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1 Introduction

Databases and other, more general, systems of persistent data storage
and management have become a dominant feature of the computing land-
scape. The use of databases in concurrent and distributed environments
has introduced a number of issues and problems. This paper reviews some
of these issues and the mechanisms that have been developed to des! with
them.

1.1 Databases

A database [5,24] is a collection of data related to some enterprise. In
order for the data to be useful, some structure is imposed on it, either
explicitly by a formal description of some kind, or implicitly through the
conventions enforced for the use and update of the data. The structure of
the database implies both constraints on the values of the data elements,
and relationships among them. (The subject of ‘data modelling’ is discussed
in [23]). As a whole, the structure and values of the data in the database
provide an abstract model of the relevant aspects of the enterprise.

In most cases, the database will change over time (even a dictionary
changes, reflecting corrections, new words, changes in usage, etc.) to con-
tinue to accurately represent the changing enterprise. The introduciion




of change to the database requires some definitions so that the process of
change can be understood and managed.

1.2 Properties

For a database, there is some notion that it is correct, that it accurately
represents the abstraction of the enterprise. Correctness implies that the
structure is internally consistent, that the values and relationships maintain
the consistency constraints implied by the abstraction, and that the values
are an appropriate representation of the state of the enterprise. The first
two of these three qualities can be lumped together and called consistency.
In principle, it is possible to write a single statement in the predicate cal-
culus, which completely expresses the requirements of consistency for the
database. The consistency predicate is a static statement, defined only by
the abstraction. The third part of the correctness criteria is a dynamic
statement; that the collection of changes made to the database, including
their order in time, is an adequate representation of the changes in the
enterprise.

In any model, choices have to be made about what elements of the
actual enterprise are to be included in the abstraction and how they will be
represented in the model. As a natural result of the abstraction process a
lot of detail is compressed into simple units, such as cases of nuts and bolts,
rather than individual parts. On the other hand, there may be abstract
objects in a model which are composed of smaller parts or which have a
number of distinct qualities which are individually represented. When the
model is a database on a computer, we also have to contend with the limited
choice of units available on the computer. Computers work in terms of bytes
or words internally, and much larger units (disk sectors, etc.) on their bulk,
long term storage media. All computer operations are expressed in these
units. The properties of consistency and correctness are explicitly defined
in terms of the elements of the abstraction, not the underlying concepts
(bytes, etc.) which are used to implement the elements.

These circumstances, individually and in combination, point out that
even a simple change to the enterprise may require multiple changes in
the database as it is represented on the computer. Within the database, a
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change which is only partially carried ocut may result in the database being
both inconsistent, in terms of the abstraction itseif, and incorrect, in terms
of its representation of the enterprise. Such inconsistency or incorrectness
could even appear if the database were examined at an inpropitucus tiine,
in the middle of a change.

2 Transactions

In order to account for and alleviate the effects of this problem, the
abstraction must implicitly define one more unit, the unit of change, or
more generally, the unit of activity of any kind. A transaction [7,11,12] iz a
unit of work which corresponds directly to a single activity in the enterprise
which is to be modelled in the database. A given model will have many
kinds of transactions, some so simple as to not need the support of the
past several paragraphs, others very complex indeed, involving thousands
of individual operations in the database (perhaps millions of computer in-
structions). What they 2ll (should!) have in common is that they preserve
the consistency of the database and correctly model an activity of interesi
in the enterprise.

2.1 Transaction Properties

An examination of the database at a time between two trausactions can
be expected to find it consistent aud, in terms of the abstraction, repre-
sentative of the enterprise at 2 time between the two corresponding “real”
activities. (Note that there is an implicit assumption here that the trana-
actions occur in the same temporal order as the actual activities). If the
database is examined whiie a transaction is in progress, it is likeiy to be
both inconsistent and incorrect. Therefore, it would scem that the database
should not be examined at such a time. Transactions are calied atomic to
emphasize the fact that they must appear to happen ali 2t one instant, in
spite of considerabie potential internal complexity, to eftectively eliminate
the possibility of “seeing” the database in an inconsistent state.

If a transaction is going to successfully complete eventually, it is always
possible te wait for that completicn before attempting to observe the siate
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of the database. However, transactions sometimes fail to complete success-
fully. The computer may crash, the program performing the transaction
may fail, values and relationships of data in the database may preclude
successful completion. Since this is a fairly common phenomenon, it won't
do to invalidate the database when it happens. An atomic transaction
must happen all at once, or not at all. The implementation of the database
and its transactions must provide a means of restoring the database to its
state at the beginning of a transaction (actually a state equivalent to one in
which the transaction had never occurred), in case of failure. A transaction
in such a system may be called reversible.

Since it is a rare database which experiences just one transaction in
its lifetime, some consideration must be given to the relationships among
transactions. In the discussion thus far, a serial sequence of activities has
been assumed (concurrency appears below). In this context, there is a total
order on the transactions based on their time of (“instantaneous”) occur-
rence. A transaction operates on the database as it is left by the previous
transaction, modelling the effects of sequential activities of the enterprise.
It would be disastrous if an apparently successful transaction became “un-
done” sometime later. In the sequential environment, this might occur
as a result of administrative measures taken to recover the database after
a corrupting failure like a disk crash. The typical response is to restore
the database from a backup medium, but as it is impractical to create
the backup after every transaction, there is may be some possibility of
lost transactions. There must be a means, within the database system, to
protect it against such failures. The database must be resilient and the
transactions recoverable.

There is a qualitative distinction to be made between atomicity and re-
versibility on the one hand, and resiliency and recoverability on the other.
The first two properties can be expected to be absolute; that is, a system
either provides them or it doesn’t. Af least in centralized systems, this
is achievable. Recoverability implies the ability to survive failures which
invaiidate the results of already completed transactions. Commonly, this
is a failure of long term (so-called “permanent”) storage. The only pro-
tection against such failure is to store the relevant information in enough
places with low enough probabilities of failure, that the overall probability

of unrecoverable failure is acceptably low. However, it can never be zero.

