University of Glasgow

Department of Computing Science
Lilybank Gardens
Glasgow G12 8QQ

University of St Andrews  [RIaH
Department of Computational Science -
North Haugh
St Andrews KY16 9SS

An Implementation of
Multiple Inheritance
in a
Persistent Environment

Persistent Programming
Research Report 49
November 1987




An Implementation of
Muiltiple Inheritance
in a Persistent Environment

P.J.Benson, E.B.D'Souza, I.S.Rennie, S.J.Waddell

Department of Computational Science
University of St. Andrews
North Haugh
St.Andrews
KY16 9SS




Introduction

An Image Data Processing System [2] (IDPS) is documented as an object-oriented
pictorial database system comprising an interactive graphical toolkit and an
hierarchical database model incorporating multiple inheritance.

The database hierarchy is based on the notion of a taxonomy of superobjects
and subobjects and composition inheritance links within the actual pictorial
representation of an object. A query language permits retrieval of objects by
matching textual attributes in a given query with the values of database objects.

Using the atomic graphical objects line, circle and box, arbitrarily complex
pictures maybe built up to define a object's graphical representation. This method of
specifying objects allows for graphical inheritance through inclusion which may be

recursive.

IDPS is a Senior Honours (1987) project implemented in PS-algol [7] at the
University of St. Andrews as a course requirement for the B.Sc. degree in

Computational Science.

1. Historical Perspective

Sutherland's “SKETCHPAD” [18] provided the inspiration for our system.
Advances in human-computer interfaces have provided us with conceptually simpler
and more flexible graphical development systems and toolkits. Improved
workstation technology offers a wide range of facilities to the programmer and hence
any implementation of the IDPS should be able to support a comprehensive set of
picture manipulating functions to provide that higher degree of flexibility.

Hierarchical data models [3,9,13] provide a natural mechanism whereby
subclasses of objects inherit all the attributes of their superclasses. The Smalltalk-80
implementation {10} offers only single-valued attribute inheritance. Subsequent
proposals for multiple inheritance are discussed in [3]. The semantics for this latter
model and a means of inheritance type-checking are discussed in the

3




implementations of Galileo {1} and Amber [6]. Many existing hierarchical systems
such as Trellis [15] successfully incorporate a particular solution to the problem.

Traditional database management methods are not ideal for manipulating
pictorial data as
1. such data is continuous and two dimensional,
2. the result of a database query is alphanumeric rather than graphical,
3. different operations are required to deal with pictorial data.

Consequently several difficulties arise when attempting to formalise the combination
of these two models of data. Particular techniques are required to provide graphics
functions. Symbol hierarchies, modelling wansformations, display procedures and
symbol operations are essential. The user interface requires a user mode], a
command language, on-line help facilities, quick response times to all operations,
systemmatic menu design and facilities for feedback and screen output and layout
[10,11,16].

2. IDPS: Design, Objectives & Problems

In IDPS, the traditional notion and definition of classes [8] as super- and subclasses
of each other is deviated from. Instead, database records (objects) reside in an
environment which exhibits object/value inheritance rather than attribute inheritance.

We have extended the hierarchical database model to incorporate a simple but
powerful notion of multiple inheritance. Records of information stored in the
database table are treated as objects, operations upon which are as follows:

1. creation of new objects,

2. deletion of objects,

3. updating of objects, e.g. addition of further detail to objects:
extension of an object’s attibute list or addition of verisimilitudz to
graphical representations,

4. identification of a relational formalism; through creation or editir.g of
an object in the hierarchy a specification of parent and child
relationships between objects is possible,

4

5. retrieval of objects by named or predicate search.

In order that the inheritance mechanism operates efficiently, all database
OBJECTs have
a unique identifying name,
an optional short texmal description,
links to its superobjects,
links to its subobjects (not user definable when creating a new

W N

subobject; subobject links only exist as superobject-object links
when creating a new object),

a pictorial representation (the object's “scene™),

links to all of its instances,

7. a list of attribute name-value 'pairs, e.g (size,medium).

IDPS treats all names and values as having type

[« W]

string.

The design specifications of the system are four-fold, namely

1. database model (requirements analysis); a general purpose pictorial
database system with inheritance mechanisms. Pictorial data is
generated interactively, and an abstract data representation of the
pictorial information is stored together with textual information on
each object.

2. dara needs (information and object oriented structure); the definition
of a database object is specified using the necessary intra- and
interobject relationships.

3. processing needs (object structure orientation); all access operations
on the database records, modes of operation and frequency of use,
and graphics processing requirements are considered as internal to the
schema representation. This governs the types of functions possible.

4. storage level representation of data in the given system; the IDPS
design is concerned with superobject-subobject relationships. The
actual storage level design of the data is dependent on the abstract
structure for storing the pictorial representation of each object. This is
based on the needs of the graphics model; simple line drawings based
on atomic component manipulation are sufficient to build complex
pictures [11,13]. The interface mechanism of the database schema is

5




used 10 incorporate existing scenes in the current representation. As a
large number of operations are permissible upon such attributes it is
necessary to strictly control the use of mouse buttons, their
combinations and usage semantics. To ease the use of IDPS as little
interaction is made via the keyboard as possible {textual key entries,
object descriptions, etc.) while all subsystem meanu calls are WIMP

and menu onented.

