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Abstract

We propose a middleware framework for deployment and subsequent autonomic
management of component-based applications. An initial deployment goal is speci-
fied using a declarative constraint language, expressing constraints over aspects
such as component-host mappings and component interconnection topology. A con-
straint solver is used to find a configuration that satisfies the goal, and the configu-
ration is deployed automatically. The deployed application is instrumented to allow
subsequent autonomic management. If, during execution, the manager detects that
the original goal is no longer being met, the satisfy/deploy process can be repeated
automatically in order to generate a revised deployment that does meet the goal.

Keywords: component, deployment, autonomic

1 Introduction

In [1], IBM identifies the growing problem of complexity in IT systems, predicting
that demand for skilled workers will double in the next six years, and will soon be
impossible to satisfy: “The increasing system complexity is reaching a level beyond
human ability to manage and secure.”

The approach of autonomic computing is to automate the management of
computing systems themselves, in the same way that existing business activities have
been automated in the past. An autonomic system needs to be self-managing in the
following aspects, among others: self-configuration, self-optimization, self-healing
and self-protection [2]. The general concept of autonomic computing can be applied to
any application domain; we propose to apply it to the specific problem of middleware
to support deployment and evolution of distributed applications.

We envisage a middleware framework supporting applications defined in terms of a
conventional component model. Components are encapsulated, of relatively large



granularity, with clearly defined interfaces (termed ports). Deploying and maintaining a
distributed application involves at least the following activities:

* selecting or implementing appropriate components

¢ defining an inter-connection topology specifying how components communicate
with one another

¢ defining a mapping of components to physical nodes

¢ deploying the individual components to the chosen nodes

* repeating any or all of the above when evolution of the application becomes neces-
sary due to failures or other changes in its environment

Our proposed middleware aims to largely automate all but the first of these, driven
by programmer-specified high-level goals regarding connection topology and physical
placement. The motivation is to improve application reliability and performance, and
to reduce the costs involved in human-managed system maintenance.

The general structure of an autonomic system is illustrated in Fig 1, which shows
a managed element and its autonomic lifecycle. The element is associated with an
autonomic manager that attempts to maintain some high-level objective for the ele-
ment. The behaviour of the element is continually monitored and analysed. When this
deviates sufficiently from the objective, the manager plans and executes a change to
the element in order to restore the desired behaviour. In our middleware the managed
elements are collections of components making up a distributed application.

Aulanomic manager

Manaped element

Fig 1: A managed element (from [2])

The research issues involved in developing such a middleware framework include:

* how to express the high-level goals defining connection and placement policy
* how to automatically identify a configuration conforming to these goals
* how to automatically deploy such a configuration
* how to automatically evolve the deployed configuration when necessary due to
changing circumstances
o how to monitor the deployed application
o how to detect when the high-level goals are no longer being met



* how to orchestrate all these activities in a distributed environment

In order to describe how an application is intended to be structured, we propose a
domain-specific constraint-based language. This describes configuration goals in terms
of resources including software components and physical hosts, relationships between
hosts and components, and constraints over these. From such configuration goals it is
possible to:

¢ deploy components using the available physical resources

¢ configure monitoring software to assess whether the executing application contin-
ues to obey the constraints specified in the description

¢ configure software for automatically evolving the application in response to con-
straint violations arising from changes in the environment

Some mechanism is required for deploying and redeploying components in possibly
remote locations. We advocate the use of bundles, which were developed by us in the
Cingal project (Computation in Geographically Appropriate Locations) [3, 4]. Bun-
dles permit XML-encoded closures of code and data to be pushed and executed in re-
mote locations. Cingal-enabled hosts provide a lightweight runtime and security infra-
structure, written in pure Java, necessary to support the execution of bundles.

There are several levels at which a deployed application may be evolved. The sim-
plest, on which we concentrate here, involves evolution of the configuration in order
to maintain a previously specified goal. Thus the configuration evolves whilst the
high-level configuration goal remains the same. We term this autonomic evolution,
and consider it to be fundamental to the autonomic management of distributed applica-
tions. Our aim is for this style of evolution to take place automatically whenever
required.

A second level of evolution is needed when the high-level goal itself changes, due
to a change in application requirements. Our framework handles both levels of evolu-
tion in the same way, treating the first as a special case of the second in which the
goal remains fixed. In both cases an ongoing autonomic cycle, as shown in Fig 1,
repeatedly attempts to solve the current constraint problem, deploys the resulting
configuration, and monitors the deployment to determine when to repeat the sequence.