2.2 Concurrency

A sequential model is inadequate for computer databascs. There are sev-
eral reasons, including the disparity in processing speed between lhuwmans
and computers, multi-programming and multi-processing in computer sys-
tems, and distribution of a database across several different computers, why
concurrent processing of transactions must be accomcdated. 'Uhis means
that the constituent sub-actions of a number of transactions will be inter-
leaved. In effect, each transaction will be operating on a database which
is inconsistent and incorrect because other partially complete transactions
are also active. Clearly, unconstrained concurrency is untenable.

There are, however, a few observations which can be made about the
behavior of transactions in a database system. The first is that some trans-
actions are readoanly; they do not alter the contents or structure of the
database. The database is never, even temporarily, made inconsistent or
incorrect by a readonly transaction. Any number of readonly iransactions
may be run concurrently without danger. )

The second observation is that databases are not monolithic entities
and most transaciions involve only a portion of the database. Any two
transactions which use totally disjoint sectious of the database may aiso be
active concurrently.

In neither case does it matter which transaction is “first”. That is, the
result of processing them concurrently is indistinguishable from processing
them sequentially in either order.

The cases where the apparent order is significant are usually described in
terms of read and write sets. The read set of a transaction is the collection
of data elements within the database whose values are consulted by the
transaction. The write set is the set of elements whose values are altered
by the transaction. The read and write sets of a transaction frequentiy
overlap. Two concurrent transactions will conflict precisely if the write set
of one overlaps either the read or write set of the other (the definition is
symmetric).

[52]




2.3 Serializability

) The generally accepted criterion for correctness of concurrent database
transactions is serializability [8]. In general, a collection of transactions
run concurrently is serializable if there is some order in which the same
transactions can be run, one at a time, that would give the same results
as the concurrent execution did. The results include both the final state of
the database and any output reported from the transactions.

The serialized order is, of course, a total order, with every transaction
fixed in relation to every other transaction. The actual necessity of resolving
conflicting subtransactions only demands a partial order, which does not
fix the relationships among transactions which do not interfere with one
another. A serialization may be any total order consistent with the partial
order defined by the activities of the transactions.

As a practical matter, serializability is defined in terms of the sets of
data objects consulted (read) and altered (written) by the transasction.
Each object involved is assumed to be read at most once and written at
most once (no loas of generality), with each action taking place at an iden-
tifiable time in the context of the whole system. “Simultaneous” actions
can either be ruled out, based on the physical constraints of the system,
or, for a distributed system, ignored as irrelevant, since there can still be
no simultaneous actions on a single object. The overall record of the ac-
tivities of a concurrent mix of transactions is known as the log or trace.
The relative position of two transactions in a serialized order depends on
three kinds of potential conflicts in the log: read-write, write-read, and
write-write, Transaction T; precedes T; in the order if for any data item d
in the database, one or more of the following hold:

1. T; reads d before T; writes d (T; doesn’t see the change made by Tj)
2. T; writes d before T; reads d (T; does see the change made by T;)

3. T; writes d before T writes d (some later transaction will see the value
left by Tj, not that left by T;)

If none of the above hold (in either direction) between two transactions, for
any data object, their relative order in the serialization is either irrelevant
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(arbitrary) or possibly defined by the transitivity property of the order in
relation to other transactions. If more than one of the above conditions
hold, or the two transactions are related by common access to multiple
items, there is the possibility that the transactions should each precede the
other. Since this is impossible, these two transactions are noi considered
serializable, even though the results might be the same for either order.

It can be seen immediately that the only relationship of two transactions
through a data item which does not force an order is read-read, where
neither transaction modifies the item. This can be generalized to the notion
of “commutative” operations , two primitive operations on ai item, such
as two reads, whose order of execution is of no consequence to the resuits.
For data objects supporting primitive operations more complex than read
and write, this is a weaker requirement than serializability stated in terms
of read and write logs, potentially allowing a greater degree of concurrency.

3 Concurrency Control

In the various schemes which have been developed and put into use to
guarantee serializability in a concurrent environment, one important prop-
erty is the point, during the lifetime of 2 transaction, at which its position
in the order is determined with respect to the other transactions running
concurrenily. In ditferent systems allowing concurrency, the determination
point may differ. In a stricily sequential environnient, the order is obvi-
ously determined as each transaction begins (or is selected to begin by a
scheduler). This transaction lies afier the already finished transactions and
before those not yet started. With some concurrency control mechanisms,
there is a different determination of the order.

A number of disciplines have been developed in database management
systems to prevent conflicting trausactions from proceeding concurrently.
Three of these, locking, optimism, and timestamping, will be discussed in
the following sections. All (indeed any such mechanism) require one addi-
tional property of transactions. ‘This is identity, that distinct transactions
can be distinguished and identified so that cperations on the database can
be associated with the correct transaction.

An imnportant consideration for all forms of concurrency control is how
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to define the “objects” which are the referents of the activities forming the
log, and thus used to locate conflicts [10,12,13]. An object, in this sense, is a
composite of one or more of the abstract elements of the database. As long
as these objects do not overlap (in terms of primitive data elements) and
cover the databse (that is, the collection of objects form a partition of the
database), there are no correctness concerns involved in this choice. (Note
that the use of the term partition is a little loose here, as it is meant to apply
to the elements of the abstraction, not necessarily the bits used to represent
them). However, with some mechanisms, there may be a significant impact
on performance.

If the unit chosen as an object causes the whole database to be en-
compassed in a single object, there will be no concurrency at all, but the
overhead of concurrency control will be small. On the other hand, the
granularity of objects could be made as fine as individual fields in records
(in principle, individual bits, but this has no meaning in the abstraction).
This might permit maximum concurrency, but would impose a large time
and space penalty. In a database organized around records, the natural
choice for the object of interest seems to be the record. This is tied to the
fact that there is generally already some overhead in storage and processing
for record manipulation, and to the role of the record as a conceptual unit,
representing a single aspect of the enterprise.

3.1 Locking

The most obvious dynamic mechanism for controlling concurrent exe-
cution of potentially conflicting transactions is to arrange to give one trans-
action exclusive access to some portion of the database for a period of time
(8,13]. During this time, no other transaction can read or write the data
covered by the lock, thus preventing any conflict. This kind of locking
is derived directly from the principle of mutual exclusion that has been
developed for operating systems in multi-processing, multi-programming
computer systems.