The conceptual model encompasses
1. view modelling which generates an abstract representation of the
database using the specification of the requirements analysis,
2. view integrarion which integrates all possible user views into a global
view of the database, i.c. the ubiquitous UNIVERSE object,
3. view restructuring which maps an integrated view of the logical
structures onto the target system.

Automatic graphical inheritance [9,10] is meaningiess in cur implementation.

it 1s the user's perogative 1o make a logical application dependent decision which
defines the appearance of the object’s scene; certain basic superobjscts may already
exhibit suitable pictorial characteristics and may therefore be included into the current
scene. However, the following example (Fig.2.1) clearly demonsirates how this
cannot be achieved with automatic graphical inheritance.

HUMAN

MALE FEMALE

Figure 2.1

If one were o draw a skeleton for the HUMAN's scene, then it should be anatomi zally
sexed. Auntomatic graphical inheritance would give the MALE a FEMALE skeleton, or

vice-versa (whichever is not specified). Even if the MALE were suitably clothed, 2

closer examination (by parsing the MALEs inherited scenes) would reveal an
inconsistency in the database inheritance mechanism. This consistency is at the root
of semantic interpretation of the user model in the hierarchy. For this reason only
very basic scenes need be created for each object. At any instant in time, the creation
of an object defines a new subobject leaf node; this object may later become a
superobject by virtue of another creation. Because of this, tangled multiple
inheritance is not possible. For example in Fig.2.2 the superobject-subobject link

from D back to B is not possible.

UNIVERSE

Figure 2.2

If B represented a barn door and D a barn, this example would tell us that a barn
door is
1. a component of a barn, is a component of a barn door, is a
component of a barn, etc. i.e. a recursive definition,
2. the attributes 6f the barn are (in part) derived from a barn door, but
also the attributes of a barn door include those of a barn itself.

Such definitions of subobject inheritance are always recursive. The meaning of such
definitions is not clear. For this reason they are not permitted.

Graphical inheritance is achieved by the user specifying scenes to be included
in a object's SCENE. This mechanism allows a created scene to be included within
itself 10 produce a conceptually infinitely regressive scene which is recursively

7




defined with scale tending to zero, and positional value rzlative to the regression in
the picture. The aim is for the user to utilise “skeletal” scenes in the hierarchy when
creating a new scene. More well-defined subobjects whoss scenes are inherited from
their “parents” are fleshed out using the graphical editor until it meets the object's
specification.

Declaration of attributes Jocal 1o a object is possible only in a resiricted sense.
Any such name-value pair will be automatically inherited by a subobject
specification. Local atiributes of the same name as one inherited further up the graph
(as in Smallialk’s single-value inheritance) are not permited.

The abstraction techniques of generalisazion and aggregaiion [17] are used to
define the requirements of the database. Generalisation can be considered to
suppress the differences between objects in a category, e.g. the domain of objects
{elephant, dog, cat} and the generic object ANIMAL. Aggregation
suppresses the component names and can be thought of as a relationship between
objects, e.g. a person reserves a room in a hotel (reladonship) and the corresponding
aggregate object could be RESERVATION. Repetition of these produces an
hierarchy of objects.

3. Database Model Implementation

In IDPS the generalisation is taxonomic and the aggregation can be considered as an
“is-composed-of”’ semantic edge for the pictorial representation of an object. The
conceptual mode] includes the generalisation and aggregation hierarchies for all
concepis supporting the application view. Thus modularity is introduced. A
necessary distinction is made between object and graphical atiribute structuring; beth
views are concrete absiractions over the unified model with which the user is
concerned. The object inheritance graph is acyclic (a tree) as recursive objsct
definitions are not possible. Cycles are permitted when specifying graphical
attributes of objects, i.e. the scene. Consequentily the pictorial hierarchy only exisis
to provide an optional inheritance link for the scene attribute of an object.

Links in the database model are hence defined in two forms as

1. superobject-subobject links used for general database operations:
<universe> = @ l<object>+
<object> = Qsl<object>Jr

A newly initialised database has only one object, the UNIVERSE.

Subsequently new objects are all subobjects of the UNIVERSE. In this

sense, UNIVERSE is in fact a unique superclass representing the whole

database.
2. composition links; each object has a pictorial representation (attribute

of SCENE):
n
<gscene> o= <sc<—3ne>+ |<atom>
<atom> u=  <line>ti<circle>™|<box>"

i.e. SCENEs may be composed of other SCENES or atomic objects.

These composition links are utxhsed in the graphical operations of the system. The scene
of a object contains lists of constituent scenes (with scale and location information) and
its own atomic objects. Fig.3.1 shows an example of this arrangement where TREE and
ROAD denote individual collections of LINEs, CIRCLEs and BOXes which are linked to
the object STREET. The object HOUSE has been graphically inherited into the new scene
three times. This does not mean that STREET has three instances of the object inherited,

NS

HOUSE

atomic components

3 included scenes

Figure 3.1




but only three instances of the scene. HOUSE has two superobjects in the hierarchy.