2 Related Work

The framework described here involves description of application structure in terms of
high-level goals, automatic discovery of appropriate corresponding configurations, and
automatic deployment of those configurations. It relates to several research areas: the
use of models or architectures to describe the intended structure of an application;
constraint programming; and techniques for deploying and evolving component-based
software.



2.1 Architecture Description

A number of software architecture description languages (ADLs) have been developed,
including Acme [5]. Aesop [6], ArchWare [7], Darwin [8], Rapide [9], SADL [10],
Unicon [11], and Wright [12]. Acme, for example, is intended to fulfil three roles: to
provide an architectural interchange format for design tools, to provide a foundation for
the design of new tools and to support architectural modelling. In common with many
ADLs, Acme supports the description of components joined via connectors, which
provide a variety of communication styles. Components and connectors may be anno-
tated with properties that specify attributes such as source files, degrees of
concurrency, etc.

As well as providing a basis for reasoning about software structure via explicit rep-
resentations of that structure, a number of systems support the specification of in-
tended properties, using architectural styles. A style defines certain structural or behav-
ioural properties that are desired for an application. It is possible to check automati-
cally whether a given application instance conforms to a style, and in some cases to
generate conforming instances automatically. ADLs supporting styles include Acme,
ArchWare, Darwin, Rapide and Wright. A high-level configuration goal as outlined in
the introduction may be thought of as a specialised architectural style, in that it corre-
sponds to a set of possible configurations that meet the goal.

Styles are typically defined in a declarative manner in the form of constraints. Other
work involving the use of constraints to describe software configuration and evolution
includes [13-17]. Our work shares the motivation to use a simple declarative notation
to define high-level goals regarding intended application structure, but differs from the
systems mentioned here in several respects:

* We wish to allow the human administrator to control the deployment of compo-
nents onto physical nodes, in terms of the physical and logical properties of the
resources available on those nodes. It may be appropriate for physical placement
policy to be influenced by various considerations related to cost, performance, re-
silience, political issues and so on.

* We intend to manage autonomic evolution, necessary when a deployed application
deviates from its original constraints, solely from those constraints. This contrasts
with [14, 16, 17], in which repair strategies are expressed separately from the con-
straints in an imperative style.

The Active Pipes approach [18] encompasses the notions of machines and proc-
esses which transform data in an active network. The idea is to map a high level pipe-
line of software components onto physical network resources. As the authors state in
their paper, “it is necessary to have a general scheme of specifying application re-
quirements that is expressive enough to describe typical application scenarios while
simple enough to be used effectively”. In our framework we aim to combine this
approach with the notion of an ADL to encompass hardware and software components.



2.2 Constraint Programming

Constraint programming models problems by declaring a set of variables with finite
domains and constraints between values of these variables. Instead of writing an im-
perative program to provide a result, the user invokes a search algorithm to find a
solution that satisfies the constraints specified by the user. A number of constraint
programming and solving systems exist. We believe that the lack of domain-specific
syntax in such systems makes them unsuitable for specifying the high-level configu-
ration goal in an autonomic application. However, they are applicable as constraint
solvers when used in conjunction with a domain-specific language.

For example, ECLiPSe [19] is a constraint logic programming system with syntax
similar to Prolog, supplied with a number of constraint solvers and libraries. JSolver
[20] is a commercial Java library which provides constraint satisfaction functionality,
while Cream [21] is a simpler open-source library. Any such systems could be em-
ployed in our framework.

In Section 4 we describe a new domain-specific constraint language, Deladas (DE-
clarative LAnguage for Describing Autonomic Systems), which is suitable for speci-
fying autonomic systems and may be used to drive the deployment and evolution
process. Currently we are developing a prototype implementation in which Deladas
programs are compiled into low-level constraint satisfaction problems, which are then
solved using Cream.

A similar approach is taken with Alloy [22], a declarative notation for describing
structural architectural constraints. The language is derived from Z, and is compiled
into lower level SAT constraint problems. However, it does not address the physical
deployment of components.

