
be routed via N1 since other nodes elsewhere in the
ring have no knowledge of the node topology or key
space in the vicinity of node N1. Of course, the
successors of node N1 are mostly in the successor list
of N9, however, they are not used for addressing unless
N1 is known to be faulty which, in general, it cannot be
assumed to be. Furthermore, a node may operate
correctly at the P2P level and erroneously at the
service level. Thus, using standard Chord protocols, a
single erroneous node in the ring can prevent access to
the services for which it is responsible both on the
primary and on its replicas.

3. Dissociating Replicated Service State
Maintenance from Ring Recovery

Consider the Chord ring shown in Figure 2. For
brevity no finger tables, predecessors, successors or
successor lists have been shown. Node N1 at the top of
the figure has key K1 and is responsible for the range
[K15, K1) which is shown by the dark gray segment.
Our strategy for dissociating the maintenance of
replicated service state from the ring infrastructure is
to replicate that state on nodes located around the ring.
For a replication factor of r, the state associated with
key k is replicated on r–1 nodes associated with keys k
+ nKS/r where n ranges from 1 to r–1 and KS is the
size of the keyspace. For a replication factor of four,
the regions of keyspace corresponding to the replicas
of N1’s keyspace are shown in light gray and labeled
R1, R2 and R3. For a given key k we call the nodes
responsible for keys {k, k + KS/r, k + 2KS/r… } the
peer set of k.

Figure 2

In Figure 2, it is clear that replica key ranges do not,
in general, map onto single nodes. For example,
replica range R1 is part-owned by three nodes, N4, N5
and N6. Similarly R3 is part-owned by N11, N12 and N13.
Thus the replica state of a node is not found in its
entirety on (r-1) other nodes; instead, it is spread
through a collection of nodes. However the state
corresponding to a given key k may be always found
on exactly (r-1) replica nodes barring failures. Thus, as
shown in Figure 2, replicas of (part of) the service state
hosted by node N1 are stored on nodes N4, N5, N6, N8,
N9, N11, N12 and N13. We call the key ranges R1, R2 and
R3 peer key ranges. This does not add complexity to
client discovery of replicas but does impact on the
complexity of the fault tolerant protocols that maintain
the replicated state. The service component hosted by a
node typically only supports interaction with entities

whose keys map to that node, e.g. the service
component on node N1 is associated with entities with
keys in the range [K15, K1). We refer to such a key as
the natural key of an entity. Without considering
replication, keys in this range would not normally be
stored on the replica nodes. Two different approaches
may be taken to replicating service component state on
replica nodes:
• Associate service component replica state with

natural keys, and,
• Associate service component replica state with

calculated replica keys.
The first of these approaches means that service

components are associated with replica nodes with
keys outwith the key range managed by the replica.
For example, in Figure 2, replica state corresponding
to key K1 might be associated with node N6. By
contrast, using the second scheme, each replica state is
associated with a key calculated by shifting the
original key by an appropriate fraction of the keyspace.
In Figure 2 the replica of the state associated with key
K1 would be associated with key K1 + KS/4 on Node
N6 which is in the normal key range managed by that
node. In general, the key is calculated by taking the
natural key of the service and adding nKS/r to it. Using
the first approach server-side checks need to be relaxed
to permit state to be stored that corresponds to the peer
key ranges. By contrast, if the second option is chosen,
no such relaxation is necessary. In our
implementations we always associate replica state with
a calculated key since it makes server code less
complex.

4. Making Clients Replication Aware

Some BFT approaches, notably that of Castro and
Liskov [7], require a primary to be identified which
coordinates the protocols. Having a primary makes the
serialization of operations simpler but adds complexity
in that election protocols for primaries are required in
the face of failure. We believe that a symmetric
scheme is simpler overall by avoiding the need for
election protocols and does not rely on the immediate
detection of a Byzantine primary. Our algorithms
remove the need for a primary by making the client
replica aware. Using the scheme described in this
paper, each client needs to be aware of the replication
factor and needs to be able to independently address
ring nodes.

We sketch the algorithms used for the two primary
DHT operations – put and get. As is traditional a
put(key, value) will update the value associated with
some key and a get(key) will return that value. As

described in [1], we require at least 3f+1 replicas to
provide BFT in which up to f replicas are faulty (since
it must be possible to complete operations after
communicating with n–f replicas). In this paper, to
simplify explanation, we assume the simplest case of at
most 1 faulty node and thus a system with four copies
of service component state. In our implementations we
follow a generative approach permitting a (statically
determined) arbitrary number of faulty nodes to be
tolerated.