Subobjects in the database achieve automatic inheritance of single valued attributes
through the generalisation hierarchy as in Fig.3.2. An inheritable atiribute is one that
applies 10 any instance {subobject only) by virtue of its membership in the superobject.

i

A subobject inherits all the attributes of its superobjects (multiple inheritance as above)
but not their SCENE representations. The last attribute of object C kappens 10 have been

defined locally so now any object which has specified C as its supsrobject will inherit all

four attributes. An object may have it's atribute values edited or od extended as part
of the database maintenance process. Atiribute value changes o objects in the universe

will filter through 1o all inheriting subobjects.

Changing the representation of LEG in Fig.3.3 accordingly alters the pictorial
represeniation of DOG and HUMAN (by composition rules). This is given that DOG and
HUMAN have the same BODY and LEG. The alternative and better approach would be to
create DOG.LEG and DOG.BODY, HUMAN.LEG and HUMAN.BODY as new objecis and
then redefine the composition of DOG and HUMAN. This example shows the care which
must be taken in generalising the atmibutes of a object as all its subobjects will inherit
these values. Superobject-subobject links between the highlighted objects can be
considered a reasonable proposition, but this would mean that now BODY, LE3, ARM
and MAMMALS are superobjects of HUMANS and DOGS. If this point were an absolute
necessity, then the above description of the application model is incorrect - the user

10

UNIVERSE

MAMMALS

——4> superobject-subobject link
a8 graphical composition (inheritance) link

Figure 3.3

should have created a superobject BONE.STRUCTURES for example, specifying BODY,
LEG and ARM as having this superobject then specifying the all new superobject
relationships for objects from here. It is possible that the above hierarchy gives a more
accurate description of what the user is attempting to model, and merely the graphical
atiributes of the three superobjects are reguired to complete the definition.

Duplication of what the user considers to be a submodel structure, i.e. part of the
hierarchy, or creation of new objects can be used to overcome this problem. A data
dictionary which may be manipulated is included within the conceptual design.

Scenes derived from the atomic LINEs, CIRCLEs and BOXes may be arbitrarily

complex attributes of an object and are stored using the following abstract data

representations:

1




4. Conveniions

OBJECT

LIST
ATTRIBUTE

CONSTITUENT

CENE

19)

INE

~

CIRCLE

Four windows (see Fig.4.1) are used throughout interaction, each d

(string object.name, object.description;

pntr super.objects, sub.objects, scene,
instances, attributes)

(patr element, next)

(string attribute.name, attribute.valus)

(patr object:
real locx, locy, scale.c)

(pntr scenes, circles, lines, boxes)
(real x1.1,y1.1,x2.1,v2.1)

(zeal xl.c,yl.c,radius.x.c,radius.y.c;
int rotate.c)

{zeal x1.b,yl1.b,x2.b,y2.b)

Constraings

efined as an abstract

data type with capabilities for input and output of text, clearing and closing operations so

that any function using them may treat the display in a uniform and sslective manner.

INPUT WINDOW [ [ <4—
PLAYGROUND )
WINDOW
Figure 4.1
12

Messages to be acted upon always appear in the input window whilst displays of
various forms are shown in the main playground area. All options menus appear in the
rightmost window leaving the introductory system menu displayed in the playground.

The special case of the UNIVERSE object has neither a scene nor attributes; it is
impossible to specify a general and useful attribute for this object which can still apply to

subobjects.

ICON: MEANING

menu option selection

graphics pencil

cut out (delete) atom or scene
within a scene

tie (inherit) two scenes together

view a scene

B E L@

move or sclect a portion of
the scene

Figure 4.2

Six icon images shown in Fig.4.2 are used at selected points during run-time in
place of the standard mouse pointer. Each indicates what the system is doing or is able to
do at that point. For a user, it is far clearer what is happening at run-time by using this

13




method. Icons are easier to understand than numerous texiual messages and attention is
localised at all times on one aspect of the interface.

Mouse control of system functions revolves around a simple rule-set defined as
follows:
1 - select or start a function,
2 : abort, returning to the start of the current function,
3 ¢ terminate with results and remam to the previous function.

For funciions whose nature demands a more complicated set of button commands,

combinanions of the above three are used in a consistent manner.

5. Applications & Use

The IDPS menu hierarchy shown in Fig.5.1a indicates the bu

ideas o specifications to menu entries 1 program (function) module development and

finally implementation of wested code as live menu options.

Those functions which when selecied canse visual or daiabase updates have a
secondary menu fanction (Fig.5.1b) which traps any accidental menu selections. At ail
times the OPTIONS and EDIT menus, when called, remain displayed in the righomost
window with the current option highlighted. This allows for an entirely visual option

selection and verification process, keeping the user's attention focussed where it is
needed.

On-line help is available at every point of keyboard data entry and also 25 a main
menu function; each IDPS funcron has a screenful of information available for
consultation with guides to related functions. It is important that the contenis of the
database are able to be catalogued in some meaningful and unambiguous form. To this
end both a simple texmal listing of object names and a full graphical brow ser are
available (see also [41). The browser, as Fig.5.2 shows, details the selected object and
its respective super- and subobiects. Where there are 100 many super- or subobje 15 10 be
displayed in one go, a cyclic horizontal scrolling list of cbjscts is presentzd. The
database is parsed by repeatedly selecting a super- or subobject to be the new central

i4

object (located in the centre of the display); any selected object may be “exploded™ to
reveal both its graphical representation and inherited attribute List.

