University of Glasgow

Department of Computing Science

Lilypbank Gardens
Glasgow G12 8QQ

University of St. Andrews

Department of Computational Science
North Haugh
St Andrews KY16 9SS

Persistent Information Space
Architecture

PISA Club Rules

Persistent Programming
Research Report 47
September 1987

Persistent Information Space Architecture

PISA Club Rules

Malcolm P. Atkinson, James R. Lucking,
Ronald Morrison, and Graham D. Pratten

University of Glasgow, 14 Lilybank Gardens, Glasgow, Scotland G12 8QQ.,
University of St. Andrews, North Haugh, St Andrews, Scotland KY16 9SS.
and
STC Technology Lid., Copthall House, Nelson Place, Newcasile-under-Lyme,
England ST5 1EZ.

The work of the PISA group is briefly reported to present our views on the essential
elements of the PISA club rules, these being the guidelines for using PISA and for
enhancing its base functionality. The long term and large scale issues lead us to consider
software architecture as important and to propose four domains of influence as a basis for
the PISA club rules. The domains of influence are briefly described, applications of the

architecture are briefly outlined and the club rules are introduced.

Edition 1
August 20, 1987

1. PISA -objectives and summary

Examination of existing computer systems, particularly their software, exposes
many dichotomies and discontinuities in their design and in the design of their user and
administrator interfaces. Some of these were deliberately introduced to satisfy reasonable
performance constraints themselves imposed by the early and emerging processing and
storage technologies of the 1960's and 1970's. Others reflect the order in which the basic
design concepts of computer systemns have emerged over the last 3 decades. Yet other
dichotomies and discontinuities have been caused by bad design or by the structural decay

[39] typical of many large software systems as they are evolved to meet new requirements.

We contend that the present dependence on the plethora of mechanisms such as
command languages, editors, file systems, compilers and interpreters, linkage eéitors and
binders, debuggers, performance monitors, service control languages, DBMS
sublanguages and graphics libraries increases the cost of understanding and maintaining
software, and of training programmers, and decreases the quality of software, even for the
simplest activities. We observe also many systemns suppliers now need to develop systems
constructed from components from several disparate sources or conforming to different
external standards; but such systems' users want to be presented with coherent interfaces

thus providing a motivation for research into providing coherence.

The primary technical objective of the research by the PISA (Persistent Information
Space Architecture) group is to exploit the opportunity provided by the dramatic shift in the
cost of hardware relative to software to remove the incoherence between the various
programming mechanisms above and thus provide a better environment for exploiting new

computer systems. Specific technical objectives thus include:

a. Controlling complexity - by establishing consistent rules which apply
throughout the design and system, and, by introducing new concepts into
the architecture only very parsimoniously preferring those new concepts
which encapsulate or abstract existing concepts

b. Introducing persistent data and separating the issue of what data structures
are best for a program from the issues of identifying and preserving the
data; thereby allowing most file and database data to be processed using the
same language constructs as those used for a program'’s local data.

¢. Controlling system evolution even though the nature of data including
program is that it's uses are neither parochial nor predictable. In particular
persistent systems of data and program are to be partially reconstructable
and thus incrementally enhanceable.

d. Protecting data, particularly large bodies of data which are inherently
valuable, from missuse and failure. The means preferred here are
declarative ones specified independently of the data's processing
algorithms.

e. Providing for concurrent computation and shared use of data which may be
geographically dispersed.

We have designed and implemented the language PS-algol as a testbed for these
architectural concepts and objectives. The language Napier is being implemented to
provide additionally a rigorous polymorphic type system.

The new architectures resulting from this research will replace complexity with
simple consistent Tules and may also permit higher performance execution and storage
engines to be built. It is becoming widely agreed that persistence should be used as the
basis for building operating systems and knowledge bases [15]. Further objectives include
speeding up the development of integrated project support environments (IPSEs) and
inteligent knowledge based systems (IKBSs).

Many papers are referenced in this note, but the note's primary predecessors are [8],
[91 and [10].

Some changes are expected from this first edition of the Club Rules. They include:

a. Definition of the support roles and requirements within the four PISA
architectural domains

b. Further definition of the intereaction beiween persistent systems and
external standards

¢. The text concerning the proposed "persistent academy” may be expanded
with detailed Terms of Reference for persistent systems' configuration

management.

2. PISA Architecture and its Four Domains
2.1 Introduction

The PISA group introduced the concept of persistence to simplify the programmer's
world. Any data structure of whatever type may exist within persistent systems for any
length of rime without explicit coding effort by the programmer [1,2,5]. This concept has
proved 1o have far reaching consequences; for example data and program may be treated in
precisely the same way in our systems, with very significant conceptual and
implementation savings [6]. Persistence facilitates the reuse of data and program over long
periods, but, as longer term usage is considered, new techniques have w© be developed

[l

\ Concurrency |

\ Transacticns |

Persistent
Information

Space

1

Stable Sitore

The diagram above abstracts the essential run-time view of the architecture showing
a persistent information space supported by a stable store mechanism for reliability. The
lines entering the persistent space indicase that several application processes may be sharing
that persistent space, using different protocols only if the processes do not share data.
Another interpretation of the lines entering the persistent space could be that they
demonstrate a multitude of application systems and application systems development
methodologies.

When constructing an application system, the support of program and data is divided
between hardware and software ultimately on the basis of cost, performance and available
technology; thus we envisage a substantial proportion of the applications system
environment being provided by software. This software has to conform to an architecture
if the programming environment is to remain under control. We take this further. The
division between systems software and applications software is an inappropriate artifact of
past habits. The architectural discipline and techniques that apply to one domain apply to
the other domains, and, as improved software composition technology allows us to
consider one person’s applications suite as another person's supporting software so will
the effects of the discipline and techniques spread. Thus the software architectures being
developed will influence all applications programming [30,32].

We therefore divide the total architecture into four mumally supporting domains but
we are not using the term domain with its strict mathematical meaning. Rather a PISA
architectural domain is a slightly portmanteau concept characterised as a group of users and
uses, a set of technologies (programming ones normally) and facilies available to that user
group, and a requirement for continued support and maintenance of the technologies and
facilities. The four domains are:

The Application Domain,

The Language Domain,

The System Building Domain and
The Store Domain.

2.2 The Application Domain

Most software effort is expended writing application software, and we consider it

important to improve the organisation of this work and to support it with suitable methods,
tools and components. Users within the applications domain build, taylor and specialise
new systems from existing ones. Users in the applications domain may have access to all
the tools provided by the architecture and implementation including the persistent stores,
system construction tools, and language building components as well as programming
languages and existing application systems. Products developed for use within the
applications domain may also have access all the tools provided by the architecture.

