University of Glasgow

Department of Computing Science EIS]
Lilybank Gardens 2o ~=x

<

Glasgow G128QQ Tl

University of St. Andrews

Department of Computational Science
North Haugh
St Andrews KY16 9SS

Delayed binding and Type Checking
in
Database Programming Languages

M. Atkinson, P. Buneman & R. Morrison

Persistent Programming
Research Report 45
September 1987

Arn Dple.

Delayed Binding and Type Checking in
Database Programming Languages

Malcolm Atkinson 1, Peter Buneman2 and Ronald Morrison3

Abstract

Altention is drawn to the issues regarding the timing and performance of
binding and type checking in database programming languages. Examination
of the relationships between long term data and programs leads to the
recognition of four patterns of binding. A representative sample of such
languages is reviewed to show that some give explicit control over binding
without loss of strong typing, whereas others have no mechanisms to support
the binding we deem necessary. We conclude that it is both possible and
desirable to provide constructs to explicitly identify bindings that should be
delayed, without loss of strong type checking. Such provision has an impact on
the type equivalence rules available for database programming languages.

1 2 3

Prof. M.P. Alkinson, Prof. O.P. Buneman, Prol. R. Morrison,

Universily of Glasgow, Universily of Pennsylvanié, Universily of St. Andrews,

Dept. of Computing Science, Dept. of Computer and Dept. of Computational Science,
Glasgow Information Science, North Haugh,

G128QQ Moore School/D2, St. Andrews KY16 9SS
SCOTLAND. Philadelphia Pa 19104 Fife,

TEL. NO. 041 330 4359. TEL. NO. (215) 898-7703 TEL. NO. 0334 76161.

Introduction

Many proponents of modern programming language design believe that
languages should be entirely statically bound and statically type checked
[Milner 78, Milner 84, Liskov et al. 81, Albano et al. 85a). In a statically
bound language all the information necessary to determine the types
associated with all language constructs is available from inspection of the
source text. There are three major advantages to this static binding:

early detection of a large number of programming errors - which benefits
program development and improves the safety of the final product;

factoring out checks that would otherwise be made repeatedly at run-time to
ensure that operations are applicable - which reduces execution time; and,
removing the need to store type information (data description) with data -
economising on storage volume and data-bus traffic.

In contrast, many database interfaces are entirely dynamically bound and
checked. For example, with most Codasy! interfaces operations may be
revalidated for each record to which they are applied, and in many relational
systems details of a relation's type will be rechecked for each use of that
relation. ~ Similarly, there are many languages in which the binding
(determining which location a name refers to) and the type validation is
dynamic, depending on the execution sequence of the program. Examples
are: LISP [MaCarthy et al. 62], POP-2 [Burstal et al. 71], APL [lverson 79],
Smalltalk [Goldstein & Bobrow 80] and Prolog [Clocksin & Mellish 81].

In this paper, we will demonstrate that some dynamic binding is necessary in
database programming languages (DBPLs). We will review binding in
existing DBPLs, showing that some have adopted an entirely static
approach, but that others have adopted a combination of static and dynamic
binding. The correct mixture of these two forms of binding for DBPLs we
consider a research issue. We present our understanding of the options and
criteria.

For a more general survey of DBPLs the reader is referred to [Atkinson &
Buneman 87], and for a tutorial on binding and typechecking to [Tennent 81].
We take it as understood that a valid long term goal is the development of an
integrated DBPL, which services all the needs of long term and short term
data storage and manipulation. That case is argued elsewhere [Atkinson et
al. 86, Atkinson & Morrison 86, Atkinson & Morrison 85a, Atkinson et al.
83].

2.1

Binding reconsidered

In traditional programming languages and database systems there are a
number of binding mechanisms which are often not easy to comprehend or
use. The action of binding associates a name with a value. This simple
aclion is complicated by the fact that we may perform many bindings
simultaneously. For example in binding a program to a database we may
incrementally bind names in the program to values in the database as the
program executes, or we may bind all the names to values at the same time.
A mixture of these mechanisms is also possible.

The binding may also be performed statically or dynamically. Static binding
occurs when the compiler arranges the binding. The bindings once
established are immutable and thus any alteration to the database schema
or the programs that run against the database, may require re-compilation to
re-establish the bindings: = Dynamic. bindings do not suffer from these
compilation overheads as they are only established as they are required.

In establishing the binding there are two major ways in which the name is
interpreted or scoped. . With: static scoping the name is interpreted in ils
lexicographic context whereas with dynamic scoping the name is interpreted
in the evaluation context. ' Static scoping is commonly found in the Algol
family of languages.: Dynamic scoping is found in Lisp, APL and in systems
that bind different databases to the same name depending on the context
the program is run in.

The issue of type checking is also present in binding. - We would wish the
system lo check the valid use of data when it is bound: This can be done
statically or dynamically depending on the time of the binding.

One final issue concerned with binding is that the name may be bound to a
constant or variable. 1f variable, the referenced value may change without
altering the binding [Tennent 81},

The delayed binding mechanism

The delayed binding mechanism for database programming languages is
operated as follows. As databases-are constructed they are made to
conform to a type definition: and naming scheme. The definitions of the
objects in the database are stored with the database in the dictionary or
schema.

i)
ii)
iif)
iv)

3.1

Program construction proceeds in a similar manner with the program
components conforming lo a separate type definition and naming scheme.
These definitions are stored as part of the program.

For programs to work against databases the type system and naming
scheme in each case must be founded on a common model and stored in an
agreed form. Thus, when any program is used with any database, at some
time before any operation is performed, the two descriptions are compared
to verily that they are equivalent or compatible definitions in the two contexts.
Identifying good common models, canonical forms and the rules for
determining compatibility and equivalence is the subject of current research.
A central issue in this paper is the time at which the compalibifity check is
performed, and the extent to which the programmer may control its timing
and its extent.

The case for delayed binding in DBPLs

In rather general terms, we may expect delayed binding to be uselul, since,
with delayed binding the interpretation of names depends on the history ot
the computation. In databases, we are recording the history of a number of
computations, and then making that history available to subsequent
computations. As we revise values and definitions in the database, it is not
practical to recompile all programs to ensure they still bind correctly before
they are used. This is simply an echo of the early statements about data
independence.

To make the case more specific the following applications of DBPLs are
considered:

re-use and distribution of programs;

selection of databases;

combination of information from several databases;
incremental data and program definition.

Each of these will be elaborated in turn.
Re-use and distribution of programs
Often a program is economic to develop only if it can be used against many

databases. For example, a CAD program would be used for many
projects, and, normally a separate database would be used for each project.

3.1.1Static Mechanisms for reuse

To reuse the program it must be bound to each database.
I this is to be achieved by static binding two methods exist:

i) the program can be delivered in source form, and. compiled in the context
of each database;

i) the program can be compiled in the context of a type definition (as in Poly
[Matthews 85]) which is used to declare each database.

The first method runs into two problems:

a} the cost of reprocessing the source, and performing the binding may be
unacceptably high, and may involve resources not available at each
database;

b) it involves distributing programs in source form (or something similar)
which means they reveal techniques which could then be: more easily
copied by rivals.

In any case, conducting the compilation is just another. mechanism for doing
the delayed rebinding. The question remains - is this recompilation built in,
or achieved manually using external facilities.

The second method means that each instance ‘of a database is declared in
the context of the one type declaration.” With static binding, this means in the
scope of the type definition. - With present technology that scope is limited to
one computer system. This is clearly unacceptable as the databases will
typically belong to different organisations that will wish to support the
databases on different machines with different operating, protection etc.
policies. This requirement for independent ownership: militates strongly
against this form of static binding.: It may be possible to utilise this approach
using distributed database technology, since it may provide: a single
"central” definition, of many. database instances - but this is ot complete
independence, adherence to the conventions of the particular network is
necessary and the problem reappears between networks.

3.1.2 Program and data as an ADT

Another taclic could be used to maintain static binding, by making the
program the unit of ownership. Here, the would be database owner would
possess a program. Operation of the program would then generate the
database in terms of the definitions within the program. Provided all the

3.2

required operations on the database are supported by this program, then all
use of the data requires no further binding. This is the approach taken by
syslems with a simple data model, e.g. spreadsheet systems. However,
apart from very simple applications, it is not possible to anticipate all
operations. The normal arrangement is to acquire new programs to work
against the data as their need is perceived.