— R

list objects line
copy object circle
delete object box
create object - | ——rrl scene
edit object done
query search start again
view scene - &
edit scene laser printer
— . 10-colour plotter
1DPES NAIN. MENDL
Ny pictorial information ystern fesume
search initialise database
select catalogue (":,\ TALOGLE
move — user information textual listing
delete graphical browser
scale —
copy USER INFORMATION
add line IDPS - the system
add circle acceptable inputs
add box catalogue browse
add scene copy object goto object
done create object explode
delete object
graphical editing
hardcopy output
1OV /SCA | initialise database ;
object ] mouse controls object/ne
scene pirctorial information system quit
query search Figure 5.1b
view object
Figure 5.1a

15




H ]
superobiects — ! [T i B S—
selected object f i
— | =
subobiects i § .

shaped the final piece of software. Of these the follo

graphical toolkit (albeir very simple) with inheritance
modelling {wansistors, capacitors, sic. may be created 2
in a largs diagram}, “architectural” design, chemical modelli
biological classification, overhead slide preparation (through ¢
database tutorials.

wardeopy function), and

6. Conclusions

"We bave described an implementation of multiple inheritance using & model comprising
A‘

two inheritance graphs. Object relationships must be kept distinct from the possibilit
recursive graphical attributes.

Atiributes are both textual sirings and line drawings. Repetition of the ¢ atabase
meodel functions upon objects allows refinement of these atributes,

Iconic cursor images used during interaction with IDPS show systern staus at a
times. This is preferred to additional textual message displays and windows. As
keyboard data entry is minimised, continuous on-line help is available (also at svery new

<

16

level of menu selection).

Examination of database contents is by use of textual catalogues or more explicitly
through the graphical browser; in this, a map of the precise super- and subobject
relationships can be viewed in a logical manner.

Early evidence suggested that for a system as large as IDPS modular development
of program source is necessary. Static binding of modules was chosen rather than
dynamic {(closures defined at run-dme) because of the large number of permissible
functions available at each stage and speed of module execution (encompassing link
times, database pattern matching and closure definition). This, however, means there
exists an update precedence for program modules in the database during development
time. At run-time the benefits are only marginal in terms of speed but the chosen design

principle holds; for smaller systems dynamic binding 15 preferred. W

ithout suct

techniques, development of the project would have been very difficult

One further benefit of such z scheme comes when ty@@-zhﬁckmg module

signatures. With dynamic closures, only at run-time can updates
lists be tesied by an activation of the function. Should a type ermror arise dats may be lost
or indeed corrupied. By statcally binding modules together (through the module update
precedence list) this is overcome at the point where the closures are defined.

A slide presentation of the project to colleagues in the department included a
demonstration of the possibilities of recursion in graphical anributes. A view of a house
may be presented and iis contents browsed by parsing the inheritance graphs. A joumey
through a window into a bedroom to look at 2 poster on a wall is possible. The picture
shows our solar system which we can examine to discover the Earth, and through clouds
10 reveal the British Isles. Selecting this scene shows a number of cities, one of which
details a map of the area. Homing in on a street scene we are confronted with several
houses, the rightmost of which we recognise as out starting point. Many paths may exist

in from one scene.

For more serious applications, IDPS would clearly nesd 2 far more exiensive
range of tools in the graphical toolkit. Extending the system for such a purpose as this is
not a problem. The persisient database is updated to include a new procedure and
respective menus are sxtended to offer the new function. The dynamic capabilides of

17




IDPS to match changing requirements of users is clear evidence of how important

module persistence is.

18

References

3]

[4]

ALBANO, A., CARDELL], L., ORSINI, R. Galileo: a Swongly Typed,
Interactive, Conceptual Language. ACM Transactions on Database Systems,
June 1985

BENSON, P.J., D'SOUZA, E.B., RENNIE, 1.5. & WADDELL, 5J. An
Image Data Processing Systern. University of St. Andrews, Depariment of
Computational Science, B.Sc.(Hons) Project Report, 1987

BORNING, AH. & INGALLS, DH.H. Multiple Inheritance in
Smalltali-80. Proceedings at the National Conference on Artificial
Intelligence, Pittsburgh, PA, 1982

BROWN, AL. & DEARLE, A. Safe Browsing in a Strongly Typed
Persistent Environment. PPRR-33-87 University of Glasgow & University
of St Andrews, 1987 (10 appear in Computer Journal)

CARDELLI L. A Semantics of Muliple Inheritance. Semantics of Data
Types, Lecture Notes in Compuier Science 173, Springer-Verlag, 1984

CARDELLIL L. Amber. AT&T Bell Labs Technical Memorandum, 11271-
840924-10TM, 1984

MORRISON, R. & ATEINSON, M. PS-algol Refersnce Manual, 4B
edition. PPRR-12-87 University of Glasgow & University of St.Andrews,
1986

DATE, C.J. An Introduction to Databases, 3™ edition. Addison Wesley,
1981

FOLEY, 1.D. & Van DAM, A. Fundamentals of Interactive Computer
Graphics. Addison Wesley, 1984

