University of Glasgow
Department of Computing Science

Lilylank Gardens
Glasgow G12 8Q0

North Haugh
St Andrews KY16 9SS

Lgen, Pgen and Sgen -

Language Development Tools

for a Persistent Environment

S. M. Blott and J. Campin

Persistent Programming
Research Report 52
November 1987

Lgen, Pgen and Sgen

Language Development Tools

for a

Persistent Programming Environment

Stephen Michael Blott
Jack Campin

Department of Computing Science
17 Lilybank Gardens

University of Glasgow

Glasgow G12 8QQ

Contents 2 5 Lgen, Pgen and Sgen
Contents 2.2.2.3 End of Token Stream - 24
2.2.3 Tester C
0 Introduction 4 2.2.4 Pgen and Yacc SR
0.1 Notation and Typographical Conventions - 4 2.3 Sgen: a Structure Editor Generator - 26
0.2 Historical Notes -5 2.3.1 Sgen Specification -2
1 User's Guide to Sgen Editors 6 2.3.1.1 AST Rule Specification coo - 28
L1 The Editing Paradigm -6 2.3.1.2 Unparsing Rule Specification 29
L11 Selecting Nodes of the Tree 6 2.3.1.3 Specification of Attribution - - - 31
112 Selecting Commands 6 2.3.2 The Abstract Syntax Tree - 32
113 Entering Strings 7 2.3.3 The Sgen Editor - 33
114 AST Display 7 234 Tester : -3
1.2 Commands . 8 2.3.5 Sgen and CSG -3
2 Programmer's Guide to Lgen, Pgen and Sgen 11 3 Hacker's Guide to Lgen, Pgen and Sgen 35
21 Lgen: a Lexical Analyser Generator - 11 3.1 Source Files "3
2.11 Lgen Specification - 12 3.2 Loading the Systems - 36
2.1.2 The Lexical Analyser - - 15 . 3.3 The Database and the Procedure Hierarchy - 37
2121 Whitespace - - - 16 ;' 3.4 List Representation - 37
2.1.2.2 Errors .. .17 3.5 Lgen Implementation - 38
2.1.2.3 End of File R 3.6 Pgen Implementation , - 42
2.124 Warning N Vi 3.7 Sgen Implementation - 47
2.1.3 Lexan - 17 3.7.1 The Editor State - 47
2.14 Tester - - 18 3.7.2 The Editor Executive . - 48
215 Lgen and Lex - 19 3.7.3 Representing the AST Specification - - 51
2.2 Pgen: a Parser Generator - 20 3.8 Diagrams $ o4
2.21 Pgen Specification - .20 4 Postscript on Applicability 60
2.2.2 Pgen Parsers . .23 4.1 Lgen and Pgen - 60
2.2.2.1 Specification Errors - - 23 . 42 Sgen - 60
2.2.2.2 Error Recovery - 24 5 References 62

Introduction 4

0: Introduction

This paper describes three high level programming tools which have been
developed to aid in general language manipulation. All three have been
implemented in PS-algol to be compatible with each other and make extensive use
of PS-algol's programming facilities. The tools are

* Lgen, a lexical analyser generator.
° Pgen, a parser generator.

* Sgen, a structure editor generator.

Lexical analysis is the process of taking a stream of characters and breaking it
into semantically meaningful units or tokens. Parsing takes these tokens and
assembles them into a structure that represents the meaning of the entire string. A
structure editor allows a user to edit the structure represented by the string and

therefore it is impossible (in theory) to generate a meaningless string.

Lgen and Pgen are extremely general in their potential use. They can be used
for applications varying in scale from a single key response to an interactive query to
the analysis of a script in a high level programming language. Sgen has a more
specialised role. The current implementation is directed very much toward texts of

programming languages and other applications of that scale.

0.1: Notation and typographical conventions

The bulk of the text of this report is in the Palatino font (this one). PS-algol
source code, as well as isolated keywords, identifiers and string literals, are in the
Courier font; keywords are distinguished by being in boldface, identifiers in

italics, and string literals in plain text. (Bold face is also used for emphasis

Lgen, Pgen and Sgen

occasionally). Metasyntactic expressions are in Zapf Chancery and Unix commands

or filenames, including the names of PS-algol source files, are in Helvetica.

0.2: Historical Notes

These tools were all implemented by Stephen Blott in twelve weeks in the
summer of 1987, as a student vacation project. The specifications for the tools were
derived from the Unix tools lex and yacc and from the Cornell Synthesizer

Generator. The project was supervised by Malcolm Atkinson and Jack Campin.

User's Guide 6

1: A User's Guide to Sgen Editors

An Sgen editor allows the editing of a script of a language that will always
maintain a meaningful string of the language. All editing actions are in terms of the
abstract syntax tree (AST) of the script. The abstract syntax of a language is a syntax
that reflects the semantics of\ the language while ignoring the concrete syntax

required for parsing. In order to use any editor generated by Sgen it is essential that

the abstract syntax of the language be understood.
L.1: The Editing Paradigm

During an editing session the screen is split into two parts. The top four lines
are used for commands and messages while the lower window is for displaying the
abstract syntax tree. There are several editing commands, all of which are described

below, but first I will describe the general editing paradigm.
1.1.1: Selecting Nodes of the Tree

There is always a current selected node. This is indicated by the inverted
video section of the screen. Nodes of the AST may be selected by the mouse. Click
the left-hand mouse button over a section of the script and the lowest enclosing

node of the tree will be selected as the new current node.

1.1.2: Selecting Commands

There are two ways of selecting each command. They can be selected using a
menu which pops up whenever the right-hand mouse button is clicked. The

required command can then be selected by the left-hand mouse button. All

Lgen, Pgen and Sgen

: i lection
commands are also available from the keyboard by a single letter command selec

mechanism.

1.1.3: Entering Strings

Whenever the user is required to enter a string the system will produce a
string editor in the command area of the screen. If it is appropriate the‘ editor will
already contain a string to edit. The string editing operations that are available are

e entering and deleting characters at the current cursor position

s deleting all the characters to the left of the cursor with the "oops” key

e positioning the cursor with the left-hand mouse button.

To return the current string type <return>. One point to be careful of is that the
string editor returns only those characters to the left of the cursor at the end of the

string edit. Therefore, before ending the edit, the cursor should always be at the

right-hand end of the string.

1.1.4: AST Display

The display on the screen of the AST is limited to only those parts of the tree
that are "near” to the current node. Any part of the tree which is too far away to be
displayed is folded into an icon. The icon is in the form of the name of the; type:‘ (')f
node which was folded enclosed within curly brackets. The definition of near. is
given in terms of two numbers. One indicates how high up the tree to look to find
the root of the display. The other indicates how many levels of the tree below the
current node should be displayed. These two values can be altered by the ’control

command thereby changing the display characteristics at runtime.

User's Guide

1.2: Commands

This i . ..
is is a list of all the editing commands that are available in any editor

enerat i i
g ed by Sgen. With each command is given the single key that can be used to

et the
g command. If the reason for the choice of key is opaque then the word that it

1s supposed to abbreviate is also given.

up: \
p: Changes the currently selected node of the AST. The new current node

becomes the parent of the currently selected node. The key is "u"

down: Also changes the currently selected node of the AST. This time the
new node is one of the children of the current node. The user is asked which
child to select. The number of the child should be indicated by the appropriate
digit on the keyboard. There is no need to press <return>. This decision
implies that no AST node may have more than nine children. The increased
ease of use was felt to out-weigh this limitation. Any situation where an AST

node has more than 9 children is likely to be unmanageable for the user. The

key iS ||du.

right: Ad i
g vances the cursor in a root-to-left-to-right traverse of the

nonterminal nodes of the AST. The key is <return>

Ieft: Appli
pplies the same cursor movement as the command above except in the

opposite order. The key is <space bar>.

del: i
el: Deletes the current nonterminal AST node from the abstract syntax tree
Th i i '
e old limb of the AST is, however, still used for attribution. The key is "k"

to stand for "kill node".

ﬁ-f—f,

Lgen, Pgen and Sgen

undel: Reverses the effect of del. The section of tree that was removed by the

delete at that node is replaced. The key is "1" to stand for "live" which is

(almost) the opposite of "kill".

add: Allows text to be added at a deleted node. The editor must have a parser
for that type of node. The user is prompted to enter text. The text is parsed. If
the parse is successful then the generated AST is inserted at the current node

"

and re-attribution takes place. Otherwise no change is made. The key is "a".

root: Sets the current node to be the root node of the tree. The key is "r".

"ot

start: Sets the current node to be the leftmost node of the tree. The key is "s".

end: Sets the current node to be the rightmost node of the tree. The key is "e".

change: The specialisation of add for terminal symbols. Any terminal symbol
can be changed. The user is prompted for a string. This string is sent through
the lexical analyser. If the entire string corresponds to a lexical token in the

same class as the original token then the replacement is made followed by re-

attribution. The key is "¢".

pack: Copy to the clipboard. The Sgen editor maintains a clipboard of named
pieces of AST. These fragments can Jater be placed in any position compatible
with that type of node. The user is asked for a name to store the current node

under. If there is already something stored under that name, it will be

overwritten. The key is "p™.

User's Guide 10

unpack: Retrieves a fragment of AST from the clipboard. The current node
must have been deleted. A menu appears of all the AST fragments that are
held. The user can choose a fragment using the left mouse button. The
fragment of AST associated with that name in the clipboard is then put in

place in the current tree if it is of the correct type. The key is "o" to stand for

"open".
quit: Quits the editor. The key is "q".

control: Gives the user the option of changing various details of the display.
See the section below on display parameters. The key is "A" which is intended

to represent a rise in level.

11 Lgen, Pgen and Sgen

2: Programmer's Guide to Lgen, Pgen and Sgen

This section gives a programmer's guide to the three programming tools
Lgen, Pgen, and Sgen. Lgen and Pgen are extremely general purpose programming
tools suitable for all applications from a small scale user response to an interactive
prompt to a full scale program in a high level language.

All the procedures can be found in the PS-algol database "steve™, with
password "steve", which should be made when the system is built. For precise
details on how to use these programs to create lexical analysers, parsers or editors,
examine the examples in the "tester" directories (see sections 2.1.4,2.2.3 and 2.3.4).

Details of the implementation and loading of the systems are given in the

hacker's guide (section 3.2).

2.1: Lgen - a Lexical Analyser Generator

Lexical analysis is the process of taking an input stream of characters and
breaking it into groups of characters or tokens. The characters of the token (or
lexeme) form one semantically meaningful unit of the language. The input could be
anything from a high level programming language to a user response to a simple
interactive prompt. If the abstraction at this lexical level is not made, code tends to
become cluttered and opaque with the important features hidden. If the lexical
abstraction is rewritten for each application, programmers find themselves
repeatedly rewriting very similar code. The solution is to generalise the lexical
abstraction by writing a lexical analyser generator.

Lgen is such a tool for building lexical analysers. When provided with a
specification (described below) it will produce a function for breaking up a string into
tokens. The schematic type of Lgen is

lexical specification — {(character stream - token stream).

Programmer's Guide

There are several i i
benefits from using such a system rather than a programming

solution:

o The i . . .
e implementation time is decreased. The specification can be written

quickly and correctly.