The general approach followed is that clients send
requests to all peers in the peer set. Each of the replica
peers is discovered by routing to the node responsible
for the corresponding replica key; such routing may be
made via an arbitrary ring node. This obviates the
possibility that one faulty node may prevent the
discovery of replica nodes and hence the operation
from being carried out. The client waits for replies
from the replica nodes and when an appropriate
number of consistent replies are received the operation
is considered to be complete. It is sufficient for the
client to receive f+1 consistent replies since at most f
nodes may be faulty.

The algorithms for put and get are similar in nature.
For brevity we only show the pseudo code for put in
Figure 3. The client calculates the set of keys to which
data must be written and attempts to store the data on
the appropriate nodes. Routing to nodes may fail as
may individual nodes and so the process is repeated
until an appropriate number of puts have been made on
the replica nodes according to BFT assumptions. From
the client perspective, it appears that no server
coordination is being performed. However, as
discussed in the next section, this is not always the
case.

UID ClientPut(Data data) throws Exception {
 int MAX_FAULTY = floor((REP_FACTOR - 1)/3)
 UID uid= hash(data)
 Set<Key> keys_not_stored =
 calculateKeys(uid)
 while size(keys_not_stored)>MAX_FAULTY {
 parforeach Key k in keys_not_stored {
 try {
 Server node = routeTo(k)
 node.put(data)
 remove k from keys_not_stored
 }
 catch(TimeoutException,CommsException) {
 // try again – up to policy limit
 }
 }
 return uid
}

Figure 3

5. BFT Consensus Protocol

Since the algorithms do not have a primary node, a
consensus protocol is needed in cases where a serial
ordering of operations is important. This is the case
with the put operation which is an update operation
and subject to race conditions. To satisfy this
requirement, we have developed a consensus protocol
which is essentially a counting algorithm. Space
prohibits the algorithm from being described in full
and we will sketch out the mechanisms here; further
details may be found at [8].

In the algorithm sketched below, each server
interacts with the other servers in its peer set that are
responsible for a specified unique id uid. The peer set
members are calculated using the address arithmetic
described in Section 2. The underlying routing
protocols provided by Chord are used for discovering
these nodes.

At a high level, a two-phase algorithm is executed
on each server. The phases involve counting both votes
and commits for an update request. Each phase
completes when the BFT message thresholds2 have
been received. The first phase is initiated by the receipt
of a put message on a server. However, this phase is
only entered into if the server is not already engaged in
an update of the specified uid. If it is, the request is
queued until the previous update has been completed
successfully or otherwise. Each server maintains a per
uid state machine which records the following
information: if a put has been received, a count of
votes received, whether a vote has been sent, a count
of commits received, whether a commit has been sent,
whether the node is already engaged in a put, and,
whether the server has chosen the update to which the
state machine pertains.

The state machine is relatively complex with 33
states necessary to capture the asynchrony in the four
way replication scheme shown in Figure 2. However
the algorithm is conceptually simple: each node
communicates with its peer set sending vote messages
in response to the receipt of a put from a client. When
the BFT threshold of votes has been received by a
server, a commit message is sent to its peer set. When
enough commit messages have been received from
other peers, the transaction is made and the client is
notified.

Consistent serialization is achieved by allowing an
update voted for by a sufficiently high number of other
servers to proceed ahead of a previous locally selected

2 The BFT thresholds are in fact different for vote and commit

messages – we require 2f+1 vote messages and f+1 commit
messages.

update. Since there is no guarantee that any one of a
set of concurrent updates will gain enough votes to
reach this threshold, the algorithm may deadlock. This
may be handled by a timeout/retry mechanism with a
randomized backoff.

6. BFT Node Recovery

The final mechanism needed to provide BFT is a
recovery mechanism to ensure the integrity of service
component state when the underlying ring changes.
There are two categories of change that must be
accommodated: (a) nodes joining and (b) nodes
leaving the ring; the latter may be orderly or due to
failure. When a new node is added to a ring, the effect
is to reduce the keyspace of the new node’s successor.
Conversely, a node leaving a ring causes the keyspace
of the leaving node’s successor to be increased. When
the topology changes, the standard Chord protocol
provides upcalls from the P2P routing layer to notify
the software hosted on nodes of a change of ring
topology. In both cases (a) and (b) above, the upcall
mechanism provides the service layer with the old and
new key ranges for which the node is responsible and
initiates the algorithms that repair the services hosted
on the ring. In practice it is useful to separate the
upcalls, and in our implementations two different
upcalls are used to start the repair process:
release(old_range) and takeOver(extra_range).