A critical aspect of the design of a lock-based concurrency control system
is the choice of interval over which the lock on any given data element
is to be held. This interval could range from the entire duration of the
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transaction down to exactly the time during which the data element is
needed by the transaction.

The first of these is certainly effective, but it may constrain concurrency
more than strictly necessary. ‘There are also some problems with its im-
plementation. The first is the difficulty of determining, before it begins,
what elements in a database a transaciion will use. This set is commonly
determined dynamically by the nature of the transaction, conditions within
the database at the time, and input data, which may be interactive and
also depend on the current state of the database. If the lockable elements
are classes of data, such as whole relations, then such an approach may be
feasible.

The second problem here is that the locking process itself must be made
atomic, so that all the locks are seen to be obtained simultaneously. This is
also true for individual locking, but at the beginning of a large transaction,
other transactions might have to wait a long time to get started, a poiential
problem in an interactive system.

The all-at-once approach to locking is free from deadlock. That is, the
situation cannot arise where two transactions are each waiting cn a lock
held by the other. However, the locking algorithm must be prepared to
abort, release all the locks obtained, and restart the process, if it is unable
to obtain the lock for one or more of the desired eieiuenis of the daiabase.
Failure to do so could cause deadlock.

At the other end of the spectrum is the “exactly as long as necessary”
approach to locking. The first restriction that must be applied is that a
transaction must lock any given data element only once (that is, absiain
from releasing it and iater locking it 2gain). The consequenccs of locking
an element, unlocking it, then locking it again (asswming it is actualiy used
during both locked periods) are that the transaction may be unserializable
with respect to another transaction which uses the data element hetween
the two locked periods.

Further analysis of this same kind of preblem leads to the “two phase”
locking discipline [8]. This is the practice of dividing a transaction into a
growing phase and a shrinking phase. During the growing phase, locks are
obtained. During the shrinking phase, locks are released. Once 2 transac-
tion has initiated its shrinking phase by releasing any lock, no further locks
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may be obtained. There is a proof [8] that this discipline guarantees seri-
almability. (The subject of serialization and locking disciplines is treated
formally in {2}).

There are several important considerations involved with the use of two
phase locking for concurrency control.

1. A transaction must have an identity with which to register its own-
ership of locks. This is necessary both to verify that it is this trans-
action which holds the lock, and to facilitate recovery from aborts
and crashes. An alternative view of the same requirement is that
each transaction must keep track of the locks that it holds, in a form
which is usable for recovery should the iransaction abort or the sys-
tem crash.

2. A transaction must obtain ownership of the appropriate lock before
using an object in the database. The abstraction itself defines which
bits of state correspond to objects in this context. For example, the
locks themselves, which have no meaning or existence in the abstrac-
tion, are not objects in this context. However, since they are also
manipulated in a concurrent environment, they must also be pro-
tected in a somewhat similar way (primitive mutual exclusion, for
instance).” This hierarchy continues, until a level is reached where
concurrency is not an issue.

3. All locks, once obtained, must be held by the transaction until it
commits or aborts.

4. All locks held by a transaction are released when the transaction
terminates, either by commit or abort.

5. Termination of a transaction means that no further activities will
occur on its behalf and implies that its identity will be permanently
retired.

The lock may be obtained in a separate operation before any other reference
to the object, or it may be automatically requested on the first reference.
In some situations, a programmer or compiler may be able to determine
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statically some -or all of the objects which must be locked and thus aveid
th® necessity of verifying the lock on each reference, but in general, each
reference must be dynamically checked (since objects may be accessed by
pointers rather than by explicit names appearing in the program).

3.2 Deadlock Handling

Although a two-phase discipline does guarantee serializability in any
mix of transactions which all complete, it does not provide any protection
against deadlock. It is possible for two transactions to request locks on two
objects such that each has a lock on one object and cannot continue until
it gets the lock on the other object. Neither transaction can continue until
the other releases a lock, which it won’t do until ...,. In a general object
locking system, deadlock is essentially unavoidable. All the techniques used
to avoid deadlock {1,6,13,20] involve some prior knowledge of the form and
behavior of the transactions. This is possible in some limited situations,
such as a small set of distinct transactions whose interactions and potential
conflicts are understood in advance so that a restrictive scheduling regime
may be employed.

If deadlock cannot be avoided, it must be handled, so that the whole
system doesn't grind to a halt. Handling is done in two parts: detection and
resolution. In a centralized system, deadlock may be derecied by keeping
track of which transactions hold locks on what objects, and which trans-
actions are blocked trying to obtain a lock. A simple anzlysis (topoiogical
sort of a graph, for instance) will indicate any groups of two or more trans-
actions which are mutually deadlocked. Thig methcd may be expensive
if the granularity of lockable objects is small. The anzlysis may also be
difficult and slow in a distributed system {9,16]. A parameter of this kind
of deadlock detection is when to do the analysis: whensver a transaction
blocks, periodically (continually), or ouly on some evidence of deadiock,
such as failure of a transaction to progress for a long time.

A different approach uses a timeout to assumec thai any transaction
which isn’t progressing very quickly actually is involved in a deadlock. Then
deadlock resolution is applied without actually verifying that the deadlock
actually exists. This method is suitable for systems where transacticns arc
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expected to be of fairly uniform duration, so that a reasonable timeout
value can be chosen to effectively eliminate spurious deadlock detections.
Timeout is also an attractive method in distributed systems since it does
not require any centralized analysis and it conveniently handles prolonged
or permanent communications failures uniformly. The drawback of timeout
based detection is the potential for false indications, especially where long
running transactions compete with short ones.

The typical way of resolving a deadlock situation is to force one of the
transactions involved to give up one of the locks involved, allowing some
other transaction to proceed. The two phase discipline requires that giving
up a lock initiate the shrinking phase of the transaction, so the 'victim’
cannot obtain any more locks. Since the victim cannot progress any further,
the solution is to force the victim to abort completely, release all locks, and
restart from scratch.