L

Given that the specification is correct the lexical analyser will be correct, All

debugging and modification work can be done at a specification level

oA . .
standard type of lexical analyser is produced. This allows for flexibility in
th i
at analysers may be interchanged and programmers coming across an analyser for

a new purpose will already be familiar with the interface.

Lgen is stored under the key "l1gen" in a structure class

structure lgen.box (

r * -
proc (*pantr -> proc (pntr -> pntx)) lgen.place)

where i ifi
the parameter *pntx is the specification and the proec |

. pntr ->
returned is the analyser generated. e

2.1.1;: Lgen Specification

An L e
gen specification is a vector of token declarations. Each token must be

declared using a structure of the class

structure t.spec (

string t.pattern, to(a)
t.token; ! (b)
bool return) ! (c)

Th . L
e meaning of each field is as follows (note that I have changed the order in the

discussion of the fields):

(b) t.token: is i i
oken: This is the name that will be associated with every instance of this

cl i
ass of token. The name of the semantically meaningful unit. Some examples of

13 Lgen, Pgen and Sgen
token names might be "identifier™ or "begin.token".

(¢) return: This indicates whether this token is to be exported or not. Tokens can
be specified in terms of other tokens. It is therefore desirable that a user may define a
token purely for the purpose of use in a future token declaration. In this case it is not
required that this token ever be recognised in itself by the analyser. By setting this
field to £alse the user can specify that this is a private token. i.e. the token is not to
be exported. A typical example of this might be in declaring a token to represent
identifiers. It may be convenient to introduce a token to represent letters. Clearly the
Jetters' token is not required ever to be recognised in its own right.

(a) t.pattern: This is the description of all character sequences that can be
instances of this class of token. The description is in the form of a stylised regular
expression (RE). An RE can be either a) a literal or b) a structured combination of

regular expressions. In BNF notation an RE is

RE = literal M
I " named RE " @
| [RE 1 -)
| < RE > @
I (RE_fist) ©)
| RE; RE, ©)

(1) literals: These can be any single character. Because of the eight operator
characters ", [, 1, (,),|,<, and >, an escape character is needed to
generate these as literals. The escape character is ' (an apostrophe, as in
PS-algol). You escape the escape character to get the literal apostrophe.

(2) names: The regular expression associated with another token can be used
by enclosing the token name of the required pattern in quotes, for
example, "letter” to use the regular expression for letters. A linear

scoping scheme is implemented. i.e. a token name t; can only be quoted in
ping P i Y

Programmer's Guide 14

a token definition t;such that i< ;.

(3) repetitions: These indicate that the given regular expression can appear
any number of times (including zero). For example, "aaa", "a", and v all
match the pattern [a]. In this case the inner regular expression is trivial
but, in general, it can be arbitrarily complicated.

(4) options: These define the inner expression to be optional; it can appear one
or zero times.

(5) alternatives: This type of definition indicates that one of a series of regular
expressions can appear. Each option is separated by a vertical bar |. For
example, this mechanism would be used in the definition of the token
"digit" as (Ol132|3]4|5!6l7]819).

(6) sequences: These mean that the regular expression RE is obtained by any
instance of RE, followed by an instance of RE;. As such they are the most
commonly used combination mechanisms. Note that there must be no

spaces between the regular expressions, as the space itself would be treated

as a literal expression.

Note that there are no facilities for specifying ranges of ASCII characters.

We are now in a position to give a specification example; a language of

positive integer expressions with the four main operators, brackets and identifiers,

The identifiers are as used in PS-algol. Note that much of the input is distorted by

the need for PS-algol escape characters. This problem is overcome by use of the
program Lexan described in section 2.1.3.
let specification = @1 of pntr |

t.spec (" (fre, "whitespace”, true), ! tab or space

t.spec ("(031121314!5[6)7}8:9)", "digit", false),

t.spec ("' "digirrng 'vdigit e, "number", true),
t.spec ("' (", "open bracket™, true),
t.spec (") ", "close bracket", true),

—‘vf—i

Lgen, Pgen and Sgen

t.spec ("(+|-1*|/)", "operator", true},

12y
t.spec ("(alblcldlelfiglhliliikiliminlolpigirisitlulvivixiyiz)®,
.sp

"small'", false),)
I3

WIXIYiZ)
t.spec ("(AIBICIDIEIFIGIRII|IJIKILIMINIOIPIQIRISITIUIVIWI

"big", false),

" “ e
t.spec ("('"big'"|'"small'™)", letter", false),
- " " false)
t.spec (" ('"letter'"| Trdigitt™y”, character™, ’
t.spec ("'"letter'"[('"character'"] trdigittm)y 3T,

"identifier", true)]

2.1.2: The Lexical Analyser

i i cific
The lexical analyser produced is a procedure which will generate a spe

i i ject of class
analyser given an input stream. The input stream is an object

structure l.stream

" " procedure
proc (-> string) ls.gtok; ! the "get" p

proc (string) ls.ptok) ! the "put". procedure .
There are two procedures; one to deliver the next character of input and on.e :
receive a character back. Any characters sent back should be subsequently T'ettl.rrfe
again on future calls to 1s.gtok. These procedures are responsible for malintammg
ai input buffer. The problem of providing accurate error inchrmatlorT wisl
considered too difficult to generalise so has been left to the user. Typxically thixs wi
consist of two extremes, one where the job is so trivial that error diagnostics :Z
unnecessary and the other where the application is so complicated tha}: »
requirement has to be tailored to this specific case. The "get" procedure sho
return " " repeatedly when the end of stream is reached. | .
Given an instance of 1.stream, a lexical analyser will be produced.

lexical analyser is an instance of a structure class

structure l.pack (
proc (-> pntr) gtok; v (a)

pntr spellings)

Programmer’s Guide 16

(a) gtok: This always provides the next lexeme descriptor that can be
matched on the input stream. If two tokens can be matched, the longest is returned.
If there are two (or more) of the same length then the one that was declared last
(nearest the bottom) in the specification is returned.

(b) spellings: This is a table of all the lexemes seen. The table is indexed
by lexeme to the lexeme descriptor returned by gtok. There is a single entry in the
spelling table for each lexeme and thus the same instance of s.entry (see below) is
returned every time the same lexeme is recognised. In particular, if an identifier has
been seen once then all subsequent times it is recognised the same descriptor will be
returned.

A lexeme descriptor (that which is returned by gtok and held in the
spellings table) is an object of structure class

structure s.entry (string s.lexeme, s.token; pntr s.tail)
The first field is the lexeme that was matched - a copy of that section of the input
stream that matched a pattern. The second field is to indicate the class of token of
which this lexeme is a member. The third field is unused but is there to enable a
user to attribute information to lexemes, for example symbol table entries; in Sgen

(see section 3.7) it is used to point to the parent of a terminal node.

2.1.2.1: Whitespace

The name "whitespace" is a special token name which the analyser will
skip if it recognises it on the input and will continue searching for the next token.
This corresponds to the notion of whitespace in most lexical analysis applications.
Note: this does not mean that in its declaration the return field is set to false. Itis
of lexical significance and therefore has the return field set to true. Whitespace is

handled at a higher level than basic lexical analysis.

17 Lgen, Pgen and Sgen

2.1.2.2: Errors

In the event of the input stream not matching any pattern in the analyser, the
machine searches for the next segment of the input which will match a pattern. It
then returns a token with the s. token field "error.token" along with a lexeme

that is the entire section of input which would not match any token.

2.1.2.3: End of File

When the stream function returns " " to indicate that the end of file has been
reached, the analyser returns a token with s. token field "_eof". All subsequent

calls to the analyser will produce this same token.

2.1.2.4: Warning

A warning should be given here about the dangers of defining a token that
can be matched by the empty string. If the token is ever matched then it will be

matched infinitely many times and the rest of the input stream will be lost.

2.1.3: Lexan

Lexan is an auxiliary program that can be used to aid the building of lexical
analysers. Because of the use of control characters necessary in PS-algol it can become
quite confusing to enter a specification within the body of a program. It can also be
quite messy as each individual declaration has to be boxed up in a structure. For

these reasons the program Lexan, stored in a structure

structure lexan.builder.box {

proc (string -> pntr) lexan.builder.place)

Programmer's Guide 18

under the name "lexan .builder", can Be used. It takes in a filename in which
each declaration is given over three lines. The first is the name of the token. The
second is the pattern. The third indicates whether the the token is returnable or not
("y" indicates that it is and "n" indicates that it is not). There are some special cases
built into the program.

The character "\ " is used as the escape character within patterns.

\n is the newline character

\t tab

\b space

A\ backslash

\string.any any character (or sequence such as 'n) that can appear

in a PS-algol string
\comment .any any characters that can appear in a PS-algol comment
The last two were included to aid in the building of the PS-algol test analyser and
remained since they were of such practical use in other places.
The structure returned by Lexan is of class
structure lexan.box (proc (pntr -> pntr) lexan.place)

and contains the required lexical analyser.

2.1.4: Tester

There is a test lexical analyser that comes with the system. It is an analyser for
simple positive integer expressions. A shell script, LOAD.tester, is provided to load

the system. It is useful to experiment with this example.

Lgen, Pgen and Sgen

2.1.5: Lgen and Lex

Lex (see [LESK79] in the references) is the standard Unix tool for creating
lexical analysers. Lgen provides all the essential features of Lex in a cleaner way, in
that PS-algol provides higher order functions and persistence, so there is no need to
output source code as Lex does. This leads to a more appealing implementation of a
lexical analyser generator.

Another difference from Lex is that the finite state machine generated is
interpreted rather than compiled; this could be avoided by adding a back end using

the callable compiler, but this is not likely to lead to a large increase in speed.

Programmer's Guide

2.2: Pgen - a Parser Generator

Pgen is a parser generator. It can be used to generate parsers which take the
stream of tokens and generate a structure representing the semantics of the stream.
The lexical analyser should be produced by Lgen. Pgen is an SLR(1) parser generator.
The reasons for wishing to use a parser generator are exactly as indicated for Lgen.

The schematic view of Pgen is also similar:

syntactic specification — (token stream — parse tree)

Pgen is stored under the key "pgen™ in a structure of class
structure pgen.mk.box {

Proc (*pntr, *string -> pantr) pPgen.mk.place)

where the *pntr and *string parameters are the two components of the

specification (see 2.2.1) and the pntx returned is a table of parsers (see 2.2.2).

As before, T will start with a description of the specification process and then
detail the workings of the generated parsers.

2.2.1: Pgen Specification

The motivation for the design of Pgen was initially to aid in the development
of Sgen. As such parsers were required for various parts of the language as well as
for the language as a whole. For this reason the parser generator was required to
return a table containing parsers for all the nonterminals that the specification

required.

A Pgen specification is in two parts. (1) A BNF grammar and (2) a vector of

strings naming the nonterminals for which parsers are required.

The BNF specification takes the form of a vector of pointers each of which

represents a rule of the grammar. Each is a structure of class

Lgen, Pgen and Sgen
21 }

structure p.spec (
string ps.rule;

proc (*pntr -> pntr) ps.action)
Each ps. rule should be a string containing

1) the name of the nonterminal that this is a rule for;

2) the symbol "::=", pronounced "derives"; »

3) a list (possibly empty and separated with blanks) of names. These names

should be either the names of nonterminals of the grammar or names of
terminal symbols to be recognised. A nonterminal is in the lexical c‘lass :f
PS-algol identifier while terminals are the same but prefixed with the
symbol ‘#'. A list of occurrences of these symbols will be used to form an
instance of the nonterminal on the left.

