University of Glasgow
Department of Computing Science

Lilylbank Gardens
Glasgow G12 8QQ

University of St Andrews [Fiakl

il vl
Department of Computational Science

North Haugh %
St Andrews KY16 9SS

Polymorphic Names

and Iterations

M. P. Atkinson and R. Morrison

Persistent Programming
Research Report 53
November 1987

Preface

This paper was presented at the International Workshop on Database
Programming Languages held at Roscoff in France during September 1987

and will also appear in the proceedings of that workshop.

POLYMORPHIC NAMES AND ITERATIONS
Malcolm Atkinson! & Ronald Morrison?

ABSTRACT

This paper presents polymorphic names as manipulable values in a strongly typed language.
Their polymorphism is used to permit the programs to be statically type checked, except where
the programmer explicitly requires otherwise. These names then allow code to be written
2 B which abstracts over names or iterates over names. The utility of such name manipulation is

4

W

illustrated by demonstrating that the equivalent of file and directory operations may now be
implemented. Its limitations are illustrated by considering the implementation of join.

1Compuling Science, University of Glasgow, G12 8QQ, Scotland
2Compulational Science, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS, Scotland

Introduction

Names are used for many categories of objects within programming languages - for
example, to name constants, variables, points in the program, exceptions etc. When they name
fields of records, then it is often the case that some input and output operations could use those
names. For example, in a form filling system, or in a browser [Dearle & Brown, 87].
Diagnostic tools and program construction aids need to manipulate, input and output these

names.

In operating system command languages, editors and other user interfaces, they are
used to identify objects from different sets of categories, especially file directories and files. At
present these names may obey different rules from those in the programming language. As we
attempt to develop a single coherent system in which long and short term data (code, objects,
etc.) are treated consistently [Atkinson ef al.81, Atkinson ez al. 83, Atkinson & Morrison
85b] it has been necessary to consider carefully the treaiment of names.

Unfortunately, during the development described in those cited papers there were two

flaws in our treatment of names:

i) the interpretation of field names in the type checking rules implied a single universe of
names for fields - which is known to be unmanageable in large evolving systems; and

ii) program identifiers were used to name some things (¢.g. procedures and structure
classes) while strings were used to name other things (notably databases and entries in
databases).

The former problem appears in many systems as we note in various surveys [Atkinson
& Buneman 88, Buneman & Atkinson 86, Atkinson et al. 87]. The latter problem manifests
itself in most languages as the use of strings for file names. It has the inconvenience of
introducing a quite different, dynamic binding rule for the interpretation of these names.
Normally, the operating system is responsible for providing this rule. The inconsistency
introduced makes programming more difficult and requires program alteration when programs
are moved between operating systems

In PS-algol and its descendents we have wished to encompass more of the semantics
that affect the execution of programs to give the programmer a consistent world for the total
computation. We have therefore sought to remove these anomolous string-names and their
inconsistent interpretation. A similar motivation has influenced other work [Buhr & Zarnke
87, Richardson er al. 87]. We envisage that by continuing this development most of the
functions of an operating system can be given a consistent semantics which is also consistent
with the command languages and the programming languages provided. The task of learning
1o use the composition of these, and of implementing them is then much simplified.

For example, in many programming environments there are naming systems for: files,
databases, schema components within the database, command language variables, commands,
parameters, programs, processes, procedure libraries, modules within these libraries, etc.

Often different rules apply to the name management for each of them which have to be both
implemented and understood.

With this motivation we proposed name spaces [Atkinson & Morrison 85a] and have
subsequently refined them and renamed them environments in our implementation of Napier
[Atkinson et al. 86, Atkinson & Morrison 87, Atkinson et al. 87]. These ameloriate the two
problems identified above but do not permit all aspects of an operating system to be modelled.
At the first Appin workshop [Atkinson & Morrison 85a] we noted our inability to iterate over
structures containing names. Interaction, that is data transfer across the inevitable boundary
between the computation described by the language and the environment of that computation,
was also incomplete. For example, names could not be communicated to and from the user
without treating them as strings. The lack of iteration meant operating system functions like
browsing a directory of files could not be implemented. The lack of interaction meant that
generic /O (e.g. forms packages) could not be implemented easily, though Dearle and Cooper
has developed a use of the callable compiler which overcomes this deficiency [Dearle and
Brown 87,] Cooper et al. 87, Cooper et al. 86, Cooper & Atkinson 871.

This paper shows how the new language construct: polymorphic name types, allows
us to define iterators and transput operations and hence code these hitherto problematic
functions. First the polymorphic name type, the universal extensible union type, the
polymorphic I/O construct and the iterator construct of Napier are defined. Then example
program fragments illustrate how they are used.

The Polymorphic Type Name

Lil‘te procedures and abstract types in Napier [Atkinson & Morrison 87], names may be
parameterised by any type thus specifying the type of objects they may name. Syntactically

there is a name type constructor name which when parameterised with a type yields a type.
For example:

name [string]

which is a set of all names which may name a string. More precisely, we consider all
environments (those produced explicitly and manipulable with the env construct, those
corresponding to records and those associated with the lexical block structure) to be sets of
quadruples. Each quadruple is a name, type, constancy, value. The type with which a name

value is parameterised must match under the type rules the second element of this tuple when
the name value is matched with the first element.

names:

and

The operations on names are:
type test,
input and output;
type consistent assignment; and

lexical ordering

These operations are further defined below. There are also two transfer functions on

tet nameToString = procit : type] (n : name [} — string)

let siringToName = proc[s : type] (s : string — name [7]) Voo

The type test has the form

<exp> is <ptype>

and type rule

where

a)
b)

c)
d)

t: tis ptype => bool

ptype is:
any one of the predefined types (e.g. int, real, bool);
any user defined type name, (i.c. an in scope occurrance of <type_pame> from
type<type_name> is ...);
any type expression (i.e. such as may appear after is in type ... is...);
any type constructor (¢.g. abstype, which might have been used in type stack is

abstype ..).