GOLDBERG, A. & ROBSON, D. Smalltalk-80: The Language and its
Implementation. Addison Wesley, 1983

HANGEN, @. & SKIFJELD, K. Class Graphics - An Object Oriented
Approach to Effective Computer Graphics. Mach-§ Project Group,
Norwegian Computing Center, 1983

HARRINGTON, S. Computer Graphics: a Programming Approach.
McGraw-Hill, 1985

RICH, E. Artificial Intelligence. McGraw-Hill, 1983

RODGERS, D.F. Procedural Elements for Computer Graphics.
McGraw-Hill, 1985

SCHAFFERT, C., COOPER, T. & WILPOLT, C. Trellis Object Based
Environment. DEC TR-372, Digital Eastern Research Laboratory, 1985

SHEIL, B. Power Tools For Programmers, Datamation, February 1983

19




Bibliography

Copies of documents in this list may be obtained by writing to:
[171 SMITH, J.M., & SMITH, D.C.P. Database Abstractions - Aggregation & ’ i

Generalisation. ACM Transactions on Database Systems, vol.2(2), June The Secretary,
1977 Persistent Programming Research Group,
Department of Computing Science,
[18] SUTHERLAND, 1. SKETCHPAD: A Man Machine Graphical Unii)versity of Glasg%w, ¢
Communications System. MIT Lincoln Laboratory Technical Report 296, Glasgow G12 8QQ
May 1965 Scotland.
or
The Secretary,

Persistent Programming Research Gronp,
Department of Computational Science,
Undversity of St. Andrews,

North Haugh,

St. Andrews K'Y16 9S8

Scotand.

Books

Davie, AJ.T. & Morrison, R.
"Recursive Descent Compiling”, Ellis-Horwood Press (1981),

Atkinson, MLP, (ed)
"Databases”, Pergammon Infotech State of the At Report, Series 9, No.8, January
1982. (535 pages).

Cole, AJ. & Morrison, R,
"An introduction to programming with S-algol”, Cambridge University Press,
Cambridge, England, 1982.

Stocker, P.M., Atkinson, MLP, & Gray, P.M.D. {(eds.)
"Databases - Role and Siructure”, Cambridge Universicy Press, Cambridge,
England, 1984,

Published Papers

Morrison, R.
"A method of implementing procedure eniry and exit in block structured high level
languages”. Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z.
"The Graffiti graphics system”, Proc. of the DECUS conference, Bath (April 1978},

5-10.
Atkinson, MLP,

"A note on the application of differential files to computer aided design”, ACM
SIGDA newsletter Summer 1978,

20



Atkinson, M.P.

"Programming Languages and Databases", Proceedings of the 4th International
Conterence on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78,
408-419. (A revised version of this is available from the University of Edinburgh
Department of Computer Science (BUCS) as CSR-26-78).

Atkinson, M.P.

“Progress in documentation: Database management systems in library automation
and information retrieval”, Journal of Documentation Vol.35, No.1, March 1979,
49-91. Available as EUCS departmental report CSR-43-79,

Gunn, H.L.E. & Morrison, R.

18’519;1131 iznplememation of constants", Information Processing Letters 9, 1 (July

Atkinson, M.P.

"Data management for interactive graphics”, Proceedings of the Infotech State of the
Art Conference, October 1979, Available as EUCS departmental report CSR-51-80.

Atkinson, M.P. (ed.)
"Data design", Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R.

"Low cost computer graphics for micro computers”, Software Practice and
Experience, 12, 1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"PS-algol: An Algol with a Persistent Heap", ACM SIGPLAN Notices Vol.17, No.
7, (July 1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atldnson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Nepal - the New Edinburgh Persistent Algorithmic Language”, in Database,
Pergammon Infotech State of the Art Report, Series 9, No.8, 299-318 (January
1982) - also as EUCS Departmental Report CSR-90-81.

Morrison, R.
“S-algol: a simple algol”, Computer Bulletin 1I/31 (March 1982).

Morrison, R.
"The string as a simple data type”, Sigplan Notices, Vol.17,3, 46-52, 1982.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming”, presented at CREST course UEA,
September 1982, revised in "Databases - Role and Structure”, see PPRR-8-84.

Morrison, R.

"Towards simpler programming langnages: S-algol"”, JUCC Bulletin 4, 3 (October
1982), 130-133.

Atkinson, MLP., Chisholm, K.J. & Cockshott, W.P,
"Problems with persistent programming languages”, presented at the Workshop on
programming languages and database systems, University of Pennsylvania.
October 1982. Circulated (revised) in the Workshop proceedings 1983, see
PPRR-2-83.

Atkinson, M.P.
"Data management”, in Encyclopedia of Computer Science and Engineering 2nd
Edition, Ralston & Meek (editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P. ) )
"Algorithms for a Persistent Heap”, Software Practice and Experience, Vol.13,
No.3, 259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P. ) )
"CMS - A chunk management system”, Software Practice and Experience, Vol.13,
No.3 (March 1983), 273-285. Alsoc as EUCS Departmental Report CSR-110-82.