LR parsing naturally supports the evaluation of one synthesized attrib:‘t‘e.
Typically this would be the abstract syntax tree of the current parse. To support. is,
along with each nonterminal node of the parse tree, there is space for one p(;mrte:1
value. The procedure ps.action is executed when all the subtrees fo '
nonterminal have been completed. The value it returns is the value that 1.s
associated with this instance of the nonterminal. The arguments that are passed to it
are the value associated with each of its children. If the subtree is a literal then the
lexeme descriptor (an s.entry) is passed instead. N)

Generally the ps.action attribute is the abstract syntax tree but it Ca.n be ;15;
for anything. The following is an example specification. It is a contm.uanon o. e
integer expression example given in the last section. Here the synthesized attribute
is used not as an AST but to evaluate the expression. We will require that the value
at the root node is an instance of

structure a.number (int the.number)
with the correct integer value in place. The first step is to write the procedures that

e . iables
{1l be used in the evaluation. The specification is then created in two varia
will be

o
L)

Programmer's Guide

spec and required, required being the vector of nonterminal names that need
to have parsers created for them.

let do.operation = proc(*pntr v -> potr)

case v{2) (s.lexeme) of

"+": a.number(v(l) (the.number) + v(2) (the.number))
U"=": a.number(v(l) (the.number) - v(2) (the.number))
"M a.number(v(l) (the.number) * v(2) (the.number))
"/™: a.number(v(l) (the.number) / v(2) (the.number))
default: {abort; nil} ! error

! assume a procedure gval of type proc (string -> int)
! which finds out the number represented by the string
let do.number =
Proc (*pntr v -> pntr);
numbe; {eval (v (1) (s.lexeme)))
let do.bracket =
Proc(*pntr v -> pntr);
v{2)

let spec = @1 of pntr |

Pp.spec ("exp ::= exp #operator exp", do. operation),
p.spec ("exp ::= #number", do.number) ,
Pp.spec ("exp ::= #open exp #close", do.bracket)}

let required = Q1 of string {“exp"]

let editors = pgen (spec, required)

let expression.parser.pack = 8.lookup ("exp", editors)

structure a.parser (proc (pntr -> pntx) the.parser)

let expression.parser = expression.parser.pack (the.parser)
This specification is particularly simple-minded. I have ignored the identifiers
defined in the lexical specification, and also the fact that this grammar for integer

expressions is ambiguous. In this example only one nonterminal, exp, is declared

and all the other symbols are terminals.

23 Lgen, Pgenand Sgen

2.2.2: Pgen Parsers

Pgen returns a pointer. This pointer is to a PS-algol table indexed by
nonterminal name onto structures of the class
structure a.parser (proc (pntr ~> pntr) the.parser)
The parameter expected is a pointer to an I1.pack as produced by Igen. This is
used to generate the stream of tokens. The pointer returned is to the parse tree (or
derivation tree) that was produced. The type of this tree is

structure p.tree (

pntr p.gs; ! a grammar.symbol; see section 3.6, III
*pntrp.children;

pntr p.action, p.parent, p.value;

bool p.deleted)

The field that is of direct interest is the p. value field. This contains the value of
the synthesized attribute at this node. The whole parse tree is made available as the
derivation may be of use. The field p.children contains all the children of this

nonterminal node. Each one is either another instance of p. tree or an instance of

s.entry to indicate a terminal node.

When Pgen is used to parse a token stream, the token stream is exhausted. It

is not possible to reuse that stream afterwards.

2.2.2.1: Specification Errors

If the specification is invalid in any way then Pgen will return nil instead of
the table of parsers. Some internal errors (in the specification of the grammar) will

cause Pgen to abort.

Programmer’s Guide 24

2.2.2.2: Error Recovery

Pgen does not attempt any error recovery. Generalising error recovery in LR
parsing is beyond the scope of this project and as such the problem was put to one
side. In the event of an error, the Pgen parser will simply return nil rather than a
pointertoap.tree.

The willingness to .accept this decision was influenced by the fact that Pgen
was designed specifically for use in Sgen, the structure editor generator. When using
a structure editor it is typical to type only small sections of text to be parsed at any
time; in general, less than one line of characters. With such small strings, error

recovery is not as significant.
2.2.2.3: End of Token Stream

Pgen assumes the same mechanism as Lgen uses to signify the end of file. It is,
in theory, possible to plug a hand-crafted lexical analyser into Pgen but should not in

general be necessary.
2.2.3: Tester
There is a test parser that comes with the system. It is a parser for simple

positive integer expressions. The shell script LOAD. tester loads the system. As with

Lgen, this is a useful tutorial example.

25 Lgen, Pgen and Sgen

2.2.4: Pgen and Yacc

Yacc (see [JOHN79])is the standard parser generator tool in Unix. It implements
parser generation for a slightly wider set of grammars (LALR(1)) than Pgen.
However, Pgen makes use of higher order functions to clean up the implementation

of many details of the specification, the generated parser and the synthesized

attribute evaluation.

Programmer’s Guide

2.3: Sgen - a Structure Editor Generator

The initial motivation for Lgen and Pgen was to produce a language based
editor generator, Sgen. Sgen should have the schematic type

language specification of L — ((sentence of L and input) — sentence of L),

The specification of a language to the degree that an editor can be generated involves
the description of several features of the language:

® Lexical syntax: This is done simply by providing a lexical analyser
constructed by Lgen.

¢ Concrete syntax: More than simply a parser for the language is required
here. Each construct of the language that the user of the editor will be allowed to edit
individually will need its own parser. This was the main motivation for Pgen being
designed sc that parsers are generated for all the nonterminals listed in the second
field of the specification.

¢ Abstract syntax: In general the structure of the concrete input syntax is
distorted by the needs of parsing. Therefore a syntax which reflects the semantics of
the language is required. All editing is done in terms of the abstract syntax tree. Sgen
requires that the abstract syntax be specified. Sgen itself does not build the AST as the
construction of an AST node from possibly a collection of parse tree nodes is not an
easy problem to describe in generality. Each parser given to Sgen is therefore
required to produce, as its synthesized attribute, an abstract syntax tree. Sgen then
provides an editing executive to edit and maintain this. A description of what the
abstract syntax should be is in section 2.3.2.

° Unparsing scheme: The translation from input stream to abstract syntax tree
loses the original layout of the script on a page. Indeed, this layout may never have
existed in its entirety if the script was generated entirely within the editor. It is
therefore required that the user specify the layout of the script on the page.

e Attribution: While an AST is being maintained it is natural to wish to be

Lgen, Pgen and Sgen

able to analyse static semantic features of the language, as in type checking and scope
checking of identifiers. A facility to do this is implemented by means of an attribute
grammar that is specified along with the abstract syntax tree and whose evaluation is

maintained by Sgen as the AST is updated.

Sgen is of PS-algol type
proc (pntr, pntr, *pntr, int, int -> proc (pntr -> pntr))
where all five parameters are required for specification (see 2.3.1) and the generated

editor is the proc (pntr -> pntr) (see section 2.3.3). It is stored in a structure

sgen .box with one field called sgen.place of the type above.

There follows a description in detail of the specification of an Sgen structure

editor. Following that, the operation of the editor is described.

2.3.1: Sgen Specification

Sgen is of PS-algol type

proc (pntr, ! (a)
pntr, ! (b)
*pntr, ! (c)
int, int t(d)

-> proc (pntr -> pntr})
The parameters of the specification are as follows:
(a) pntx: This is to the lexical analyser. It should be stored in a
structure lexan.box (proc (pntr -> pntr) lexan.place)}
and will be used to generate a lexical analyser every time a string needs to
be parsed.
(b) pntr: This is to the parsers that are to be used. The parsers should be

stored in a PS-algol table as returned from Pgen. The synthesized attribute

Programmer's Guide 28

should be of type AST which is described below.

() *pntx: This is the specification of the AST. This includes specification of
the unparsing scheme and of the attribution. Each pointer should be to a
node of structure class

structure ast.dec(

string dec.spec; (L)
bool dec.parsable; t(2)
string dec.parse.as; t(3)
bool dec.is.root; I (4
string dec.unparse; t(5)
pntr dec.attribution) ! (6)

These fields are:
(1) a string for the AST rule specification (described below).
(2) abool indicating if this type of node is parsable,
(3) a string indicating the parser to be used to create a node of this type.
(4) abool to indicate if this is the type of the root of the tree.
(5) a string to indicate the unparsing scheme (described in 2.3.1.2).
(6) a pntr to a specification of the attributes and evaluation rules that will
be required at every instance of this type of node (see 2.3.1.3).
(d) Two ints to describe the initial display parameters of the editor that is

generated. See section 1.1.4 on display parameters.
2.3.1.1: AST Rule Specification

An AST rule specification is a string, which should contain

(a) the name of the abstract nonterminal that this rule is declaring a right-
hand-side for. Abstract nonterminals all have the lexical syntax of PS-algol
identifiers but must have capital first letters.

(b) the derives symbol ": : =".

(c) the constructor for this rule. This is the name that identifies a node built

29 Lgen, Pgen and Sgen

using this rule. The lexical syntax of a constructor is the symbol "@¢" followed by a
string with the syntax of a PS-algol identifier.

(d) the argument _list enclosed within round brackets. Each element of the
argument list (which could be empty) must be either a node class of the AST or the
name of a lexical token. Lexical tokens are specified by a PS-algol identifier prefixed
with the "#" symbol as with literals in a Pgen specification.

As an example of a group of AST rule declaration strings, I will continue with
the integer expression example. In the parser example I used a simple minded
concrete syntax. The common unambiguous concrete grammar for expressions is
extremely distorted and would certainly require an abstract syntax such as the one

given below.

"Exp ::= @Number (¥number)™

"Exp ::= @Id{#identifiexr)"

"Exp ::= @Bracket(Exp)}"

"Exp ::= @PlusOp(Exp Exp)"

"Exp ::= @MinOp(Exp Exp)"

"Exp ::= Q@DivOp(Exp Exp)"

"Exp ::= @MultOp(Exp Exp)"

"Exp ::= @Let (#identifier Exp Exp)"

2.3.1.2: Unparsing Rule Specification

Each ast.dec will have a rule such as the ones above and also an unparsing
(display) scheme for the particular form of node. This is also specified by meéns of a
string. The string contains a list of tokens of five classes separated by whitespace
(blanks or tabs). The five token classes are
e literal: Enclosed within quotes - ""1iteral""

» child: To indicate that a child's display should be put at this place. The selection of

which child is positional on the number of children already displayed. This is

Programmer's Guide
. 30

indicated by the token "@".

° tabbing: Tabbing is not done normally. Tabbing indicates the position of the left
margin. This allows for features like indentation of blocks. To set the tab one more
unit to the right use the token "->" and to the left use the token "<-".

e attribute values: To display the value of an attribute the format is s . name where
name is the name of the attribute to be displayed. All attribute values are pntr but
the value of any attribute to be printed must be of an instance of the structure class

structure att.printable (string att.string).