The victim may be chosen as any of the transactions involved in the
deadlock. If timeout is used for detection, the victim is necessarily the
transaction which timed out. If a more sophisticated deadlock analysis
provides a complete or partial list of transactions involved, a choice may be
based on such factors as priority, age, number of times aiready victimized,
etc.

When a lock is given up by one transaction, some scheduling policy
will be applied to assign the lock to one of the transactions (if there are
any) waiting for it. Such a policy might use an explicit priority, FIFO,
age of transaction, or just a random choice. The policy has an effect on
system throughput and the performance of individual transactions, but is
transparent to correctness in terms of serializability.

3.3 Differentiated Locks

Although the two phase discipline described guarantees serializability,
there are improvements to be made without sacrificing that guarantee
[10,11,13,20]. Specifically, more concurrency can be obtained by specializ-
ing the locks to take advantage of the fact that there is no conflict involved
in two or more transactions simultaneously reading the same item. Here
the principle is that a read lock (permission to read} may be granted to
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any transaction as long as no other transaction holds a write lock (per-
mlssion to modify the item). A write lock may be granted only when no
other transaction holdy either a read or write lock. The conventions for use
of an item are similar to those for an item with a simple lock except the
differentiation of read and write. A transaction must hold the write lock
to modify the item in any way. Any other access need only he protected,
by a read lock, against a concurrent transaction modifying the item.

In terms of serializability, the results for two phase locking continue
to hold, since interleaved reads by concurrent tramsactions do not repre-
sent conflicts. Concurrent transactions performing writes are protected in
exactly the same way as with a simple undifferentiated lock.

A broader generalization of differentiated read/write locks can be ob-
tained by considering which operations on an object are comunutative {(in-
terchangeable in fime without external effect). Clearly, in a model with
simple objects where the only operations are read and write, two reads on
the same object are always commutative and no operation is comumutative
with a write. To refine the locking scheme further requires a sev of objects
with higher ievei operations. Such an example, the semiqueue, is explored
in [25,26]. Since locking is essentially object oriented, rather than traunsac-
tion oriented, such generalizations are easy to build, using the same basic
structure as simple locking.

In the earlier discussion, scheduling (choice of which of several compet-
ing transactions would get a lock next) was left to the underlying impie-
mentation. There is an assumption that this implementation will choose a
strategy which is reasonably fair. That is, under normal loading, no trans-
action will be starved completely by having others continually placed ahead
of it. ‘This is fairly easy to manage with undifferentiated locks by having the
scheduler maintain a FIFO list of requesters for each lock. Some sophisica-
tion may be applied to re-ordering these lists to minimize the probability
of deadlock. The situation for differentiated read/write locks is more diffi-
cult, as late arriving read lock requests will be filled ahead of outstanding
write lock requests as long as other reading transactions remain active. A
modified set of rules, blocking new read locks while a write lock request is
outstanding, is one approach to this problem.

Deadlock detection and resolution issues are (generally) unchanged by
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the differentiation of read and write locks, except that there are now two (or
mere} locking structures instead of one. This slightly complicates deadlock
analysis, but has no effect at all on a timeout detection method.

3.4 Commit/Abort Considerations

Locking, as it has been described above, satisfies the requirements of se-
rializability, and thus guarantees that successful transactions will be atomic.
However, there can be expected to be unsuccessful transactions as well
(deadlock resolution victims, for example), and these must also be atomic
in the sense of having their effects reversed, never becoming visible to the
outer world.

What is needed is to keep track of all the changes made to the database
by a transaction, so that the original values may be re-installed on abort.
The constraints of the two phase discipline prevent these uncommitted
changes from being seen by, and thus affecting, any other transactions. The
obvious time to note these original values is at the point where the lock is
obtained which allows a modification to be made. It cannot be done earlier
than that, as the object might be changed by some other transaction, and it
must be done before any modification is actually made. The preserved value
is, like the lock, associated explicitly with the data object, and implicitly,
like lock ownership information, with the transaction whose abort would
require the backup value.

The processing activity when a fransaction commits is simply to release
all the locks, and, in principle; discard the backup copies of altered objects.
External requirements, such as legal auditing procedures, and reliability
concerns may make it necessary to keep such information indefinitely. The
only serializability concern for commit is that once the process is begun (the
first object unlocked), it must be completed. Incomplete commit processing
may leave the database in an indeterminate state, with some objects up-
dated, and others still locked. The commit process itself may be considered
a transaction in the context of a lower level of abstraction.

Abort processing is similar, with all locks being released. However,
instead of being discarded, the backup information is used to restore the
values of objects which were modified. The modified values are then dis-

14

carded. (Again, auditing may necessitate the retention of the discarded
vatues). The same serialization requirements apply here as for commit.

3.5 Locking Overhead

For each lockable object, the storage overhead for locking is just the
lock itself, represented by the name of its holder (needed for checking and
abort recovery) and an unlocked indication. Differentiated locks addition-
ally require a list of transactions currently holding read permission, with
an indication of an empty list. For commit processing, each transaction
must have, implicitly or explicitly, a list of locked objects. Abort recovery
further requires the original value to be available to be restored. In addi-
tion, deadlock analysis may require further data structures associated with
both the objects and the transactions.

The processing overhead involved is to determine the necessity of lock-
ing, obtain the lock, and verify upon access that the lock is properiy heid.
The backup copy must be made. On commit all the locks imust be released,
and, on abort, the backup values restored. 1t may be necessary to engage in
deadlock analysis and victim selection, and the data structures associated

" with deadlock analysis must be dismantled upon transaciion compietion.

3.6 Locking Variations

Concurrency control by locking has been described in fairly simple
terms: getting the lock, checking when necessary, releasiug it, saving and
restoring the value. There are a number of variations which may reduce
the processing overhead. Where address mapping hardware is used and the
object sizes involved fit well, the lock checking overhead can be reduced
to the page fault checking in the hardware. 1t may be more convenient
to leave the original object intact until commit, and do wodifications to
a private, shadow copy. Then commit processing will have to install the
newly committed value. This approach is attractive when the peranent
data are on a limited access medium, such as disk, and normal vperations
would use a copy in primary random access memory.

