Un?versity of Glasgow
Departmert of Compliirg Sclence

lysank Gardens
Glasgow G12 8QQ

Jniversity of St. Andrews
Department of Computational Science

North Haugh
St Andrews KY16 9SS

The NESS Reference Manual

Wilfred J. Hansen

Bl

Persistent Programming
Research Report 43
June 1987

e — o

Mo Dele

June, 1987
Ness -
Reference Manual

Wilfred J. Hansen*

Computer Science Department
University of Glasgow

* Author’s present address:
Information Technology Center
Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract: Ness is a small programming language designed
to explore an algebra for substring expressions. In addition
to substring functions, constants, and concatenation, the
language offers assignment, if-then-else, while-do, and
function definition. The language is implemented as a
preprocessor that produces a C program, so C source code can
be embedded in Ness programs to utilize other data types.

1. Introduction

The Ness* language has been implemented to explore the notions of an
algebra for substring expressions [Algebral. The current implementation
is as a preprocessor that produces a C program; this in turn utilizes the
Em subroutine package [Em].

* The name was chosen both because the language utilizes a Notation for
Expressions over SubStrings and to honor the home of one of Scotland’s
immortals. The correct typography for the name is sans serif.

Almost all values in Ness are substrings. A constant string denotes a
substring which refers to the entire constant; concatenation creates a new

-2

string but returns a substring value referring to its entirety; all
function arguments are substrings and all functions return substring
values.

As an_example of Ness, the following program counts the words in a
text. See the discussion after the program.

- Weme
-- count the words in a file

#nclude <stdio.h>
marker letters; - a list of the letters that may occur in words

-~ incr(n) assumes n is a string representation of a positive
- integer and modifies it to the successor integer
function incr(n) — {
ifn=""then {
-- empty string, extend front of integer
replace(n, "1");
return;
}
-- replace last digit with its successor:
replace(last(n), next(search("01234567890", last(n))));

if last(n) = "0" then -- recur to carry to the left
incr(extent(n, start{last(n))))
}
-~ countwords(text) counts the number of sequences
-- of adjacent letters
function countwords(text) =
marker count;
count := newbase();
text := token(text,letters); -- find first word
while text /= "" do {
incr{count); -~ count the current word
text = -- find next word
token(next(text), letters);
}
return count;

}

-- the main program initializes constants and then
-- reads a file and counts the number of words in it

function main(args) ==
marker filenameletters, filename;

letters := "qwertyuiopasdfghjklzxcvbnm"
~ "QWERTYUIOPASDFGHJKLZXCVBNM";
filenameletters := letters = ".0123456789";

-- extract first argument from args
filename := span(next(token(args, * \t")),
filenameletters);

-- read file, count words, and print result
print ("The text has "
~ countwords(readfile(filename))
~ " words\n");

IncrQ modifies its argument recursively, processing digits from right to
left. If the argument is empty, a carry has overflowed and the value is
extended with a "1" on the left. Otherwise the low order digit is
incremented: The "search” operator returns the one-character substring
of "01234567890" corresponding to the last digit of 7; the next()
character after this substring is the next larger digit. If the resulting
digit is zero, incr() is called recursively to increment the portion of the
integer preceding the last digit. (It is as easy to write a version of incr()
Wwhich constructs a new value rather than medifying its argument.)

The newbase() call in countwords() creates a new, non-constant empty
string. It is later revised with incrQ to have successive integer values.
Each token() call scans forward from the current position in text (its first
argument) looking for the next substring composed of characters from
the string letters. If one is found, it is counted and the process continues.
Otherwise the procedure exits, returning the count value.

The parameter to main() is given as its value the shell command line
which called the program. The token() operation looks for the end of
the first argument (which is the program name itself) and then the
span() operation finds all subsequent letters, digits, and dots, which is
how this program defines a filename. Finally, all the processing takes
place in the expression
countwords(readfile(filename))

which reads the entire file into memory, passes a marker for it to
countwords(), and returns the string representation of the number of
words.

Many features of Ness are exhibited in this program:

The substring computation functions, newbase(), next(), replace(), .
. . are written as standard function calls.

Tilde, "™ ", is the string concatenation operator.

By convention a failed search returns an empty substring at the
beginning of the text which was searched.

Comments begin with "--" and extend to the end of the line.

A declaration is the word "marker" followed by a list of
identifiers.

All variables and values are of type marker (except for the
control values in if and while.) {It would really be preferable to
have an integer data type for this example to avoid the heaviness
of incr(.}

Parameters in a formal parameter list are not declared, nor is the
type of the function.