Other restrictions resulling from this approach are: the ditficully of combining
data originating from more than one database; and the problem of replacing
the software with improved versions. Both of these are discussed below.
But, it should also be noticed that the relationship between data and
program proposed here, is precisely the same as the relationship between
the encapsulated data of an instance of an abstract dala type (ADT) and
the program that implements the operations on it. There are differences of
scale, but the same problems arise. If we view the data and programs as an
ADT, and a good set of basic operations is provided by the program
encapsulating the data, then all intended operations can be achieved by
composing those basic operations. If the composition is done by program
(procedural languages, operating system command language etc.) then the
problem of binding reappears. If it is done by hand, only trivial problems
can be solved before the task is too laborious and error prone. A relational
system is an example, the encapsulated data being instances of relational
data bases, and the operations being the usual algebra, plus schema
update operations. The operations are composed by the query language.
As soon as queries become so complex that they are stored for reuse, and
the schema may have been amended over that time, these issues of binding
cannot be trivially solved.

From this section we conclude that delayed binding is required both to allow
programs (particularly proprietory software) to be distributed and used on
many independent databases, and to allow programs to be collected
incrementally for use on a database.

Selection of databases

If a program is statically bound to a database then there is no choice about
which database the program will operate against. Where there are
independent databases (e.g. the CAD projects) they may be named in quite
complex and user determined ways. It is then desirable to start the program,
and as a consequence of a dialogue with the user, determine which
database (or databases) are to be used.

3.3

The more generic the function performed the more likely it is that the user
will dynamically choose the subject database(s). To provide this requires
delayed binding.

Composition of databases

Frequently, it is desirable to combine data from more than one database:
slalistics from two sources; parts from one project to be used on another; the
caplured company's and principal company's databases after a merger; etc.

Since a program cannot be statically bound to all possible subsets of
databases, this requires delayed binding.

For example, when reusing part definitions or previous designs, it is likely
the data will have been prepared using the same software, and that
therefore (a) relalively large chuncks will comply with the current data
definitions in force, and (b} this is a typical case where the user will make

* delayed decisions. When in the midst of a current design, then the user will

3.4

perceive the need for a remembered part and decide which database to
search.

incremental definition

We have already observed the need to collect programs {o perform
operations when a need is recognised. For example, new methods of
evaluation, manufacture and management may become relevant while the
data is in existence.. New programs will be installed to support the new
methods.

But program is not special, There is no reason to assume that data definition

can be completed-once: and for all, any more than program can be. The
body of data, and hence the definitions which describe it, must also evolve to
meet changing needs.: To do this, with. "live" data and programs, requires
delayed binding.

This evolution of definilion is divided into three parts: extension ,
replacement and deletion. For extension it must be possible to add new
definitions and the corresponding data, and refer to it via the pre-existing
data. For example, if this new data gave an additional specification of an
aircraft window, one would expect to use the existing data to select a version
of an aircraft and reach a particular window, in order to get to the new data
apperlaining to that window.. The alternative, of building a parallel

6

description of the context which supports the new data, is unacceptable
because successive changes would lead to a combinatorial explosion of
replicaled data, with unacceptable update anomaly problems. 1t is therefore
necessary that existing meta data and the corresponding objecls can
accommodate extension and that exisiting programs run correclly on the
extended data. This requires forms of incremental delayed binding to both
the data and the schema.

Replacement is necessary to repair errors. For example, a CAD program
may contain errors, and a new one be supplied to replace it. It is essential
that this new program be installed at each database without loss of the
design elfort expended so far. This requires that, in some way, it be bound
with the pre-existing database. If the errors also include erroneous design of
parts of the data structure then a more difficult replacement is required.

Deletion will occur when a data structure subgraph has fallen into disuse. i
this hypothesis is valid (the normal case) then no program will actually try to
use the data again. Either all programs have 1o be recompiled to verify this
validily, or it must be verified incrementally by delayed binding. Which is
more economic depends on the volume of program and its trequencaes of
reuse and recompilation.

A common method of structuring programs is to encapsulate data in
modules, presenting only the legitimate operations as an abstract data type.
Such modules themselves may contain errors which become apparent in
long lived data. Recovery requires replacement of the module definition,
possibly with redefinition of the interface, and, again, there will be occasions
when the encapsulated data must be carried forward to be re-used with the
definition. We do not know of any module mechanism yet developed which
would suppnrt this form of rebinding.

. The need to recover from errors and for data definition to evolve has always

existed for programs and data. The development of large bodies of data
combined with large suites of program make solutions based on rebuilding
which have been used in the past uneconomic. Ad hoc solutions prevent
the development of easily understood programming languages. This paper
traces the search for consistent treatments and presents our suggestions.

Trealment of binding in DBPLs

in the preceding section the need for some form of dynamic binding and
delayed type checking in database programming languages was

4.1

established. A number of languages are now reviewed to consider their
treatment of this issue.

Pascal

In Pascal {ISO 82] the type file may be used to access external (persistent)
data; it may be parameterised by another type as in file of char ; file of
integer; file of record a: integer; b: real; ¢; bool end. Persistence is
provided by mapping these files to those of the supporting operating system.
The binding is performed by one of two methods, shown in figures 1 and 2.

program X (f1, 12),
var f1: file of char ; 2 :file of integer ;

end.
Figure 1. binding exiernal files to intornal variables in Pascal

program Y ;
var f1 :file of char ; theFile : packed array [1 - 32] of char;

-« {carry out dialogue with user & obtain a value for theFile }
while notFinished do

begin

openFile (theFile, f1);

«*+. {do something with the file, then get another name}
end {repeat for the next file}

end
FHigure 2: solecting and binding filos in Pascal
For the program X in figure 1, there are two file parameters. When a user

of the program wishes to run X two parameters must be supplied with the
operating system command e.g.

run X myFile herFile

The operating system will identify two specific files myFile and herFile
and the run time support system will bind these to variables 1 and 2 in
the program. To avoid nonsense executions it should perform a delayed
type check at that time to ensure that the first is a file of characters and the
second is a file of integers. If this mechanism is implemented, then the
dynamic compositions of program and data described in section 3.1 are met,
at least for this limited class of data structures. The Berkeley Pascal
implementation [Joy 83], searches the current directory for files of the same
name as the given parameters, and hence the binding is based on dynamic
scoping.

For the program Y in figure 2 dynamic selection of the files to be processed
is illustrated. Each time around the while loop a different value for f1,
identified by the current value of theFile, is used. The procedure
openFile must perform the binding of the actual file to the variable and
perform a check to ensure it is a character file. [f this mechanism were
implemented it would meet the selection binding required in section 3.2.
This method is not part of the formal definition, but something like it may
appear in implementations. There is difficulty in providing procedures such
as openkFile in Pascal; since it offers no polymorphism, the procedure is
specific to the type of f1. Hence, it can only be provided by the compiler
writer, so the programmer moving a program cannot simply hide the local
form of this operation in a procedure

The fact that more than one file may be bound by either mechanism meets
the needs of 3.3. In Pascal there are fimitations, especially in
implementation, on the types that may parameterise.

4.2 Ada

Ada takes a traditional view of persistence by providing a library for
persistence over program and a file store for persistence over data, in
contrast to the view that one mechanism suffices for both [Atkinson &
Morrison 85al).

The library contains all the statically bound components produced by the
compiler and a loader combines these components into programs.
Component reuse for programs is achieved by the loader using a library unit
in many programs. This however is a static mechanism and is subject to the
criticisms aiready made in Section 3.1.