Specific facilities for applications building include generic tool sets, which can work
over a range of types and sizes of data, and adaptive components, that modify their
behaviour to suit new types of data, types that may not have been declared when the
component was coded and compiled. We expect all system users performing
programming tasks to perform those tasks within this application domain, though the
products created, particularly if they provide facilities within other domains, may not
themselves use some of the application domain's facilities. (Note an important objective of
the architecture is to reduce this set of facilities.)

2.3 The Language Domain

Users within the language domain provide applications systems implemented in a
persistent language. The language domain provides the facilities to support persistent
application systems building in the applications domain. The languages currently supported
are PS-algol, Napier and Hope™.

We expect the language domain to cater for all programming activity including the
control of the programmer's environment. The languages must support the easy
development of data models, generic tool sets, object stores and plug in componentry for
system building. Specific responsibilities of the language domain is that it maps the
persistent information space characteristic of our languages onto a stable store by providing
suitable binding mechanisms, suitable type systems and a contextual naming scheme.

2.4 The System Building Domain

The system building domain supports the construction of the persistent language and
the persistent environment. The major uses of the system building domain are the
persistent programming language systems themselves though the facilities provided within
these domain will normally be programmed in the applications domain.

The major sysiem building tools provided in this domain are
(a) compiler componentry

(b) support for compilation and execution merging

© abstract program graphs

@ abstract machine design

(e) demand driven optimisation

One difficulty exposed within this domain, typical of its essentially systems
programming rather than application programming flavour, is that these tools sometimes
require facilities whose use needs to be swrictly controlled. We have endevoured to keep
such inconsistencies to a minimum.

2.5 The Store Domain

One of the principal uses of computers is as a storage device - much system building
is concerned with constructing reliable repositories for data with a variety of data capture,
data retrieval and organisation mechanisms. A large proportion of programmers therefore
need to use the architecture and languages to visualise a store and specialise it to their
needs. The PISA approach has developed a uniform view of an arbitrarily large reliable
and distributed store populated by strongly typed objects. The programmer defines new
types of store by defining storage types and instances of those types become objects. Thus
the power of the type system to define the range of stores required is of paramount
importance, and the integrity of the store is achieved via type checking. Type is again
important as a means of communicating to the store information about objects, essential
when data is to be transmitted between hetrageneous, distributed components while
preserving semantics. The type information can also be used to activate special treatment of
some objects, for example: the use of special purpose hardware, data compression,

encryption and protection.

3. PISA Club Rules

3.1 Use of Architecture

Application
|
Compiler
Tools P
Tools Tools
Store

The diagram above illustrates that users within the language domain and system
construction domain, or rather the products that these users produce, have access to a
different set of underlying facilities. We urge most ardently, however, that implementors
of these products should use the facilities provided by the application domain during their
products’ development.

3.2 General Rules

The most important rule, which possibly cannot be phrased accurately enough fora
strict interpretation is that exploiters, users and implementors of persistent systems should
conform to the spirit of this persistent architecture and use the architecture sympathetically.
We have included some of implications of this statement in the text of this document. One
important implication is that designers of new applications which require new features
from a persistent system should implement those features and build them into the
appropriate domain rather than exploiting some quirk of an existing persistent facility.

We consider that only by basing the overall architecture on the well defined
semantics of a langunage such as PS-algol or Napier can the architecture be kept consistent

and understandable.

We consider that the language PAIL (Persistent Architecture Intermediate Language)
[33] provides an appropriate description for the abstract program graphs which describe
compiled programs.

While we will continue to minimise the number of "priveleged" facilities needed

specifically for systems programming purposes, exploiters and users of persistent systems
should, if possible, eschew use of these facilities.

3.3 TheExternal Influences

Persistent systems should not needlessly deviate from established International and
Formal Standards [38]. We believe also that appropriate attention must also be paid to
those standards being developed to facilitate Open Systems Inter-communication.

Further persistent systems will be used to impose a veneer of coherence upon a set
of systems which themselves are alien. Hence persistent systems themselves should not
needlessly diverge from state-of-the-art practices, particularly those associated with alien
data systems.

3.4 The Persistent Academy

It is probably inevitable that several different persistent systems will be produced
particularly for research purposes while others may be used to support commercial or
(otherwise) valuable applications. The facilities provided within the various domains may
change as experience and further research demonstrates the desirability and feasibility of
enhancements. We therefore propose that a persistent academy be created to apply a

modicum of configuration management to persistent systerns.

Note that subjecting proposals for new and improved persistent systems to some
form of scrutiny, if not inspection, as implied by normal commitiee work should be
beneficial to all concerned with persistent systems. The persisient academy could also
serve as a mechanism for interchanging ideas as well as a design control forum. Appendix
2 of this report lists some of the desirable objectives and functions of such a forum.

4. PISA Developments

In this section we introduce and annotate some more detailed "club rules” by
commenting upon the development of persistent systems themselves. A list of references
to interface definitions is included where appropriate. Note that the papers referenced are
essentially snapshots indicating the results of our research at publication date. Longer term
research into many technical areas including the issues of system evolution, of
heterogeneity and of algorithms applicable in distributed stores will, however, be needed.

4.1 General

An important goal of a software architecture is to facilitate the reuse of program and
data. This requires a sufficiently good component description system to allow components
to be found, and to check on their composition, and a sufficiently powerful binding system
to allow choice of the rebuilding necessary to replace components with improved
components. As it is not only the components themselves, but also their definition which
sometimes requires evolution, the binding mechanisms must incorporate support for meta
data access and evolution [13].

Many of the approaches to software, data description and organisation which work
quite well for small collections of data and program become intractable when the system is
large or long lived. For example, appealing to a universal name space or a single name
allocation authority. These issues become more significant as distribution is attempted.
Their solution depends on a recognition of the need for independence and an architecture
based on a federation of independent agents interacting via negotiated protocols and

descriptions [8].

4.2 The Application Domain

The basic principles of persistence and their implications for type systems and
bindings are well understood and are ripe for development. The effort needed here is the
investment in good implementation technology including support for object addressing and
type checking based on structural equivalence. Significant development is now possible in
building systems using persistence: operating sysiems, data models, data base systems, Al
systerns, object stores, generic tool sets and a wide range of application suites [30,32].

10

During our implementation of applications, we have worked with a class of adaptive
components which use the compiler at execution time to produce new subcomponents
which match specific given data - gaining both flexibility and efficiency [9,13]. An
application of this technique [30] has allowed us to rapidly implement a variety of data
models and data manipulation languages. This will have benefits in the construction of
new data base models, the verification of the utility of existing proposals, and the
production of data and object oriented application systems.