Where auditing is required anyway, “before images” iy be copied to
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the audit trail. Then abort processing will back down the audit trail restor-
ing objects touched by the aborting transaction. The audit trail may also
contain the list of objects locked, eliminating the dependency on the inter-
nal record keeping of an aborted transaction.

4 Optimism

The optimistic method for concurrency control [14] is based on the ob-
servation that, in some database systems, concurrent transactions rarely
conflict. That is, a transaction is almost never forced to wait for a lock to
become available. To the extent that this is true, locking for concurrency
control is just so much wasted time and space. The optimistic method
of concurrency control allows a transaction to proceed unhindered by the
activities of other transactions until it is ready to commit. At this time, a
check is made that there was no unserializable interaction with an already
committed transaction. If there was, the present transaction fails involun-
tarily (much like a deadlock victim) and must restart from the beginning.
Otherwise it completes successfully.

The actual mechanism requires keeping track of the read and write sets
of the transactions. In addition, all writes, and, implicitly, creates and
deletes, are done to “shadow” versions (local copies) of the actual perma-
nent data items. This protects against a transaction which eventually fails
after writing, thus serving the same purpose as saving the old value in the
locking routines described above. In the optimistic system, all transactions
consist of a read phase {reads and shadow writes - the body of the transac-
tion), validation, and a write phase when the shadow values are installed
as the permanent values.

The validation process consists of assigning the transaction a place in
the serial order and then verifying that it can be validly placed there in the
order. The serialization numbers are assigned sequentially as transactions
reach the validation stage. The validation check is to verify that at least
one of the following criteria holds for every transaction T; which precedes
(in the serialization) the present transaction T; (taken from [14]):

1. T;: completes its write phase before T starts its read phase (T; com-
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pletely precedes T})

2. the write set of T; does not intersect the read set of 1; and T; completes
its write phase before T; starts its write phase

3. The write set of T; does not intersect the read set or the write set of
T; and T; completes its read phase before T; completes its read phase

These conditions ensure that T; properly follows Ti: T} has no affect on 7}
and sees all of T;’s writes. Thus serializability is guaranteed.

Once the validation is complete, the write phase is executed, installing
new values in the permanent data structure. The assignment of the location
in the serialization must be done under mutual exclusion. The read and
write sets of all transactions which completed after any currently running
transaction began must be kept to allow vaiidation of the later transactions.
This is a potentially unbounded amount of information. If any of these
records are lost because of limited storage, following transactions whose
validation required that information must be forced to abort, as they cannot
be validated. They will then be restarted and will eventually occupy a later
position in the serialization. Another aspect of optimism comes into play
here - it is hoped that this situation will not occur often and not repeatedly
for any given transaction. Ii is suggested in [14] that, in such a case, a
transaction may be restarted and run all by itself, and allowed tc complete
before concurrent processing is resumed.

The optimistic method has read/write differentiation built into it, as
the read and write sets are separately maintained and play distinct roles
in validation. Further specialization would require, for each special case, a
restatement of the validation criteria and thus a new validation algorithm,
possibly with different record keeping requirements.

Also built into this method is the backup mechanism for abort. Shadow
update, much like the variation suggested for locking, avoids the need for
explicit preservation of permanent values, at the cost of requiring explicit
installation of newly committed values. Again, where permanent data is
maintained on secondary media, this may not be a significant cosi.
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4.1 Overhead

The processing time overhead for the optimistic method is spread among
four distinct activities. During the read phase of the transaction, the read
and write sets must be maintained, and the shadow copies of objects to
be modified must be made. Then, at commit, the validation process must
be performed. The magnitude of this activity depends not only on the
characteristics of the transaction to be validated, but also on the number
of other, already committed, transactions which were (might have been)
concurrent with it, and the sizes of all the read and write sets.

Finally, after validation, the new copies of updated objects must be
installed. It is noted in {14] that some portions of the validation process
must be performed under lower level concurrency control (such as mutual
exclusion). Also, the process of installing new values must be completed
promptly, as this write phase plays a role in the validation of later trans-
actions.

The processing for abort is simple: just forget everything, read sets,
write sets, and shadow copies, except what is needed to restart the trans-
action.

The space overhead is that required to maintain the shadow copies of
updated objects and the read and write sets. The shadow objects {or the
old permanent objects) are discarded during the write phase. However, the
read and write sets (along with the times associated with the phases) of
a sucessful transaction must be kept as long as there are still outstanding
any other transactions which were concurrent with it. In a busy system,
this can build up significantly.

5 Time Stamping

A third mechanism for managing the interactions of concurrent transac-
tions is timestamping [3,18]. Each transaction is assigned a unique times-
tamp. This is a somewhat arbitrary identification of the place the trans-
action will have in a canonical serialization of the concurrent mix of trans-
actions. In practice, each transaction will be assigned a timestamp higher,
or “later”, than that already assigned to other “older” transactions.
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The timestamp is used to arbitrate conflicts arising among transactions
in‘the following way. All read and write operations must be performed in
timestamp order. This means that a read for a transaction with timestamp
TS, cannot be performed on a data object which has already been written
by a transaction with timestamp T'S,, where T'S2 > T'S1. There are similar
restrictions for write-read and write-write conflicts. In a case where such
an out-of-order request is made, the requesting transaction (with the older
timestamp) is aborted and restarted with a new, higher timestamp.

The scheme is implemented by maintaining read and write timestamps
with each object. These are the timestamps of the transactions which last
performed the corresponding operations on the object. A read cannot be
performed if there is already a higher write timestamp, and a write attempt
would be aborted if the read timestamp is higher. Ostensibly, a write should
also be denied by a higher write timestamp (a write-write conflict), but
Thomas [21,22] observes that such a write, assuming it doesn’t also conflict
with a read, can simply be ignored, as “already obsolete”. In (3], this is
called the “Thomas write rule”. If the same transaction later attempts to
read back the value, the read will fail because the later write timestamp
remains.

In a distributed environment, transactions may be assigned timestamps
by autonomous authorities, as long as the resultant timestamps are uanique.
Using the real time for the most significant portion of the timestamp, and
a unique “timestamp issuing authority identification” { hostname in a net-
work, for example) keeps the timestamp unique while preserving some ap-
proximation of real time order among the various locations. [t isn't even
necessary to synchronize the clocks very closely, since the critical prop-
erty of the timestamps is uniqueness. However, it the clocks differ by very
much, or the assignment of timestamps isn’t in real time order, transactions
may suffer starvation because they cannot compete with other transaciious
whose timestamps are derived from a clock running “fast”.