Attribute values are not printed when the unparse is as a dump of the tree for
oufput as opposed to going to the screen

° hidden literals: To indicate-that this literal should be printed at this position
during an unparsing for the screen but should be omitted if the text is for output.
This allows literals to be used o guide editing or explain an attribute value that is
being printed where the literal is no part of the syntax of the script. This type of

unparse is obtained by prefixing a literal unparse with a colon character, for example

t"value =

An example of unparsing rules would be

@Number » @ »

@I1d g om

@Bracket " tw(in g eyt
BPlusOp " @ 'vqgim @ n
@MinOp R IR R
@DivOp @ otn e g om

@MultOp " @ Tk @ "
@Let 1] '"let e @ o rw - :nunvn @ nuvninlnwu @ P
N .

ote how these strings are confused by the requirement for PS-algol control

characters. This is clearly an area for improvement.

Lgen, Pgen and Sgen

2.3.1.3: Specification of Attribution

Attribute declarations are associated with each constructor for each type of
AST node. The specification takes the form of a list of individual attribute
specifications where the list must be a structure
structure mk.Att.list (pntr Att.elem, Att.next)
Each attribute declaration takes the form of a pair held in an instance of the
structure class
structure Att (
string Att.spec:
proc (*pntr -> pntr) Att.eval)

The string specifies the name of this attribute and where the arguments for its
evaluation should be found. The proc field is the evaluator for each instance of
this attribute. The structure of the string is as follows:

e the name of the attribute being assigned to. This has the lexical syntax of a

PS-algol identifier.
® an assignment token : ":="
¢ an open round bracket " (".
¢ a list (possibly empty) of other attributes and values each of which must be

one of four classes (where name has the form of a PS-algol identifier)

e ~.name to indicate a parental attribute
e Q.name to indicate another attribute of this node
e Si.name to indicate an attribute of the i'th child of this node. The

number i must be a single digit. This effectively limits the number of
children of an AST node to 9. I do not feel this to be a great limitation

as an AST node should be simple enough to convey one semantic unit

of the text.

e 51 to indicate that the 7th child is to be used as a parameter.

Programmer's Guide
32

This allows, in particular, the selection of terminal nodes.

° The close round bracket token "y,

Some examples of attribute specification strings might be
"env = (", eny)"

"value ;= ($1.value, $2.value) "

Sgen performs a simple check for attribute circulari ty.

2.3.2: The Abstract Syntax Tree

The abstract syntax tree produced by the parsers must be an instance of the
class AST. It must also satisfy the specification of the abstract syntax. If it does not

then there is no guarantee on how it will be treated. The type is
structure AST (

string AasT, ;
g name; ! the name of this type of node

stri ;
ring AST.opt.name; ! the name of the constructor

*nt 7 .
pntx AST.children; ! the children of this node

pPatr AST. spec; ! the declaration of this type of node

nt ;
pntr AST. opt; ! the declaration of this constructor

ntxr AST, ;
P parent; ! the parent of this node

potr AST.attribution; ! attribute values for this node

bool AST.deleted) ! is this node deleted from tree?

The parser is only required to put values into the first 3 fields as the rest will
be filled in by the system. That is, the user says what type of node it is and what
constructor was used. The user also gives pointers to all the children of this node.
Each child must be of the correct type for the rule specifying this constructor. Each

child must also be either another AST node or a terminal instance of s entry

Then the system will fill in all the other details in each AST node.

Lgen, Pgen and Sgen

[S%3
o

2.3.3: The Sgen Editor

The Sgen editor is simply an executive that allows the editing and
maintenance of a consistently attributed abstract syntax tree. All alterations of the
AST result in reattribution (on those parts that are now out of date) and redisplaying
of the tree.

The editor is a procedure with the PS-algol type

proc (pntr -> pntr)
which takes in and returns a structure in the class
structure s.state (string s.string:; pntr s.state)
A script produced during one execution of the Sgen editor may subsequently be re-
edited. It is further possible that the editor specified may have incompatible input
and output syntax. To cope with both these cases, the Sgen editor works in terms of a
pair of values for each script:
e the unparsed script
e the abstract syntax tree.
On input to the editor, the the abstract syntax tree will be used if the pointer is not
nil. Otherwise an attempt will be made to parse the given string. On output from

the editor, s.string will be the unparsed version of the current AST and

s. state will be the abstract syntax tree.

2.3.4: Tester

There is a test editor that comes with the system. It is an editor for a simple
“let ... in ..." positive integer expression language with attribution to evaluate the
expressions and thereby produce a calculator. The shell script LOAD.tester loads the
system and a brief "play-about” session is most instructive in getting to grips with

Sgen.

Programmer's Guide 34

2.3.5: Sgen and CSG

The Cornell Synthesizer Generator (see [REPS83], [REPS85]) is another structure
editor generator. Some of the notation (in the unparsing scheme for example) is
very similar to that used by CSG. PS-algol, however, provides many facilities which
lend themselves to generator programs such as Sgen. Two obvious ones are that its
treatment of data by dynamic strong typing and persistence allows the building of
large data structures to represent complex structures easily, and that it fully
implements higher order functions. These features have lead to a more integrated
and (potentially) more appealing implementation than one based on C and text files.

Using persistent higher-order functions also leads to "functional” behaviour
in the editor (one stream in and one stream out), whereas the CSG is "Emacs-like" -
many files may be "visited" and modified in the course of an editing session. Also
like Emacs, CSG supports multiple buffers; the clipboard in Sgen provides some of

the same capabilities, but all editing takes place in one buffer.

35 Lgen, Pgen and Sgen

3 : Hacker's Guide to Lgen, Pgen and Sgen

This section is a hacker's guide to the programming tools. It contains a
discussion of various features of the systems' implementation:
* the source files
* loading the system
* the databases and procedure hierarchy
* program descriptions
The level of detail given in this report should be sufficient to point a
programmer in the right direction but is in no way a line-by-line (or even
procedure-by-procedure) guide. I suggest a hunt for the authors as the best method of
discovering the intimate details (about the programs, not the authors). _
Some of the algorithms used are not immediately obvious. Most of them are

given in [AHO85]. The relevant pages are cited at appropriate places.

3.1: Source Files

All the files are under the directory/Summer87. There are 6 directories, two
for each program - a program directory and a tester directory. The directories are
sgen and sgen.tester, pgen and pgen.tester and igen and Igen.tester. Each program is
entirely self-contained within its directory except that:

» Pgen requires all of Lgen to be already present in the database

* Sgen requires all of Pgen and Lgen to be present.

Hacker's Guide 16

3.2: Loading the Systems

The facilities required to load the system are listed below. I have tried to
include everything but have almost certainly overlooked something that has been
taken for granted. If the system cannot find anything it needs it will give an error
message and "down tools" in protest.

* PS-algol compiler, interpreter and databases;

° A database for the generators, which should be given the name "steve"
and password "steve w.

° The "rutilities" database;

* The procedure "chooser™ as prepared by Richard Cooper;

* The procedure "seditor" as prepared by Richard Cooper.

Shell scripts have been prepared for each system to compile and load the
required procedures into the database. These scripts are each in the appropriate
program directory and are called LOAD.Igen, LOAD.pgen and LOAD.sgen. Each tester
program also has a LOAD script which will set up the test analyser/parser/editor.

At this point all three procedures Igen, pgen and sgen have been loaded
into the database "steve" with password "steve" along with the auxiliary
procedure lexan.

The current implementation contains at least two machine dependencies.
Firstly, only one font size is supported and its dimensions are hardwired into the
code. Secondly, editing a script involves the editor having total control of the screen.
It is necessary that when a key is depressed on the keyboard the normal display of
that character be suppressed. In the current implementation this is done by two
procedures mk.term.cool and mk.term.uncool in the file sgen. These send
appropriate control sequences to the screen which turn echo on and off. The

standard Unix way of doing this is to use the sity command. For some reason this

Lgen, Pgen and Sgen
37

did not work. This may be because PS-algol entirely controls the screen at runtime
d .

and someone has overlooked this possibility. This is, however, pure speculation.

3.3: The Database and the Procedure Hierarchy

The database is simply a PS-algol table indexed to one level containing all
objects required to be stored in the database. Procedures are linked together in such a
way that it is necessary to load them in a certain order. There is a hierarchical
structure to them and in order for any change in a lower procedure to have any
effect, all procedures between the new procedure and the root must be reloaded. The
structure of the three hierarchies is given in the appendix to this section.

Most of the programs are used entirely to save procedures in the database.
Although there are many procedures that would be shared by two or more processes
using the system, there are no variables that are shared, so no concurrency problems
should occur. However, there are clashes between these programs and others that
use the same utility procedures, since some of the utility procedures require write
access to the "rutilities" database. This problem will manifest itself in a message

can't get database ("steve", "steve") (?).

If this happens, try again when the other user has finished.

3.4: List Representation

In many places there was a need to have a list of pointers to objects. The

structure class

structure mk.list (pntr list.entry, 1l.rest)

was used throughout to contain such lists.

Hacker's Guide N

3.5: Lgen Implementation

Lgen takes input in the form of a vector of regular expressions. The output is
a minimised deterministic finite state machine which is interpreted at runtime. The

main procedures are as follows

I: parse - This program stores a procedure parser in the database under the key
"Regular Expression Parser" ina
structure RegExpParser (proc (string ~> patr) RegPars)

parser takes in a string and returns a pointer to the structure that represents the
regular expression. The structure has various forms to indicate the various types of
regular expression.

structure literal (string 1I.req)

structure optional (pntr o.reg)

structure multiple (pntr m. reg)

structure alternative (*pntr a.regs)

structure sequence (pntr s.reg2, S5.reg2)

structure named. string (string reg.name)

structure empty (int 1) ! must be at least one field

structure parse.error (string message)

These form a structure in which the terminals are always literal,
named.string, empty or parse.error. The parser returns either an entirely
valid structure or a parse.error with all the error messages collected to the
topmost level. In the current implementation the error messages are no better than
useless. There is an example of what a representation of a regular expression would

look like in the diagrams section towards the end of this section.

H: ndfm - This program stores a procedure buiid. automaton in the database under

the key "auto.build" in a

Lgen, Pgen and Sgen
39

(*pntr -> pntr) auto.build)

strxucture auto.box {(proc

It takes in a vector of regular expressions and returns a structure representing‘ the
nondeterministic machine which is equivalent to the expressions. The algorithm
([AHOS85] pp. 121) patches the sub-regular expressions together by a simple method
based on creating new states and having empty transitions everywhere.