Persistence for data is provided by files. Access to files is first obtained by
instanciating a generic package of the particular access method, direct or
sequential and then opening a file of the type returned by the package. For
example

package Sorted_integers is new Sequential_io (INTEGER);

yields a package of sub-programs and types. The type
Sorted_integers-FILE_TYPE is now the type of the file and may be used
in the file accessing procedures. Figure 3 shows a generic package that will
copy any sequential file.

generic
type ELEMENT Is private ;
procedure Copy_any_sequential_file (Source, Destination: STRING) Is
package Any_sequential_io s new Sequential_io{ELEMENT) ;
use Any_sequential_io ;
Source_file, Destination_file: FILE_TYPE ;
ltem: ELEMENT
begin
Open (Source_file, In_file, Source) ;
Create (Destination_file, Out_file, Destination) ;
while not End_of _file (Source_file) ioop
Read (Source_file, ltem) ;
Write (Destination_file, item) ;
end toop ;
Close (Source_file) ; Close (Destination_file) ;
end Copy_any_sequential_file ;

figure 31 copying any filo in Ada

This generic procedure can be instanciated to operate on objects of any
type. For example

type PRIMARY _COLOUR is (Red, Yellow, Biue)

procedureCopy_pcisnewCopy_any_sequential_file
(PRIMARY_COLOUR) ;

100

4.3

The instanciation is performed at compile time. However, the Open
statement dynamically binds the external file, given by name, to the internal
file. The rules for determining to which file the external name belongs are
implementation dependent and therefore the scoping may be static or
dynamic. Selection of databases and simultaneous opening of several files
can be supported by this mechanism since the file name is a string and not
statically determined meeting requirements 3.2 and part of 3.3.

A number of points arise from Ada's view of file. First of all the mechanism
only works well for certain types of file. The implementation of access types
on /O is implementation dependent and would presumably cause problems
across Heterogeneous implementations. Types with associated sub-
programs, as we would normally find in packages have to be completely re-
defined in each program that uses them. This method of type definition is
more normally found with a structural equivalence rule and exposes a hole
in the name equivalence of Ada This might impede the requirement to
combine data that originated independently (3.3).

Each instantiation of the packages Sequential_io and Direct _io yields a
unique file type. If this were truly the case then a file created in one program
could not be used in another since the file types would differ. Although this is
the defined rule it is clearly not the intention and indeed in implementations
the file types are equal. This is really structural equivalence. As the
implementors have provided only name equivalence for the rest of the
implementation they may be tempted to limit the check to simple cases either
restricting /O or reducing security.

These rules for file type match prohibit the kind of incremental definition
referred 1o in Section 3.4.

Pascal/R

Pascal/R is an extension of Pascal to include a relational type {Schmidt 77].
A related, derived, language is Modula/R [Koch et.al 83].

Figure 4 shows the outline of an example program in Pascal/R.

The binding mechanisms here are similar to those in Pascal. The type of a
relation variable is declared using the database ... end construct, which
is similar to a record type except that the fields must all be of various relation
types. The declaration of the variable dbf ensures that the required type is
known in the program. Its appearance in the parameter list as db?* (the *
identifies this is a database, not file parameter) allows an actual database to

B

be substituted when the program is run,

program X (db1*);
type
relationType! = relation <a, b > of record a: int; b:string,... end;

var db! : database
r1. relationTypel;
end;
with db1 do
begin

= {the body using the relations in db1}
end
end.

Figure 4: binding a databaseo to a program in Pascal/il

The type check is performed as the program begins, comparing db1’s type
with the description of the stored database. After that, there is no further type
checking, the rest having been performed at compile time.

Again this meets the requirements of 3.1, and with minor changes to allow
multiple parameters, it would meet requirements 3.3. In this second case
there would be no problem over clashing names (a common problem when
combining databases) as the Pascal naming system localises the scope of
field names, and provides ways of disambiguating their use (i.e. db1.r2
db2.12).

To dynamically select databases during execution (3.2) raises more
problems. Some procedure openDatabase taking a database name and
writing to a database variable parameter is needed. The programs will need
different types for the database variable, possibly within the same program.
Only by generating procedures associated with each database or type (c.f.
the suggestion of Buneman [Buneman 82 et al]) can this problem be
overcome. But this still does not allow dynamic selection, except from a
predefined subset, as those procedures cannot be dynamically created and
included in the Pascal program.

4.4

Pascal/R begins to offer some adaptive binding (3.4) as, in principle at least,
the type check belween the program's database variable and the database
type need not be an exact match. For example, the program’s database
variable could hold a subset of the fields that appear as relations in the
actual dalabase. This view mechanism permits extension of data and allows
existing programs to run unchanged and without recompilation. More
complex views, e.g. projections and joins run into two difficulties: in general
they cannot be inferred and so need to be explicitly stated for each program
to database binding; and, also in general, updales performed in the program
then become illdefined [Rowe & Shoens 79]. If foreign keys are used to
relate new and old structure this will also support local growth of data (c.t.
the aircraft windows section 3.4 example). There is no information hiding in
Pascal/R so that the ADT revision cannot arise.

PS-algol

PS-algol [PPRG 87] is an experimental language, with emphasis on the
orthogonal provision of persistence. To provide this, it uses a database
construct, an index construct and pointers (type pntr) whose referends may
be any instance of any structure class type. Data remains in existence for as
long as it is reachable either from an active program or from one or more
databases. Example PS-algol programs are shown in figures 5, 6 and 7.

The program in figure 5 illustrates that requirements 3.1 and 3.3 are met by
PS-algol. The declaration of db? initialises that value to the result of
openDatabase performing a binding of that identifier to the database .
referred to by "MalcolmsDB", and gives db1 the type pntr. db! now refers
to the root object of that database, this is passed as a pnir to lookup in the
initialising expression of the declaration for a. lookup expects data
structures representing a table from strings to pntr values. By convention
the root object of a database is such a data structure. Though this is
checked by execution of lookup, the particular form of data structure
implementing the table is not a concern of this program, and is only recorded
where lookup is defined and with the data. The resulting value for a is
also a pntr. b receives its value by a parallel course from a separate
database.

when databaseOpenError do recoveryAction
let dbt openDatabase ("MalcolmsDB")
let db2 = openDatabase ('PetersDB")

leta = lookup ("aValue", dbt)

fet b lookup ("bValue”, db2)

structure S7 (int x; proc (int - int)y)
fetax = a(x);letbx = b{x)

fetay = a(y);letby = b(y)

print ax, by (ax) , bx, ay (bx)

il

fl

]

Figura 5: An examplo of a PS-Algol program using two
databasos

The declaration of a structure class S1 is a specification by the programmer
of the referend type expected. The field names x and y are then used to
obtain values from a and b by subscripting. At each of these
subscriptions a delayed type check is performed on the pntr values.
Associated with each pntr value is the structure class definition that was
used to construct the value. Associated with each field name is the structure
class definition that entered it into scope. If these definitions do not match an
exceplion is raised, otherwise the field access proceeds. As the field name
has a type, the subscripting expression and hence the declared identifier is
given a specific type. Hence subsequent use, e.g. the print statement,
including the function applications, may be statically checked.

This program has illustrated the dynamic binding of two databases to the
program, a type match between the program and each of the databases, and
delayed type checking. The delay in determining referend types permits the
kind of extension referred to in 3.4, In this example, the lookup code has
given associative access to data whose types were not defined when the
lookup code was defined. Consequently items with new definitions may be
put in the database without affecting exisiting programs. In particular, note
that only the structures used from a database are actually declared in the
program (and their scope may be fimited) so that programs are sensitive
only to the definitions of the data they use.

let db1 = openDatabase ("RonsDB")

letit = lookup ("extender”, dbi)

structure PFE (inta;real b ; ... ; pnir exira)
structure Epack (proc (pntr) p)

let extend = it(p)

while moreToDo do
begin
=== ! conduct a dialogue with the user to determine DB to process
let theNextDB = readString {)
let theDB = openDatabase (theNexiDB)

--- ! apply extend to each PFE in this DB
commit ()
end

Figure 6: A PS-algol program dynamically solocting databasos
and oxtonding the structure in thom

In figure 5, the dynamic selection of databases in PS-algol is illustrated
showing that it satisfies requirement 3.2. As the universal union over
structures (pntr) is used as the result of the binding operation there is no
difficulty over typing the openDatabase procedure. A further step towards
meeting requirement 3.4 is also illustrated. At the time when some structure,
PFE , was first defined (i.e. instances of it were put in a database) the
programmer had planned for extension by including the field extra. Since
the referend does not require specification at that time, this field can be used
for any extension. The program in Figure 5 takes a procedure which fills in
this extension for all the PFE s in the dalabases selected by the user.

The code for a procedure which could be the value for extend in Figure 5 is
" given in Figure 6.

let anExtender = proc (pntr aPFE)

begin
struclure PFE (int a; real b; ... ; pnir extra)
structure PFME (string x, y, z; --; pntr more)
let aPFME = PFME (“initiaf x", "initial y", "initial 2, -, nif)
aPFE (extra) = aPFME
end

Hagun 77 a pronodune o edend a P structun

15

4.5

Other procedures could add other fields to instances of PFE and typically
they would set up the initial values by consulting the user. Later similar
procedures could extend the PFME instances by assigning to their more
field.