2.3 Deployment Techniques

The Cingal system [3, 4] supports the deployment of distributed applications in geo-
graphically appropriate locations. It provides mechanisms to execute and install com-
ponents, in the form of bundles, on remote machines. A bundle is the only entity that
may be executed in Cingal and consists of an XML-encoded closure of code and data
and a set of bindings naming the data. Cingal-enabled hosts contain appropriate secu-
rity mechanisms to ensure malicious parties cannot deploy and execute harmful
agents, and to ensure that deployed components do not interfere with each other either
accidentally or maliciously. Cingal components may be written using standard pro-
gramming languages and programming models. When a bundle is received by a Cin-
gal-enabled host, provided that the bundle has passed a number of checks, the bundle is
fired, that is, it is executed in a security domain (called a machine) within a new oper-
ating system process. Unlike processes running on traditional operating systems,
bundles have a limited interface to their local environment. The repertoire of interac-
tions with the host environment is limited to: interactions with a local store, the
manipulation of bindings, the firing of other bundles, and interactions with other
Cingal processes. The approach described in this paper exploits much of the technol-
ogy provided by Cingal.



The OSGi Service Platform [23] addresses similar issues of remote installation and
management of software components, and (independently) adopts similar terminology
for bundles and wiring. The most significant difference is the lack of high-level de-
clarative architectural descriptions. This arises from it being targeted primarily at
software deployment onto smart and embedded devices, whereas Cingal is aimed more
generally at deployment and evolution of distributed applications on the basis of ex-
plicit architectural descriptions. Another difference is in the wiring model: a given
OSGi bundle can be a producer and/or a consumer, and all its associated wires are
conceptually equivalent. Cingal allows any number of symbolically named ports to be
associated with a bundle, and the programmer may treat these differently. However, the
two schemes have equivalent modelling power. Finally, Cingal is more flexible with
regards to initial provisioning: its ubiquitous fire service allows bundles to be pushed
to a new node from a remote management agent without any intervention required
locally on the node. Initial provisioning in OSGi involves pull from a new node,
which must be initialised somehow with an address from which to pull the code. The
address may be provided by various means such as direct user intervention, factory
installation, reading from a smartcard, etc.

3 Our Approach

Our general approach is shown in Fig 2. The application administrator specifies a
deployment goal in terms of resources available and constraints over their deploy-
ment. The resources include software components and physical hosts on which these
components may be installed and executed. Constraints operate over aspects such as
the mapping of components to hosts and the interconnection topology between com-
ponents.

We assume that the distributed application can be structured as encapsulated com-
ponents, each with its own thread of control. The granularity of components is in-
tended to be large, so that a relatively small number of components execute on each
host. The components must be capable of recovering their own state if necessary, for
example, in the event of a host crash. In our current prototype, components commu-
nicate with one another via asynchronous channels, but the approach could be extended
in a straight-forward manner to support other styles such as RPC. We also assume
that the application contains application-level protocols that cope with the disconnec-
tion and reconnection of channels to different platforms and servers. One such technol-
ogy is the half session abstraction described by Strom and Yemeni [24].

The cycle shown in Fig 2 is controlled by the Autonomic Deployment and Man-
agement Engine (ADME). In order to produce a concrete deployment of the applica-
tion, the ADME attempts to satisfy the goal, specified by the administrator in the
Deladas language. The engine includes a Deladas parser and constraint solver. The
result of the attempted goal satisfaction is a set of zero or more solutions. Each solu-
tion is in the form of a configuration, which describes a particular mapping of
components to hosts and interconnection topology that satisfies the constraints. Con-



figurations are encoded in XML documents known as Deployment Description Docu-
ments (DDDs).
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Fig 2: Refined autonomic cycle

If a configuration can be found!, it is enacted by ADME to produce a running de-
ployment of the application. This is facilitated using Cingal, and the Cingal infra-
structure must already be installed on each of the hosts involved. From a configuration
expressed as a DDD, ADME generates a collection of bundles that perform installa-
tion, instantiation and wiring of the components. Once these bundles have been fired
on the appropriate hosts, the application is fully deployed in its initial configuration.
This process is described in detail in [25].

The autonomic aspect of this approach is that the deployed application is instru-
mented with probes to monitor its execution. Events generated by the probes are sent
to the ADME, which may decide that the deployment no longer satisfies the original
goal, for example if a component or host fails. In this case the ADME evolves the
goal to take account of changed resource availability—for example, removing failed
hosts and perhaps adding new hosts that may now be available—and initiates the
satisfy/enact cycle again. This attempts to find a new solution of the constraints
that combines existing and new components, and to enact this in an efficient manner.
Assuming that such a new configuration can be found and deployed, the system has
reacted automatically and appropriately to a change in the application’s environment.
The cycle may continue indefinitely. This process is described in more detail in Sec-
tion 5.