Figure 1 illustrates the use of the type test

let typeName = proc [t : type] (x: t — string)

begin
case true of
xisint
x is real
x is bool
x is string
x is picture
x is pixel
x is image
x is vector
x is structure
x is union
x is proc
x is env
x is abstype
x is name
x is any
default "impossible
end

"

¢ tint” ! base types
: "real”

: "bool"

: "string”

: "picture"

: "pixel”

: "image" Iconstructors
: "vector"

: "structure"

: "union"

: "proc”

oon 1

cnv

: "abstype”
: "name”

.o "

any

Figure 1: A procedure to give a string corresponding to the type of its

parameter

The equality test on name is true if they both are represented by the same sequence of
characters and if they are both restricted to exactly the same type. Thus the program:

let pI = name [real] floccinaucinihilipilification
let p2 = stringToName [real) ("floccinaucinihilipilification’)

print pl = p2

would print true.

Input and output are discussed in a subsequent section, and assignment is identical with

all other assignments in the language.

Lexical ordering is defined for the corresponding strings and is irrespective of type.

for

<exp> < <expy>

t, ¢ name [t] <name [t']

is exactly equivalent to
nameToString (<expy>) < nameToString(<expy>)
We use this ordering when defining iterators.

The Universal Extensible Union Type

In PS-algol we had an extensible union type, pntr, and we grew to appreciate its
utility; indeed much of the database programming, including the interface to persistent data and
data model implementation depended on it [Atkinson et al. 87, Cooper ez al. 87].

We refer to it as a union type because it may refer to an instance of any structure
class. We refer to it as extensible as new classes declared after the use of pntr are eligible as
referends, thus the set of possible referends is increased when each structure class is declared.
1t was not universal as there were types, e.g. int, which were excluded from its set.

It was valuable because it allowed a type check to be delayed, because it allowed us to
limit the traversal of the type match algorithm, and because it allowed generic code to be written
applicable to future types, possibly with the execution taking into account the actual type. It
was, however, overused, as no more specific alternative was available when referend types
were predetermined. 1t was also unfortunate as its pronunciation ‘pointer’ evoked connotations
of other languages where such things provide a loop-hole in the type system and even pointer
arithmetic. Of course, these horrors do not exist in PS-algol.

In Napier we therefore allow proper constraint of referend type where appropriate in
data structures, and we use polymorphism to implement most generic code. But we have
retained the valuable properties of patr in a type any, but removed an irksome restriction by
making it universal.

There are few operations on values of type any (only equality, inequality and
assignment) thus it is safe. To gain access to other operations on the values it is necessary to
project out of the union, just as one projects out of a statically defined union. A delayed type
check is needed in both cases. We now make this projection explicit. (The implicit projection
from pntr was one of the causes of a single name space of field names.) Thus our any is
similar to Cardelli's dynamic [Cardelli & MacQueen, 85, Cardelli 85].

Note name [any] is the type which includes all possible names.
Polymorphic Input and Output
The output statment print in PS-algol [PPRR-12] is already polymorphic, and handles

multiple fonts, multiple destinations and its default actions may be replaced by a programmer.
In Napier we retain the essence of this prin clause but we are revising details [Philbrow et al.

871.
Thus
print4 +3
print "freedom is never achieved by violence"
print 142 + 3-7

would print the values in the accepted format. Logically the print staternent would be written
as:

print [inf] 4+ 3
etc. to be consistent with our other polymorphic constructs, however in this case we have
decided the explicit type parameter is so tedious that we prefer to omit it and tolerate the
inconsistency. (There is some hope that we may be able to return to consistency by omitting
the type parameters elsewhere c.f. Poly [Matthews 85].)

In PS-algol input was performed by special functions indicating the type expected, e.g.
readstring. This cannot be data type complete since the type space is infinite, and so is
inconsistent with our design principles. It also masks the projection and dynamic type check
from the sequence of user actions (e.g. key strikes, mouse clicks etc.) to the internal type. A
dynamic type check, prevalent in languages, which we believe should be properly visible and
parametric. read therefore takes a type parameter, as is shown below:

feti:= read [int] ! create an integer variable i and
!initialise it to the next input integer

let r = read [real] ! declare real constant r

let vs = read [*string) ! vs becomes a constant refering to a

! vector of strings which are read in.

A consequence of this treatment is the read operation corresponds to a call of the compiler on
the relevant input source seeking the specified type. Parts of a program to plot an arbitrary
function is shown as figure 2. But it may also receive an already typed object via cur & paste

actions, since, if we capture the system within one semantics the structure and type information
is invariant over these operations.

print "'n supply initial X"

fet Xi = read [real]

print "n supply final X"

let Xf = read [real]

print "'n supply f(X)"

let f =read [proc (real —> real)]

Figure 2: A program fragment collects data describing what to plot
Polymorphic Iterations

When a polymorphic procedure is defined this indicates that different applications of the
procedure may have parameters of different type, but that for each application the procedure
body will be executed with a consistent and constant substitution of the type variables. The
polymorphic iterator is defined correspondingly. Each traversal of the iteration may be with a
different type substitution, but within each execution of the controlled statement the type
substitution is constant and consisient.

There are iterators to perform defined sequences of operations in the language

e.g.
for i = 1to 10do ...

with the usual semantics and options. Note that i is a constant declared here with the scope of
this for statement.

There is a similar iteration construct, introduced by for each, which iterates over
compound objects. Each of the compound objects may be considered a map, e.g. a vector of
type *tis a stored map from in¢ to t. Identifiers may be provided in the iteration statement to
range over the sequence of values in the map, and for every type of map the iteration sequence
is defined. e.g.

for eachk — uinvsdo ..

where vs is a vector of strings would apply the controlled clause first with k set to the lower
bound of vs and u set to the first string, and repeat for increasing index up to the upper
bound. Either control variable may be omitted, e.g.

for each k in vs do ...
and
for each — uinvsdo ..