Frequently, in actual database designs we find character fields in records for
this purpose. Then in the programs one finds obscure code to cram data
into these extension fields, with a complete loss of independence and type
checking, in contrast to the provision here. Further, this kind of extension
may itself be extended, whereas the overpacked characler field eventually
deleats the ingenuily to encode.

The programs that previously processed PFE s will operate unchanged. All
these solutions depend on the delayed binding of the referend's class
definition to pntr values. We believe it correct that the programmer plan for
expansion rather than incur the cost of flexibility everywhere.

The ADT mechanism in PS-algol is implemented by returning procedures
packaged in a structure class from a procedure [Atkinson & Morrison 85a].
The hidden data is accessed by statically bound references to locations
within the activation record of the generating procedure, therefore, revision
of ADT definitions, reusing existing instance data, is not supported. Practical
experience with PS-algol's binding mechanisms and their exploitation to
give all the facilities described here, is reported in a companion paper
[Cooper et al. 87].

Amber

The language Amber [Cardelli B4a] introduces an explicit universal type,
dynamic, to deal with program and database binding, and uses inheritance
polymorphism to deal with the exiension of data [Cardelli 84b]. This is
ilustrated in figure 8 (see page 17).

On some previous occasion the definition of the database type, DBT, and
an exemplar value derived by typeOf (<a constructed example>), DBTval,
are slored in a module "DBdef". That module is reopened in this program by
import. A dynamic value is then obtained from "DBfile” by import, the
program then checks if its type description data structure matches the
exemplar type, to avoid an error during the coerce operation. Very few
operations are available on a dynamic value; the coerce operation
projects it to the specified type, and if that succeeds (the types match), then
the operations of that type become available. For the rest of the inner block

16

tmport "DBdef"

type DBT
value DBTval
let newValue = impont ("DBfile")
it typeOf (newValue) = DBTval then
let db = coerce newValue to DBT

»== {use that db - e.g. periorm updates}
do export ("DBfile", dynaric db)
else

Figure 7: illustrating Amber's database binding mochanism

(shown by indentation) static binding and typechecking prevails. At the end
of the block, the monadic operator dynamic reassociales the type
description with the value, and returns a value with the extensible universal
union type dynamic. This mechanism clearly meets requirement 3.1, and
3.3 without difficulty. In the case where all the selected databases have one
of a predictable set of types, it also meels requirement 3.2. The advantage
of Amber's approach is that it gives a clear syntactic identification of the
moment of binding and typecheck, and therefore makes the programmer
aware of when the option of delaying these is being exploited.

Amber may not actually meet the requirement for matching independently
developed components. This depends on whether copies of values such as
DBTval are equal to one another or whether idenlily is required. If identity
is required, then a program developed at one site could not match data
which was built at another site, and hence bound to a different instance of
the description structure.

It is not clear whether the data definition (e.g. DBT and DBTval) may be
extended in Amber, and, therefore, whether Amber addresses requirement
3.4. The type matching mechanism does however allow code to be wrilten
which will process extended data. A record type in Amber is declared by <<
f1: 1, fg?A'Yz, -, fnl Ya >> where f; are fieid names and v, their types. Any record
instance malches all the types described by all subsets of its field : type
pairs. For example, a record fully described by << a: int, b: boo!, ¢: real>>

17

4.6

if)

would match <<a: int>>, <<b: bool>>, <<a:int, ¢: real>>, etc. Consequently a
procedure writlen 1o process a given record type e.g. our example, will also
process exlended records such as <<a: int, b: bool, c: real, d: string>> with
exactly the same code.

Napier

Amber and PS-algol were fairly similar in their semantics of bindihg to a
universal type, though PS-algol limits pntr to a subset of all types and
makes the projection and check implicit while Amber allows dynamic to
range over all types and makes the projection explicit. Napier [Atkinson &
Morrison 85b] also attempts to make the point of binding explicit, but sets out
lo overcome three difficulties that arise with the previous two languages:

to avoid a single space of field nhames;
to explicitly identify the extension operations; and
to avoid appeal to external name handlers.

Each of the difficulties will be reviewed first.

In PS-algol only one structure containing a particular iield name may be in
scope at once, otherwise it is not possible to infer the structure type from the
lield name. Since it is impossible to predict which combinations of structures
will be used together, it proves to be good practice to keep all field names
distinct. This is generally tedious and it makes merging collections of data
very difficult. The same requirement arises in Amber for a slightly different
reason. If names are reused, Amber may infer type hierarchy where none
was intended. It is not clear whether the resulling program behaviour would
be incorrect.

In Amber the arrangements for extending existing data is not defined, and is
certainly not explicit. In PS-algol it involves a particular usage of a pntr field
and after extension the new data has to be accessed in a different way from
the original fields. After a few amendments this access path will involve
several indirections, leading to obscure code. There is no mechanism for
withdrawing aspects of the data.

In both Amber and PS-algol, names, encoded as strings, occur which have
an interpretation exlernal to the program, e.g. "DBdef", "DBfile", "RonsDB",
etc. They are usually passed to the surrounding operating system for
interpretation. This is unsatisfactory, as the rules of interpretation cannot be
specified within the language, and hence suites of software are not portable.

18

(In general, language specification and design should be developed to
eliminate these appeals to adhoc, potentially illdefined, external
mechanisms.)

Persistence in Napier is similar to that in PS-algol except for the
identification of its root. Data is kept for as long as it is reachable,
determined by the transitive closure of references to objects beginning from
the persistent root, called PS. .Data not included in this transitive closure,
and not accessible from any active program may be automatically deleted by
the support system.

The distinguished point in the object graph, PS, has type env in Napier,
short for environment. Objects of type env, environments, are collections of
bindings, that is, sets of name-value-type-constancy quadruples. If j is the
set of all possible bindings then the type env is the powerset B (i.e. a value

of type env is a particular subset of B). Two operations allow the value of an
environment to be changed:

insertion adds a new name-value-type-constancy quadruple to the
environment.

and

deletion removes such a quadruple from the environment.

Notice that the type does not change as a result of these operations,
whereas a value of record or structure type holds a constant subset of B, and
the declaration of the type, by record or structure limits the permitted names
and corresponding values, so that these operations are not possible.
Consequently, a programmer making the choice between env and record
to store some value is choosing whether the extension/revision operations
will be available (corresponding to requirements in section 3.4), and
complying again with our principal that the programmer should choose
whether to incur the costs of flexibility.

Since any environment, whatever bindings it contains, is the same type,
env, the other requirements 3.1 to 3.3 are easily met, as is illustrated below.
Figure 9 shows how two environments may be created and made persistent,
that contain the same data as that used by the PS-algol program in figure 5.

19

let a = emptyEnv () I create an empty environment

fet y = (proc(x:int —int);x *x)ina

let x = 1ina I a notation for insertion
I now have two bindings in a
I x bound to an integer variable
Leurrently holding 1 and y
I'bound to a proc(int — int) variable
! currently holding a procedure which
I squares its arguments

let b = emptyEnv () t similarly for b

let y = (proc(i:int —int);i *i *i) inb

let x = 2inb

I now arrange that a and b persist
! and have names used before
let db?! =ain PS ;letdb2 = b in PS ‘
checkpoint ()

Figure 9. croating o environments and making them persist

The identifiers @ and b are in the local environment, and are both of type
env; these bindings are lost at the end of the program. The identifiers db1
and db2 (bound to the same values and also of type env) are placed in
PS and consequently continue to exist, and therefore the values they
contain will also persist. Note that each of the let ... in (environment)
constructs illustrates an extension operation.

Figure 10 shows how some subsequent program could use this data in the
same fashion as the PS-algol program in Figure 5.

use PS as dbt, db2:env in
use db? as x:int;y:proc (int - int)in
begin
let ax =x;letay = y 1rename
use db2 as x :int;y:proc (int — int)in
print ax, y(ax), x, ay (x)

Figure 10:. roading data from two environments produced in Figurs 9

Figure 11 shows a Napier program to select and process environments (as
an analogue of a database) in a similar way to the PS-algol program in
Figure 6. :

use PS as RonsDB,UserDBs : env in
use HonsDB as extender: proc(env) in
begin

while moveToDo do
begin
print "n Provide name of next DB to process”
let theNextDB = read [name[env]]
let theDB = UserDBs (theNextDB)
use theDB as set:index string to env in

for each — e in set do extender (e)

end
end

Figurs 11: A Napler program to extend the data in
a user selected databasse

This program shows environments performing three rdles:

As the database - supplanting the table structure used in PS-algol i.e.
RonsDB , UserDBs and theDB ;

As the substitute for operating system name resolvers, such as file
directories, i.e. PS, UserDBs :

As an extensible data structure, substituting for the ad hoc use of pntrin
PS-algol, i.e. e.