For example, (r; 1 1; | 3) can be done by:
(1) deriving an NDFM for each r; (i=1,2,3)

(2) creating a new start and finish state; (sJand (f)
(3) adding an empty move from (s)to r; (i=1,2,3)
(4) adding an empty move from r;to (f) (1=1,2,3)

This is done recursively. The next step is to put in place the machines for the named
patterns. This requires rebuilding the structure to represent the expression for ‘the
pattern that was named. After this all the empty actions are removed by propagaling
all actions to all places reachable on empty moves only from any state. Eventually

i ichine. The data
the machines for each pattern are joined together to form a single machine. T

structure used to represent the machine is
structure ndfm (pntr n.first, n.last)
structure ndfm.state (
int s.number;
pontr s.shifts;
*string s.class)
structure ndfm.action (
string a.input;
pntr a.new, a.next)

i i a a
The structure ndfm is used to hold pointers to the first and last state of
i i i tes. Each
linked structure representing the machine. The two fields both point to sta
state has
(a) a unique number s.number;

(b) a list of actions s.shifts;

vector of S o icate 4 Cen e CNIsead on any
() [trmgs S class, O]dlC te what has b K'(,CO& d
C) a

Hacker's Guide 40

input stream that leaves the machine in this state,
The list of actions is made up of a list built by ndfm.action where ®
(@) a. input indicates the character for this action
(b) a.new points to the new state for this action
(0) a.next indicates the next action (or nil) in the list.

There is an example of a nondeterministic machine given in the diagrams appendix

towards the end of this section.

I1I: min - This program stores a procedure minimise in the database under the key

"minimise" ina
structure minimise.box (proc (pntr -> pntr) minimise.place)

minimise takes in a deterministic machine and returns a new machine which

represents the same language but has the minimum number of states possible

([AHOB85] pp. 141). This minimum machine is unique down to state name. The

algorithm partitions the machine as follows

° first split it into accepting and non-accepting states;

split the accepting partition into a set of partitions each containing only

one element;

split the non-accepting partition into partitions containing states with

exactly the same set of symbols with actions defined on them;

* if there is a partition with states with actions on the same input which take

you to different partitions, then split the current partition;

¢ repeat the previous step until no more partitions can be made.

Ak

Lgen, Pgen and Sgen
41

rdetermine” ina

structure determine.box (proc (*pntr -> pntr) determine.place)
determine takes in a vector of regular expressions and produces a miniml'sec:
deterministic finite state machine. It first uses ndfm to build the (ma.ss‘lv‘e
nondeterministic machine. It then makes a new automaton which is determmlsn.c.
Each state in the new machine corresponds to a set of states in the old. This

i i [i d [AHOS85] -
deterministic machine is then minimised using min. It is helpful to read [

pp. 117, though the algorithm is not exactly the same.

V: opt - This stores the procedure optimise in the database under key "opt™ in a
structure opt.box (proc (pntr) opt.place)

optimise takes in a deterministic machine and alters the implementation of the

actions from a list of actions to a table of actions. This is supposed to make the

interpretation of the machine faster. Whether it does is open to question. It does,

however, make the implementation more appealing and simplifies the code for the

interpretation.

VI: Igen - This stores the procedure lexgen in the database. Its data;base key and
containing structure were described in section 2.1. lexgen tak'es in a \./ector of
patterns and uses dfm to produce the equivalent deterministic machine. The
implementation is then changed with opt and the procedure to do the le'x1ca:
analysis is produced having been specialised to this machine. The procedure is a

1 e]l)] eter of “le]lla(lll]le W]ll(h]e(lulle WO I)] Ced\lles to repr he npu
t s ¢ (6] r p esent t 1 t
1

stream.

At this stage all the states in each partition form an equivalence class and a

representative from each partition can be chosen to be the new state representing all

the states in the partition.

ili [that
VII: lexan - This stores in the database an auxiliary procedure lexan.builder tha
| ificati and
can be used to aid the entering of an Lgen specification. Its database key

i cification
containing structure are descibed in 2.1.3. It takes in a name and reads a spe

IV: dfm - This stores the procedure determine in the datab

work.
ase under the key out of a file with that name and then calls 1gen to do the

Hacker's Guide 42

3.6: Pgen Implerﬁentation

The input to Pgen is a vector of grammar rule specifications and a vector of
required parsers. It then produces procedures to implement the parsers for each
nonterminal required for the grammar. The parser constructed is SLR(1) ([AHO85]
pp- 221) so the first step is to produce an SLR(1) automaton for each nonterminal for
which a parser is required. Each of these automata can then be interpreted by the LR

parsing algorithm. A blow by blow description follows.

I: pgen.lex - This file contains the specification of the lexical syntax used to enter

the rules of the grammar.

II: load.pgen.lex - This program uses Lexan to build an analyser from the
specification in pgen.léx and store it in the database under the key "pgen.lex" ina

lexan.box structure (see section 2.1.3).

I1I: parse - This program stores a procedure build.grammar in the database under
the key "grammar.parse” ina
structure parse.box (proc (*pntr -> pntr } parse.place)
build.grammar parses the grammar rules and builds the structure that will
represent the grammar internally. The grammar is represented by
structure grammar.symbol (

string gs.name;

pntr gs.parser, gs.defn)
The field gs.name is the name of the nonterminal. The gs.parser field got
designed out of use so it is currently redundant. The gs.defn field contains a list of

right hand sides for this symbol. It is an instance of the structure class

structure gs.opt (pntr ts, gs.rest)

43 Lgen, Pgen and Sgen

where the second field is the rest of the list and the first is a list of tokens which

make up this right hand side. The token list is an instance of

structure token.seq (

string ts.name; ! (a)
pntr ts.symbol, ! (b)

ts.rest; (o)
bool assumable) 'o(d)

These fields are as follows

(a) the name of this token;

(b) a pointer (which is filled in after all rules have been parsed) to the
grammar symbol representing this token; this is nil in the case of a
terminal;

(c) the next token or the end of the list, that is, a ts. end (see below);

(d) a field which was used in an attempt to implement error recovery but has
since become redundant.

The end of the list is not nil as with most linked lists. It is an instance of the class

structure ts.end (

string recognised; o {a)
int arity; ! (b)
proc (*pntr -> pntr) ts.action) to{e)

where the fields are:

(a) the name of the grammar symbol that this is a right-hand-side of;

(b) the number of symbols on the right-hand-side;

(c) the procedure that will be used to evaluate the synthesized attribute that

the parser will support.

The pointer that is returned to represent the grammar as a whole is then a
pointer to the distinguished nonterminal of the grammar. This is the nonterminal
that first had a rule declared for it. All the other nonterminals of the grammar
should then be reachable from this. There is an example of the internal

representation of a grammar symbol in section 3.8 (Diagrams).

Hacker's Guide
44

IV: tf - (“first "
/ Irst and follow" - [AHO85] Pp- 188) This program stores a procedure

k. i
mk.follow. table in the database under the key "first/follow" ina

structure r£f. poy (proc (pntr -» pntr) ff.place)

st
ructure follow.tok (string f.tok; pntr f.rest)

. Sl - l [) p 114d lr.m dat b
S Og m sto S TOC d (S .5
V: i I 1 1 ra res a ocedur b 1 .mach 1ne in the abase

under the key "build.slr.machine” ina

. 5 (p r P > p) -
structure slr.box roc ntx ntr - ntr slr place)

build.slir. [i i
machine will take in a grammar symbol structure and a follow table

and produce 2
p € an SLR automaton for the grammar ([AHO85] pp. 221). The automaton
is buil i ildi '
t by first building a set of closures, A closure is represented by the structure
structure closure (pntr c.items)
The field points to a list made up of instances of
structure mk.lise (pntr list.entry, 1I.rest)

where i 3 i
each entry is an i tem, an instance of the structure class

structure jtem (

patr ruje, ! (a)
i.ts, ! (b)
Pos.in.ts) 1 (¢)

where the fields are

() a pointer to the grammar object that this item is a right-hand-side of:

(b) a poi
pointer to the head of the token sequence that this item represents;

45 Lgen, Pgen and Sgen
(c) a pointer to the position of the "dot" on the right-hand-side. If the pointer
is to a ts.seq then the dot is before the ts. seq being pointed at. If the
pointer is to a ts.end then the pointer is to the far right of the current

right hand side.
The SLR automaton is represented by a pointer to the first state of the
automaton. All other states are therefore reachable. Each state is an instance of the

structure class

structure slr.state (

pntr slr.closure, !(a)
slr.actions, ' (b)
slr.error, ! ()
slr.reductions; to(d)
int slr.state.number) ! (e)

The fields are as follows:

(a) a pointer to the closure that this state represents.

(b) a pointer to a table, indexed by input symbol, which gives the action to be
taken given that input symbol. ‘

(c) a pointer that was used while error recovery was being attempted (but since
that was dropped, it has become redundant).

{d) a pointer to a table, indexed by input symbol, which gives the reductions to
be performed on the input symbol if it is not possible to do an action on the input

symbol. If the current input symbol appears in neither the action nor reduction table

then it is an error token.

(e) a state number to uniquely identify each state.

VI: bpm - This program will store a procedure build.parse.machine in the

database under the key "build.parse.machine” ina
structure bpm.box (proc (pntrxr -> pntr) bpm.place)
build.parse.machine will generate an SLR(1) parser automaton from a pointer

to the structure representing the nonterminal of the grammar required. 1t first calls

Hacker's Guide 46

ff to produce the follow table for the required grammar symbol.
build.slr.machine is then used to produce the parser automaton. A pair is then

returned to to the caller (pgen) to give it the start and stop states of the machine.

VII: pgen - This program stores the procedure pgen in the database - its key and
container structure are described in section 2.2. pgen generates the parsers required
for the given grammar. First the grammar is built using the grammar parser. For
each of the required parsers the procedure build.parse.machine is used to build
the automaton. For each automaton the procedure pgen.apply is specialised to
produce a parser. This is put into a table to be returned to the caller of pgen. The
procedure pgen.apply simply produces a procedure that, when given an instance

of a lexical analyser, will interpret the automaton to parse it ((AHO85] pp. 216). In the

event of any error, nil is returned.

Lgen, Pgenand Sgen
47

3.7: Sgen Implementation

The input to Sgen is a specification in terms of a pointer to a lexical analyser, a
pointer to a table of parsers and a vector of pointers describing the abstract syntax.
Sgen examines (using the procedure ast) the abstract syntax specification and then

specialises the editor executive to this specification.

3.7.1: The Editor State

The editor executive relies on one major structure to contain all the
information it will ever need. This structure is an instance of the structure class

structure editor.state {

pntr e.tree, !o(a)
t.a.current, ! (b)
e.parsers, to{c)
e.la.gen, . vody
e.root.parser, o (e)
e.command, v
e.ast.table, U o{g)
e.ast.root, t (h)
e.screen, to(i)
e.clip) to(3)

The fields are used as follows:
(a) A pointer to the root of the current abstract syntax tree.
(b) A pointer to the current node of the tree at any point during the editing
session.
(c) A pointer to the parser table given to pgen.
(d) A pointer to the lexical analyser given to pgen.
(e) A pointer to the parser for the root of the tree.

(f) A pointer to the current command.

Hacker's Guide 48

(g) A pointer to the table containing the internal representation of the
specification of the abstract syntax.

(h) A pointer to the root of the internal representation of the specification of
the abstract syntax.

(i) A pointer to the structure representing the screen for this edit. The
structure will be described during the description of the file show.