Similar arrangements are available for iterating over indexes, with multiple keys having
corresponding multiple control variables.

. The other major classes of compound object (struct & env) all encapsulate
environemnts (maps from names to values with different types for different names).
Consequently the first control variable is a polymorphic name, and the second of the
corresponding type, which constitutes polymorphic iteration, e.g.

for each [r: type] aName : name [t] — aValue : tin ...

where aValue is of type t. Note t is available as a type variable in the controlled clause. The
iteration substitutes from the quadruple with the least name first.

Iltustrating the use of constructs to manipulate environments

Our environments have been described elsewhere [Atkinson et al. 87, Atkinson &
Morrison 87]. They may be used to provide extensible objects, and one such application of
those would be as file directories - where files are now properly typed.

Figure 3 shows the insertion of a new quadruple in an environment, equivalent to
adding a file (with or without write protection) to a directory, an Env.

print "n' What is the name?"
et newName = read [name [*int]]
print "n' What is the intial value for ", newName , " "
let initialValue = read [*int]
print "n'is the field updateable?”
let constantField = replyAffirmative ()
if constantField then
insert newName = initialValue in anEnv
else
insert newName = initialValue in anEnv

Figure 3: Imserting a new quadruple in an enviromment

To illustrate the iterator construct more fully suppose that environments have been
chosen to represent some entity, and that now a new property is to be recorded for every
instance. The programmer/data designer has decided that such transitions are likely, and
considered it worth incurring the additional costs of using envs rather than static records. The
iteration in Figure 4 would then achieve this.

print "'nis the field updateable?"
let constantField = replyAffirmative ()
print "'n What is the name of the new integer field?”
let newName = read [name[int]]
for each — anEnv in thelndexToEnvs do t don't care about the key
begin ! once for each env
! show the user the environment
envShow (anEnv)
print "'nWhat is the initial value for ", newName, e
let initialValue = read [int]
if constantField then
insert newName = initialValue in anEnv
else
insert newName := initialValue in anEny
end ! of iteration through index

Figure 4: An example program fragment (o add to a new integer ficld to all the
environments in am index

That example has assumed the existence of a procedure, envShow, capable of printing
any environment. A simple implementation, utilising polymorphic iteration, is shown in
Figure 5.

Figure 6 shows a procedure to copy one element of an environment, then Figure 7
shows how that and polymorphic iteration can be used to construct a back up copy of any

environment.

Figure 8 shows how two environments may be combined using the same facilities, and
figure 9 shows how a user controlled directory (environment) editor might be built.

10

let envShow = proc (theEnv : env)
begin
for each [r: type] aName mame [t] — aValue in theEnv do
begin
print "n", nameToString (aName) using xor ! invert name
print "=" using copy
if aValue is int or aValue is real or aValue is bool or
aValue is string then
print aValue
else
begin there print type name rather than value
let typeString = typeName (1] (aValue) | see fig 1
if typeString = "pixel” or typeString = "picture” then
print rypeString
else
printEnboldened (typeSiring)
end
end
end

Figure 5: Procedure to print any environment

et copyOneEntry = proc[t: type] (el, €2 : env; n : name [1])
if constant e/ (n) then
insert n = el(n) in e2
else
insert n :=el (n) in €2

Figure 6: A procedure to make an exact copy including comstancy of one
binding from ome enviromemnt to another

let snapshotEnvs = proc (e : env —> env)
begin ! ' makes a constant snapshot of its argument
let res = emptyEnv ()
for each [r: type] nname] — vinedo
insert n =vinres
res
end

Figure 7: A proceudre to produce a copy of am environment with all the fields
constang

11

let mergeEnvs = proc (envl, env2 : env)
begin adds to env] all the bindings in env2
fet duplicates = emptyEnv ()
for each [t : type] n: name [t} in env2 do
if nin envl then
copyOneEntry [t} (env2, duplicates, n)
else
copyOneEntry {t] (env2, envl, n)
if size duplicates # o do raise nameClashes (duplicates)
end

Figure 8: A procedure to add the conmtents of one enviromment to another

fet userControlledCopy = proc (¢ ; env — env)
begin
let res = emptyEny ()
for each [t : type] n: pame [¢] in e do
begin
print "'n include”, n, "7
if replyAffirmative () do
copyOneEntry [t] (e, res, n)
end

"

res
end

Figure 9: [Procedure that allows the user to control the parts of an
environment copied

™

Finally a program to emulate the /s shell command (a simple version) as in UNIX is shown
as figure 10. Note that nameToString is used explicitly because otherwise the name would be
printed like a name literal expression, e.g.

namelintlfred
since a language must be able to read its own handwriting.
let listEnv = proc (e : env)

for each [:type] n :name [7] in e do

print nameToString (n)

Figure 10: [Procedure to list the contents of a mame space c.f. Is in
UNIX™

12

Typing relational join

At the workshop in Appin in 1985 Peter Buneman [Buneman 85] posed the problem of
declaring a procedure which implements join. There were three sub problems:

i) to provide a type which will pass the parameters, i.e. the two relations and the names of
the columns on which the join is to be performed,;
ii) to check the mutual consistency of these parameters eg that the columns named appear

in both relations and have the correct type; and
iii) to generate the type of the result relation.