Execution begins with the function named "main".
Statement bracketing is done with { ...} asin C.

String constants are as in C and may include backslash escapes like

\n.
C preprocessor statements may be included.

The program could be made briefer if the language were richer. Since it
is intended for study of substring expressions the language is deliberately
weak in other areas: there are no embedded assignments and the only
flow of control constructs are if-then-else and while-do.

The example illustrates most of the Ness language. In addition you will
want to know the various Ness operators; these are described in Section
4. Further examples appear in Appendix A.

2. Lexemes
Ness comments begin with double-dash (--) and extend to the end of the

line. White-space characters — (space) \n \t \f \b \v \r — may
appear between tokens. Dollar signs ($) and hashes (#) begin comments

_5-

that are passed through to the C compiler; these are described in
Appendix C.

The tokens of Ness are identifiers, strings, reserved words, a few multi-
character sequences, and certain single characters.

Identifiers. An identifier is a sequence of letters (no digits). Reserved
words cannot be used as identifiers. The names of pre-defined functions
can be used as variable names, but cannot be used as the names of
functions.

Strings. A Ness string has the same structure as a C string, delimited
with double quotes and possibly containing backslash escapes. (However,
strings are not directly incorporated in the program as C strings. They
are read into the executing program from the programname.cons file.)

Reserved words. The reserved words are
function if then else while do marker return True False
Pre-defined functions. The pre-defined function names are
newbase next base start extent replace bound readonly
end front first second rest allprevious allnext advance

last previous search match anyof span token
readfile print

Multi-character sequences. The following multi-character sequences are
part of the language:

=/ <E D= o= D> <
Other. Other characters which are not letters or digits are treated each
as a single character. The characters used are

;. YL T T & - > <

Syntax

In the Syntax rules a double slash means indefinite repetition of the
preceding symbol with instances separated by the following symbol,
which may be blank.

-7-
3.1. Programs, Functions, and Statements There must be a function with the name "main”. It will be executed
first, having as its argument the command line with which the program
A Ness program is a sequence of declarations of global variables and was called. {The argument Wil'l have a single blanlf between each
functions. The body of a function is a statement and there are nine segment of non-blank characters given on the command line.}
varieties of statement:
Statements end with semi-colons.
program == global// T
An ’else’ is paired with the nearest preceding unmatched ’then’.
global &= ’marker’ var//, ; -~ global variables .
= —- function definition An assignment statement assigns the substring marker value computed
function’ fnm (var//,) == stmt on the right side to the variable named on the left. Predicates, however,
compare the characters of the substrings referred to by the arguments.
stmt = ‘marker’ var//, ; -- local variables

The append statement
u= ’while’ pred ’do’ stmt

== ’if” pred ’then’ stmt var = expr;

== ’if’ pred ’then’ stmt ’else’ stmt

= ’return’ expr ; -- return a value is defined to have the same effect as

= ’return’ ; -~ return no value

= { stmt// } -~ compound statement var := extent(var, replace(end(var), expr))

= fom (expr//,) ; -- function call R

B= var = expr ; -- assignment of marker values 3.2. Expressions

= var = expr ; -- append . . .

Most of the forms of substring expression are implemented as pre-defined
Variables must be declared before use. Globally declared variables may functiqns, so the grammar for expression is largely for predicate
be referenced in any subsequent function, but local variables can only be €Xpressions:
referenced within the function where they are declared. All global
identifiers (function names and variable names) must be unique and all pred x= pred | pred - OR
identifiers within any one function must be unique. A local variable = pred & pred -- AND
may have the same identifier as a global variable, and then that function = pred -~ negation ,
can only refer to the local variable. {Note that unlike C, a variable = expr relop expr -- comparison of substring values
declared within an inner compound statement is accessible outside that = ”I’rue,
compound statement and must not have the same identifier as any other False
variable in the function.} z= (pred)
A function call must have the same number of arguments as there are relop = = -- equal
formal parameters in the function definition. The formal parameters are w= /= -- not equal
implicitly declared to be of type marker and must not be redeclared = < - lexically less
within the function body. The parameters are call-by-value: a change to | - -~ lexically greater
the formal parameter marker within the function has no affect on the i = < - lexically not greater
actual argument variable passed in the call. However, if a portion of the = >= -~ lexically not less
base string of a formal parameter is replace(d, the base string of the == -~ same marker ?
actual argument will be changed as well. The return statement causes = < -~ precedes 7
an exit from its function back to the point where the function was =2 -- follows ?
called. A function may or may not return a value. .
expr = fnm (expr//,) -- function call

= eXpr expr -- concatenation
== string-constant
= Var

var = identifier

fom == identifier

Predicates may be parenthesized, but expressions may not.