Atdnson, M.P., Bailey, P.J., Chisholm, K.J,, Co{:kshom W.P. & Morrison, R.
"Current progress with persistent programming”, presented at the DEC workshop
on Programming Languages and Databases, Boston, April 1983.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Mon‘ison; R. o
"An approach to persistent programming”, The Computer Journal, 1983, Vol .26,
No.4, 360-365 - see PPRR-2-83.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J.,, Cockshg}&t, WP & Morrispn, 5
"PS-aigol a language for persistent programming”, mﬂ} Australian Computer
Conference, Melbowme, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bgﬂeyy PJ L o
"High level language support for 3-dimension graphics”, humgrzfphlcs Conference
Zagreb, North Holand, 7-17, Sept. 1983, (ed. P.J.W. ten Hagen).

N . . 0 ¥ oo B2

Cockshost, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Morsison, R.
"BFOMS : & persistent object ranagement system”, Software Practice and Exerlence,
Vol.14, Neo.1, 49-71, January 1984.

Kulkarni, K.G. & Atkinson, M.P. ) ) ] .
"Experimenting with the Functional Data Model", in Databases - Role and Structure,
Cambridge University Press, Cambridge, England, 1584,

Atkinson, M.P. & Morrison, R. i ) )
"Persistent First Class Procedures are Enough”, Foundations of boftwars,
Technology and Theoretical Computer Science (ed. M. Joseph & R. Shyamasundar)
Lecture Notes in Computer Science 181, Springer Verlag, Berlin (1984).

tkinson, MLP., Bocca, I.B., Elsey, T.1., Fiddian, N.J., Flower, M., Gray, PM.D.
A%rzsyo, 7WA Hepp, P.E,, Johnso?;, R.G., Milne, W., Norxrie, M.C., Omololy,

AQ., Oxborrow, E.A., Shave, M.ILR,, Smith, A.M,, Stacker: PM & ngker, J
"The Proteus distributed database system”, proceedings of the third British National
Conference on Databases, (ed. J. Longstaff), BCS Workshop Series, Cambridge
University Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R.
"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985) -

see PPRR-9-84.

Morrison, R.,Bailey, P.J,, Dearle, A., Brown, P. & Atkinson, M.P.'
Dn?'The persistgnt store as an enabling technology for integrated support
environments", 8th International Conference on Software Engineering, Imnperial
College, London (August 1985), 166-172 - see PPRR-15-85.

Atkinson, M.P. & Morrison, R. ) ) . )
"Types, bindings and parameters in a persistent environment", proceedings of Data

Types and Persistence Workshop, Appin, August 1985, 1-24 - see PPRR-16-85.

Davie, AJT. o )
* "Conditional declarations and pattern maiching”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.




Krablin, G.L.
"Building flexible multilevel transactions in a distributed persistent environment,

proceedings of Data Types and Persistence Workshop, Appin, August 1985, 86-117
- see PPRR-16-85.

Buneman, O.P.

‘Data types for data base programming”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.
"Addressing mechanisms and persistent programming”, p; gs of Data Types
and Persistence Workshop, Appin, August 1985, 363-383 - see PPRR-16-85.

Norrie, M.C.

"PS-algol: A user perspective”, proceedings of Data Tvpes and Persistence
Workshop, Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.
"On the need for a Flexible Type System in Persistent Programming Languages",

proceedings of Data Types and Persistence Workshop, Appin, August 1985,
423-438 - see PPRR-16-85.

Morrison, R., Brown, A.L., Bailey, P.J., Davie, AJT. & Dearle, A.
"A persistent graphics facility for the 1CL PERQ", Software Practice and
Experience, Vol.14, No.3, (1986) - see PPRR-10-84.

Atkinson, M.P. and Morrison R.
"Integrated Persistent Programming Systems", proceedings of the 19th Annual
Hawaii International Conference on System Sciences, January 7-10, 1986 (ed. B.
D. Shriver), vol IIA, Software, 842-854, Western Periodicals Co., 1300 Rayman
St., North Hollywood, Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.
"A Persistent Information Space Architecture”, proceedings of the 9th Australian
Computing Science Conference, January, 1986 - see PPRR-21-85.

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Exiended Functional Data Model", The Computer Journal, Vol.29, No.1,
(1986) 38-45.

Buneman, O.P. & Atkinson, M.P.
"Inheritance and Persistence in Database Programming Lan guages”; proceedings
ACM SIGMOD Conference 1986, Washington, USA May 1986 - sec PPRR-22-86.

Morrison R., Dearle, A., Brown, A. & Atkinson M.P.; "An integrated graphics
programming environment", Computer Graphics Forum, Vol. 5, No. 2, Juge 1986,
147-157 - see PPRR-14-86.

Atkinson, M.G., Morrison, R. & Pratten G.D.
"Designing a Persistent Information Space Architecture", proceedings of
Information Processing 1986, Dublin, September 1986, (ed. H.I. Kugler),
115-119, North Holland Press.

Brown, A.L. & Dearle, A.
"Implementation Issuses in Persistent Graphics", University Computing, Vol. §,
NO. 2, (Summer 1986) - see PPRR-23-86.