These language features provide a partial solution to the posed problem. Figure 11 shows a
polymorphic procedure to perform an equijoin on two relations over a list of columns of type
t. Bach relation is presumed to be a vector of environments, and the columns are identified by
a vector of names. The procedures used by equijoin are shown in figures 12 to 14,

let equijoin = proc [type t] (rell, rel2:*env; cols:*name [t] — *env)
begin
! check column names are present in each relation
allln[t] (rell(1),cols)
allln [#] (rel2(1), cols)

! each env in a rel has some set of names

! set up temporary result structure
let resSize: =0
type tupleList is struct (tuple: env; next: tupleList)
let tl: = tupleList (emptytuple(), nil)

I w*m naive algorithm

for each — el inrell do ! each tuple in rell
for each —e2inrel2 do ! each tuple in rel2
if match (t] (el, €2, cols) do

begin

resSize: = resSize + 1
tl: = tupleList (merge (el, €2), tl)
end
! final result
let res = vector 1::resSize of tf (tuple)
for i = 2 to resSize do
begin 1/ := 1l (next); res (i) := ¢l (tuple) end
res
end

Figure 11: declaring a polymorphic equijoin procedure in Napier

13

let allln = proc [type 1] (rel: *env; names: *names tth
for each —n in names do
if not (nin rel(1)) do
raise wrongColumn

Figure 12: check all the columns names are in the first environment

let match = proc [type 1] (11, 12: env; cols: *name {1] — bool)
begin
let equal:= true
for each — nin cols do
equal: = equal and t1(n) = 12(n)
equal
end

Figure 13: test two tuples for equality

Let merge = proc (¢, 22: env — env)
begin
let newTuple = emptyEny ()
mergeEnvs (newTuple, t1)
for each [1: type] n: name [¢] in 12 do
if not (nin t1) do
copyOneEntry (1] (12, newTuple, n) !'seefig6

!'all columns from rell - see fig 8

newTuple
end

Figure 14: generate the mew tuple from the two that matched

Subproblem (i) is solved using this type system. We consider below whether the
solution is adequate. The check (subproblem (ii)) has been programmed - figure 12 - verifying
that all the columns appear in each relation. The dynamic specification of this condition is
acceptable since the check is inherently dynamic; the relevant properties of the parameters may
not be determined until the code which calls equijoin is executed. The result type (iii) is
statically specified and consequently the third subproblem is avoided.

14

When the quality of this solution is considered, the problems rearise. The type of a
relation *env is unsatisfactory for a number of reasons:

a) its cardinality is inflexible, leading to the final copy phase of the algorithm;

b) it is not space or update efficient, as the use on env rather than struct requires a
flexible map to be stored and maintained;

c) it does not indicate that every tuple in a relation is over the same columns, thus

factoring out the check that columns are valid depends on programmers complying
with this unwritien convention (it also repeats the type and name information
redundantly with every tuple).

These new subproblems are not entirely a result of pedagogical simplification, nor is
the naive algorithm. Subproblem (a) could be overcome by a better data structure, eg a list
of vectors. Suppose we used *struct (...) to overcome subproblem (b}, then we lose the
polymorphism and name abstraction of equijoin. This could be solved if we say that env D
struct so that *env would type match *struct for the relation parameters. But this doesn't
deal with the result type, as somewhere we need to compute the appropriate struct (...) of
the result type, which is dependent on the two input relation parameters. The equivalent
calculation takes place on each iteration in procedure merge (fig 14) in the presented
solution. At present we have no mechanism for calculating this result type, at the start of
equijoin and using it (statically) for each iteration. If this deficiency were overcome
*struct (...) would also deal with subproblem (¢), but variants of this subproblem then
tends to reappear as solutions to subproblem (a) are constructed.

The n*m algorithm should be replaced by sort merge, or use of indexes, but the
polymorphic requirement militates against this. The type parameter ¢ could be image or
proc (int, string — real) or any etc. To use indexes we need to either calculate a hash
code or perform a ‘less than' comparison operation. This leads us to identify another
unsolved subproblem:

d) either a generic operation hashcode [type] (x: t — in) or a generic comparison
operation less than [type (] (x, y:r — beol) is required to achieve efficiency,
but we do not know how to define and implement them.

Because of these outstanding problems we build a polymorphic index type constructor
into Napier i.e. index:l, 12, ...t — t. Using this we can overcome subproblem (a)
to (d) but we have achieved this by passing them o its implementor. Even then we cannot

+ properly type equijoin, since, if the parameters and the results were to include indexes,

these types are static and the result type cannot be computed.

15

For the moment we remain unable to define an adequate type system for generic
applications, and we overcome the problem by synthesising a specific procedure for each
type parameterisation of join when it is needed, and then using the callable compiler to build
the operation before applying it. Persistence and the universal extensible union type allow
us to memoise this operator construction [Cooper et al.87]. It is not clear whether a type
system which does better than this is achievable.

Conclusions

The sequence of examples show that scanning directories is now possible, and that
other data dependent generic algorithms can be written. The constructs introduced to achieves..
this - polymorphic name types, type constrained name values, environments and polymorphic
iterators - are individually simple to understand and use, they combine well, and they do not
result in a loss of type control or incomprehensible computations.

Use of these constructs to build replacement operating system structures will eliminate
strings as names. We need to start the bootstrap as a program binds to its environment, and
do this by introducing one standard variable PS (Persistent Space).

These structures need to be updated to reflect changes in the environment, e.g. addition
of new network addresses, new discs etc. It does not appear possible to include that within
the language. However we extend the scope of the language there will always be external
agents affecting the computation, and consequently a closed universe is impossible, i.e. deus
ex machina will occur. If we wish to use the same naming system for everything, then we
need to expand the type system to contain everything we wish to name. Examples might be
machines, devices etc. if they may be explicitly manipulated or selected by the
user/programmer. But this makes it difficult to adhere to the principle of data type
completeness.

The section on the implementation of a join procedure is included to show that type
systems are still not adequate for all we would wish to do. We pose the question: "Can we d
better than synthesis of code followed by calling the compiler?" for these remaining generi
tasks. The advantage of that approach is that more than type checking may be 'statically'
determined, i.e. factored out of the operator's iterations.

Acknowledgements

This work was done at the Universities of Glasgow and St. Andrews with support from the’
British SERC, from the Alvey programme, and from the SETC and URC sections of STC Ltd.
The authors also acknowledge the peace and stimulation of walking on Blackford Hill during
their many discussions.