Reed [18,19] has suggested an elaboration of the timestamping mech-
anism, also studied in [4]. This is to maintain muitiple versions of each
data object, with a separate write timestamp for each version and a set of
read timestamps for the object as a whole. Reads are performed by sim-
ply choosing the appropriate version (highest timestamp lower than that
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of the read) and are thus never rejected. A write may still fail if a read
hes occurred with a timestamp greater than that of the write, but less
than the next greater timestamp associated with a write which has already
occurred. This corresponds to the situation where a later read already
depends on an earlier write. The current write would conflict with that
relationship, and must be rejected. As with the read and write sets for
optimistic concurrency control, it may not be reasonable (in terms of stor-
age) to retain all the versions or even all the read timestamps necessary
to process all transactions. In this case, reads with old timestamps may
have to be aborted because the system cannot supply the necessary (old)
version. Note that the multi-version form of timestamping automatically
uses the Thomas write rule, as, although the older write is not discarded,
the resulting version may never be used.

That timestamping guarantees serialization among successful transac-
tions is obvious, as the order is effectively chosen as the transactions begin.
Any action which would violate the order is aborted, causing the abort of
the whole transaction. Multi-version timestamping provides a wider win-
dow for a slow or long transaction to succeed, but it is only a matter of
degree. Deadlock is not a consideration, as any potential deadlock situation
will already have been resolved by aborting an attempt at an out-of-order
action on an object. However, inordinately slow transactions or communi-
cations failures in a distributed system can cause indefinite delays for an
otherwise healthy transaction. As with locking, a timeout mechanism can
be used to break up such a situation [18]. More formal treatment appears
in (3].

Although the timestamping method may do well at maximizing concur-
rency, it must still be prepared to handle abort situations. These may be
generated by serialization failures or by other conditions outside the times-
tamping mechanism. Reed [18] discusses the use of conditional “possibili-
ties” to deal with this issue. The effect is to delay any transaction which
depends on a possibility whose outcome hasn't yet been determined. Each
version in a multi-version scheme is associated with a possibility, which is
determined when the writing transaction (which created the possibility)
commits or aborts. If the transaction aborts, the possibility also aborts
and any other operations depending on the possibility must also abort or
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try another possibility (version) for the same object. This kind of inter-
ference can be lessened for read only transactions, which may be assigned
arbitrarily old timestamps [3].

5.1 Timestamping Overhead

The processing overhead for single version timestamping without pos-
sibilities is very low, as it is only necessary to check and update the object
timestamps. The only storage overhead is that needed for the object times-
tamps. Multi-version timestamping requires space for many versions of the
object, each with a write timestamp, and a set of read timestamps for each
object. Each read or write requires a search through the timestamps to de-
termine validitiy. As with the optimistic method, it may prove impractical
to retain all the relevant versions and read timestamps indefinitely.

The addition of possibilities, needed for abort, adds a delaying struc-
ture, similar to a lock, to each unconfirmed version, plus a list of objects
affected to each transaction. Comrnit processing consists of confirming the
possibilities, and thus freeing transactions dependent on them. Abort is
done by denying the possibilities and either aborting or redirecting waiting
transactions. When a write possibility is denied, the associated version is
discarded.

6 Comparison of Concurrency Control Mech-
anisms

Three different concurrency control methods have been described. They
have differing requirements in terms of auxilliary data structures and pro-
cessing overhead. All must make some provision for keeping a permanent
value and one or more temporary, tentative values for each object being
modified by a currently running transaction. All must make some provi-
sion for forcing a transaction to abort, although the circumstances vary.
Although all three methods call for overhead processing on every access to
the object, clever organization of the addressing mechanism can limit this
overhead to the first access by a given transaction.
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Locking requires extra storage per data object to keep track of the
loek status and owner. Depending on the sophistication of the locking
scheme, this varies from a single transaction identifier to a set of such ids.
Deadlock analysis may also require a list of locked objects to be kept with
each transaction. The appropriate lock must be obtained before the data
is accessed, which implies that the lock must be checked on every access.
When a transaction completes, it disappears from all these data structures.

Locking requires some mechanism to detect the presence, or probable
presence, of deadlock, and a corresponding way of dealing with it. Deadlock
is generally resolved by choosing as a victim a transaction which is party
to the deadlock and forcing the victim to abort. A transaction can only
become a victim when it is blocked trying to obtain a lock.

For transactions operating in a locking environment, the determination
of their relative order in any equivalent serialization occurs dynamically,
whenever an access is made by one transaction to an object already acceased
by the other and the accesses conflict. The first transaction accessing the
object will precede the second in the order. The second will wait to com-
plete its access until the first finishes. Deadlock arises when an attempted
access conflicts with an already established (through another object) order
relationship. Deadlock analysis and detection may be a major factor in the
complexity, size, and performance of the system.

Once a transaction has obtained access to all the objects it will use,
it will not suffer further delay or interference, and, in particular, can no
longer become involved in a deadlock.

The data structures required for locking are distributed between objects
and transactions. Obviously, the lock itself is associated with the object.
A list of objects affected must be kept with the transaction to facilitate
commit and abort processing. The backup values needed for abort may be
associated with either the transaction or the object.

Optimistic concurrency control requires the maintenance of read and
write sets for each transaction. In addition, a private copy must be made
of each object to be modified. In principle, all of these things must be done
or checked on every access. The read and write sets must be kept for an
indeterminate time after successful completion, along with the beginning
and ending times for the read and write phases.
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With the optimistic method, transactions suffer no delays or apparent
interference until they are ready to commit. During the validation process,
a transaction may be found to be in conflict with an already committed
transaction. If so, the not yet validated transaction must be aborted. This
is the only possibility for involuntary abort. The serialization order is deter-
mined as each transaction enters the validation process. The circumstances
requiring abort during validation are that the actual access patterns (con-
flicting usage) contradict the order established by the race to commit.