To permit the name resolution, the type constructor name has been
introduced, it is parameterised by a type which indicates the class of objects
all'such names may name, e.g. name [env] is the type of all names that may
name an environment. read is now a polymorphic nuladic operator which
requires a type parameter to indicate the type of result it is reqguired to
produce. An environment may be subscripted by a name analagous to
subscripting a structure e.g. UserDBs (theNextDB).

21

The use of environments and names is further illustrated by figures 12 and
13. Figure 12 shows a definition for an extender procedure analagous to
that shown in Figure 6; the extender defined in Figure 13 exploits more of
the flexibility of environments and names illustrating Napier's considerable
ability to provide the incremental definition established as a requirement in
section 3.4. A fuller definition and discussion of names and environments
may be found in [Atkinson & Morrison 87].

let PS as RonsDB : env in
let extender = proc (e: env)

begin

let x = “initial x"in e
let y = "initial y"in e
let z = "initial " in e
end

in RonsDB | make extender persist in RonsDB

Figurs 12: A Napier procedure to exisnd an environment with
predofined now name, value, constancy, type quadruples

The code shown in Figure 12 is significantly simpler than that in Figure 7,
and the resulting revised data structure no longer requires a different
method for accessing new fields.

The code in Figure 12 indicates that in Napier the names themselves may
be chosen by the user rather than the programmer. This is significant
because of persistence. The user may dynamically introduce names in this
way, and later write programs which use those names in the conventional
way

22

use PS as RonsDB In
let extender = proc (e :env)
begin
! code to show the user the value of e

while moreToDo do
begin
print "'n What name?"
let newName = read [name [string]]
print "'n What initial value?”
let initialValue = read [string |
insert newName = initialValue Into e
print "'n Insert more names?"
moreToDo = affirmativeReply ()
end

end

Figure 13: A Napicr procodure to allow now gquadrpiots
o be insorted into an environment with
usor dotermined names and valuos

4.7 Statically bound languages

The preceding examples present a progression of attempts to meet the
needs of flexible binding. Static binding remains more convenient for the
programmer wriling an individual program, as it is not then necessary to
specily the expectations on the long term data. Here we only draw the
reader's altention to the existence of such languages in the DBPL camp.
Examples are Poly [Malthews 85] and Galileo [Albano et al. 85b, Albano
et al. 86]. These languages, like many others, such as Lisp, Prolog, APL
etc, achieve persistence by saving the workspace and restoring it to resume
the session. If they intend to be used to build database applications systems
they will need to provide an alternative mechanism for dynamic binding.
This could be based on a remote procedure call mechanism [Birrell &
Nelson 83] perhaps. But that again introduces dynamic binding and
delayed,type checking.

23

o

and

Cost benefit analysis of delayed binding

There are three major costs:

i) delayed information regarding erroneous operations:

i} additional descriptive effort required by the programmer;
i} implementation cosis.

The delay in reporting a mismatch between the bound value and the-
required type of that value is inevitable if binding is delayed. If this were the
case for every binding in the program, then the program could not be
considered safe, and the programmer would be denied readily available
aids to achieving correctness. By limiting this delay to only the points where
it is logically required and focussing the checking at that point, the
programming language is giving the best support for this type of
programming. That strategy was adopted by PS-algol, Amber and Napier.
In that case the rest of the program is statically checked, and as the binding
is made, all the checks that need to be applied to ensure the expectations in
the following code will be mel, are applied at the moment of binding. We call
this eager checking (doing as much as possible as soon as possible). It
has the advantage that if an exception is raised indicating the binding
cannot be made because the value doesn't malch, then the programmer has
a tlear idea of the state of the computation.

To permit the program to be statically checked everywhere else, and to
retain strong type checking over delayed binding, it is necessary {o record
the expected properties of the value. Since they must have been available
when the value was created this is extra work. It is the avoidance of this
extra work which gives the immediate appeal when programming on those
systems which save their workspaces. References to include the source
{e.g. from a file), and cut-and-paste editors only partially solve this problem.
Firstly, they tend to result in including in the interface specification details not
used in this particular binding, thus over-constraining the binding against
data evolution. Secondly, if the data and programs are really independent,
e.g. from different sites, there isn't a common context from which to cut-and-
paste or include. Thus, duplicate definition is an inevitable requirement of
real independence.

Implementation costs divide into additional space to store the duplicate data
descriptions and additional processing to perform checks every time the
binding is made. As programming and dala management staff costs rise
relative to memory and cpu costs, this becomes less significant. in any case,
much of the description needs to be stored with data for other reasons, such

24

as space management and diagnoslics. The additional checking should be
limited to that which is essential, as is possible in some of the languages
surveyed, Amber and Napier, the rest should be factored out at compilation
time. Using data flow analysis, many of the remaining checks, left as
delayed by the programmer, may be elided by the optimiser. Recompilation
each time a definition changes may actually cost more.

We regard it as appropriate for the programmer (or applications systems
builder) to have control over where the delayed binding will occur, and
where static binding will be used. Only such persons have the opportunity o
weigh the relative merits of economy in coding and execution of static
binding, versus the flexibility of delayed binding. This balance depends on
aspects of the application. We do not believe it is possible for the language
designer to make an a priori choice which is appropriate (or even
acceptable) for all applications.

Type checking issues

Delayed binding should not, and need not, weaken the strength of type
checking, only modity its timing. But, the requirement of independence does
have implications for type checking.

Two forms of type equivalence are used in languages: name equivalence
and structural equivalence . For name equivalence, two values are of the
same type if their type is defined by the same evaluation of the same type
expression. In practice this means that when a type expression is evaluated
some data structure is constructed, and the type is identified by a reference
to this data structure. Two types are then equivalent if they are represented
by the same reference value. If data and program are to be combined that
originate from independent sources (e.g. different sites) then they cannot
contain references that are equal. Hence, name equivalence cannot be

used in DBPLs supporting the flexibility required.

Structural equivalence is more expensive to compute. Associated with a
lype is an encoding of the expression that generated the type, from the base
types by recursive application of the type construction operators. To test
structural equivalence, one investigates the two encoded expressions
(usually by converting them to a canonical form) to determine whether they
generale the same set of possible values. Though more computationally
expensive, jt meets the need for independence.

These concerns are by no means parochial to DBPLs. Pascal (section 4.1)
uses name equivalence; but a binding mechanism for its files, if

25

implemented properly, would need to use"delayed binding and structural
equivalence. Adg [lchbiah et af 79] taces similar problems (section 4.2). It
takes more care than Pascal 1o specify persistence, defining 10 packages

Further investigation of the interaction between type checking and
persistence is required. For example, in languages like PS-algol, Amber

names is unmanageable.

In PS-algo! and Napier type checks may be delayed until g part of the
structure they describe is reached. This permits equivelence of types to be
computed incrementally, which may have significant savings for a binding
between a database and a typical program which only touches a small
part of it. The utility of this incremental approach requires evaluation.
Optimisations, €.g. not rechecking type matches that cannot have been
invalidated, also need development [Owoso 84].

Conclusions

We have shown that normal database applications require a flexibility in
binding time. This can be met by constructs in a programming language

The present constructs in Napier meet all the flexibility requirements except
the need to replace the definitions of ADTs without loss of their data. New
research is required here, while continued research is needed to refine the
definition of the other constructs.

26

8.

Acknowledgements

We acknowledge the observation by David Watt which drew our attention to
the existence of these problems in the present Ada and Pascal standards.
We also acknowledge the support of Alvey, the British Science and
Engineering Research Council, the ICL University Research Council and the
NSF in our work.

27

References

[Albano et al. 853}
Albano, A_, Cardelli, L. and Orsini, R.,
Galileo: A Strongly Typed Interactive Conceptual Language. ACM
Transactions on Database Systems, Vol. 10, No. 2 (June 1985) 230-260.