The adaptive components can allow high performance algorithms for large scale data
to be encapsulated in a manner similar to numerical algorithms. Developing such
algorithms is a continuing line of research. It has become clear that no one definition of
transaction suits all applications, so the applications architecture must provide the means
for defining appropriate transactions [51,40,62]. Without the discipline of a well defined
architecture, work within this application domain soon deteriorates into a morass of

complexity.

As the application programmer has to interact with the environment, a consistent
model, independent of machine and installation must be available [16,46,48,49,57].

List of interfaces used by Application Domain products

As stated earlier all the facilities of the architecture are available for use by
application domain products; the following list identifies the more significant programming
technologies. The references quoted mostly indicate papers which outline the nature and
scope of the facility and which could also be used to guide exploitation of the facility.

PAIL [33] Compiler Componentry {34]
PS-algol [59] Hope™ [55]
Napier [52] Stores [17.18,19]

4.3 The Language Domain
At present we have two demonstrator languages PS-algol and Napier on which we
have based our various experiments. The major issues investigated during the development

of these language include:

Type System Design

11

Binding mechanisms
A contextual naming scheme.

4.3.1 Type System Design

When the environment is included in our remit this includes types to describe the
data models and the data bases we use. Ideally we would like a set of types and a type
algebra so that by a succession of operations of the algebra and the provision of parameters
we can define a data type equivalent to any data model or conceptual data model
[7,14,20,21,22,30,41,50,54,56].

In traditional terms we wish to merge the concepts of type systems with data base
schemata to provide a type secure environment. One result we have already achieved is that
the type equivalence rule for persistent systems is structural equivalence. This allows
independently prepared types or schema to be matched [11]. This is only one step away
from the facilities required of the schema to support a distributed persistent store. That is,
the schema should be flexible enough to be held in parts, in distributed dictionaries rather
than in a centralised one.

When describing and using large scale and long term data, one method of system
modelling is to encapsulate the data in a system of co-operating concurrent processes with
an access protocol. Support for concurrency must be included in the type system to allow
for this kind of modelling [51,62].

With long lived data we cannot predict its use, we require data type and a schema
that adapt to changed requirements. For example, it is often necessary to add attributes to
the data without destroying the old data or bindings to it.

Our persistent language Napier contains a type system based on types as sets
[7,24,50]. This allows polymorphic procedures of universally quantified types
[35,43,44], abstract data types of existentially quantified types [45] and extensible data
types {7]. The schema may be distributed with structural equivalence as the marching rule
for types. Such a type system may be used to develop data models, generic tool sets and
plug in component system building.

12

4.3.2 Binding mechanisimns suitable for coping with adaptive data.

We have identified the inconsistencies of the binding and naming mechanisms
present in current programming languages, operating systems, file systems and database
management systems as a major source of distracting complexity in system construction.
A binding consists of a name, a value, a type and an indication of whether the object is
mutable or not and there are 16 different categories occuring commonly in programming
languages, file systems, operating systems and database management systems.

With static binding there can be no change in the system. That is, since everything
is static we cannot accommodate any alteration to the data. To allow system evolution in a
controlled manner binding mechanisms are required within the language that accommodate
change. Such binding mechanisms are dynamic or at least incremental.

We expect some bindings to be static for safety and others to be dynamic for
flexibility and we have proposed the notion of flexible incremental binding sets in
persistent systems to deal with this [12]. Some of our success in building software
systems out of components result from deciding correctly which of the components are
statically bound for safety and which are dynarmically bound for flexibility. Our mixture of
binding mechanisms allows for this, and our experience shows it can be understood and
exploited by applications programmers and builders.

4.3.3 A contextual naming scheme.

With persistent systemns the naming of objects in a conceprually flat store becomes a
major problem. If the name space were also flat then name clashes and identifying
components would become a major problem to the user. Programming languages (block
structure), file systems (file directories) and operating systems (segments) have proposed
solutions to this problem by imposing a contextual naming system in the form of a iree. In
the most general case, the persistent information will form a graph and we have developed
a scheme based on extensible environment constructors that allow contextual naming on
the graph. In general, the environment constructors allow us to dynamically construct
contexts in a manner that models both block structure and directories.

Names also have an important tole to play in the description of data and in bindings.
For this reason we have invented a method of abstracting over the names in a set of

bindings in a type secure manner. This allows us to discover the names in bindings and to

write algorithms which depend upon the meta-data without loosing the normal type and
value system of the language [13].

List of interfaces used by Language Domain products

As stated earlier all the facilities of the architecture are available for use when
developing language domain products; the following list identifies which of these facilities
may be used by language domain products themselves. The references quoted mostly
indicate papers which outline the nature and scope of the facility and which could also be
used to guide exploitation of the facility.

PAIL [33] Compiler Componentry [34]
Stores [17,18,19]

4.4 The System Building Domain

We have investigated various systems programming facilities with the intention of
making them more generally, but also more rigourously and more safely, available. These
include:

Compiler componentry

Support for compilation and execution merging
Abstract program graphs

Abstract machine design

Demand driven optimisation

4.4.1 Compiler componentry

Plug in tool sets are a very important method of system construction and the early
UNIX systems were a good example of this. The essence of the technique is provision of
the framework for storing individual components together with a method of using them in

the construction of larger systems.

In order to support the rapid prototyping of compiler systems we have developed a
technology based on plug in componentry. The compilation system is composed of
separately compiled modules which are plugged in to the compiler itself as it is dynamically
loaded. This technique has been used to develop compilers for PS-algol [26,59], Napier

14

[71, SASL [61], STAPLE [31] and Hopc+ [42]. Each compiler module when run, plugs
itself in. When the compiler runs, it constructs itself from the latest versions of these
components in the persistent store.

We will continue to use the plug in componentry architecture to both aid the
construction of systems from generic tool sets and also to replace the generic tools set
method when it is not appropriate. These methods of system construction can also be used
in the applications domain.

4.4.2 Support for the merging of compilation and execution

In persistent systems the boundary between compilation time and execution time is
blorred. It is further blurred when we consider interactive compilers which may work
against objects in the persistent store. To support this we require a compiler that is callable
from within the system, in a type secure manner. This raises issues of where the type
security is controlled in the system that are the same as the issues of capability control in
machine architectures.

Other support facilities, such as browsers [32,47] and debuggers, must also be
provided without endangering the type security of the persistent store.

4.4.3 Abstract program graphs

The traditional methed of producing files from compilers, often losing information
for compactness, is not necessary in a persisient system. The tables and graphs produced
by the compiler can be kept until execution without explicitly altering their form. This
allows better syster diagnostics to be generated including browsers and debuggers.