Kulkarni, K.G. & Atkinson, M. P.
"Implementing an Extended Functional Data Model Using PS-algol", Software -
Practise and Experience, Vol. 17(3), 171-185 ( March 1987)

Cooper, R.L. & Atkinson, M.P. . .
"The Advantages of a Unified Treatment of Data", Software Tool 87: Improving
Tools, Advance Computing Series, 8, 89-96, Online Publications, June 10987,

Atkinson, M.P, Morrison, R. & Dearle, A. ‘ ) .
"A strongly typed persistent object store”, 1986 Internationai Workshop on
Object-Oriented Database Systems, Pacific Grove, California (September 1936).

Atkinson, M.P., Morrison, R. & Pratten G.D. .
"PISA : A persistent information space architecture”, ICL Technical Journal 5, 3

(May 1987),477-491.

Atkinson, MLP. & Morrison, R. o )
"Polymorphic Names, Types, Constancy and Magic in a Type Secure Persistent
Object Store”. Presented at the 2nd International Workshop on Persistent Object

Stores, Appin, August 1987.

Cooper, R. & Atkinson, M.P, ]
p"Requir@mems Modelling in a Persistent Object Store”. Presemwg at the Znd
International Workshop on Persistent Object Stores, Appin, August 1987,

Wai, F. ) )
"Distribution and Persisience”. Presented at the 2nd International Workshop on
Persistent Object Stores, Appin, Augnst 1987.

Philbrow, P. ) )
"Associative Storage and Retrieval: Some Language Design Issues”. Presemid at
the 2nd International Workshop on Persistent Object Stores, Appin, August 1987,

Guy, M.R. )
g "Persistent Store - Successor to Virtual Store”. Presented at the 2nd International

Workshop on Persistent Object Stores, Appin, August 1987.

Dearle, A. ) i i
"Constructing Compilers in a Persisient Environment". Presented at the 2Znd

Internaional Workshop on Persistent Object Stores, Appin, August 1987.

Carrick, R. & Munro, D. )
“"Execution Strategies in Persistent Systems”. Presented at the 2nd International

Workshop on Persistent Object Stores, Appin, August 1987.

Brown, A.L. ]
mw“A Distributed Stable Store”. Presented at the 2nd International Workshop on

Persisteni object Stores, Appin, August 1987.

, R.L., Atdnson, M.P., Dearle, A. & Abderrahmane, D. X )
Cmp'?éonstructing Database Systems in a Persistent Environment”. Proceedings of the
Thirteenth Internaional Conference on Very Large Databases, Brighton, September

1987.

Atldnson, M.P. & Morrison, M.
"Polymorphic Names and Iterations”, presented at the Workshop on Database

Programming Languages, Roscoff, Sepiember 1987.




Internal Reports

Morrison, R.
S-Algol language reference manual”, University of St Andrews CS-79-1, 1979,

Baile')", P.J., Maritz, P. & Morrison, R.
The S-algol abstract machine", University of St Andrews CS-80-2, 1980.

Atkinson, M.P., Hepp, P.E., Ivanov, H., McDuff, A., Proctor, R. & Wilson, A.G.

"EDQUSE reference manual”, Department of C i i i
Edinburgh. Sepuember 198, D omputer Science, University of

Hepp,lf.E. and Norrie, M.C.

"RAQUEL: User Manual", Department of C i

University of Bambonet P omputer Science Report CSR-188-85,
Norrie, M.C.

"The Edinburgh Node of the Proteus Distributed Database System"”. D aTtr
Computer Science Report CSR-191-85, University of Edinbu};gh.m » Deparment of

Theses

The following theses, for the degree of Ph. D. unless otherwise stated. h
) . D. , have been
produced by members of the group and are available from the address already given,

W.P. Cockshott
Orthogonal Persistence, University of Edinburgh, February 1983.

K.G. Kulkarni

Evaluation of Functi i iversi
: gur;}?,ol 981;1ct10nal Data Models for Database Design and Use, University of

P.E. Hepp

A DBS Architecture Supporting Coexisting Query L.
University of Edinburgh, 183, - g Query Languages and Daia Models,

G.D.M. Ross

}lgigtélal Files: A Framework for Experimental Design, University of Edinburgh,

G.0. Owoso

Data Description and Manipulation in Persistent Programming L
University of Edinburgh, 1984. N o8 manguages,

J. Livingstone

Graphical Manipulation in Programming Languages: Some E i
University of Glasgow, 1987. ¢ & B me Bxperiments, M.Sc.

Persistent Programming Research Reports

This series was started in May 1983. The following list gives those which have
been produced at 17¢0 September 1987.  Copies of documents in this list may be
obtained by writing to the addresses already given.