The nature of the probes required to monitor the application depends on the con-
straints specified in the goal. At the simplest level the constraints operate over just
the component/host topology, and for this, simple probes are sufficient. Where more
complex probes are required, this can be deduced by ADME from the specified con-
straints. For example, constraints can operate over the latency or bandwidth of a chan-
nel, the degree of replication of a component, or the mean availability of a host. Each

! The ADME may be configured to use the first configuration found, or to allow the administrator to
choose among multiple configurations.



of these dynamic aspects requires a specialised probe. We view Deladas as a core lan-
guage that may be extended to incorporate new constraint types and associated probes.

This style of autonomic application evolution can be achieved without human in-
tervention. The framework described above also accommodates the need for more wide-
ranging evolution. For example, in addition to changes in the application’s environ-
ment, changes may occur in the enterprise that the application supports; examples
include changes in legal or financial regulations, or mergers of organisations. These
may require manual revision of the deployment goal, including changes to the con-
straints.

4 Initial Deployment

In this section we explore, using an example, the use of Deladas to describe the re-
sources and constraints described in the last section. The language belongs to the
family of architectural description languages (ADLs). Unlike some ADLs, Deladas
does not contain any computational constructs, and programs that perform computa-
tion cannot be written in it; it is purely declarative and descriptive.

We believe that Deladas’ constraint style of deployment specification gives it a
relative simplicity compared with more explicit styles, making it suitable for the
specification of relatively large application deployments. This is especially important
when the deployment is to be recomputed repeatedly in an autonomic cycle.

Deladas is used to define systems and constraints over them. The types supported
are: component, host and constraintset. The type component is used to describe soft-
ware components at a high level. Components, like many of the types in Acme, have
associated attributes. The mandatory attributes for components are bundles and ports.
Bundles are used to define the code and static data of the components. Ports are used to
define communication channels between components. The type host is used to de-
scribe a resource on which components can be deployed. Attributes of hosts include
IP-address, ownership, platform type, etc.

The type constraintset is a high level constraint-based specification of the invari-
ants that pertain to a system. A constraintset constrains the way in which the system
is realised, for example how processes are placed on machines and how the processes
are wired up. These are used to yield an initial configuration that might be deployed,
and also to constrain deployments in the face of change. In the future we envisage
extending the constraintsets described here to include other aspects such as bandwidth
and geopolitical constraints.

To illustrate the use of constraintsets, we use an example drawn from the peer-to-
peer domain, in which clients connect to routers. Fig 3 shows one particular configu-
ration that satisfies the deployment goal, expressed as a Deladas constraintset, shown
in Fig 4. In the configuration shown in Fig 3, the six hosts, labelled A/ to h6, each
contain a single component, labelled C for client and R for router. The components
are connected via uni-directional channels, which are attached to particular ports on
each component.
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Fig 3: Example configuration

We now describe in more detail the Deladas constraintset shown in Fig 4. Given a
set of resources specified in Deladas and comprising components and hosts, the con-
straintset might describe none, one or many possible configurations. It is easily pos-
sible to write Deladas constraintsets that are internally inconsistent and therefore spec-
ify no valid configurations, irrespective of resources. The writing of appropriate con-
straintset definitions is likely to remain difficult, and we envisage that constraintsets
for common architectural patterns might be available off the shelf, presenting the
opportunity for high level architectural reuse and specialisation.

In this example, the constraintset contains five constraint clauses. These clauses
operate over two types of component named Router and Client. It is not necessary to
specify the concrete types of these components but it is possible to infer that, in order
to satisfy the constraints, the component Router must have ports named rin, rout, cin
and cout. The constraints are written in first-order logic and specify (in sequence) that:

* hosts run an instance of a router and/or a client

* every client connects to at least one router via the out and in ports on the client
and the cin and cout ports on the router

¢ there are at most two clients for every router

* every router is connected to at least one other router via their rin and rout ports

* routers are strongly connected

Note that if two clients are connected to a router, routers require a separate cin and
cout port per client.



constraintset randc = constraintset {

// 1 router or client per host

forall host h in deployment (
card (instancesof Router in h) = 1 or
card (instancesof Client in h) = 1

)

// every client connects to at
// least 1 router
forall Client c in deployment (
exists Router r in deployment (
c.ports.out connectsto r.ports.cin
c.ports.in connectsto r.ports.cout