(j) A pointer to the table being used as the clipboard.
3.7.2: The Editor Executive
This comprises four main parts:
I: show - This program stores all the screen manipulation functions in the da‘abase

under the key "show" in a single structure:

structure show.box {

proc (int, int -> pntr) initialise.screen.place; ' (a)
proc (pntr, string) message.place; ! (b)
proc (pntr, string, string -> string) get.string.place; ! (¢)
proc (pntr) show.place; P
proc (pntr, pntr -> pntr) get.mouse.node.place) ' (e)

The functions provided are:

(a) initialise.screen - This procedure sets up the screen for this edit. It also

notes various things about the size of the screen. The function returns a pointer to
the screen descriptor which is an instance of the structure class

structure screen.box (
pntr command.place; ! enhanced command area of screen

#pixel display.picture; ! image for display area

pntr display.place; ! enhanced display area of screen

#pixel spare.screen.place; ! spare image same size as

! display area

49 Lgen, Pgenand Sgen

pntr spare.packaged.place; ! enhanced spare display area

potr screen.map.place; ! map from mouse position to AST node

int tree.up, tree.down) ! how much screen to display

(b) message - Prints a message on the command area of the screen.

(c) get.string - Gets a string from the user. The string is displayed at the
command area and is editable. This procedure uses the seditor written by Richard
Cooper.

(d) show - A procedure which, when given an editor.state, will display the entire
tree according to the unparsing scheme stored in the abstract syntax specification.
This procedure also notes, in the screen.map.place field of the screen descriptor,
what was printed where. This is to allow nodes of the tree to be selected by the
mouse.

{e) get .mouse.node - A procedure which, when given an editor.state anda

mouse position will return the lowest node of the abstract syntax tree that encloses

the given position.

11: att - This program stores a procedure attribute. tree in the database under the
key "attribute.tree" ina
structure att.tree.pack (proc (pntx) att.tree.place)

When attribute.tree is given a node of an abstract syntax tree it will attach all
the attributes specified in the AST specification onto the tree. This is done for all
descendant nodes in the tree. If any new value will propagate required changes up
into the tree above the given node then all the propagation is done. If a circularity is
come across then it will be detected. The procedure puts all the newly attached
attributes (set to unevaluated) onto the subtree and constructs a queue of them. All
the attributes that will be changed by propagation are also set to unevaluated and put
onto the queue. .lt loops round this queue until all attributes have been evaluated. If
all the arguments for an attribute are evaluated then the attribute itself can be

evaluated, otherwise that attribute is replaced at the end of the queue. Attributes are

represented by the structure:
structure att.instance (
pntr att.value: ! value assigned to this attribute
pntr att.depend; ! list of attributes depending on this one
pntr att.node;

! pointer to the node this attribute is on

pntr att.declaration; ! declaration of attribute in the AST

bool att.valid) ! has this attribute been evaluated?

The definition of the declaration of an attribute is given in section 3.7.3.

HI: emnd - This program stores two procedures in the database under the key
"cmnds™ in a
structure cmnd.box (proc (pntr, pntr) cmnd.get.place,

cmnd. apply.place)

One gets and validates commands and the other executes them. Each command in
the User's Guide (section 1.2) has a structure class associated with it, each class
having fields containing attributes of the command. Look in cmnd for the grubby

details.

IV: ast - This program stores a procedure mk.ast in the database under the key
"mk.ast"ina
structure mk.ast.box (proc (*pntr, pntr -> pntr) mk.ast.place)

mk.ast takes in the specification of the abstract syntax tree and produces the

internal representation. There are 6 sub-programs which load up lexical analysers

and parsers used by mk . ast:

e for analysing specification of the abstract syntax rules
- load.ast.lex
- ast.pgen

e for analysing the specification of the attribution

- load.att.lex

! 51 Lgen, Pgen and Sgen

Hacker's Guide 50

- ati.pgen
» for analysing the specification of the unparsing scheme
-load.up.lex

- up.pgen
3.7.3: Representing the AST Specification
The internal representation of the specification of the abstract syntax tree is

contained in an instance of the structure class

structure ast.spec {

string ast.name; v o(a)
*pntr ast.options; ! (b)
bool ast.parsable; ! ()
strxing ast.parse.as; to(d)
pntr ast.parser; !o(e)
bool ast.is.root; to{f)
pntx ast.attributes) !o(g)

(a) ast.name - This is a string containing the name of this nonterminal of the

abstract syntax.

(b) ast.options - This is a vector of pointers to the various options for right-
hand-sides for this type of abstract syntax iree node. Each one is an instance of class

structure ast.opt (

string rhs.constructor; ! {a)
*pntx rhs.names; 1 (b)
pntx rhs.unparse; o)
pntr rhs.attributes) 1{d)

(a) Name of constructor for this version of the node.

(b) There is one pointer (in order) for each grammar symbol on the right hand

side of this rule. Each one is an instance of a structure in the class

Hacker's Guide 52

structure rhs.object (
string r.name;
pntr r.where;
bool is.terminal)
where the second field is nil if the symbol is a terminal and will be filled
in with a pointer to the relevant ast . spec if it is not.
(c) This is a pointer to a list of things to print when unparsing this type of
node. The list is in a structure
structure up.list (pntr up.action, up.rest).
Each element of the list is one of

structure up.literal (string upl) ! a literal to print
structure up.attribute (string upa) ! attribute value to print

structure up.child (int upcy ! print unparse of child # upc

structure up.control {(bool in.tab) ! move tab in or out

structure up.hide (string uph) ! as literal, but see below
The unparsing of attributes and up. hides only takes place onto the screen
during the editing. The final unparse to download the abstract syntax tree
does not take any notice of these commands.

(d) This specifies the attributes that will be associated with each instance of

this node. They are contained within a list

structure mk.Att.list (pntr Att.elem, Att.next).

each element being an instance of the class

structure att.rule (

string att.name; ! the name of this attribute
pntr arg.list; ! see t below
int arity; ! rule's arity
proc (*pntr -> pntr) att.eval) ! rule's evaluator

+ This is an ordered list indicaling where the various arguments to the
evaluator have to come from each time that an attribute of this type is

evaluated. It is stored in a structure

Lgen, Pgen and Sgen

structure mk.arg.list (pntr arg.where, arg.rest)
where each entry in the list indicates where the argument is to come

from and is one of
structure arg.parent ({string ap.name)
! attribute called ap.name of parent
structure arg.own (string ao.name)
! this node's attribute
structure arg.child.val (
int acv.number;
string acv.name)
t an attribute acv.name of child number acv.number
structure arg.child {(int ac.number)

! ¢child number ac.number
(¢) ast.parsable - This indicates whether this type of node can be parsed or not.

(d) ast.parse.as - This indicates what to use to parse a node of this type, if it is

in fact parsable.

(e) ast.parser - This is a pointer to the structure containing the parser.

(f) ast.is.root - A bool o indicate whether this is the type of the root or not.
(g) ast.attributes - This is redundant. It was originally introduced to hold the

specification of the attributes but that was long before any thought had actually been

given to attributes. Clearly this is not the place to have this; it actually occurs in the

ast.opt structure.

Hacker's Guide 54

3.8: Diagrams

The diagrams here fall into two groups:
o The three procedure hierarchies;

» Some examples of data structures to clarify some of the explanations above.

The procedure hierarchy of Lgen

load.pgen.lex [em——

e——— ”) e pgen.lex

The procedure hierarchy of Pgen

55
Lgen, Pgenand Sgen

toad.atliex

{ load.up.lex)

AT

The procedure hierarchy of Sgen

Hacker's Guide 56

Example Regqular Expression : positive integers

sequence

alternative
Ly 1y [I multiple
alternative
[,] | []
0 LI 9
literal literal literal
\/
0 LI 9
literal literal literal

57 Lgen, Pgenand Sgen

Non-deferministic maching "M

ndfm.stale

["accept number']

> fo slale 4

“‘E P 10 slate 6

in the diagram above
represents an instance on ndfm.state and
represents an instance of ndfm.action

note : the order of the fields in ndfm.action has been
switched lo make it easier to draw.

59

Lgen, Pgen and Sgen
Hacker's Guide 58
to the parser Ty This represents an instance of
Example of ast.spec for calclist Loiaai] e structus class uplist
T This represents an instance of
the structure class ths.object
Instances of structure classes grammar.symbol and gs.opt are i

Reoiesentalion of 4 qrarmar given in plain boxes. otherwise ast.spec [Calcisr e | calciist I "

represents foken.seq an

blow up view

grammar.symbol

represents ts.end

“calclist” aparser

———————bkarser for calclist nodes I

nole : in each instance of loken.seq : | _
to order of the felds has been changed to ast.opt ast.opt

make it easy to print
\ ICalcListPair "CalctistNi*
N P <~ emply vector (lower bound = 0)
s
gs.opt calcfist’ g I
>
e oo
Usually has
— pointer to
instance of
Usually has att.rule
5.0t :
gs.0p peinter to '. J
instance of L!P<Ch¥|d1 upliteral up.child
att.rule "n” 2
to the parser
for ex i
grammar.symbol \)
"exp” asl.spec [Exp" rue | "exp* false
a.parser
b parser for expression nodes blow up view
\ pointers : other N
/ forms of Ex
’ - I ey By l A ast.opt instance astop! instance for on of the
gs.opt b rexp \ o "operiélor" wfil o b] P"e;(p" A : for numbers with integer operations such as
\ gl | saalf ol e bl b one single entry in PlusOp or DivOp. The two
- ths.names wilh name arguments would be Exps
number and pointer and the appropriate unparsing and
value nil { to indicale) altribution rules would be given.
' that it is a literal.
gs.opt —t+— [umber”

Postscript 60

4: Postscript on Applicability
4.1: Lgen and Pgen

Lgen provides a framework for building fast, easy to use, lexical analysers. It is
relevant to all types of application where the input could be anything from a single
line of text in response to an interactive prompt to an entire program in a high level
programming language. In either case, the detail of establishing how to partition the
input meaningfully is abstracted and the resulting code is clearer and more easily
maintained. 1 would encourage programmers to familiarise themselves with the
system as I have found it a great help in my subsequent programming work.

Similarly Pgen has wide applicability. Typically, given a string, which may be
a single line or an entire program, the first step is to convert it into some internal
representation of the meaning of the string. This can be done easily and quickly with
parsers generated by Pgen and I would encourage its use in general programming.

Again, it has been used extensively in the building of the Sgen system.
4.2: Sgen

Using Sgen is nontrivial. A detailed understanding of the underlying abstract
syntax tree is required. However structure editors are clearly one way of controlling
program development that may provide part of the key to improved programming
techniques.

There is another use of structure editors that Sgen opens up as a field for
future work. No-one seems to have used structure editors as part of a large
interactive system where the structure editor generator was used by the programmer
on frequent occasions when a structured response was required from the user. The

current implementation of Sgen is too directed towards programming languages for

61 Lgen, Pgen and Sgen
this application to be possible. Some simple changes could enable this. Among these
we might mention:

(1) Passing the font and the display area as parameters. Other programming
tools such as menu generators and string editors in PS-algol are made far more
flexible by being generalised in terms of the screen; and Sgen also has the font size
hard-coded in (in the screen descriptor described in section 3.7.2 part I). Abstracting
these would be a (simple) significant step forward in the use of Sgen in large
interactive systems.

(2) Transformation templates. The current set of commands available in Sgen
is fixed. Transformation templates (see section 2.8 of [REPS85]) would provide a way
for a programmer to specify new commands with the editor. These would take the
form of “rewrite rule" procedures from one partial abstract syntax tree to another,
each of which will always be valid in the same places. This idea has not received
much thought but is clearly required if Sgen is to be used more generally.