A function call must have the same number of arguments as there are
formal parameters in the function definition. If a function is called as
part of an expression, the return statements in the function should
return values.

The precedence of operators is

done first
relop

&
| done last

Operators of equal precedence are evaluated from left to right. The
predicate operators | and & are conditional; they do not evaluate
their second argument if they need not.

The relational operators, = /= < > <= >=, compare the string values
of their operands; they do not compare the markers themselves.

The dotted equal operator .= compares its operands to see if they delimit
the same substring of the same base.

The dotted comparison operators .< .> compare the relative order of
the start of the two operands. The comparison has the value True only
if both operands are on the same base string and the start of the first has
the indicated relation to the start of the second.

Concatenation, a ~ b, isdefined to have the same value as

base(replace(end(replace(newbase(), a)), b))

4. Functions of the Substring Algebra

The predefined functions are those of the algebra for substring
expressions, as described in [Algebral See that paper for details of their

-9-

definitions. The arguments to all are substring expressions and all
return substring values.

4.1. Primitive Functions

newbase(- Returns a marker for a non-constant empty string. This can
be used to initialize variables which will later have a substring replaced
or appended.

start(m) - Returns a marker for an empty substring at the beginning of
m.

next(m) - Returns a marker for the single character following marker
m. If m extends to the end of its base string, next(m) returns an empty
substring at the end of m.

base(m) - Returns a marker for the entire base string of m.

extent(ml, m2) - Returns a marker for all characters of the base
between start(ml) and start(next(m2)); that is, from the beginning of
the first argument to the end of the second. When start(next(m2))
precedes start(m1), the result is an empty marker at start(next(m2)). If
the two arguments are on distinct pseudo-bases, both of which are on the
same ultimate base, the result is on the ultimate base. If the arguments
are not on the same ultimate base string, the program aborts.

replace(ml, m2) - Returns a marker for a copy of m2 which has
replaced ml in its base string. Other markers on the same base as m1 are
adjusted as though ml had been appended to ml and the latter then
deleted (see [Algebra]). If the base of ml is a constant string, the
program aborts.

bound(m) - Returns a marker for the same substring as m. However,
the result marker will behave as a base for other operations (except that
extent() between a bounded marker and another marker outside the
bound but on the same ultimate base will produce a marker on the
ultimate base.)

readonly(m) - Returns a marker for the same substring as m. Howelrer,
the result string will be readonly; modifications with replaceQ) and ~:=
will abort the program.

4.2. Substring Functions

end(m) - Returns a marker for the empty substring just after m.
function end(m) == return start(next(m));

-10 -

rest(m) - Returns a marker for all characters of m other than the first.
If m is empty, so is rest{m).
function rest(m) == return extent(next(next(start(m))), m);

first(m) - Returns the first character of m. If m is empty, so is first(m).
function first(m) == extent(m, start(rest(m)));

second(m) - Returns a marker for the character following first(m), if
there is one.

function second(m) = return first(rest(m));

advance(m) - Returns a marker extending from just after the first
character of m to just after next(m). In general advance(m) will have
the same number of characters as m, but it may be shorter if the end of
m is at the end of the base string.

function advance(m) == return extent(second(m), next(m))

front(m) - Returns a marker for the first character after start(m), if
there is one, otherwise m must be empty at the end of its base and this
value is returned. Unlike first(), front() returns a character for all cases
other than the very end of the base.

function front(m) == return next(start(m));

allprevious(m) - Returns a marker for the substring of the base of m
that precedes the start of m.
function allprevious(m) == return extent(base(m), start(m));

allnext(m) - Returns a marker for the substring of the base of m that
follow the end of m.
function allnext(m) = return extent(end(m), base(m));

last(m) - Returns the last character of m. If m is empty, so is last(m).
function last(m) ==
marker t;
if rest(m) = "" then return m;
else return last(rest(m));

}

previous(m) - Returns a marker for the character preceding m. If m is
at the beginning of it base string, previous(m) returns the value
start(m).

function previous(s) == last(extent(base(s), start(s)));

4.3. Input/Output Functions

readfile(filename) - Returns a marker for the entire contents of the file
named by the argument.

print(m) - Prints the text of m on stdout. Returns m.