An abstract description is also required of the abstract graphs. We have invented
such a description called PAIL (Persistent Architecture Intermediate Language) [33] which
we are using as the standard for code generators to work against. We are at present
discussing with other groups the canonical form of such graphs.

4.4.4 Abstract machine design

As with any architecture there is an abstract model of a machine on which it will best
execute. This method of compiler design has been common in defining an abstract

15

machine to execute the language. Both PS-algol and Napier have well defined abstract
machines [58,61]. These are block retention abstract machines to support both higher
order procedures and abstract data types. We are discussing with other persistent language
implementors (Albano at Pisa) on the ideal abstract machine [25].

4.4.5 Demand driven optimisation

With abstract descriptions of program graphs, abstract machine descriptions and
program source available throughout the lifetime of the program and data it is possible to
optimise the object according to its use. The optimisation is merely another view of the
object and we can use it for greater efficiency [27].

We expect lazy demand driven optimizers, based on usage statistics, to be developed
in persistent systerns.

List of interfaces used by System Building Domain products

The following list identifies the facilities of the architecture which may be used by
System Building Domain products. The references quoted mostly indicate papers which
outline the nature and scope of the facility and which could also be used to guide
exploitation of the facility.

Stores [17,18,19]
4.5 The Store Domain

Many systems programmers will have had first hand experience not only of the
dichotomy between virtual store processing and file store proceesing but also of the very
real problems in choosing a store interface which provides for both virtual store based and
file store based applications. We now believe that we have developed an appropriate level
of object typing for use in a persistent object store. The reliability of the store is also an
issue for persistent systems and we have developed several, often complementary,
mechanisms for supporting stable stores [3,4,17,18,23,28,29,36,37,60]. The overall
performance of the store is critical to the total computational process, and this and the
reliability requirement requires further development of adaptive algorithms and the
introduction of hardware support for this kind of storage architecture.

5. Acknowledgement

16 17

Appendix 1 Document Control
Al.1l Table of Contents
1 PISA - objectives and summary
2 PISA Architecture and its Four Domains

We acknowledge the support of ICL, Alvey and the S.E.R.C. in enabling us to have : 2.1 Introduction

brought the research to its present state.

2.2 The Application Domain
2.3 The Language Domain
2.4 The System Building Domain
2.5 The Store Domain
3 PISA Club Rules
31 Use of Architecture
32 General Rules
3.3 External Influences
34 The Persistent Academy
4 PISA Applications
4.1 General
4.2 The Application Domain
4.3 The Language Domain
4.4 The System Building Domain
4.5 The Store Domain

5 Acknowledgement

Appendix 1 Document Control
Appendix 2 The Persistent Academy
Appendix 3 Bibliography

Al.2 Document History

* Edition 1

See section 1 for this documents predecessors. The first draft version of

! ¢this PISA Club Rules document, identified as Draft 1 and dated July 3, 1987, was
circulated only to MPA, JKB, NC, RM, GDP, by its editor JRL. A pre-publication
edition 1, dated July 31, 1987 received the same circulation and included as the only
major change a new appendix, numbered 2. This publication version of edition 1,
dated 20 August, 1987 reflects some clarifications and further references.

18

Appendix 2 The Persistent Academy

The creation of a "persistent academy” to apply a modicum of configuration
management to persistent systems was proposed in section 3.4 and this appendix briefly
outlines its intended functions though initially we attempt to justify its creation.

There will always be a tension between basic research into software systems
production and the use of the results of that research particularly when, as for persistent
systems, these results are themselves significant (and significantly useful) software
systems which can be used both as a basis of and for developing other research and further
software systems. The requirements of systems users are for well validated and supported
systems exhibiting some stability in interface specifications whereas research into systems
requires repeated experiments with slightly different systems. One basic objective for the
persistent academy is to provide a constructive forum within which the energy generated
by these tensions may be exploited. Experience with other software systems and their
standardisation does indicate that the earlier these tensions are recognised and solved via
some form of communal action, then better future developments occur without
necessitating a too rigid change control process which stifles innovation.

The persistent academy will incorpate at least two "parts”, namely its forum and its
secretariat/administration. Please note that we make no attempt yet to allocate functions

and responsibilities to these parts.

Functions to be performed by, or under the technical direction of, the persistent
academy include

marketing persistent systems, that is discussing/inventing their application/exploitation

discussion forum for all persistent systems issues and ideas

design control forum for persistent systems

supplier of "standard persistent systems" for exploitation

support of standard persistent systems

19

One important aspect of the proposed academy is that it must involve regular
meetings and will thus require funding or sponsorship. In this respect, a suitable paradigm
for the academy may be a formal, or informal, standards development committee and this
comparison underlines other requirements, for example the existence of a formally defined
and operative persistent system is an importani pre-requisite for developing a standard.
But, the proposed academy should include much more innovation and exploitation than the
normal standards body. Perhaps the Standards Promotion and Application Group founded
for IT standards in general and OSI standards in particular is a more relevant paradigr.

20

Appendix 3 Bibliography

1.

10

11.

12.

Atkinson, M.P.

"Programming Languages and Databases", Proceedings of the 4th International
Conference on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78,
408-420.

Atkinson, M.P., Chisholm, K.I. & Cockshott, W.P.
"PS-algol: An Algol with a Persistent Heap", ACM SIGPLAN Notices Vol.18, No.
7, (July 1981) 24-31.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Algorithms for a Persistent Heap", Software Practice and Experience, Vol.13,
No.3, 259-272 (March 1983).

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"CMS - A chunk management system", Software Practice and Experience, Vol.13,
No.3

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"An approach to persistent programming", The Computer Journal, 1983, Vol.26,
No.4, 360-365.

Atkinson, M.P. & Morrison, R.
"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985).

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment", proceedings of Data
Types and Persistence Workshop, Appin, August 1985, 1-24.

Atkinson, M.P., Morrison, R. & Pratien G.D.

"Designing a Persistent Information Space Architecture”, proceedings of
Information Processing 1986, Dublin, September 1986, (ed. H.J. Kugler),
115-119, North Holland Press.

Atkinson, M.P., Morrison, R. & Pratten G.D.
"PISA Club Rules Position Paper" PISA Project Report PISA/1 Issue 1, 6 Dec '86

Atkinson, M.P., Morrison, R. & Pratten G.D.
"Persistent Information Architectures”, Universities of Glasgow and St Andrews
PPRR-36-87

Atkinson, M.P., Buneman, O.P. & Morrison, R.
"Delayed Binding and Type Checking in Database Programming Languages", in
preparation.

Atkinson, M.P. & Morrison, R.
"Flexible Incremental Bindings in a Persistent Object Store", Universities of
Glasgow and St Andrews PPRR-38-87

13.