)

// every router connects to at

// most 2 clients

forall Router r in deployment (
card(Client c connectedto r) <= 2

)

// every router connects to at
// least 1 other router
forall Router rl in deployment (
exists Router r2 in deployment (
rl.ports.rout connectsto r2.ports.rin
rl.ports.rin connectsto r2.ports.rout
rl != r2

)

// routers are reachable from each other
forall Router rl,r2 in deployment (
reachable (rl, r2)
)
}

Fig 4: Example Deladas constraintset

Fig 5 shows an example Deladas specification of resources that might be given to
the solver in order to obtain a deployment. This specification defines the components
Client and Router. The specification of Client includes the bundle containing code and
static data, and defines two ports named in and out. The port definition of Router
states that routers may have a multiplicity of connections, designated by the bracket
notation. This variadicity is missing in many ADLs, preventing the specification and
generation of architectures like this example.



component Client (
code = "file:///D:ClientBundle.xml",
ports = {in, out}

)

component Router (

code = "http://deladas.org/RBundle.xml",
ports = {cin[], cout[], rin[], rout[]}
)
host hl = host(ipaddress = "192.168.0.1")
host h6 = host(ipaddress = "192.168.0.6"

Fig 5: Example Deladas resources

5 An Autonomic Cycle

Here we describe in more detail the autonomic cycle first described in Section 3. We
assume that the clients and routers described in Figs 4 and 5 have been deployed in
the topology shown in Fig 3, which is compliant with the Deladas constraints. Fig
6 shows part of this deployment in more detail. Each component executes within a
Cingal-supported machine as a separate operating system level process. For each host
running a component, the system deploys another component called the Autonomic
Management Process (AMP). This task is responsible for monitoring the health of
each of the deployed components running on that host. The overall orchestration of
the deployed system is the responsibility of an instance of the ADME. It is unimpor-
tant whether this is the same instance that caused the original deployment of the archi-
tecture, or not. To avoid ambiguity we will call the instance of the ADME performing
the orchestration the Monitoring ADME (MADME). The MADME holds the knowl-
edge required for the autonomic cycle in the form of the resources (components and
hosts) and the constraints over those resources.



rii f . WA hsf '
D CRD T

machng H maching machna
i i #
| |

............................................ | F——

NS | SR B
C_AMP _AMP P AMP

1 — _f .-,'— r— '___a-i'_ —

|
| | _.-""‘Ilf il

Fig 6: Components for autonomic management

It is now possible to see how the autonomic cycle shown in Fig 2 is implemented.
An instance of the ADME solves the constraints and the resulting architecture is en-
acted by ADME to produce a running deployment. This deployment may include a
new MADME process, or the ADME instance may become the MADME for the
deployment. When events are received by the MADME that indicate invalidation of
the constraints, the MADME attempts to find a new solution to the constraints. We
have glossed over two details—how the changes are detected and how stability of the
system is maintained.

When a system is deployed, in addition to the resources and constraints specified in
Deladas, the MADME has knowledge of the identity of the Cingal machines executing
the components, and of the AMP processes. Each Cingal machine running a compo-
nent knows of its local AMP process, which is configured with knowledge of the
MADME. To illustrate how the autonomic cycle is initiated we will consider two
possible failures: the failure of the router process running on host 43, and the failure
of the entire node 43.

In the event of the router process running on A3 failing (say due to a heap over-
flow), various different entities can potentially observe the failure: the connected cli-
ents running on hosts i/ and h5, the connected router running on host A4, the
MADME, or the collocated AMP. The failures can be detected either by the loss of a
connection to other processes or by using heartbeats between the components. The
entities observing the failure are commonly known as failure suspectors and the ap-
proach to recovery advocated here is perhaps first due to Birman [26].

In practice, being able to determine which component has failed in the face of unre-
liability is notoriously difficult, and there exists a large body of work on unreliable
failure suspectors, e.g. [27, 28]. For the purposes of this paper we assume that we can



reliably determine which hosts and/or components have failed, and that the failures
will be reported to the MADME.

If a failure has been reported by the collocated AMP, the MADME can trivially de-
termine that it is the process hosting the router and not the host that has failed. In this
case the MADME can instantiate a new router instance on node i3 using a subset of
the functionality used to initially create it. If the entire A3 node fails, the MADME is
required to find a new solution to the constraints. However, before examining how
this is performed, the issue of stability of constraint solutions must be addressed.