The data structures for optimistic concurrency control are transaction
centered. The read and write sets, and the private copies are associated
with the transaction, with object names being used only to access the orig-
inals and as tags in the sets. However, in a distributed system, the objects
could be partitioned to allow local management.

In its simple form, timestamping just requires a read timestamp and a
write timestamp for each object. The timestamp of the transaction must
be checked against these. If the operations would noi be performed in
timestamp order, the late transaction must be aborted.

Timestamps are assigned to transactions as they begin, thus immedi-
ately fixing their places in the serialization order. A forced abort is the
result of this predetermined order being violated by actual events. In order
to allow for abort, a form of conditional update, which may delay following
transactions, is necessary.

Multi-version timestamping requires the maintenance, for each object,
of a set of read timestamps and a set of versions, each also timesiamped.
The characteristics are essentially the same as for single version timestamp-
ing, except there is greater provision made for allowing slow transactions
to keep their place in line, at the cost of maintaining records related to
already committed transactions. Again, conditional update is necessary af
the level of individual versions.

Under timestamping, as under locking, the data structures are dis-
tibuted between objects (versions, possibilities, and read timestamps) and
transactions (the transaction timestamp and the list of possibilities to be
confirmed or denied).

The serialization order determined by locking is a partial order. That
is, there may be many consistent serializations. The order is determined
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dynamically. Both timestamping and optimism generate total orders some-
what arbitrarily, either as the transactions begin or as they finish. Only
locking encounters deadlock, but the others must remember transactions
after they have finished. Only optimism can force the abort of an appar-
ently successfully complete transaction. Under timestamping, a transaction
may be aborted inveluntarily if it is unable to find or create a version with
an appropriate timestamp.

In terms of maximizing concurrency, multi-version timestamping ap-
pears to allow otherwise interfering transactions to potentially operate
concurrently without delay or forced abort. In the other forms of con-
currency control, the argument is a tradeoff of decreased overhead versus
fewer aborts. None of locking, optimism, or single version timestamping
allow more concurrency among successful transactions.

7 Nested Transactions

In a database system, transactions are an attractive concept because
the properties of atomicity and reversibility allow the programmer to ab-
stract away some of the immense complexity of concurrent computation, or
even just simplify the process of undoing an aborted activity. The ideas of
top-down design suggest that it would be equally attractive to break trans-
actions down into sub-units with the same properties [15,17]. A number of
advantages accrue from such an approach.

Procedures are used to compose a program, implementing abstract op-
erations on abstract data objects. The use of transactions adds to these ab-
stract operations the same properties, in the narrower context, that make
them so useful at the user interface. They will behave predictably even
when concurrent processing is used to implement the higher level trans-
action. They may also be used to contain the effects of local failures, to
permit recovery and retry at as low a level as possible. These low level activ-
ities can then be straightforwardly composed in the higher level framework.
This is the ultimate goal of abstraction: to be able to ignore the details of
lower level implementation, even when it involves concurrency or allows for
failures.

In a distributed environment, transactions must act, in a coordinated
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way, on objects scattered among various hosts. A nested subtransaction
may be effectively used to represent the activities of the parent transaction
in each location. This approach may also be used within a single host to
deal with resources (objects) under the control of disjoint managers.

A nested, or subordinate, transaction must have a number of properties
in order to be useful. In the first place, it wiii be invoked by a parent trans-
action for the purpose of accomplishing something. The subtransaction
must operate in the environment of the parent, in terms of work already
done by or for the parent. Thus the subtransaction must see teniative
changes made by the parent, even though the parent has not committed
these changes.

On the other hand, when a subtransaction finishes successfully, it must
commit its effects only within the parent. That is, the effectz will become
visible to the parent and thus to any other subtransaction of the parent. If
a subtransaction aborts, it must restore any objects it changed to the siate
perceived by the parent when the subtransaction began.

From this discussion, it should be evident that a subtransaction furic-
tions as a component of its parent. This means that, to transactions outside
of the parent (competing with the parent), the activities of the subtrams-
action appear as indivisibie activities of the parent.

If the implementation of a parent transaction supports concurrency, that
is, allows subtransactions to compete concurrently, then the csaai proper-
ties of transactions, applied to the subtransactions, require concurrency
control to be employed to effectively serialize the sibling subtransactions.
The effects of this on the different concurrency control mechanisms is de-
scribed below. In all respects, competition awmong sibling subtransactions
is identical to competition among disjoint parents, and, indeed, the disjoint
parents may be considered siblings of each other.

For nested subtransactions, the concurrency control mechanisms en-
counter several new aspects of the problem. The first is that a child and
its parent are obviously not serializable with respect to each other. There
will in general be intermixed reads and writes of common objects.

However, there will be a similar requirement {to serializability) that
there exist an equivalent order (schedule or log) of reads and writes such
that none of the parent’s activities are interspersed among the child’s. "I'his
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is required to guarantee the atomicity of the child.

* The second new feature is the limited scope of commit and abort. Upon
commit, the effects of a subtransaction are made visible only to its siblings,
if any, and its immmediate containing parent. This is required to guarantee
the atomicity of the parent. Similarly, recovery from the abort of a sub-
transaction must only undo the effects of the subtransaction, not anything
accomplished by or on behalf of the parent “before” the subtransaction was
invoked, or concurrently by sibling subtransactions.

This is necessary to allow the parent to continue correctly (in terms of
the programming model}.

7.1 Locking and Subtransactions

Handling dependent subtransactions with lock based concurrency con-
trol complicates the locking algorithms and also multiplies the opportunities
for deadlock. The criterion for granting a read lock is still fairly simple. A
subtransaction may become a reader as long as the writer, if there is one,
is an ancestor of the prospective reader (or the prospective reader itself is
already the writer - an extension of the notion of ancestor).

A prospective writer will be granted a write lock so long as all readers
and any existing writer are ancestors. This criterion follows naturally from
the notion of the subtransaction acting for the parent, in the environment
provided by the parent.