14.

15.

16.

17.

i8.

19

20.

21.

23.

24,

25.

Atkinson, M.P. & Morrison, R.

"Polymorphic Names, Types, Constancy and Magic in a Type Secure Persistent
Object Store”, proceedings of Persistent Object Systems: their design,
implementation and use Workshop, Appin, August 1987, pp1-12, Universities
of Glasgow and St Andrews PPRR-44-87.

Atkinson, M.P., & Buneman, O.P.
"Database Programming Language Design", Universities of Glasgow and St
Andrews PPRR-17-85.

Balzer, R.

"Living with the Next Generation of Operating Systems", proceedings of
Information Processing 1986, Dublin, September 1986, (ed. H.J. Kugler),
283-322, North Holland Press.

Brown, A.L. & Dearle, A.
"Implementation Issuses in Persistent Graphics", University Computing, 8, 2
(Summer 1986).

Brown, A.L. and Cockshott, WP,
"CPOMS - A Revised Version of The Persistent Object Management Systemn in C".
Universities of Glasgow and St Andrews PPRR-13-85.

Brown, A.L.
"The PINT POT (Persistent INformation space archiTecture Persistent Object sTore)
- in preparation - University of St Andrews.

Brown, A.L.

"A Distributed Stable Store", proceedings of Persistent Object Systems: their design,
implementation and use Workshop, Appin, August 1987, pp461-468, Universities
of Glasgow and St Andrews PPRR-44-87.

Buneman, O.P.
"Data types for data base programuning”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 291-303.

Buneman, O.P. & Atkinson, M.P.
"Inheritance and Persistence in Database Programming Languages”; proceedings
ACM SIGMOD Conference 1986, Washington, USA May 1986.

Buneman, O.P. & Ochari, A
" A Domain Theoretic Approach to Higher-Order Relations”, Universities of
Glasgow and St Andrews PPRR-28-86b.

Campin, J. & Atkinson, M.P.
"A Persistent Store Garbage Collector with Statistical Facilities", Universities of
Glasgow and St Andrews PPRR-29-86.

Cardelli, L. & Wegner, P.
"On understanding types, data abstraction and polymorphism", ACM.Computing
Surveys 17, 4 (December 1985), 531-523.

Cardelli, L.
"The Functional Abstract Machine", Polymorphism, VOL 1, NO 1 (1983).

26.

27

28.

29.

30.

31.

32

33.

34

35.

36

37.

38.

22

Carrick, R., Cole, A.J. & Morrison, R.
"An Introduction to PS-algol Programming”, Universities of Glasgow and St
Andrews PPRR-31-86.

Carrick, R. & Munro, D,

"Execution Strategies in Persistent Systems", proceedings of Persistent Object
Systems: their design, implementation and use Workshop, Appin, August 1987,
pp456-460, Universities of Glasgow and St Andrews PPRR-44-87

Cockshott, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Morrison, R.
"POMS : a persistent object management system”, Software Practice and Exerience,
Vol.14, No.1, 49-71, January 1984.

Cockshott, W.P.
"Addressing mechanisms and persistent programming”, proceedings of Data Types
and Persistence Workshop, Appin, August 1985, 363-383.

Cooper, R.L., Adberrahmane, D., Atkinson, M.P. & Dearle A.
"Constructing Database Systems in a Persistent Environment”, Proc VLDB Brighton
1987.

Davie, A.J.T., Munro, D. & McNally, D.J.
"An Informal Description of the STAPLE Language Version 1.4", University of St
Andrews CS/86/3.

Dearle, A. & Brown, A.L.
"Safe Browsing in a Strongly Typed Persistent Environment", Universities of
Glasgow and St Andrews PPRR-33-87.

Dearle, A.
"A Persistent Architecture Intermediate Language”, Universities of Glasgow and St
Andrews PPRR-35-87.

Dearle, A.

"Constructing Compilers in a Persistent Environment”, proceedings of Persistent
Object Systems: their design, implementation and use Workshop, Appin, August
1987, pp443-455, Universities of Glasgow and St Andrews PPRR-44-87.

i)emers, A. & Donahue, J. Revised report on Russell.
Technical report TR79-389, (1979), Cornell University.

Guy, M. R.

"Persistent Store - Successor to Virtual Store" proceedings of Persistent

Object Systems: their design, implementation and use Workshop, Appin, August
1987, pp266-282, Universities of Glasgow and St Andrews PPRR-44-87

Hurst, AJ.
"A Context Sensitive Addressing Model", Universities of Glasgow and St Andrews
PPRR-27-87.

ICL
"The ICL/STC Standards Directory” Document reference 12918/001 from ICL at
60, Portman Rd, Reading.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49,

50.

51,

52.

Lehman, M. M.
"Programs, life-cycles and Laws of Software Evolution”, Proc IEEE Vol 68 No 9
Sept'80.

Krablin, G.L.

"Building flexible multilevel transactions in a distributed persistent environment,
proceedings of Data Types and Persisience Workshop, Appin, August 1985,
86-117.

Kulkarni, K.G. & Atkinson, MLP.
"EFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.1,
(1986) 38-45.

McNally, D.J,
"Implementation in the STAPLE Project”, University of St. Andrews STAPLE
Report St.A/87/2

Matthews, D.
"An Overview of the Poly Programming Language”, proceedings of Data Types
and Persistence Workshop, Appin, August 1985, 265-274.

Milner, R.
"A theory of type polymorphism in programming”, JACM 26(4), 792-818.

Mitchell, 1.C. & Plotkin, G.D.
" Abstract types have existential type”, Proc POPL 1985,

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.
"High level language support for 3-dimension graphics”, Eurographics Conference
Zagreb, North Holand, 7-17, Sept. 1983. (ed. P.J.W. ten Hagen).

Morrison, R.,Bailey, P.1,, Dearle, A., Brown, P. & Atkinson, M.P.

"“The persistent store as an enabling technology for integrated support
environments”, 8th International Conference on Software Engineering, Imperial
College, London (August 1985), 166-172.

Morrison, R., Brown, A L., Bailey, P.J,, Davie, AJ.T. & Dearle, A.
"A persistent graphics facility for the ICL PERQ", Software Practice and
Experience, Vol.14, No.3, (1986).

Morrison R, Dearle, A., Brown, A. & Atkinson M.P.]
“An integrated graphics programming environment", Computer Graphics Forurmn,
Vol. 5, No. 2, June 1986, 153-157.

Morrison, R, Brown, A, Connor, R and Dearle, A.)
"Polymorphism, Persistence and Software Reuse in a Strongly Typed Object
Oriented Environment”, Universities of Glasgow and St Andrews PPRR-32-87.