The solution to the placement of clients and routers shown in Fig 3 is one of
many possible solutions to the constraints given in the Deladas specification. Other
solutions may be trivially found by hosting the routers on hosts 4/ and 42 for exam-
ple. When the MADME is required to find a new solution to the specified constraints,
it is desirable to minimise the redeployment of processes between hosts. Before at-
tempting to find a new solution to the general problem, as it did when the initial
deployment was determined, the MADME therefore attempts to solve a more con-
strained problem. In this case, the problem is formed from the original constraints and
resources, and the bindings surviving from the original deployment, comprising R to
h4,C to hl, C to h2, C to h5 and C to h6. If no solution can be found to this prob-
lem, the extant bindings are progressively removed from the description until a solu-
tion can be found.

Like the original attempt to find a solution, there is always the possibility that no
solution may be found. If no solution can be found, a constraint error is issued by the
MADME. This can be delivered via a variety of mechanisms.

In the situation where the host i3 fails completely, the MADME might find the
solution shown in Fig 7.

1

Fig 7: Evolved configuration



Thus far, the autonomic processes described have not included any human interven-
tion. However, as discussed earlier, changes may occur in the enterprise that the appli-
cation supports, requiring manual revision of the deployment goal, including changes
to the constraints. In order to accommodate such changes, mechanisms are required
whereby the resources and constraints may be changed by human agents. This may be
achieved via direct interaction with the MADME.

The situations where resources are changed are similar to that where evolution is
forced due to some failure. Changes initiated by a human are richer than those that are
machine-initiated since resources can be added as well as removed. However, the
changing of constraints cannot occur without human intervention. To accommodate
these changes, the MADME presents five methods (as Web services) to the outside
world, shown in Fig 8.

String getResources () ;

String getConstraints();

String getConfig();

String[] satisfy( String config,
String resources,
String constraints);

void enact(String config);

Fig 8: MADME external interface

The first three methods are selectors enabling the Deladas resources and constraints and
the DDD describing the deployment to be obtained. The satisfy method allows new
constraints, resources and existing deployed components to be specified in order to
accommodate some enterprise-level change. The config parameter may be null, corre-
sponding to the initial deployment problem. The satisfy method returns a collection of
DDDs compliant with the specified constraints. The enact method performs enactment
as described earlier. This may require extant processes to be terminated and redeployed
elsewhere.

6 Status and Further Work

The main constituents of the framework described in this paper are:

* the Deladas language;

¢ the constraint solver;

¢ the component deployment mechanism;
* the monitoring infrastructure; and

¢ the ADME autonomic manager

We have implemented a prototype compiler for the Deladas language. This trans-
lates the high-level constraints into several separate sub-problems: the number of
components to be instantiated; the inter-connection topology between components;
and the mapping of components to physical nodes. Each problem is specified in terms



of constraints over sets of integer variables. For example, the inter-connection topol-
ogy problem is encoded using a binary variable for each possible connection between
two components.

We are experimenting with the Cream constraint library [21] to find valid solutions
to each of the sub-problems. We have implemented a translator that takes the output
from Cream and generates an XML description of the required application configura-
tion.

The component deployment mechanism is also fully implemented, based on the
Cingal system [4]. It takes an XML description and deploys it on a set of Cingal-
enabled hosts.

The monitoring infrastructure and autonomic manager will be developed once the
initial satisfy/enact functionality is operational. We would hope to have a full proto-
toype implementation completed by the time of the conference.

We plan to evaluate the basic utility of the framework initially by deploying sev-
eral distributed applications such as a load-balanced web server and a publish/subscribe
network onto a Beowulf cluster, and forcing various types of host and component
failure. Longer term we will investigate the scalability of the framework, in particular
the tractability of the constraint solving part, and experiment with extensibility in
terms of the constraints and monitoring infrastructure that can be incorporated.

7 Conclusions

We believe that autonomic management of distributed application deployment will
become essential as the scale and complexity of applications grow. This paper has
outlined a middleware framework to support the initial deployment and subsequent
autonomic evolution of distributed applications in the face of perturbations such as
host and link failure, temporary bandwidth problems, etc. The knowledge required for
autonomic management is specified in the form of a set of available hardware and
software resources and a set of constraints over their deployment. We postulate that it
is feasible to implement an autonomic manager that will automatically evolve the
deployed application to maintain the constraints while it is in operation. We are cur-
rently working on an implementation to enable us to test this assertion.
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