For write locks, the preservation of the “old” value, for restoration in
case of abort, is more involved. An abort of a subtransaction affects only
that subtransaction, but allows siblings and parent potentially to carry
on. The value to be restored is the one the subtransaction found when it
obtained the write lock. For nested subtransactions, there is, in effect, a
stack of old values. Obtaining a write lock pushes another value onto the
stack. In addition, the identity of each previous writer must be kept in the
same stack, and also restored on abort.

On commit, the parent becomes the holder of the write lock. If the
parent was the previous writer, in the stack of old values, then the top
entry on the stack is discarded, as the value installed by the committing
subtransaction becomes the current value for the parent. If the parent was
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not the previous writer, the stack is left as is, so that the value and idensity
of the previous writer may be restored if the parent aboris.

Read locks are also passed on to the parent when the child commiis. In
the case of either commit or abort of a subtransaction, its name is removed
from the set of readers.

Undifferentiated (as to read or write} locks are treated like write locks.
To obtain a lock, the existing lock holder must be an ancestor.

Old values and lock holder identities must be stacked On commit,
the lock is passed onto the parent, with appropriate manipulation of the
stack of previous values. On abort, the previous value and lock holder are
restored.

One complication with locking and subtransactions arises from the fact
that a subtransaction pre-empts the write lock from its parent, in erder to
ensure that the activities of the chiid appear to be properly nested as an
atomic action within the parent. If the parent continues to run, it will have
to be removed from the list of readers (and restored to it upon commit
or abort of the subtransaction] as a part of granting a write lock to any
descendent. The parent must aiso be prepared to be blocked from obiects
to which it formerly held read or write permission. This blocking is not
of course evident to the transaction itself, being a part of the underlying
implementation, but the possibility does cast shadows on some obvious
strategies for efficient imnplementation, such as manipulating address maps
to effect read or write access rights. These problems may be avoided by
suspending the parent for the duration of any dependent subtransactions.
This sort of problem does not immediately arise if subtransactions are re-
stricted to different hosts in a network. However, in a fully general such
environment, these subtransactions could spawn rurcher subtransactions,
inciuding in the hoet of the original parent.

7.2 Optimism and Subtransactions

There are significant changes necessary to adapt the optimistic strategy
for dependent subtransactions. The optimistic approach does not track
the timing of conflicting usages by competing transactions, only that two
transactions overlapped in time and read or wrote one or more objects in
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common. This implies that the parent must absolutely be suspended during
the lifetime of any subtransactions. In order to handle subtransactions “in
the environment of the parent”, the read and write sets must be maintained
and checked for all immediate offspring of a parent. This checking will not
involve the read and write sets of the parent’s siblings or their ancestors,
nor, directly at least, those of children of siblings of a subtransaction. Thus
subtransactions compete directly only with immediate siblings.

Similarly to the stacking of values for locking, private copies of objects to
be modified must be maintained for each subtransaction. When validation
is successful and a subtransaction commits, its modified objects become
the private copies of the parent, replacing any copies the parent had of the
same objects. The read and write sets of the subtransaction are merged
(set union) with those of the parent. They must also be kept separately,
within the environment of the parent, to be used for validation of siblings.
They may, however, be discarded completely when all concurrent siblings
terminate, and certainly when the parent terminates. The process of valida-
tion is unchanged except for being restricted to recognizing conflicts among
immediate siblings. :

7.3 Timestamping and Subtransactions

Timestamp based concurrency control must also undergo significant
changes to support dependent subtransactions. As described earlier, a
transaction is given a “timestamp” which places it in the serialization or-
der. With subtransactions, a simple order, partial or complete, will not
suffice. The subtransactions must appear embedded among the activities
of the parent, although they are not distinguishable from the parent from
a viewpoint outside the parent.

Reed [18] suggests a solution to this problem which, in effect, makes each
timestamp represent an interval on the timeline. Subtransactions may be
assigned timestamps within the interval. (A problem with this is that the
size of a timestamp is unbounded unless the nesting depth of subtransac-
tions is limited). This places a family of sibling subtransactions effectively
within the parent.

The construction of the composite timestamp confirms the desirability
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of delaying the parent during the lifetime of the subtransaction, ss a range
is not ordered with respeci to a subrange of itself. This could He avoided
by altering the parent’s timestamp to just beyond the subrange assigned
to each new subtransaction as it is spawned, but this could be difficuit to
manage in a distributed system.

The management of possibilities for nested subtransactions is similar to
the managemient of locks. Subtransactions are not delayed by sncommitted
posgibilities held by an ancestor. On the vther hand, when & subtransac-
tion commits, its possibilities are confinned only to its siblings wud parent.
Older ancestors and outsiders must continue to wait. If a subtransaction
aborts, any siblings, ancestors (including the parent}, or outsiders waiting
for one of its possibilities must either be aborted or redirected io look for
a different possibility.

8 Summary

In a single threaded, non-concurrent environment, a database way be
treated purely as an abstraction on data structure, with approrriate op-
erations. Transactions may be added to provide boih a convenient higher
level procedurai abstraction for activities taking place in the database, and
a mechanism to allow for and manage failure {abort). The elemuents which
are specifically represented in the data abatraction are also important as
the objects of reversible operations invoked by transacticns.

In a concurrent environment, the relationships among objects, opera-
tions on thuse objects, and transactions are the basis for the management of
concurrency. The transactions are defined at the same level of abstraction
as the objects, and, with the operations, must provide the desired prop-
erties for the system, particularly in the face of concurrent transaciions.
In this context, the objects, operations, and transactions must be carefully
specified, so their properties mesh to support the overall abstraction.

The overall criteria for integrity in the database is that the transac-
tions be serializable. This property is defined in terms of the objecis in the
database and records of accesses to them {through operations) by trans-
actions, Concurrency control is applied to guarantee secializability among
successful iransactions.
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Several different concurrency control methods have been described, each

with its own demands on the objects, operations, and transactions. They
have differing characteristics with respect to potential concurrency, resolu-
tion of conflicts among transactions, and overhead costs. They also differ in
their determination of the relative order of transactions in the serialization.

Also discussed were dependent subtransactions, which provide both a

further degree of abstraction and a straightforward way of partitioning

transaction management according to geographic or other criteria. Adap-

tations of the concurrency control mechanisms to handle subtransactions
have also been examined.
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