PPRR-1-83 The Persistent Object Management Sysiem -
Atkinson,M.P., Bailey, P., Chisholm, K.J,,
Cockshott, W.P. and Morrison, R. £1.00

PPRR-2-83 PS-algol Papers: & collection of related papers on PS-algol -
Atkinson, MLP., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

PPRR-5-83 Experimenting with the Functional Data Model -
Atkinson, M.P. and Kulkarni, K.G. £1.00

PPRR-6-83 A DBS Architecture supporting coexisting user interfaces:
Description and Examples -
Hepp, P.E. £1.00

PPRR-7-33 EFDM - User Manual -
K.G.Kulkamni £1.00

PPRR-8-84 Progress with Persisient Programming -
Atkinson,M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

PPRE-9-84 Procedures as Persistent Data Objects -
Atkinson, M.P. and Morrison, R. £1.60

PPRR-10-84 A Persistent Graphics Facility for the ICL PERQ -
Morrison, R., Brown, AL, Bailey, P.J,, Davie, AJT.

and Dearle, A, £1.00
PPRR-11-85  PS-algol Abstract Machine Manual £1.00
PPRR-12-87  PS-algol Reference Manual - fourth editdon £2.00

PPRR-13-85 CPOMS - A Revised Version of The Persistent Object
Management System inC -
Brown, A.L. and Cockshott, W.P. £2.00

PPRR-14-86  An Iniegrated Graphics Programuming Environment - Znd
edition - Morrison, R., Brown, A.L., Dearle, A. and
Atkinson, M.P. £1.00

PPRR-15-85  The Persistent Store as an Enabling Technology for an
Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, A.L. and
Atkinson, M.P. £1.00

PPRR-16-85  Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R. £15.00

PPRR-17-85  Database Programming Language Design -
Atkinson, M.P. and Buneman, O.P. £3.00




PPRR-18-85

PPRR-19-85

PPRR-20-85

PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PPRR-25-87

PPRR-26-86

PPRR-27-87

PPRR-28-86b

PPRR-29-86

PPRR-30-86

PPRR-31-87

PPRR-32-87

PPRR-33-87

PPRR-34-87

PPRR-35-87

PPRR-36-87

The Persistent Store Machine -
Cockshott, W.p,

Integrated Persistent Programming Systems -
Atkinson, M.P, and Morrison, R,

Building a Microcomputer with Associative Virual Memory -
Cockshott, W.p.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R, and Pratten, G.D.

Inheritance and Persistence in Database Programming
Languages -
Buneman, O.P, and Atkinson, M.P,

Implementation Issyes in Persistent Graphics -
Brown, AL and Dearle, A.

Using a Persistent Environment to Maintain a Bibliographic
Database -

Cooper, R.L,, Atkinson, M.P, & Blott, S.M.

Applications Programming in PS-algol -
Cooper, R.L.

Exception Handling in 5 Persistent Programming Language -
Philbrow, P & Atkinson M_P. Buag

A Context Sensitive Addressing Model -
Hurst, AJ,

A Domain Theoretic Approach to Higher-Order Relations -
Buneman, 0., & Ochari, A,

A Persistent Store Garbage Collector with Statistical Facilities -
Campin, J. & Atkinson, M.P

Data Types for Data Base Programming -
Buneman, O.p.

An Introduction to PS-algol Programming (third edition) -
Carrick, R., Cole, A J. & Morrison, R,

Polymorphism, Persistence and Software Reuse in a
Strongly Typed Object Oriented Environment -
Morrison, R, Brown, A, Connor, R and Dearle, A

Safe Browsing in a Strongly Typed Persistent Environment -
Dearle, A and Brown, AL,

Constructing Database Systems in a Persistent Environment -
Cooper, R.L., Atkinson, M.P., Dearle, A. and
Abderrahmane, D,

A Persistent Architecture Intermediate Language -
Dearle, A.

Persistent Information Architectures -
Atkinson, M.P., Morrison R. & Pratten, G.D.

£2.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

PPRR-37-87

PPRR-38-87

PPRR-39-87

PPRR-40-87

PPRR-41-87

PPRR-42-87

PPRR-43-87

PPRR-44-87

PPRR-45-87

PPRR-46-87

PPRR-47-87

PPRR-48-87

PPRR-49-87

PPRR-50-87

PPRR-51-87

———%

PS-algol Machine Monitoring -

Loboz, Z. £1.00
Fiexible Incremental Bindings in a Persistent Object Store -
Morrison, R., Atkinson, M.P. and Dearle, A. £1.00

Polymorphic Persistent Processes - )
yﬁor?ison, R., Barter, C.J., Brown, A.Ll,.Camck, R,
Connor, R., Dearle, A., Hurst, A.J.and Livesey, M.J. £1.00

Andrew, Unix and Educational Computing -
Hansen, W. J. £1.00

Factors that Affect Reading and Writin g with Personal
Computers and Workstations -

Hansen, W. J. and Haas, C. £1.00
A Practicél Algebra for Substring Expressions -

Hansen, W. 1. £1.00
The NESS Reference Manual - £100

Hansen, W. J. .

Persistent Object Systems: their design, implementation and use.
(proceedings of the Appin workshop August 1987)
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R. £20.00

Delayed Binding and Type Checking in Database Programming

Languages - )
iutkginson, M.P., Buneman, O.P. & Morrison, R. £1.00

Transactions and Concurrency - £1.00
Krablin, G.L. :

Persistent Information Space Architecture - PISA Club Rules
Atkinson, M.P., Lucking, I.R., Morrison, R.
and Pratten, G.D. £1.00

An Event-Driven Software Architecture 100
Cuits, Q. and Kirby, G. £1.

An Implementation of Muldple Inheritance in a

Persistent Environment
mgennson, P.J., D'Souza, E.B., Rennie, 1.S., Waddell, S.J. £1.00

A Distributed Stable Store
Brown, A.L. £1.00

Constructing Compilers in a Persistent Environment 100
Dearle, A, £1.