[Albano et al. 85b]
Albano, A., Occhiuto, M.E. and Orsini, R.
Galileo reference manual VAX™/UNIX™ Version 1.0, Universita Degli
Studi di Pisa, Dipartimento di Informatica 1985,

[Albano et al. 86))
Albano, A., Ghelli, G., Occhiuto, M.E. and Orsini, R.
A Strongly Typed, interactive Object Oriented Database Language, in
proceedings of 1986 International Workshop on Object-Oriented
Database Systems , Computer Society Press (September 1986) 94-103.

[Atkinson et al. 83]
Alkinson, MP., Bailey, PJ., Chisholm, KJ., Cockshott, W.P and Morrison, R.

An approach to persistent programming, The Computer Journal, Vol. 26,
No. 4 (1983) 360-365.

[Atkinson & Morrison 85a]
Atkinson, M.P. and Morrison, R,
Procedures as persistent data objects, ACM transactions on Programming
Languages and Systems , Vol. 7, No. 4 (October 1985) 539-559.

[Atkinson & Morrison 85b]
Atkinson, M.P. and Morrison, R.
Types, Bindings and Parameters in a Persistent Environment in
Proceedings of Persistence and Data Types Workshop , Appin, Scotland
(August 1985) 1-24.

[Atkinson & Morrison 86
Atkinson, M.P. and Morrison, R.
Integrated persistent programming systems. In proceedings of the 19th
annual Hawaii international conference on System Sciences , Vol. lIA,
(January 1986) 842-854.

[Atkinson & Morrison 87]
Atkinson, M.P. and Morrison R.
Names and Name sets in Napier, in preparation.

[Atkinson et.al. 86]
Atkinson, M.P., Morrison, R. and Pralten, G.D.
Designing a persistent information space architecture, In proceedings of
Information Processing 1986, North Holland Press (Sept. 1986) 115-119.

[Atkinson & Buneman 87]
Atkinson M.P. and Buneman, O.P.
Types and Persistence in Database Programming Languages, submitted
to ACM Computing Surveys.

[Birrell & Nelson 83)
Birrell, A.D. and Nelson, B.J.
Implementing Remote Procedure Calls CSL-83-7 Xerox PARC
(December 1983).

[Buneman et al. 82]
Buneman, O.P., Hiirschberg, J and Root, D.
A CODASYL interface to Pascal and Ada In Proceedings of the second
British National Conference on Databases : Bristol, England, July 1982.
[Burstal et al. 71]
Burstal, R.M,, Collins, J.S. and Popplestone, R.J.
Programming in POP-2 Edinburgh University Press, Edinburgh 1971.

[Cardelli 843)
Cardelli, L.
Amber, A.T. & T. Bell Laboratories (1984).

[Cardelli 84b]
Cadelli, L.
A semantics of Multiple Inheritance Semantics of Data Types:
International Symposium, Sophia-Antipolis . Springer-Verlag, Berlin,
1984, pages 51-67.

[Cardelli & Wegner 85]
Cardelii, L. and Wegner, P.
On understanding Types, Data Abstraction and Polymorphism, ACM
Compuling Surveys , Vol. 17, No. 4 (December 1985) 471 -523.

[Cooper et al. 87)
Cooper, R.L., Atkinson, M.P_, Abderrahmane, D. and Dearle, A.
Construcling database systems in a persistent environment, to appear in
the proceedings of the thirteenth international conference on Very Large
Dalabases, Brighton, England (September 1987). ‘

{Clocksin & Mellish 81]
Clocksin, W.F. & Mellish, C.S.
Programming in Prolog Springer-Verlag, Berlin 1981,

[Goldstein & Bobrow 80}
Goldstein, 1.P. & Bobrow, D.G.

Extending object oriented programming in Smalttalk. In proceedings of
the 1980 Lisp Conference (August 1980) 75-81.

[Ichbiah et al. 79}
Ichbiah et al.
Rationale of the Design of the Programming Language Ada. ACM
SIGPLAN Notices, Vol. 14, No. 6 (1979).

[ISO 82]
International Standards Organisation,

Standard specification for the programming language Pascal , 1SO 7185,
1982.

[lverson 79)
lverson, KE.
Operators. ACM transactions on Programming Languages and Systems.
Vol. 1, No. 2 (October 1979) 161-176.

[Joy et al. 83)
Joy, W.W et al.
Berkeley Pascal User's Manual Version 3.0 - in Vol. 2.C Unix
Programmers’ Manual Berkeley 4.2 , July 1983.

[Koch et.al. 83]
Koch, J., Mall, M., Putfarken, P_, Reimer, M., Schmidt, J.W. & Zehnder, C.A.
Modula/R report. Lilith version
Technical Report, Eidgendssische Technische Hochschule Ziirich, Institue
Fir Informatick, 1983.

[Liskov et.al. 81]
Liskov, B, et al.
Lecture notes in computer science. Volume 114: CLU reference manual
Springer-Verlag, Berlin, 1981.

[Liskov et.al. 83]
Liskov, B., Herliby, M., Johnson, P., Leavens, G., Scheiffler, R. & Weihi, W.
Preliminary Argus reference manual Technical Report, Memo 39,
Programming Methodology Group, MIT, Cambridge, Massachusetls
02139, USA, October 1983.

[Matthews 85]
Matthews, D.C.J. An overview of the Poly Programming Language, in
Proceedings of Persistence and Data Types Workshop , Appin, Scotiand
(August 1985) 255-264.

[McCarthy et.al. 62)
McCarthy, J., et.al.
Lisp 1-5 Programmer's Manual. MIT Press, Cambridge, Massachusetts,
1962.

[Milner 78]
Milner, R.
A theory of type polymorphismn in programming, Journal of Computer
and System Science, Vol. 17 (1978) 348-375.

[Milner 84 .
Milner, R.
A proposal for standard ML, in proceedings of the 1984 ACM symposium
on Lisp and Functional programming, ACM, 1984.

[Owoso 84]
Owoso, G.O.
Data description and manipulation in persistent programming languages ,
Ph.D. thesis, University of Edinburgh, 1984,

[PPRG87]
Persistent Programming Research Group, PS-algo! reference manual -
Third edition , PPRR12 (January 1987), Universities of Glasgow and St.
Andrews.

[Rowe & Shoens 79] Bibliography
Rowe, L. & Shoens, K. y o . .
Data Abstraction, Views and Updates in Rigel. In proceedings of ACM Copies of documents in this list may be obtained by writing t0:
SIGMOD international conference on management of data (1979) 71-81.

The Secretary,
Persistent Programming Research Group,

- Department of Computing Science,
[Schmidt 77] University of Glasgow,
Schmidt, J.W. Glasgow G12 8QQ
Some High level Language Constructs for dala of type Relation. ACM Scotland.
. or
Izrg?sacnons on database systems. Vol. 2, No. 3 (September 1977) 247- The Secretary,

Persistent Programming Research Group,
Department of Computational Science,

University of St. Andrews,
(Tennent, 81] . . . North Haugh,
Tennent, R.D. Principles of Programming Languages Prentice/Hall, St. Andrews KY 16 9SS
1981. Scotland.

Books

Davie, AJ.T. & Morrison, R.
"Recursive Descent Compiling”, Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.)
"Databases”, Pergammon Infotech State of the Art Report, Series 9, No.8, January .
1982. (535 pages).

Cole, A.J. & Morrison, R.
“An introduction to programming with S-algol”, Cambridge University Press,
Cambridge, England, 1982.

Stocker, P.M., Atkinson, M.P. & Gray, P.M.D. (eds.) .
"Databases - Role and Structure”, Cambridge University Press, Cambridge,
England, 1984.

Published Papers

Morrison, R.
"A method of implementing procedure entry and exit in block structured high level
languages”. Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z.

"The Graffiti graphics system", Proc. of the DECUS conference, Bath (April 1978),
. 5-10.

Atkinson, M.P.
"A note on the application of differential files o computer aided design”, ACM
SIGDA newsletter Summer 1978, :

Atkinson, M.P.
"Programming Languages and Databases”, Proceedings of the 4th International
Conference on Very Large Data Bascs, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78,
408-419. (A revised version of this is available from the University of Edinburgh
Department of Computer Science (EUCS) as CSR-26-78).