16

REFERENCES

Atkinson ef al 81 Atkinson, M.P., Chisholm, K.J. and Cockshott, W.P, -
"PS-algol: An Algol with a Persistent Heap", ACM SIGPLAN Notices, 17, 7
(July 81), 24-31

Atkinson ef al 83 Atkinson, M.P. Bailey, P.J., Chisholm, K.J.,, Cockshott, W.P
and Morrison R. - "An Approach To Persistent Programming", The Computer
Journal, 26, 4 (1983), 360-365.

Atkinson ef al 86 Atkinson, M.P., Morrison, R. and Pratten, G.D. - "Designing a
Persistent Information Space Architecture”, in Proceedings of Information
Processing '86, Dublin, Eire (Sept. 1986), 115-9.

Atkinson ef al 87 Aikinson, M.P., Buneman, O.P. and Morrison, R. - "Delayed
Binding and Typechecking in a Database Programming Language", to be
published in The Computer Journal, April 1988

Atkinson & Buneman 88 Atkinson, M.P.,, and Buneman, O.P. - "Types and
Persistence in Database Programming Language Design”, to be published in
ACM Computing Surveys.

Atkinson & Morrison 85a Atkinson, M.P. and Morrison, R. - "Types, Bindings
and Parameters in a Persistent Environment”, in Proceedings of the 1st
International Workshop on Persistent object Systems:
Persistence, Appin, Scotland (Aug. 1985) PPRR-16-85%, 1-24.

Data Types and

Atkinson & Morrison 85b Atkinson, M.P. and Morrison, R. - "Procedures as
Persistent Data Objects", ACM TOPLAS 7, 4, (Oct.1985) 539-559.

Atkinson & Morrison 87 Atkinson, M.P. and Morrison, R. - "Polymorphism,
Type checking and Labels in a Persistent Object Store", in Proceedings of the
2nd International Workshop on Persistent Object Systems: their Design,
Implementation and Use. Appin, Scotland (Aug. 1987) PPRR-44-87%.

Buhr & Zarnke 87 Buhr, P.A. and Zarnke, C.R., - "Persistence in an Environment
for a Statically-Typed Programming Language", in Proceedings of the 2nd
International Workshop on Persistent Object Systems: their Design,
Implementation and Use, Appin, Scotland (Aug. 1987) PPRR-44-87*,

17

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,
Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,
Glasgow G12 8QQ
Scotland.
or
The Secretary,
Persistent Programming Research Group,
Department of Computational Science,
University of St. Andrews,
North Haugh,
St. Andrews KY16 9SS
Scotland.

Books

Davie, A.J.T. & Morrison, R.
"Recursive Descent Compiling”, Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.)
"Databases”, Pergammon Infotech State of the Art Report, Series 9, No.8, January
1982. (535 pages).

Cole, A.J. & Morrison, R.
~ "An introduction to programming with S-algol", Cambridge University Press,
Cambridge, England, 1982. .
Stocker, P.M., Atkinson, M.P. & Gray, P.M.D. (eds.)
"Databases - Role and Structure”, Cambridge University Press, Cambridge,
England, 1984.

Published Papers

Morrison, R.
"A method of implementing procedure entry and exit in block structured high level
languages". Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z.
"The Graffiti graphics system", Proc. of the DECUS conference, Bath-(April 1978),
5-10.

Atkinson, M.P.
"A note on the application of differential files to computer aided design”, ACM
SIGDA newsletter Summer 1978.

Atkinson, M.P.
"Programming Languages and Databases”, Proceedings of the 4th International
Conference on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78,
408-419. (A revised version of this is available from the University of Edinburgh
Department of Computer Science (EUCS) as CSR-26-78).

Atkinson, M.P.
"Progress in documentation: Database management systems in library automation
and information retrieval”, Journal of Documentation Vol.35, No.1, March 1979,
49-91. Available as EUCS departmental report CSR-43-79.

Gunn, H.LE. & Morrison, R.
"On the implementation of constants”, Information Processing Letters 9, 1 (July
1979), 1-4.

Atkinson, M.P.))
"Data management for interactive graphics”, Proceedings of the Infotech State of the
Art Conference, October 1979. Available as EUCS departmental report CSR-51-80.

Atkinson, M.P. (ed.)
“Data design”, Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R.
"Low cost computer graphics for micro computers”, Software Practice and
Experience, 12, 1981, 767-776.

Atkinson, MLP., Chisholm, K.J. & Cockshott, W.P. :
"PS-algol: An Algol with a Persistent Heap”, ACM SIGPLAN Notices Vol.17, No.
7, (July 1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Nepal - the New Edinburgh Persistent Algorithmic Language", in Database,
Pergammon Infotech State of the Art Report, Series 9, No.8, 299-318 (January
1982) - also as EUCS Departmental Report CSR-90-81.

Morrison, R. -
"S-algol: a simple algol”, Computer Bulletin 11/31 (March 1982).

Morrison, R.
"“The string as a simple data type”, Sigplan Notices, Vol.17,3, 46-52, 1982.

Atkinson, M.P., Bailey, P.J., Chisholm, K 1., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming”, presented at CREST course UEA,
September 1982, revised in "Databases - Role and Structure”, see PPRR-8-84.

Morrison, R.
“Towards simpler programming languages: S-algol”, IUCC Bulletin 4, 3 (October
1982), 130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.

"Problems with persistent programening languages”, presented at the Workshop on
programming languages and database systems, University of Pennsylvania.
Qctober 1982, Circulated (revised) in the Workshop proceedings 1983, see
PPRR-2-83.

Atkinson, M.P. .
"Daia management”, in Encyclopedia of Computer Science and Engineering 2nd.
Edition, Ralston & Meek (editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P,
"Algorithms for a Persistent Heap", Software Practice and Experience, Vol.13,
No.3, 259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.

"CMS - A chunk management system", Software Practice and Experience, Vol.13,
No.3 (March 1983), 273-285. Also as EUCS Departmental Report CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming", presented at the DEC workshop
on Programming Languages and Databases, Boston, April 1983.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.