On the failure of Y, X takes over all
keys in the range [lower , upper)

R1

R2

R3

N1

N3

N2

X

R

Y

rangeX
lower+ KS/r

lower

upper

upper+ KS/r

Figure 4

Again, space precludes a full exploration of the

algorithms that are invoked in response to these
upcalls; they will therefore be sketched out here. The
difficult case is when a node fails and we therefore
concentrate on that case. When a takeOver upcall is
received, the algorithm calculates the address ranges of
the (non-failing) nodes in the peer set. Consider the
example shown in Figure 4 in which node Y has failed
and node X has taken over the key range
R=[lower, upper). In order to recover, X needs to
obtain all service component data in range R from the
peerset of the range. This task is slightly more complex

that it might seem since (a) X has no knowledge of
what extant keys lie in this range; and (b), the replica
ranges of R will, with high probability, be split
between multiple replica nodes for each of the regions
{ [lower+ KS/r, upper+ KS/r), [lower+ 2KS/r, upper+
2KS/r)… } as shown in Figure 4 with nodes N1, N2 and
N3 which all manage replica keys in the range [lower+
KS/r, upper+ KS/r). Thus the recovery process is
multi-phased. First a set of the peer servers holding
replica data is constructed by repeatedly routing to the
lowest key in each of the replica key ranges and
following their successor links. Next, each of the peer
servers is requested to return the set of keys they hold.
By counting and matching replies, a list of keys may
be constructed on the node performing the
reconstruction. This set will contain keys in the range
R and from the corresponding peer sets of R. Finally,
the data corresponding to these keys is asynchronously
fetched from enough replica servers to be safe under
BFT assumptions.

Within this algorithm there are many subtleties
which have been glossed over here for brevity. These
include: the policy choice of which servers from which
to fetch data, the exploitation of self-verifying data to
avoid multiple fetches, the avoidance of fetching more
data than is required and dealing with transient
failures. A final complexity is that if the ring is not
stable, not all the nodes that may be requested for data
will actually have it.

7. Summary and Conclusions

The techniques demonstrated in this paper make
several novel contributions. Primarily we demonstrate
that a Chord-like P2P system may be used to host
Byzantine Fault Tolerant services. The techniques
described are applicable in other KBR systems
although the specific problems of primary node failure
are not as critical in other systems, for example, those
based on Plaxton routing. In many ways, the
dissociation of the maintenance of replicated service
state from the underlying KBR mechanism increases
the applicability of the techniques. Making clients
aware of the addressing mechanisms used to address
nodes is a critical element in the establishment of BFT
mechanisms. The consensus protocol used to support
the serialization of updates is an optional part of the
scheme that may be applied when serialization is
required.

The algorithms sketched in this paper have all been
implemented as part of the Autonomic Storage
Architecture (ASA) project. The state machine
corresponding to the consensus protocol described in
Section 5 is dependent on the replication factor used.

We have therefore applied generative techniques to
automatically generate state machines for a given
replication factor.

8. Ongoing work

The algorithms sketched in this paper are being
applied in the ASA project which is constructing a
distributed autonomic file system. In particular, the
BFT protocols are being applied to the management of
data structures that maintain mappings from globally
unique file identifiers to sequences of file versions. We
also currently investigating programming language
constructs which present resilient service abstractions
implemented by the mechanisms described in this
paper.

9. References

[1] L. Lamport, R. Shostak, and M. Pease, "The
Byzantine Generals Problem", ACM Transactions
on Programming Languages and Systems, vol. 4,
pp. 382-401, 1982

[2] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan, "Chord: A Scalable Peer-To-
Peer Lookup Service for Internet Applications",
presented at ACM SIGCOMM Conference, 2001

[3] A. Rowston and P. Druschel, "Pastry: Scalable,
distributed object location and routing for large-
scale peer-to-peer systems", presented at
Middleware, 2001

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker, "A Scalable Content Addressable
Network", University of Berkeley, CA TR-00-
010, 2000,

[5] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz,
and I. Stoica, "Towards a Common API for
Structured P2P Overlays", presented at 2nd
International Workshop on Peer-to-Peer Systems
(IPTPS'03), Berkeley, CA., 2003

[6] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Y.
Zhao, "Distributed Object Location in a Dynamic
Network", presented at Theory of Computing
Systems 37, 2004

[7] M. Castro and B. Liskov, "Practical Byzantine
Fault Tolerance", presented at Third Symposium
on Operating Systems Design and
Implementation, New Orleans, USA, 1999

[8] A. Dearle, G. Kirby, and S. Norcross, "BFT",
http://asa.cs.st-andrews.ac.uk/BFT/