4.4. Pattern Matching Functions

All the pattern matching functions have two arguments, a source string
and a pattern. The source string is understood as extending from the
start of the given argument to the end of its base. The pattern does not
extend beyond either end of its marker. The value returned by a
pattern matching operation for a successful search is a marker for the
substring of the source that meets the criterion. For an unsuccessful
search, the function returns a empty string at the beginning of the
source.

search(m, target) - If successful, returns a marker surrounding the first
substring of the source that is equal to target.

match(m, target) - Determines whether the source begins with a
substring identical to target; if so, it returns a marker for that substring.

span(m, clist) - Returns a marker for all characters of the source from
its beginning to just before the first character not in clist. That is, span
matches the longest initial substring of the source that is composed of
characters from clist.

anyof(m, clist) - Finds the first character in the source that is one of
the characters in clist and returns a marker for the character.

token(m, clist) - Searches the source for the first substring consisting of
characters from clist and returns a marker for the substring.
function token(m, clist) == return spananyof(m, clist), clist);

The functions below describe with fair accuracy the present
implementations of the pattern matching functions. However, FindChar
is implemented in a handcoded C routine for speed.

-~ FindChar(m, ¢) searches extent(m, end(base(m)))
- for the character c.
— For failure it returns end(base(m)).

~12 -

function FindChar(m, ¢) == {
m = front{m);
while True do {
if m=""1 m=c then
return m;
m := next(m);

}

function search(m, pat) == {
marker pf, startm, tm, tp;
startm := start(m);
m := front(m);
if pat = "" then return startm;
pat := bound(pat);
pf = front(pat);
while m /= "" do {
-- look for first character of pat
m := FindChar(m, pf);
if m="" then
return startm;
--m is first char of pat
-- if the rest of pat follows m
-- then return pat at m;
tm = m;
tp = front(pat);
while tm /= "" & tm = tp do {
tm = next(tm);
tp = next(tp);

if tp="" then
return extent(m, start(tm))
else m = next(m);
}

return startm;

function match(m, pat) ==

marker startm;

startm := start(m);

if pat = "" then return startm;

m := front(m);

while pat /= "" & m = first(pat) do {
pat := rest(pat);
m := next(m);

-~ if reached end of pat, succeed

-- note that m has changed
if pat = "" then return extent(m, start(m));
else return startm;

}

function span(m, clist) = {

marker startm;

startm := start(m);

clist ;= bound(clist); -- to bound the Search

m := front(m);

while m = "" do {
if FindChar(clist, m) ="" then

return extent(startm, start(m));

m := next(m);

-- group extends to end of base(m)
return extent(startm, m);

}

function anyof(m, pat) {
marker startm;
startm := start(m);
pat := bound(pat);
m = front(m);
while m &= "" do
if FindChar(pat, m) then
return m;
else m := next(m);
return startm;

-13-

References

[Algebra] Hansen, W. J., A Practical Algebra for Substring Expressions,
Computer Science Dept., Univ. of Glasgow, June, 1987.

[Err_l] Hansen, W. J, Em: Reference Manual, Computer Science Dept.,
Univ. of Glasgow, June, 1987.

Appendix A. Roman Numeral Conversions in Ness

-- Xroman.mc

-- Roman Numeral conversion program

— W.J. Hansen, 5 May 1987

- © Oopyﬁght ‘WJ]Hansen, 1987

-- This program reads a file, converts all Roman numbers to decimal,
-— prints the result, converts are decimal values to Roman, and

- prints the result again.

#include <stdioh>

-~ % Arabic to Roman

marker TimesTable; -- for multiplying Roman digits times ten
marker ArabicTable; -- converts an Arabic digit to Roman
marker DecimalDigits; -~ the ten decimal digits

-- RMulTen(n) multiplies a Roman number s by ten, using table lookup
- the argument s is modified in place
function RMulTen(n) ==
-~ for each letter of n, find the 10 times larger Roman letter
n := first(bound(n));
while n /="" do
n := next(replace(n, next(search(TimesTable, n))));

-- AtoR(s) converts an Arabic number in s to Roman numerals
function AtoR(s) ==
-- for each digit of s, multiply the prior result by ten
-- and append new digits
marker r1;
T := newbase();
s := first(bound(s));
while s /="" do {
RMulTen(r);
r = span(next(search{ArabicTable, s)), "TVX?");

s = next(s);
}
if search(r, "?") /= "" then return "?";
return r;

}

-- ConvertArabic(s) scans the entire string s,
- converting all Arabic numbers to Roman
- Syntactically incorrect numbers are enclosed in "?"s.
function ConvertArabic(s) ==
marker t;
while s /="" do {
s = anyof (s, DecimalDigits);
if s/="" then {
s = span(s, DecimalDigits);
t= AtoR(s)
if t="7" then {
replace(start(s), "?");
replace(end(s), "7");
s = next(s);

else replace (s, t);
s = next(s);

--* Roman to Arabic

marker RomanDigits; -- list of Roman numeral letters
marker RomanTable; -- conversion of Roman to Arabic digits

-- SimpleRtoA(n) Interprets n as a roman numeral

- and returns the decimal equivalent.