"An approach to persistent programming”, The Computer Journal, 1983, Vol.26,
No.4, 360-365 - see PPRR-2-83,

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
“"PS-algol a language for persistent programming”, 10th Australian Computer
Conference, Melbourne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.

"High level language support for 3-dimension graphics”, Eurographics Conference
Zagreb, North Holand, 7-17, Sept. 1983, (ed. P.J.W. ten Hagen).

Cockshott, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Morrison, R.

"POMS : a persistent object management system", Software Practice and Exerience,
Vol.14, No.1, 49-71, January 1984.

Kulkarni, K.G. & Atkinson, M.P.

"Experimenting with the Functional Data Model", in Databases - Role and Structure,
Cambridge University Press, Cambridge, England, 1984.

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough", Foundations of Software
Technology and Theoretical Computer Science (ed. M. Joseph & R. Shyamasundar)
Lecture Notes in Computer Science 181, Springer Verlag, Berlin (1984).

Atkinson, M.P., Bocca, J.B., Elsey, T.J., Fiddian, N.J., Flower, M., Gray, PM.D. ~

Gray, W.A., Hepp, P.E., Johnson, R.G., Milne, W., Norrie, M.C., Omololu,

A.Q,, Oxborrow, E.A,, Shave, M.J.R., Smith, AM., Stocker, P.M. & Walker, J.
"The Proteus distributed database system", proceedings of the third British National
Conference on Databases, (ed. J. Longstaff), BCS Workshop Series, Cambridge
University Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R,

"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985) -
see PPRR-9-84. i

Morrison, R.,Bailey, P.J,, Dearle, A., Brown, P. & Atkinson, M.P.
"The persistent store as an enabling technology for integrated support
environments”, 8th International Conference on Software Engineering, Imperial
College, London (August 1985), 166-172 - see PPRR-15-85.

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment”, proceedings of Data
Types and Perststence Workshop, Appin, August 1985, 1-24 - see PPRR-16-85.

Davie, AJ.T.
"Conditional declarations and pattern maiching”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

Krablin, G.L..))) o)]
“Building flexible multilevel transactions in a distributed persistent environment,
proceedings of Data Types and Persistence Workshop, Appin, August 1985, 86-117
- see PPRR-16-85.

Buneman, O.P.)))
"Data types for data base programming", proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.) .)
"Addressing mechanisms and persistent programming”, proceedings of Data Types
and Persistence Workshop, Appin, August 1985, 363-383 - see PPRR-16-85.

ie, M.C. .
Nom"PS-algol: A user perspective”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O. i)))
“On the need for a Flexible Type System in Persistent Programming Languages",
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
423-438 - see PPRR-16-85.

Morrison, R., Brown, A.L., Bailey, P.J., Davie, AJ.T. & Dearle, A.)
"A persistent graphics facility for the ICL PERQ", Software Practice and
Experience, Vol.14, No.3, (1986) - sce PPRR-10-84.

Atkinson, M.P. and Morrison R.
"Integrated Persistent Programming Systems", proceedings of the 19th Annual
Hawaii International Conference on System Sciences, January 7-10, 1986 (ed. B.
D. Shriver), vol ITA, Sofiware, 842-854, Western Periodicals Co., 1300 Rayman
St., North Hollywood, Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.] _
"A Persistent Information Space Architeciure®, proceedings of the 9th Australian
Computing Science Conference, January, 1986 - see PPRR-21-85. s

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.15
(1986) 38-45.

Buneman, O.P, & Atkinson, M.P.])
“Inheritance and Persistence in Database Programming Languages"; proceedings

>

ACM SIGMOD Conference 1986, Washington, USA May 1986 - see PPRR-22-86.

Morrison R., Dearle, A., Brown, A. & Atkinson M.P.; "An integrated graphics
programming environment", Computer Graphics Forum, Vol. 5, No. 2, June 1986,
147-157 - see PPRR-14-86.

Atkinson, M.G., Morrison, R. & Pratten G.D.
"Designing a Persistent Information Space Architecture”, proceedings of
Information Processing 1986, Dublin, September 1986, (ed. H.J. Kugler),
115-119, North Holland Press.

Brown, A.L. & Dearle, A.)
“Implementation Issuses in Persistent Graphics”, University Computing, Vol. 8
NO. 2, (Summer 1986) - see PPRR-23-86.

»

Kulkarni, K.G. & Atkinson, M. P.)
“Implementing an Extended Functional Data Model Using PS-algol”, Software -
Practise and Experience, Vol. 17(3), 171-185 (March 1987)

Buneman & Buneman, O.P. Data types for Database programming in proceedings of the
Ist International Workshop on Persistent Object Sysyems: Date Types and Persistent,
Appin, Scotland (Aug. 1985) 285 - 98.

Buneman & Atkinson 86 Buneman, O.P. and Atkinson, M.P. - "Inheritance and

Persistence in Database Programming Languages", in Proceedings of ACM
SIGMOD CONEF. '86, Washington, USA, (May 1986).

Cardelli 84 Cardelli, L., "Amber", Technical Report, AT&T, Bell Laboratories
Murray Hill, N.J. USA, 1984.

’

Cooper & Atkinson 87 Cooper, R.L. and Atkinson, M.P. - "Requirements

Modelling in a Persistent Object Store", in Proceedings of the 2nd International &

Workshop on Persistent Object Systems: their Design, Implementation and
Use, Appin, Scotland (Aug. 1987) PPRR-44-87*,

Cooper et al 86 Cooper, R.L., Atkinson, M.P. and Blott, S.M. - "Using a
" Persistent Environment to Maintain a Bibliographic Database", PPRR-24-86*,

Cooper et al 87 Cooper, R.L., Atkinson, M.P., Dearle, A. and Abderrahmane
D. - "Constructing Database Systems in a Persistent Environment", in
Proceedings of the 13th International Conference on Very Large Data Bases
Brighton, England (Sept 1987), 117-125.