Morrison, R., Barter, C.J,, Brown, A L., Carrick, R., Connor, R., Dearle, A.,
Hurst, AJ. & Livesey, MLL
"Polymorphic Persistent Processes”, Universities of Glasgow and St Andrews
PPRR-39-87.

Morrison, R.
"Napier Reference Manual" in preparation.

53

54.

55.

56

57.

58.

59.

61.

62.

Morrison, R, Brown, A.L, Carrick, R, Connor, R and Dearle, A..
"Napier Abstract Machine Manual" in preparation

Owoso, G.O.

"On the need for a Flexible Type System in Persistent Programming Languages”,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
423-438.

Perry, N.
"Hope™ Imperial College report IC/FER/LANG/2.5.1/7.

Philbrow, P.

" Associative Storage and Retrieval: Some Language Design Issues”, proceedings of
Persistent Object Systems: their design, implementation and use Workshop, Appin,
August 1987, pp226-232, Universities of Glasgow and St Andrews PPRR-44-87

Philbrow, P & Atkinson M.P.
"Machine Independent print Facilities for Bitmapped Screens", in preparation.

PS-algol Abstract Machine Manual
Universities of Glasgow and St Andrews PPRR-11

PS-algol Reference Manual - 4th edition
Universities of Glasgow and St Andrews PPRR-12

Rosenberg, J. & Abramson, D.A.
"The Monads Architecture: Motivation and Implementation", Proc First Pan Pacific
Conference, Melbourne 1985, 4/10-4/23.

Turner, D.
"SASL Language Reference Manual”, University of St Andrews, CS79/3 (1979).

Wai, F.

"Distribution and Persistence”, proceedings of Persistent Object Systems: their
design, implementation and use Workshop, Appin, August 1987, pp207-225,
Universities of Glasgow and St Andrews PPRR-44-87

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,
Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,
Glasgow G12 8QQ
Scotland.

or
The Secretary,
Persistent Programming Research Group,
Department of Computational Science,
University of St. Andrews,
North Haugh,
St. Andrews K'Y16 9S8
Scotland.

Books

Davie, AJ.T. & Morrison, R.
"Recursive Descent Compiling”, Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.)
"Databases", Pergammon Infotech State of the Art Report, Series 9, No.8, January
1982. (535 pages).

Cole, A.J. & Morrison, R.
"An introduction to programming with S-algol", Cambridge University Press,
Cambridge, England, 1982.

Stocker, P.M., Atkinson, M.P. & Gray, P.M.D. (eds.)
"Databases - Role and Structure”, Cambridge University Press, Cambridge,
England, 1984.

Published Papers

Morrison, R.
"A method of implementing procedure entry and exit in block structured high level
languages". Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z.
"The Graffiti graphics system", Proc. of the DECUS conference, Bath (April 1978),
5-10.

Atkinson, M.P.
"A note on the application of differential files to computer aided design”, ACM
SIGDA newsletter Summer 1978,

Atkinson, M.P.
"Programming Languages and Databases”, Proceedings of the 4th International
Conference on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78,
408-419. (A revised version of this is available from the University of Edinburgh
Department of Computer Science (EUCS) as CSR-26-78).

Atkinson, M.P.
"Progress in documentation: Database management systems in library automation
and information retrieval”, Journal of Documentation Vol.35, No.1, March 1979,
49-91. Available as EUCS departmental report CSR-43-79,

Gunn, HIE. & Morrison, R.
I(g);xg;hel iglplementaﬁon of constants", Information Processing Letters 9, 1 (July

Atkinson, MLP.
"Data management for interactive graphics”, Proceedings of the Infotech State of the
Art Conference, October 1979. Available as EUCS departmental report CSR-51-80.

Atkinson, M.P. (ed.)
"Data design", Infotech State of the Art Report, Series 7, No .4, May 1980.

Morrison, R.
"Low.cost computer graphics for micro computers”, Software Practice and
Experience, 12, 1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"PS-algol: An Algol with a Persistent Heap", ACM SIGPLAN Notices Vol.17, No.
7, (July 1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Nepal - the New Edinburgh Persistent Algorithmic Language", in Database,
Pergammon Infotech State of the Art Report, Series 9, No.8, 299-318 (January
1982) - also as EUCS Departmental Report CSR-90-81.

Morrison, R.
“S-algol: a simple algol", Computer Bulletin 11/31 (March 1982).

Morrison, R.
"The string as a simple data type", Sigplan Notices, Vol.17,3, 46-52, 1982.

Atkinson, M.P., Bp.ilcy, P.J.,, Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming", presented at CREST course UEA,
September 1982, revised in "Databases - Role and Structure”, see PPRR-8-84.

Morrison, R.
“Towards simpler programming languages: $-algol”, IUCC Bulletin 4, 3 (October
1982), 130-133. 8

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Problems with persistent programming languages", presented at the Workshop on
programming languages and database systems, University of Pennsylvania.
}());&bc; 8135;82. Circulated (revised) in the Workshop proceedings 1983, see

Atkinson, M.P.
"Data management", in Encyclopedia of Computer Science and Engineering 2nd
Edition, Ralston & Meek (editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Algorithms for a Persistent Heap", Software Practice and Experience, Vol.13,
No.3, 259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P,
"CMS - A chunk management system", Software Practice and Experience, Vol.13,
No.3 (March 1983), 273-285. Also as EUCS Departmental Report CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming”, presented at the DEC workshop
on Programming Languages and Databases, Boston, April 1983.

Atkinson, M.P,, Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"An approach to persistent programming”, The Computer Journal, 1983, Vol.26,
No.4, 360-365 - see PPRR-2-83,

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming”, 10th Australian Computer
Conference, Melbourne, Sept. 1983, 70-79 - sce PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.
"High level language support for 3-dimension graphics”, Eurographics Conference
Zagreb, North Holand, 7-17, Sept. 1983. (ed. P.J.W. ten Hagen).

Cockshott, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Morrison, R.
"POMS : a persistent object management system", Software Practice and Exerience,
Vol.14, No.1, 49-71, January 1984,

Kulkarni, K.G. & Atkinson, M.P.
"Experimenting with the Functional Data Model", in Databases - Role and Structure,
Cambridge University Press, Cambridge, England, 1984.

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough", Foundations of Software
Technology and Theoretical Computer Science (ed. M. Joseph & R. Shyamasundar)
Lecture Notes in Computer Science 181, Springer Verlag, Berlin (1984).

Atkinson, M.P., Bocea, 1.B,, Elsey, T.J., Fiddian, N.J., Flower, M., Gray, P.M.D.