(3) Specification checking. At the moment the amount of checking that is
possible is tiny and the amount that is actually done is even less. The result is that

specification errors lead to obscurely reported structure access errors at runtime.

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,)
Persistent Programming Research Group,

Department of Computing Science,
University of Glasgow,
Glasgow G12 8QQ
Scotland.
or

The Secretary,)
Persistent Programming Research Group,

Department of Computational Science,
University of St. Andrews,

North Haugh,

St. Andrews KY16 95§

Scotland.

Books

avi Morrison, R.)
Dy l?R/;cju’rI;n"gé Descent Compiling”, Ellis-Horwood Press (1981).

kinson, M.P. (ed.)
A m"Dutabases", Pergammon Infote

1982. (535 pages).

ch State of the Art Report, Series 9, No.8, January

le, A.J. & Morrison, R.
cole "An introduction to prograu
Cambridge, England, 1982.

yming with S-algol”, Cambridge University Press,

P.M.D. (eds.)

Stocker, P-M., Akinson. and. S Cambridge University Press, Cambridge,

“Databases - Role and Structure”,
England, 1984.

Published Papers

Morrison, R.))
" A method of implementing proc
languages”. Software, Practice an

iti ed high level
entry and exit in block structur
eg\gipeﬁeynce 7,5 (July 1977), 535-537.

Morrison, R. & Podolsk?, Z. §
’ "The Graffiti graphics system’,
5-10.

Proc. of the DECUS conference, Bath (April 1978),

inson, M.P.)] ACM
Atkm"gxnnote on the application of dif

SIGDA newsletter Summer 1978.

ferential files to computer aided design”,

Atkinson, M.P.
"Programming Languages and Databases", Proceedings of the 4th International
Conference on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78,
408-419. (A revised version of this is available from the University of Edinburgh
Department of Computer Science (EUCS) as CSR-26-78).

Atkinson, M.P.

"Progress in documentation: Database management systems in library automation
and information retrieval”, Journal of Documentation Vol.35, No.1, March 1979,
49-91. Available as EUCS departmental report CSR-43-79,

Gunn, H.LLE. & Morrison, R.

"On the implementation of constants”, Information Processing Letters 9, 1 (July
1979), 1-4.

Atkinson, M.P.

“Data management for interactive graphics", Proceedings of the Infotech State of the
Art Conference, October 1979. Available as EUCS departmental report CSR-51-80.

Atkinson, M.P. (ed.)
"Data design", Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R.

"Low cost computer graphics for micro computers®, Software Practice and
Experience, 12, 1981, 767-776.

Atkinson, M.P., Chisholm, K J. & Cockshott, W.P.
"PS-algol: An Algol with a Persistent Heap”, ACM SIGPLAN Notices Vol.17, No.
7, (July 1981) 24-31. Also as EUCS Departmentai Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
“Nepal - the New Edinburgh Persistent Algorithmic Language", in Database,
Pergammon Infotech State of the Art Report, Series 9, No.8, 299-318 (Janvary
1982) - aiso as EUCS Departmental Report CSR-90-81.

Morrison, R. -
"S-algol: a simple algol", Computer Bulletin 11/31 (March 1982).

Morrison, R.
“The string as a simple data type", Sigplan Notices, Vol.17,3, 46-52, 1982,

Atkinson, M.P_, Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming"”, presented at CREST course UEA,
September 1982, revised in "Databases - Role and Structure”, see PPRR-8-84.

Morrison, R.

“Towards simpler programming languages: $-aigol”, IUCC Bulletin 4, 3 (October
1982), 130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
“Problems with persistent programming languages”, presented at the Workshop on
programming languages and database sysiems, University of Pennsylvania,
October 1982. Circulated (revised) in the Workshop proceedings 1983, see
PPRR-2-83.

Atkinson, M.P. : . . k
“"Data management”, in Encyclopedia of Computer Science and Engineering 2nd
Edition, Ralston & Meek (editors) January 1983. van Nostrand Reinhold. =

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
“Algorithms for a Persistent Heap", Software Practice and Experience, Vol.13,
No.3, 259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"CMS - A chunk management system", Software Practice and Experience, Vol.13,
No.3 (March 1983), 273-285. Also as EUCS Departmental Report CSR-110-82.

Atkinson, M.P., Bailey, P.1,, Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming”, presented at the DEC workshop
on Programming Languages and Databases, Boston, April 1983.

Atkinson, M.P., Bailey, P.J,, Chisholm, K 1., Cockshott, W.P. & Morrison, R.
“An approach to persistent programming”, The Computer Journal, 1983, Vol .26,
No.4, 360-365 - see PPRR-2-83.

Atkinson, M.P., Bailey, P.I, Chisholm, K.J., Cockshott, W.P. & Morrison, R.
“pS-algol a language for persistent programming”, 10th Australian Computer
Conference, Melboumne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.L.
"High level language support for 3-dimension graphics”, Eurographics Conference

Zagreb, North Holand, 7-17, Sept. 1983. (ed. P.J.W. ten Hagen).

Cockshott, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Morrison, R.
"POMS : a persistent object management system”, Software Practice and Exerience,

Vol.14, No.1, 49-71, January 1984.

Kulkarni, K.G. & Atkinson, M.P.
"Experimenting with the Functional Data Model", in Databases - Role and Structure,

Cambridge University Press, Cambridge, England, 1984.

Atkinson, M.P. & Morrison, R.
“persistent First Class Procedures are Enough", Foundations of Software

Technology and Theoretical Computer Science (ed. M. Joseph & R. Shyamasundar)
Lecture Notes in Computer Science 181, Springer Verlag, Berlin (1984).

Atkinson, M.P., Bocca, J.B., Elsey, T.J., Fiddian, N.J., Flower, M., Gray, PM.D. ~

Gray, W.A., Hepp, P.E., Johnson, R.G., Milne, W., Norrie, M.C., Omololu,

A.O., Oxborrow, E.A,, Shave, M.L.R., Smith, A.M., Stocker, P.M. & Walker, J.
“The Proteus distributed database system”, proceedings of the third British National
Conference on Databases, (ed. 1. Longstaff), BCS Workshop Series, Cambridge
University Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R.
"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985) -

sce PPRR-9-84.

Morrison, R.,Bailey, P.J., Dearle, A., Brown, P. & Atkinson, M.P.
“The persistent store as an enabling technology for integrated support
environments”, 8th International Conference on Software Engineering, Imperial
College, London (August 1985), 166-172 - sec PPRR-15-85.

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment", proceedings of Data

Types and Persistence ‘Workshop, Appin, August 1985, 1-24 - see PPRR-16-85.

Davie, AJLT.
"Conditional declarations and pattern matching”, proceedings of Data Type

Persistence Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

s and

Krablin, G.L.

"Building flexible multilevel transactions in a di

proceedi "
- see PPlIri]%S— ?ggﬁfa Types and Persistence Works

stributed persistent environm
| ent,
hop, Appin, August 1985, 86-117

Buneman, O.P.

"Data types for data base i
] programming", i i
Workshop, Appin, August 1985, 291-g30§r-0§:§d lilll’%lsff—fl?gg 1ypes and Persisience

Cockshott, W.P.

"Addressing mechanisms and i
S persistent programming" i
and Persistence Workshop, Appin, August 1985, 363%3’Z§gr?(;zzdl;;%{slf-fll6)—?18t§ Types

Norrie, M.C.

“PS-algol: A user ctive"
ser perspective”, proceedi ate i
Workshop, Appin, August 1985, 39p9-4106- ISI;%SP?);E_dIKg_;;)’pCS and Persistence

Owoso, G.0.

"On the need for a Flexible T i i
proceedings of Doata Txmcs ype System in Persistent Programming Languages",

Brass e s Type and Persistence Workshop, Appin, August 1985,

Morrison, R., Brown, A.L., Bailey, P.J., Davie, AJ.T. & Dearle, A

"A persistent graphi ili
> phics facility f "
Experience, Vol.14, No.3, (1986y) «Oslc-:cﬂl\’i)hggi[‘ml—)gRQ » Software Practice and

Atkinson, M.P. and Morrison R.

“Integrated Persistent Pro i

4 s gramming Systems", i

gavsv:g gg:fxm‘litlnci?gl goxfllferemx;g Zm System Scieﬁzzze(}glnnugasryofl llh(? igléihé ?el:imgll
: : , Software, 842-854, W. riodicals Co., 1 nan

St., North Hollywood, Calif. 91605, USA - ::;c}r)?)g;r}?g}ggls Co- 1300 Rayman

Atkinson, M.P., Morrison, R. and Pratten, G.D.

“A Persistent Information S i
i I pace Archit " i
Computing Science Conference, Januurlye:clt;g% : Eégclsgglg-gglogghc o Austealian

Kulkz'i'll‘znli:bli/.[G‘ & Atkinson, M.P.
: Extended Functi i "
(1988) 3645 unctional Data Model”, The Computer Journal, Vol.29, No.1
Bune'rlnan, OP & Atkinson, M.P.
Inheritance and Persistence in Database Pro

ACM SIGMOD Conference 1986, Washingto S A ey oG B praceedings

n, USA May 1986 - see PPRR-22-86.

IVIOITiS()ﬂ R > I)Ca lC A » B 1 n
. rie, . rown, A i P
- i wi, L& Atk nson M. -
147‘157 - See PPRR-14‘86.

"An integrs aphi
» Computer Graphics Forum, Vol. 5[,] I‘\:J%Tdée?urgnéd{)‘;‘égs

Atkinson, M.G., Morrison, R. & Pratten G.D.

Desi nin a F ersistent [P
g g S18t ll‘OK"lau()ll SpflCC AlClll[C(,[UlC l()(,ecd“lgb of
]

Information rocessin 1 86 i
4 ’
1 o ,N F 0 g 9‘ : Dubhn, Scptembcr 1986, (Cd HJ, Kllglel),

Brown, A.L. & Dearle, A.

Implementation Issuses in Persistent Graphics”

NO. 2, (Summer 1986) - scc PPRR-23-86, + University Computing, Vol. 8,

Kulkarni, K.G. & Atkinson. M. P

"Imbl : .
mplementing an Extended Functional Data Model Using PS-algol”, Soft
- , ware -

Practise and Experience, Vol. 17(3), 171-185 (March 1987)

Cooper, RL. & Atkinson, M.P.
"The Advantages of a Unified Treatment of Data", Software Tool 87: Improving

Tools, Advance Computing Series, 8, 89-96, Online Publications, June 1987.

Atkinson, M.P, Morrison, R. & Dearle, A.
“A strongly typed persistent object store”, 1986 International Workshop on

Object-Oriented Database Systems, Pacific Grove, California (September 1986).

Atkinson, M.P., Morrison, R. & Pratten G.D.
"PISA : A persistent information space architecture”, ¥CL Technical Journal 5, 3

(May 1987),477-491.

Atkinson, M.P. & Morrison, R.
“Polymorphic Names, Types,
Object Store". Presented at th
Stores, Appin, August 1987.

Constancy and Magic in a Type Secure Persistent
e 2nd International Workshop on Persistent Object

Cooper, R. & Atkinson, M.P.
"Requirements Modelling in a Persistent Object Store”. Presented at the 2nd

International Workshop on Persistent Object Stores, Appin, August 1987.