’

Dearle & Brown 87 Dearle, A. and Brown, A.L. - "Safe Browing in a Strongly
Typed Persistent Environment”, PPRR-33-87%.

Philbrow ef al 87 Philbrow, P., Armour, ., Atkinson, M.P. and, Livingstone J. -

"A Device-independent Output Statement”, to be submitted to ACM SIGPLAN
Notices.

PPRR12 "The PS-algol Reference Manual: Fourth Edition", PPRR- 12 - 87

Richardson et al 87 Richardson, I.E., Carey, M.J., DeWitt, D.J. and Schuh,
D.T. - "Persistence in Exodus", in Proceedings of the 2nd International
Workshop on Persistent Object Systems : their Design, Implementation and
Use, Appin Scotland (Aug. 1987) PPRR-44-8§7*,

*Persistent Programming Research Reports (PPRRs) are available from the Computing
Science Departments at the Universities of Glasgow and St. Andrews, Scotland.

18

, R.L. & Atkinson, M.P. .
Coopg;he Advantages of a Unified Treatment of Data", Software Tool 87: Improving
Tools, Advance Computing Series, 8, 89-96, Online Publications, June 1987.

i , M.P, Morrison, R. & Dearle, A.)
Atkm"slgnstrongly typed persistent object store”, 1986 International Workshop on
Object-Oriented Database Systems, Pacific Grove, California (September 1986).

i , M.P., Morrison, R. & Pratten G.D. ‘
Adqn"sk‘)JInSA : A persistent information space architecture”, ICL Technical Journal 5, 3
(May 1987),477-491.

inson, M.P. & Morrison, R. o .
A‘km"Polymorphic Names, Types, Constancy and Magic in a Type Secu;c Persm_cnt
Object Store”. Presented at the 2nd International Workshop on Persistent Object
Stores, Appin, August 1987.

er, R. & Atkinson, M.P. .
COOP"Requiremcms Modelling in a Persistent Object Store". Presented at the 2nd
International Workshop on Persistent Object Stores, Appin, August 1987.

i, F.)
wat. "Distribution and Persistence”. Presented at the 2nd International Workshop on
Persistent Object Stores, Appin, August 1987.

Philbrow, P.)) .
"Associative Storage and Retrieval: Some Language Design Issues”. Presented at
the 2nd International Workshop on Persistent Object Stores, Appin, August 1987.

Guy, M.R. .
W "Persistent Store - Successor to Virtual Store". Presented at the 2nd International
Workshop on Persistent Object Stores, Appin, August 1987.

Dearle, A.)))
“Constructing Compilers in a Persistent Environment”. Presented at the 2nd
Internaional Workshop on Persistent Object Stores, Appin, August 1987.

Carrick, R. & Munro, D. -
"Execution Strategies in Persistent Systems”. Presented at the 2nd International
Workshop on Persistent Object Stores, Appin, August 1987.

Brown, A.L. .
"A Distributed Stable Store”. Presented at the 2nd International Workshop on
Persistent object Stores, Appin, August 1987.

Cooper, R.L., Atkinson, M.P., Dearle, A. & Abderrahmane, D.)
"Constructing Database Systems in a Persistent Environment". Proceedings of the

Thirteenth Internaional Conference on Very Large Databases, Brighton, September
1987.

Atkinson, M.P, & Morrison, M.
 "Polymorphic Names and [terations", presented at the Workshop on Database
Programming Languages, Roscoff, September 1987,

Internal Reports

Morrison, R.
"S-Algol language reference manual”, University of St Andrews CS-79-1, 1979,

Bailey, P.J., Maritz, P. & Morrison, R.
“The S-algol abstract machine", University of St Andrews CS-80-2, 1980.

Atkinson, M.P., Hepp, P.E., Ivanov, H., McDuff, A., Proctor, R. & Wilson, A.G.
"EDQUSE reference manual”, Department of Computer Science, University of
Edinburgh, September 1981. :

Hepp, P.E. and Norrie, M.C.

"RAQUEL: User Manual", Department of Computer Science Report CSR-188-85,
University of Edinburgh.

Norrie, M.C.
“The Edinburgh Node of the Proteus Distributed Database System”, Department of
Computer Science Report CSR-191-85, University of Edinburgh.

Theses

The following theses, for the degree of Ph. D. unless otherwise stated, have been
produced by members of the group and are available from the address already given,

W.P. Cockshott
Orthogonal Persistence, University of Edinburgh, February 1983.

K.G. Kulkarni

Evaluation of Functional Data Models for Database Design and Use, University of
Edinburgh, 1983.

P.E. Hepp

A DBS Architecture Supporting Coexisting Query Languages and Data Models,
University of Edinburgh, 1983.

G.D.M. Ross

Virtual Files: A Framework for Experimental Design, University of Edinburgh,
1983.

G.0. Owoso

Data Description and Manipulation in Persistent Programming Languages,
University of Edinburgh, 1984.

J. Livingstone
Graphical Manipulation in Programming Languages: Some Experiments, M.Sc.,
University of Glasgow, 1987.

Persistent Programming Research Reports

This series was started in May 1983. The following list gives those which have
been produced at 17(" September 1987. Copies of documents in this list may be
obtained by writing to the addresses already given.