Atkinson, M.P.
“Progress in documentation: Database management systems in library automation
and information retrieval”, Journal of Documentation Vol.35, No.1, March 1979,
49-91. Available as EUCS departmental report CSR-43-79.

Gunn, 1LLE. & Morrison, R.

"On the implementation of constants”, Information Processing Letters 9, 1 (July
1979), 1-4.

Atkinson, M.P,
"Data management for interactive graphics”, Proceedings of the Infotech State of the
Art Conference, October 1979. Available as EUCS departmental report CSR-51-80.

Atkinson, M.P. (ed.)
"Data design", Infotech State of the Art Report, Series 7, No 4, May 1980.

Morrison, R,
"Low cost computer graphics for micro computers”, Software Practice and
Expericnce, 12, 1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P,
"PS-algol: An Algol with a Persistent Heap”, ACM SIGPLAN Notices Vol.17, No.
7, (July 1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Nepal - the New Edinburgh Persistent Algorithmic Language"”, in Database,
Pergammon Infotech State of the Art Report, Series 9, No.8, 299-318 (January
1982) - also as EUCS Dcpartmental Report CSR-90-81.

Morrison, R.
"S-algol: a simple algol”, Computer Bulletin 11/31 (March 1982).

Motrison, R.
“The string as a simple data type”, Sigplan Notices, Vol.17,3, 46-52, 1982.

Atkinson, M.P., Bailey, P.J., Chisholm, K.1., Cockshott, W.P. & Morrison, R.
“Progress with Persistent Programming”, presented at CREST course UEA,
Scptember 1982, revised in "Databases - Role and Structure”, see PPRR-8-84.

Morrison, R.
“Towards simpler programming languages: S-algol”, IUCC Bulletin 4, 3 (October
1982), 130-133.

Atkinson, M.P,, Chisholm, K.J. & Cockshott, W.P.
“Problems with persistent programming languages”, presented at the Workshop on
programming languages and database systems, University of Pennsylvania.
October 1982, Circulated (revised) in the Workshop proceedings 1983, see
PPRR-2-83.

Atkinson, M.P.
"Data management”, in Encyclopedia of Computer Science and Engincering 2nd
Ldition, Ralston & Meek (editors) January 1983, van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Algorithms for a Persistent Heap”, Software Practice and Experience, Vol.13,
No.3, 259-272 (March 1983). Also as EUCS Departmental Report CSR-1(9-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"CMS - A chunk management system”, Software Practice and Experience, Vol.13,
No.3 (March 1983), 273-285. Also as EUCS Departmental Report CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chisholm, K.1., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming", presented at the DEC workshop
on Programming Languages and Databases, Boston, April 1983,

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"An approach to persistent programming”, The Computer Journal, 1983, Vol.26,
No.4, 360-365 - see PPRR-2-83.

Atkinson, M.P,, Bailey, P.J., Chisholm; K.J., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming”, 10th Australian Computer
Conference, Melbourne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.
"High level language support for 3-dimension graphics", Eurographics Conlcrence
Zagreb, North Holand, 7-17, Sept. 1983. (ed. PJ.W. ten Hagen).

Cockshott, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Morrison, R,
"POMS : a persistent object management system”, Software Practice and Exerience,
Vol.14, No.1, 49-71, January 1984,

Kulkarni, K.G. & Atkinson, M.P.
"Experimenting with the Functional Data Model”, in Databases - Role and Structure,
Cambridge University Press, Cambridge, England, 1984,

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough”, Foundations of Softwarc
Technology and Theoretical Computer Science (ed. M. Joseph & R. Shyamasundar)
Lecture Notes in Corputer Science 181, Springer Verlag, Berlin (1984).

Atkinson, M.P., Bocea, 1.B., Elsey, T.1., Fiddian, N.J., Flower, M., Gray, P.M.D.

Gray, W.A, Hepp, P.E,, Johnson, R.G., Milne, W., Norrie, M.C., Omololu,

A.O., Oxborrow, E.A,, Shave, M.J.R., Smith, A.M_, Stocker, P.M. & Walker, J.
"The Proteus distributed database system”, proceedings of the third British National
Conference on Databases, (ed. J. Longstaff), BCS Workshop Series, Cambridge
University Press, Cambridge, England, (July 1984),

s Atkinson, M.P. & Morrison, R.
"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985) -
sce PPRR-9-84,

Morrison, R, Bailey, P.J., Dcarle, A, Brown, P. & Atkinson, M.P.
“The persisient store as an enabling technology for integrated support
environments”, 8th International Conference on Soltware Engincering, Imperial
College, London (August 1985), 166-172 - sce PPRR-15-85.

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment”, proceedings of Data
Types and Persistence Workshop, Appin, August 1985, 1-24 - sce PPRR-16-85.

Davie, AJT.
"Conditional declarations and pattern matching”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

Krablin, G.L.
"Building flexible multilevel transactions in a distributed persistent environment,

proceedings of Data Types and Persistence Workshop, Appin, August 1985, 86-117
- sce PPRR-16-85.

Buneman, O.P.

"Data types for data base programming”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 291-303 - sec PPRR-16-85.

Cockshott, W.P.
“Addressing mechanisms and persistent programming", proceedings of Data Types
and Persistence Workshop, Appin, August 1985, 363-383 - sece PPRR-16-85.

Norrie, M.C.

"PS-algol: A user perspective”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 399-410 - scc PPRR-16-85.

Owoso, G.O.)
"On the need for a Flexible Type System in Persistent Programming Languages",
proccedings of Data Types and Persistence Workshop, Appin, August 1985,
423-438 - see PPRR-16-85.

Morrison, R., Brown, A.L., Baiiey, P.J., Davie, A.J.T. & Dearle, A.
"A persistent graphics facility for the ICL PERQ", Software Practice and
Experience, Vol.14, No.3, (1986) - sce PPRR-10-84.

Atkinson, M.P. and Morrison R.
"Integrated Persistent Programming Systems", proceedings of the 19th Annual
Hawaii International Conference on System Sciences, January 7-10, 1986 (ed. B.
D. Shriver), vol 1IA, Software, 842-854, Western Periodicals Co., 1300 Rayman
St., North Hollywood, Calif. 91605, USA - see PPRR-19-85.

.Atkinson, M.P., Morrison, R. and Pratten, G.D.
"A Persistent Information Space Architecture”, proceedings of the 9th Australian
Computing Science Conference, January, 1986 - see PPRR-21-85.

Kulkarni, K.G. & Atkinson, M.P.
"LEFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.1,
(1986) 38-45.

Buncman, O.P. & Atkinson, M.P.
"Inheritance and Persistence in Database Programming Languages"; proceedings
ACM SIGMOD Conference 1986, Washington, USA May 1986 - see PPRR-22-86.

Morrison R., Dearle, A., Brown, A. & Atkinson M.P.; "An integrated graphics
programming environment", Computer Graphics Forum, Vol. 5, No. 2, June 1986,
147-157 - sce PPRR-14-86.

Atkinson, M.G., Morrison, R. & Pratten G.D.
"Designing a Persistent Information Space Architecture”, proceedings of
Information Processing 1986, Dublin, Scptember 1986, (ed. I1J. Kugler),
-115-119, North Holland Press.

Brown, A.L. & Dcarle, A.
"Implementation Issuscs in Persistent Graphics”, University Computing, Vol. 8,
NQ. 2, (Summer 1986) - see PPRR-23-86.

Kulkarni, K.G. & Atkinson, M. P.
"Implementing an Extended Functional Data Model Using PS-algol”, Software -
Practise and Experience, Vol. 17(3), 171-185 (March 1987)

Cooper, R.L. & Atkinson, M.P.
"The Advantages of a Unified Treatment of Data", Software Tool 87: Improving
Tools, Advance Computing Series, 8, 89-96, Online Publications, June 1987.

Atkinson, M.P, Morrison, R. & Dearle, A.
"A strongly typed persistent object store”, 1986 International Workshop on
Object-Oriented Ratabase Systems, Pacific Grove, California (September 1986).

Atkinson, M.P., Morrison, R. & Pratten G.D.
"PISA : A persistent information space architecture”, ICL Technical Journal 5, 3
(May 1987),477-491.

Atkinson, M.P. & Morrison, R. .
"Polymorphic Names, Types, Constancy and Magic in a Type Secure Persistent
Object Store". Presented at the 2nd International Workshop on Persistent Object
Stores, Appin, August 1987.