Wai, F.
“Distribution and Persistence”. Presented at the 2nd International Workshop on

Persistent Object Stores, Appin, August 1987.

Philbrow, P.
“Associative Storage and Retrieval: Some Language Design Issues". Presented at

the 2nd International Workshop on Persistent Object Stores, Appin, August 1987.

Guy, M.R.
"Persistent Store - Successor to Virtual Store". Presented at the 2nd International

Workshop on Persistent Object Stores, Appin, August 1987.

Dearle, A.
"Constructing Compilers in a Persistent Environment”. Presented at the 2nd
Internaional Workshop on Persistent Object Stores, Appin, August 1987.

Carrick, R. & Munro, D.
"Execution Strategies in Persistent Systems”. Presented at the 2nd International

Workshop on Persistent Object Stores, Appin, August 1987.

Brown, A.L.
“A Distributed Stable Store". Presented at the 2nd International Workshop on

Persistent object Stores, Appin, August 1987.

Cooper, R.L,, Atkinson, M.P., Dearle, A. & Abderrahmane, D.
“Constructing Database Systems in a Persistent Environment". Proceedings of the
Thirteenth Internaional Conference on Very Large Databases, Brighton, September

1987.

Atkinson, M.P. & Morrison, M.
"Polymorphic Names and Jterations"”, presented at the Workshop on Database
Programming Languages, Roscoff, September 1987.

Internal Reports

Morrison, R.
S-Algol language reference manuat”, University of St Andrews CS-79-1, 1979

Baich%P.J., Maritz, P. & Morrison, R.
he S-algol abstract machine”, University of St Andrews CS-80-2, 1980

Atki
tkinson, M.P., Hepp, P.E., Ivanov, H., McDuff, A., Proctor, R. & Wilson, A.G

"EDQUSE reference manual”
Edinfurgh, Sopmnter 198111.a . Department of Computer Science, University of

Hepp,EfAEQ and Norrie, M.C.

" UEL: User Manual” : i

Univarstoy of Edinbux‘glili > Department of Computer Science Report CSR-188-85,
Norrie, M.C.

“The Edinburgh Nede of the Pro istri
. teus Distributed D . }
Computer Science Report CSR-191-85, University Z?E?fii%ﬁﬁm , Department of

Theses

g S, 4 N 4
The followl!l ﬂlCSC for the dﬁgree of Ph b unless other wise stated thc I)Ce!l
ploduCCd by lllClxlbch of the group and are available from the a(]dICSS aheddy gven

W.P. Cockshott
Orthogonal Persistence, University of Edinburgh, February 1983

K.G. Kulkarni

Evaluation of Functional D: S i
Finburgh, 1983, ata Models for Database Design and Use, University of

P.E. Hepp

A DBS Architecture Supporti isti
Univerdiey of Edinburgh?ll)gt%?g Coexisting Query Languages and Data Models,

G.D.M. Ross

Virtual Files: A Fra i i
M ramework for Experimental Design, University of Edinburgh;

G.0. Owoso
Data Description and Manipulation i i
University of Edinbareh, 19:a§r31<l,!;.)ulduon in Persistent Programming Languages,
J. Livingstone

Graphical Manipulation i ¢ i
Untocrsity of Gl%sgow, 119!11‘}}]’.1'0};mmmmg Languages: Some Experiments, M.Sc.,

Persistent Programming Research Reports

i i in May 1983. Th
serics was started in

'g:éf\ produced at 17th September 1987.

obtained by wni

PPRR-1-83

PPRR-2-83

PPRR-5-83

PPRR-6-83

PPRR-7-83

PPRR-8-84

PPRR-9-84

PPRR-10-84

PPRR-11-85

PPRR-12-87

PPRR-13-85

PPRR-14-86

PPRR-15-85

PPRR-16-85

PPRR-17-85

PS-algol Papers: a collection of related pape

Experimenting

i isti er inte!
A DBS Architecture supporting coexistng us

ting to the addresses already given.

The Persistent Object Management System -

Atkinson,M.P, Bailey, PA,. Chi;{holm, K.J,
Cockshott, W.P. and Morrison, R.

rs on PS—algol 1—
Atkinson, M.P. Bailey, P., Cockshott, W.P., Chisholm,
K.J. %{nd Morrison, R.

with the Functional. Daté Model -
Atkinson, M.P. and Kulkarni, K.G.

rfaces:

Description and Examples -
Hepp, P.E.

EFDM - User Mar}ual -
K.G . Kulkarni

i i Programming -)
Prog[r\iisi:;‘(;‘r: ‘Iz/‘lzl?s{g:ile;?g;., Cockshott, W.P., Chisholm,

K_J. and Morrison, R.

i Data Objects -
-edures as Persistent C
Prm/\lkinson, M.P. and Morrison, R.

hics Facility for the ICL PERQ -

A Persisient Grop! Bailey, P.J., Davie, ALT.

Morrison, R., Brown, AL,
and Dearle, A.

PS-algol Abstract Machine Manual
PS-algol Reference Manual - fourth edition

CPOMS - A Revised Version of The Persistent Object

a ment System in C -
II\EArqon\frﬁ? A.L. and Cockshott, w.p.

i i t - 2nd
ics Programming Environmen
An lgéc‘gl(‘)ar:eidﬁéz;gl;g:i R,,glr}rown, A.L., Dearle, A. and

Atkinson, M.P.

B ing Technology for an
sistent Store as an Enabling)
the Ir:;ct?g;atcd Project Support Environment
Morrison, R., Dearle, A,
Atkinson, M.P. |
ata’” kshop,
Procecdings of the Persistence and Data Types Wor p
in, August 1985 - I
Ag)pxlti(ﬁ\‘iglrl\“M.P., Buneman, O.P. and Morrison, R
ed. son,
mming Language Design -
DataXﬁ?n‘:ro?\%.P. and Buneman, O.P.

Bailey, P.J., Brown, A.L. and

ing list gi hich have
{lowing list gives ?hosg wi
ch((;pies ofgdocuments in this list may be

£1.00

£2.00

£1.00

£1.00

£1.00

£2.00

£1.00

£1.00

£1.00

£2.00

£2.00

£1.00

£1.00

£15.00

£3.00

PPRR-18-85
PPRR-19-85
PPRR-20-85
PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PPRR-25-87
PPRR-26-86
PPRR-27-87
PPRR-28-86b
PPRR-29-86
PPRR-30-86
PPRR-31-87

PPRR-32-87

PPRR-33-87

PPRR-34-87

PPRR-35-87

PPRR-36-87

The Persistent Store Machine -
Cockshott, W.P,

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R

Building a Microcomputer with Associative Virtal Memory -
Cockshott, W.P.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D.

Inheritance and Persistence in Database Pro
Languages -
Buneman, O.P. and Atkinson, M.P.

gramming

Implementation Issues in Persistent Graphics -
Brown, A.L. and Dearle, A.

Using a Persistent Environment to Maintain
Database -

Cooper, R.L., Atkinson, M .P. & Blott, S.M.

a Bibliographic

Applications Programming in PS-algol -
Cooper, R.L.

Exception Handling in a Persistent Programming Language -
Philbrow, P & Atkinson M.P.

A Context Sensitive Addressing Model -
Hurst, AL

A Domain Theoretic Approach to Hi gher-Order Relations -
Buneman, O.P. & Ochar, A.

A Persistent Store Garbage Collector with Statistical Facilities -
Campin, J. & Atkinson, M.P

Data Types for Data Base Programming -
Buneman, O.P.

An Introduction to PS-algol Programming (third edition) -
Carrick, R, Cole, A J. & Morrison, R.

Polymorphism, Persistence and Software Reuse in a

Swrongly Typed Object Oriented Environmen -
Morrison, R, Brown, A, Connor, R and Dearle, A

Safe Browsing in a Strongly Typed Persistent Environment -
Dearle, A and Brown, AL,

Constructing Database Systems in a Persistent Environment -
Cooper, R.L., Atkinson, M.P., Dearle, A. and
Abderrahmane, D.

A Persistent Architecture Intermediate Language -
Dearle, A.

Persistent Information Architectures -
Atkinson, M.P., Morrison R. & Pratten, G.D.

£2.00
£1.00
£1.00

£1.00

£1.00

£1.00

£1.00
£1.00
£1.00
£1.00
£1.00
£1.00 i
£1.00

£1.00

£1.00

£1.00

£1.00
£1.00

£1.00

PPRR-37-87

PPRR-38-87

PPRR-39-87

PPRR-40-87

PPRR-41-87

PPRR-42-87
PPRR-43-87

PPRR-44-87
PPRR-45-87

PPRR-46-87

PPRR-47-87

PPRR-48-87

PPRR-49-87

PPRR-50-87
PPRR-51-87

PPRR-52-87

PPRR-53-87

PPRR-54-87

PS-algol Machine Monitoring -
Loboz, Z.

£1.00

Flexible Incremental Bindings in a Persistent Object Store -
Morrison, R., Atkinson, M.P. and Dearle, A. £1.00

Polymorphic Persistent Processes -

Morrison, R., Barter, C.J., Brown, A.L., Carrick, R.,
Connor, R., Dearle, A., Hurst, A.J.and Livesey, M.J. £1.00

Andrew, Unix and Educational Computing -

Hansen, W. J

£1.00

Factors that Affect Reading and Writing with Personal

Computers and Workstations -
Hansen, W. J. and Haas, C.

£1.00

A Practical Algebra for Substring Expressions -

Hansen, W. R

The NESS Reference Manual -
Hansen, W. 1.

£1.00

£1.00

Persistent Object Systems: their design, implememation and use.
(proceedings of the Appin workshop August 1987) -

ed. Atkinson, M.P., Buneman,

O.P. and Morrison, R. £20.00

Delayed Binding and Type Checking in Database Programming

Languages -
Atkinson, M.P., Buneman, o.p

Transactions and Concurrency -
Krablin, G.L.

_ & Morrison, R. £1.00

£1.00

Persistent Information Space Architecture - PISA Club Rules -

Atkinson, M.P., Lucking, J.R.,
and Pratten, G.D.

Morrison, R
£1.00

An Event-Driven Software Architecture -

Cutts, Q. and Kirby, G.

£1.00

An Implementation of Multiple Inberitance ina

Persistent Environment -

Benson, P.J., D'Souza, E.B., Rennie, 1.S., Wwaddell, S.J. £1.00

A Distributed Stable Store -
Brown, A.L.

£1.00

Constructing Compilers ina Persistent Environment -

Dearle, A.

Lgen, Pgen and Sgen - Language Development Tools for

£1.00

a Persistent Programming Environment -

Blott, S.M. and Campin, 1.

Potymorphic Names and lterations -

Atkinson, M.P. and Morrison, R

A Requirements Modelling Tool Built in PS-algol -
M.P.

Cooper, R.L. and Atkinson, M.

PPRR-55-87

A Persistent Sofi
tware Datab i .
o Cooper, R.L. and Atkinassoan;\{/il 1;/ ersion Control -
R.S6. . M.P,
56-87 User Interface Tools in PS-algol

C
ooper, R.L., McFarlane, D.K. and Ahmed, S

£1.00

£1.00