PPRR-1-83 The Persistent Object Management System -
Atkinson,M.P., Bailey, P., Chisholm, K.J.,
Cockshott, W.P. and Morrison, R. £1.00

PPRR-2-83 PS-algol Papers: a collection of related papers on PS-algol -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

PPRR-5-83 Experimenting with the Functional Data Model -
Atkinson, M.P. and Kulkarni, KX.G. £1.00

PPRR-6-83 A DBS Architecture supporting coexisting user interfaces:
Description and Examples -
Hepp, P.E. . £1.00

PPRR-7-83 EFDM - User Manual -
K.G.Kulkarni £1.00

PPRR-8-84 Progress with Persistent Programming -
Atkinson,M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

PPRR-9-84 Procedures as Persistent Data Objects -
Atkinson, M.P. and Morrison, R. £1.00

PPRR-10-84 A Persistent Graphics Facility for the ICL PERQ -
Morrison, R., Brown, A L., Bailey, P.J,, Davie, AJ.T.

and Dearle, A. £1.00
PPRR-11-85 PS-algol Abstract Machine Manual £1.00 7
PPRR-12-87 PS-algol Reference Manual - fourth edition £2.00

PPRR-13-85 CPOMS - A Revised Version of The Persistent Object
Management System in C -
Brown, A L. and Cockshott, W.P. £2.00

PPRR-14-86 An Integrated Graphics Programming Environment - 2nd
edition - Morrison, R., Brown, A.L., Dearle, A. and
Atkinson, M.P. £1.00

PPRR-15-85 The Persistent Store as an Enabling Technology for an
) Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, A.L. and
Atkinson, M.P. £1.00

PPRR-16-85 Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R. £15.00

PPRR-17-85 Database Programming Language Design -
Atkinson, M.P. and Buneman, O.P. £3.00

PPRR-18-85
PPRR-19-85
PPRR-20-85
PPRR—.21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PPRR-25-87
PPRR-26-86
PPRR-27-87
PPRR-28-86b
PPRR-29-86
PPRR-30-86
PPRR-31-87

PPRR-32-87

PPRR-33-87

PPRR-34-87

PPRR-35-87

PPRR-36-87

The Persistent Store Machine -
Cockshott, W.P.

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R.

Building a Microcomputer with Associative Virtual Memory -
Cockshott, W.P.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D.

Inheritance and Persistence in Database Programming
Languages -
Buneman, O.P. and Atkinson, M.P.

Implementation Issues in Persistent Graphics -
Brown, A.L. and Dearle, A.

Using a Persistent Environment to Maintain a Bibliographic
Database -
Cooper, R.L., Atkinson, M.P. & Blott, S.M.

Applications Programming in PS-algol -
Cooper, R.L.

Exception Handling in a Persistent Programming Language -
Philbrow, P & Atkinson M.P.

A Context Sensitive Addressing Model -
Hurst, A.J.

A Domain Theoretic Approach to Higher-Order Relations -
Buneman, O.P. & Ochari, A.

A Persistent Store Garbage Collector with Statistical Facilities -
Campin, J. & Atkinson, M.P

Data Types for Data Base Programming -
Buneman, O.P.

An Introduction to PS-algol Programming (third edition) -
Carrick, R, Cole, AJ. & Morrison, R.

Polymorphism, Persistence and Software Reuse in a
Strongly Typed Object Oriented Environment -
Morrison, R, Brown, A, Connor, R and Dearle, A

Safe Browsing in a Strongly Typed Persistent Environment -
Dearle, A and Brown, A.L.

Constructing Database Systems in a Persistent Environment -
Cooper, R L., Atkinson, M.P., Dearle, A. and
Abderrahmane, D.

A Persistent Architecture Intermediate Language -
Dearle, A.

Persistent Information Architectures -
Atkinson, M.P., Morrison R. & Pratten, G.D.

£2.00
£1.00
£1.00

£1.00

£1.00

£1.00

£1.00
£1.00
£1.00
£1.00
£1.00
£1.00 }
£1.00

£1.00

£1.00

£1.00

£1.00
£1.00

£1.00

PPRR-37-87

PPRR-38-87

PPRR-39-87

PPRR-40-87

PPRR-41-87

PPRR-42-87

PPRR-43-87

PPRR-44-87

PPRR-45-87

PPRR-46-87

PPRR-47-87

PPRR-48-87

PPRR-49-87

PPRR-50-87

PPRR-51-87

PPRR-52-87

PPRR-53-87

PPRR-54-87

PS-algol Machine Monitoring -
Loboz, Z.

Flexible Incremental Bindings in a Persistent Object Store -
Morrison, R., Atkinson, M.P. and Dearle, A.

Polymorphic Persistent Processes -)
Morrison, R., Barter, C.J., Brown, A.L., Carrick, R.,
Connor, R., Dearle, A, Hurst, AJ.and Livesey, M.J.

Andrew, Unix and Educational Computing -
Hansen, W. J.

Factors that Affect Reading and Writing with Personal
Computers and Workstations -
Hansen, W. J. and Haas, C.

A Practical Algebra for Substring Expressions -
Hansen, W. J.

The NESS Reference Manual -
Hansen, W. J.

Persistent Object Systems: their design, implementation and use.
(proceedings of the Appin workshop August 1987) -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R.

Delayed Binding and Type Checking in Database Programming
Languages -]
Atkinson, M.P., Buneman, O.P. & Morrison, R.

Transactions and Concurrency -
Krablin, G.L.

Persistent Information Space Architecture - PISA Club Rules -
Atkinson, M.P., Lucking, J.R., Morrison, R.
and Pratten, G.D.

An Event-Driven Software Architecture -
Cutts, Q. and Kirby, G.

An Iinplementation of Multiple Inheritance in a
Persistent Environment -
Benson, P.J,, D'Souza, E.B., Rennie, 1.S., Waddell, S.J.

A Distributed Stable Store -
Brown, A.L.

Constructing Compilers in a Persistent Environment -
Dearle, A.

Lgen, Pgen and Sgen - Language Development Tools for
a Persistent Programming Environment -
Blott, S.M. and Campin, J.

Polymorphic Names and lierations -
Atkinson, M.P. and Morrison, R

A Requirements Modelling Tool Built in PS-algol -
Cooper, R.L. and Atkinson, M.P.

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£20.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

PPRR-55-87 A Persistent Software Database with Version Control -

Cooper, R.L. and Atkinson, M.P. £1.00

PPRR-56-87 User Interface Tools in PS-algol -

Cooper, R.L., McFarlane, D.K. and Ahmed, S. £1.00

.
-~

S

//