Cooper, R. & Atkinson, M.P.
"Requirements Modelling in a Persistent Object Store". Presented at the 2nd
International Workshop on Persistent Object Stores, Appin, August 1987

Wai, F.
"Distribution and Persistence”. Presented at the 2nd International Workshop on
Persistent Object Stores, Appin, August 1987.

Philbrow, P.
"Associative Storage and Retrieval: Some Language Design Issues”. Presented at
the 2nd International Workshop on Persistent Object Stores, Appin, August 1987

Guy, M.R.
"Persistent Store - Successor to Virtual Store". Presented at the 2nd International
Workshop on Persistent Object Stores, Appin, August 1987.

Dearle, A.
"Constructing Compilers in a Persistent Environment". Presented at the 2nd
Internaional Workshop on Persistent Object Stores, Appin, August 1987.

Carrick, R. & Munro, D.
"Execution Strategies in Persistent Systems". Presented at the 2nd International
Workshop on Persistent Object Stores, Appin, August 1987.

Brown, A.L.
"A Distributed Stable Store". Presented at the 2nd International Workshop on
Persistent object Stores, Appin, August 1987

Cooper, R.L., Atkinson, M.P., Dearle, A. & Abderrahmane, D.
"Constructing Database Systems in a Persistent Environment”. Proceedings of the
Thirteenth Internaional Conference on Very Large Databases, Brighton, Septermber
1987.

Atkinson, M.P. & Morrison, M.
"Polymorphic Names and Iterations", presented at the Workshop on Database
Programming Languages, Roscoff, September 1987

Internal Reports

Morrison, R.
"S-Algol language reference manual”, University of St Andrews CS-79-1, 1979.

Bailey, P.J., Maritz, P. & Morrison, R.
“The S-algol abstract machine”, University of St Andrews CS-80-2, 1980).

Atkinson, M.P., Hepp, P.E., Ivanov, H., McDuff, A., Proctor, R. & Wilson, A.G.
"EDQUSE reference manual", Department of Computer Science, University of
Edinburgh, September 1981.

Hepp, P.E. and Norrie, M.C.
"RAQUEL: User Manual", Department of Computer Science Report CSR-188-85,
University of Edinburgh. .

Norrie, M.C.
"The Edinburgh Node of the Proteus Distributed Database System", Department of
Computer Science Report CSR-191-85, University of Edinburgh.

Theses

The following theses, for the degree of Ph. D. unless otherwise stated, have been

produced by members of the group and are available from the address already given,_

W.P. Cockshott
Orthogonal Persistence, University of Edinburgh, February 1983.

K.G. Kulkarni

Evaluation of Functional Data Models for Database Design and Use, University of
Edinburgh, 1983.

P.E. Hepp

A DBS Architecture Supporting Coexisting Query Languages and Data Models,
University of Edinburgh, 1983.

G.D.M. Ross

Virtual Files: A Framework for Experimental Design, University of Edinburgh,
1983.

G.0. Owoso
Data Description and Manipulation in Persistent Programming Languages,
University of Edinburgh, 1984,

J. Livingstone
Graphical Manipulation in Programming Languages: Some Experiments, M.Sc.,
University of Glasgow, 1987

Persistent Programming Research Reports

This series was started in May 1983. The following list gives those which have
been produced at 9th July 1986. Copies of documents in this list may be obtained
by writing to the addresses already given.

PPRR-1-83 The Persistent Object Management System -
Atkinson,M.P., Bailey, P., Chisholm, K.J.,
Cockshott, W.P. and Morrison, R. £1.00

PPRR-2-83 PS-algol Papers: a collection of related papers on PS-algol -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

PPRR-5-83 Experimenting with the Functional Data Model -
Atkinson, M.P. and Kulkarni, K.G. £1.00

PPRR-6-83 A DBS Architecture supporting coexisting user interfaces:
Description and Examples -
Hepp, P.E. £1.00

PPRR-7-83 EFDM - User Manual -
K.G.Kulkarni £1.00

PPRR-8-84 Progress with Persistent Programming -
Atkinson,M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

PPRR-9-84 Procedures as Persistent Data Objects -
Atkinson, M.P. and Morrison, R. £1.00

PPRR-10-84 A Persistent Graphics Facility for the ICL PERQ -
Morrison, R., Brown, A.L., Bailey, P.J., Davie, AJ.T.

and Dearle, A. £1.00
PPRR-11-85 PS-algol Abstract Machine Manual £1.00
PPRR-12-87 PS-algol Reference Manual - fourth edition £2.00

.PPRR-13—85 CPOMS - A Revised Version of The Persistent Object -
Management System in C -
Brown, A.L. and Cockshott, W.P. £2.00

PPRR-14-86 An Integrated Graphics Programming Environment - 2nd
cdition - Morrison, R., Brown, A.L., Dearle, A. and
Atkinson, M.P. £1.00

PPRR-15-85 The Persistent Store as an Enabling Technology for an
Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, A.L. and
Atkinson, M.P. £1.00

PPRR-16-85 Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R. £15.00

PPRR-17-85 Database Programming Language Design -
Atkinson, M.P. and Buneman, O.P. £3.00

PPRR-1885
PPRR-19-85
PPRR-20-85
PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PPRR-25-87
PPRR-26-86
PPRR-27-87
PPRR-28-86b
PPRR-29-86
PPRR-30-86
PPRR-31-86

PPRR-32-87

PPRR-33-87

PPRR-34-87

PPRR-35-87

PPRR-36-87

The Persistent Store Machine -
Cockshott, W.P.

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R.

Building a Microcomputer with Associative Virtual Memory -
Cockshott, W.P.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D.

Inheritance and Persistence in Database Programming
Languages -
Buneman, O.P. and Atkinson, M.P.

Implementation Issues in Persistent Graphics -
Brown, A.L. and Dearle, A.

Using a Persistent Environment to Maintain a Bibliographic
Database -
Cooper, R.L., Atkinson, M.P. & Blott, S.M.

Applications Programming in PS-algol -
Cooper, R.L. i

Exception Handling in a Persistent Programming Language -
Philbrow, P & Atkinson M.P.

A Context Sensitive Addressing Model -
Hurst, A.J.

A Domain Theoretic Approach to Higher-Order Relations -
Buncman, O.P. & Ochari, A.

A Persistent Store Garbage Collector with Statistical Facilities -
Campin, J. & Atkinson, M.P

Data Types for Data Base Programming -
Buneman, O.P.

An Introduction to PS-algol Programming -
Carrick, R., Cole, A.J. & Morrison, R.

Polymorphism, Persistence and Software Reuse in a
Strongly Typed Object Oricnted Environment -
Morrison, R, Brown, A, Connor, R and Dearle, A

Safe Browsing in a Strongly Typed Persistent Environment -
Dearle, A and Brown, A L.

Constructing Database Systems in a Persistent Environment -
Cooper, R L., Atkinson, M.P_, Dearle, A. and
Abderrahmane, D.

A Persistent Architecture Intermediate Language -
Dcarle, A.

Persistent Information Architectures -
Atkinson, M.P_, Morrison R. & Pratten, G.D.

£2.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

PPRR-37-87
PPRR-38-87

PPRR-39-87

PPRR-40-87

PPRR-41-87

PPRR-42-87
PPRR-43-87

PPRR-44-87
PPRR-45-87

PPRR-46-87

PS-algol Machine Monitoring -
Loboz, Z.

Flexible Incremental Bindings in a Persistent Object Store -
Morrison, R., Atkinson, M.P. and Dearle, A.

Polymorphic Persistent Procevses -
Morrison, R., Barter, C.J., Brown, A.L., Carrick, R.,
Connor, R., Dearle, A., Hurst, A.J.and Livescy, M.J.

Andrew, Unix and Educational Computing -
Hansen, W. J.

Factors that Affect Reading and Writing with Personal
Computers and Workstations -
Hansen, W. J. and Haas, C.

A Practical Algebra for Substring Expressions -
Hansen, W. J.

The NESS Reference Manual -
Hansen, W. J.

Persistent Objcct Systems: their design, implementation and use.
(proceedings of the Appin workshop August 1987)
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R.

Delayed Binding and Type Checking in Database Programming
Languages -
Atkinson, M.P., Buneman, O.P. & Morrison, R.

Transactions and Concurrency -
Krablin, G.L.

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£20.00

£1.00

£1.00