Gray, W.A., Hepp, P.E., Johnson, R.G., Milne, W, Norrie, M.C., Omololu,

A.Q., Oxborrow, E.A., Shave, MLIR,, Smith, A.M., Stocker, P.M. & Walker, J.
"The Proteus distributed database system”, proceedings of the third British National
Conference on Databases, (ed. J. Longstaff), BCS Workshop Series, Cambridge
University Press, Cambridge, England, (July 1984).

Atkinson, ML.P. & Morrison, R.
"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985) -

see PPRR-9-84,

Morrison, R.,Bailey, P.J,, Dearle, A., Brown, P. & Atkinson, M.P.
"The persistent store as an enabling technology for integrated support
environments", 8th International Conference on Software Engineering, Imperial
College, London (August 1985), 166-172 - see PPRR-15-85.

Atkinson, M.P. & Morrison, R.)
"Types, bindings and parameters in a persistent environment", proceedings of Data
Types and Persistence Workshop, Appin, August 1985, 1-24 - see PPRR-16-85.

Davie, AJT.
"Conditional declarations and pattern matching”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

Krablin, G.L.
"Building flexible multilevel transactions in a distributed persistent environment,
proceedings of Data Types and Persistence Workshop, Appin, August 1985, 86-117
- see PPRR-16-85.

Buneman, O.P.
"Data types for data base programming”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.
"Addressing mechanisms and persistent programming", proceedings of Data Types
and Persistence Workshop, Appin, August 1985, 363-383 - see PPRR-16-85.

Norrie, M.C.
"PS-algol: A user perspective”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.
"On the need for a Flexible Type System in Persistent Programming Languages",
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
423-438 - see PPRR-16-835.

Morrison, R., Brown, A.L., Bailey, P.J., Davie, AJ.T. & Dearle, A.
"A persistent graphics facility for the ICL PERQ", Software Practice and
Experience, Vol.14, No.3, (1986) - see PPRR-10-84.

Atkinson, M.P. and Morrison R.
"Integrated Persistent Programming Systems"”, proceedings of the 19th Annual
Hawaii International Conference on System Sciences, January 7-10, 1986 (ed. B.
D. Shriver), vol IIA, Software, 842-854, Western Periodicals Co., 1300 Rayman
St., North Hollywood, Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.
“A Persistent Information Space Architecture”, proceedings of the 9th Australian
Computing Science Conference, January, 1986 - see PPRR-21-85.

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.1,
(1986) 38-45.

Buneman, O.P. & Atkinson, M.P.
"Inheritance and Persistence in Database Programming Languages"; proceedings
ACM SIGMOD Conference 1986, Washington, USA May 1986 - see PPRR-22-86.

Morrison R., Dearle, A., Brown, A. & Atkinson M.P.; "An integrated graphics
programming environment”, Computer Graphics Forum, Vol. 5, No. 2, June 1986,
147-157 - see PPRR-14-86.

Atkinson, M.G., Morrison, R. & Pratten G.D.
"Designing a Persistent Information Space Architecture”, proceedings of
Information Processing 1986, Dublin, September 1986, (ed. H.J. Kugler),
115-119, North Holland Press.

Brown, A.L. & Dearle, A.)
"Implementation Issuses in Persistent Graphics”, University Computing, Vol. 8,
NO. 2, (Summer 1986) - see PPRR-23-86.

Kulkarni, K.G. & Atkinson, M. P.
"Implementing an Extended Functional Data Model Using PS-algol", Software -
Practise and Experience, Vol. 17(3), 171-185 { March 1987)

Cooper, R.L. & Atkinson, M.P.
"The Advantages of a Unified Treatment of Data", Software Tool 87: Improving
Tools, Advance Computing Series, §, 89-96, Online Publications, June 1987,

Atkinson, M.P, Morrison, R. & Dearle, A.
"A strongly typed persistent object store”, 1986 International Workshop on
Object-Oriented Database Systems, Pacific Grove, California (September 1986).

Atkinson, M.P., Morrison, R. & Pratten G.D.
"PISA : A persistent information space architecture”, ICL Technical Journal 3, 3
(May 1987),477-491.

Atldnson, ML.P. & Morrison, R.
"Polymorphic Names, Types, Constancy and Magic in a Type Secure Persistent
Object Store”. Presented at the 2nd International Workshop on Persistent Object
Stores, Appin, August 1987.

Cooper, R. & Atldnson, M.P.
"Requirements Modelling in a Persistent Object Store”. Presented at the 2nd
International Workshop on Persistent Object Stores, Appin, August 1987.

Wai, F.
"Distribution and Persistence”. Presented at the 2nd International Workshop on
Persistent Object Stores, Appin, August 1987,

Philbrow, P.
"Associative Storage and Retrieval: Some Language Design Issues”. Presented at
the 2nd International Workshop on Persistent Object Stores, Appin, August 1987.

Guy, M.R.
"Persistent Store - Successor to Virtual Store”. Presented at the 2nd International
Workshop on Persistent Object Stores, Appin, August 1987,

Dearle, A.
"Constructing Compilers in a Persistent Environment”. Presented at the 2nd
Internaional Workshop on Persistent Object Stores, Appin, August 1987.

Carrick, R. & Munro, D.
"Execution Strategies in Persistent Systems”. Presented at the 2nd International
Workshop on Persistent Object Stores, Appin, August 1987.

Brown, A.L.
"A Distributed Stable Store”. Presented at the 2nd International Workshop on
Persistent object Stores, Appin, August 1987,

Cooper, R.L., Atkinson, M.P., Dearle, A. & Abderrahmane, D.
"Constructing Database Systems in a Persistent Environment”. Proceedings of the
Thirteenth Internaional Conference on Very Large Databases, Brighton, September
1987.

Atkinson, M.P. & Morrison, M.
"Polymorphic Names and Tierations", presented at the Workshop on Database
Programming Languages, Roscoff, September 1987.

Internal Reports

Morrison, R.
"§-Algol language reference manual”, University of St Andrews CS-79-1, 1979.

Bailey, P.J., Maritz, P. & Morrison, R.
"The S-algol abstract machine”, University of St Andrews CS-80-2, 1980.

Atkinson, M.P., Hepp, P.E., Ivanov, H., McDuff, A., Proctor, R. & Wilson, A.G.
"EDQUSE reference manual”, Department of Computer Science, University of
Edinburgh, September 1981,

Hepp, P.E. and Norrie, M.C.
"RAQUEL: User Manual”, Department of Computer Science Report CSR-188-85,
University of Edinburgh.

Norrie, M.C.
"The Edinburgh Node of the Proteus Distributed Database System”, Department of
Computer Science Report CSR-191-85, University of Edinburgh.

Theses

The following theses, for the degree of Ph. D. unless otherwise stated, have been
produced by members of the group and are available from the address already given,

W.P. Cockshott
Orthogonal Persistence, University of Edinburgh, February 1983.

K.G. Kulkarni
Evaluation of Functional Data Models for Database Design and Use, University of
Edinburgh, 1983.

P.E. Hepp
A DBS Architecture Supporting Coexisting Query Languages and Data Models,
University of Edinburgh, 1983.

G.D.M. Ross
Virtual Files: A Framework for Experimental Design, University of Edinburgh,
1983.

G.0. Owoso
Data Description and Manipulation in Persistent Programming Languages,
University of Edinburgh, 1984.

J. Livingstone X
Graphical Manipulation in Programming Languages: Some Experiments, M.Sc.,
University of Glasgow, 1987.

Persistent Programming Research Reports

This series was started in May 1983. The following list gives those which have
been produced at 17 September 1987. Copies of documents in this list may be
obtained by writing to the addresses already given.

PPRR-1-83 The Persistent Object Management System -
Atkinson,M.P., Bailey, P., Chisholm, K.J.,
Cockshott, W.P. and Morrison, R. £1.00

PPRR-2-83 PS-algol Papers: a collection of related papers on PS-algol -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

PPRR-5-83 Experimenting with the Functional Data Model -
Atkinson, M.P. and Kulkarni, X.G. £1.00

PPRR-6-83 A DBS Architecture supporting coexisting user interfaces:
Description and Examples -
Hepp, P.E. £1.00

PPRR-7-83 EFDM - User Manual -
K.G.Kulkarni £1.00

PPRR-8-84 Progress with Persistent Programming -
Atkinson,M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

PPRR-9-84 Procedures as Persistent Data Objects -
Atkinson, M.P. and Morrison, R. £1.00

PPRR-10-84 A Persistent Graphics Facility for the ICL PERQ -
Morrison, R., Brown, A.L., Bailey, P.J., Davie, AJ.T.

and Dearle, A. £1.00
PPRR-11-85 PS-algol Abstract Machine Manaal £1.00
PPRR-12-87 PS-algol Reference Manual - fourth edition £2.00

PPRR-13-85 CPOMS - A Revised Version of The Persistent Object
Management Systernin C -
Brown, A.L. and Cockshott, W.P. £2.00

PPRR-14-86 An Integrated Graphics Programming Environment - 2nd
edition - Morrison, R., Brown, A.L., Dearle, A. and
Atkinson, M.P. £1.00

PPRR-15-85 The Persistent Store as an Enabling Technology for an
Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, AL. and
Atkinson, M.P. £1.00

PPRR-16-85 Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R. £15.00

PPRR-17-85 Database Programming Language Design -
Atkinson, MLP. and Buneman, O.P. £3.00

PPRR-18-85 The Persistent Store Machine ~

Cockshott, W.P. £2.00 PPRR-37-87 PS-algol Machine Monitoring -
PPRR-19-85 Integrated Persistent Programming Systems - Loboz, 2. £1.00

Atkinson, M.P. and Morrison, R. £1.00 PPRR-38-87 Flexible Incremental Bindings in a Persistent Object Store -

PPRR-20-85 Building a Microcomputer with Associative Virtual Memory - Morrison, R., Atkinson, M.P. and Dearle, A. £1.00
Cockshott, W.P. £1.00 PPRR-39-87 Polymorphic Persistent Processes -

PPRR-21-85 A Persistent Information Space Architecture - Morrison, R., Barter, C.J., Brown, A.L., Carrick, R.,

Atkinson, MLP., Morrison, R. and Pratten, G.D. £1.00 Connor, R., Dearle, A, Hurst, A.Land Livesey, M.J. £1.00

PPRR-22-86 Inheritance and Persistence in Database Programming PPRR-40-87 Andrew, Unix and Educarional Computing - £1.00
Languages - » e :
Buneman, O.P. and Atkinson, M.P. £1.00 PPRR-41-87 Factors that Affect Reading and Writing with Personal

PPRR-23-86 Implementation Issues in Persistent Graphics - Computers and Workstations -

Brown, A.L. and Dearle, A. £1.00 Hansen, W. J. and Haas, C. £1.00

PPRR-24-86 Using a Persistent Environment to Maintain a Bibliographic PPRR-42-87 A PrﬁcaziilnA{%Cb}'a for Substring Expressions - £1.00
Database - > e :
Cooper, R.L., Atkinson, M.P. & Blott, S.M. £1.00 PPRR-43-87 The NESS Reference Manual -

PPRR-25-87 Applications Programming in PS-algol - Hansen, W. J. £1.00

Cooper, R.L. £1.00 _ PPRR-44-87 Persistent Object Systems: their design, implementation and use.

(proceedings of the Appin workshop August 1987)

PPRR-26-86 Exception Handling in a Persistent Programming Language - - .
Philbrow, P & Atkinson M.P. £1.00 ed. Atkinson, M.P., Buneman, O.P. and Morrison, R. £20.00
PPRR-27-87 A Context Sensitive Addressing Model - PPRR-45-87 Delayed Binding and Type Checking in Database Programming

Languages -
Hurst, AJ. £1.00 Atlinson, MP., Buneman, O.P. & Mortison, R. £1.00
PPRR-28-86b A Domain Theoretic Approach to Higher-Order Relatons - A6 .)
Buneman, O.P. & Ochari, A. £1.00 PPRR-46-87 Transactions and Concurrency £1.00
PPRR-29-86 A Persistent Store Garbage Collector with Statistical Facilities - PPRR-47-87 Persistent Information Space Architecture - PISA Club Rules
Campin, J. & Atkinson, M.P £1.00 Atkinson, M.P., Lucking, J.R., Morrison, R.

PPRR-30-86 Data Types for Data Base Programming - and Pratten, G.D. £1.00

Buneman, O.P. £1.00

PPRR-31-86 An Introduction to PS-algol Programming -
Carrick, R., Cole, A.J. & Morrison, R. £1.00

PPRR-32-87 Polymorphism, Persistence and Software Reuse in a
Strongly Typed Object Oriented Environment -
Morrison, R, Brown, A, Connor, R and Dearle, A £1.00

PPRR-33-87 Safe Browsing in a Stongly Typed Persistent Environment -
Dearle, A and Brown, A.L. £1.00

PPRR-34-87 Constructing Database Systems in a Persistent Environment -
Cooper, R.L., Atkinson, M.P., Dearle, A. and
Abderrahmane, D. £1.00

PPRR-35-87 A Persistent Architecture Intermediate Language -
Dearle, A. £1.00

PPRR-36-87 Persistent Information Architectures -
Atkinson, M.P., Morrison R. & Pratten, G.D. £1.00