- This version assumes that the input is correct

- and starts at the begmmng of the input string.

- No zero suppressmn is done for the result.

function simpleRtoA(n) =
marker result, d;
result := newbase(;
d := front(RomanDigits); -- first search for M’s at start of n
while d /="I" do {

n = span(n, d);

result ~ := next(search(RomanTable, n));
n := next(n);

d := extent(last(d), next(next(d)));

}

return result;

}

--RtoA(n) Interprets n as a Roman number
- and returns the decimal equivalent.
- This version scans the input for the beginning
- of the Roman number and checks its syntax.
- The result is zero-suppressed.
- If the input is syntactically incorrect,
- a"?" is returned as the sole result.
A hack is used to shorten the search for each successive step.
f unction RtoA(n) ==
marker result, d, t;
result := newbase(;
n = anyof(n, RomanDigits); -- skip to find Roman chars
d:= front(RomemDigits%;1
t = RomanTable;
while d /= "I" do {
n := span(n, d);
if n="" then
result ~ = "Q";
else {
t = search(t, n);
if t="" then return "?";
t = next(t); -- the Arabic translation
result "= t;

n = next(n);
d = extent(last(d), next(next(d)));

}
if search(RomanDigits, front(n)) /= "" then
return "?"; - trailing syntax error
-- by construction, the result cannot be zero so
-~ zero-suppression need only look for first non-zero digit
} return extent(anyof(result, "123456789"), result);

-- ConvertRoman(s) scans the entire string s,
- converting all Roman numbers to decimal
- Syntactically incorrect numbers are enclosed in "?"s.
function ConvertRoman(s) ==
marker t;

-18 - - 20~

(Ne) =19 -
whiles /="" do { Ve Appendix B. Compiling, Linking, and Executing Ness
§ = anyof(s, RomanDigits); Programs
if s/="" then {
s = span(s, RomanDigits); The compiler for Ness is called mc and source program files must have
t == RtoA(s) the extension ".mc", say prog.mc. The result of compiling a source file is
if t="7" then { two files with the extensions ".c" and ".cons". The first of these is input
replace(start(s), "?"); to the C compiler and the second is read at the beginning of execution to
replace(end(s), "?"); initialize the constants vector. Separate compilation of routines will not
} s = next(s) work because the string constants are initialized from .cons in main().
else replace (s, t); In what follows I assume that the system files needed for mc reside in
s = next(s); /usr/local/me. In case they are elsewhere, appropriate adjustments will
\ } be needed. These required files are:
} mc the mc translator
mc.cons run-time initialization for mc
em.h header file of declarations used by the .c file
- libem.a library of support functions

--* Main Routine Some other files are provided for reference:
*

_— mc.mc

function main(args) == {

marker filenameletters, file, filename;

The order of entries in each of these tables is significant
RomanDigits := "MDCLXVT";
RomanTable := "0 M1 MM2 MMM3 MMMM4"
~ "C1 CC2 CCC3 D5 CD4 DC6 DCC7 DCCC8 CM9"
~ "X1 XX2 XXX3 L5 XL4 LX6 LXX7 LXXX8 XC9"
"~ "I1 I12 I3 V5 IV4 VI6 VII7 VIII§ IX9";
TimesTable := "IXCM?? VLD? ";
ArabicTable := "? 0 11 2II 31II 4IV 5V 6VI 7VII 8VIII 9IX " ;
DecimalDigits := "0123456789";

filenameletters := "qwertyuiopasdfghjklzxcvbnm" g
"QWERTYUIOPASDFGHJIK]1.ZXCVBNM"
T ".0123456789";
filename := span(next(token(args, " ")), filenameletters);

file = readfile(filename);
ConvertRoman(file);
print(file);
ConvertArabic(file);
print(file);

compiler source code

NessRef.d this manual

EmRef.d describes the Em subroutine package
Algebrad definition of the substring algebra

The mc compiler is itself written in Ness, so the constants initialization
file me.cons is needed to execute the compiler. Copy this file to the
directory containing the file to be compiled:
cp /usr/local/mc/mc.cons »
This need only be done once. Now the program itself can be compiled:
/usr/local/mc/mc prog.mc
The resulting C program is then compiled and linked:
cc -g -0 prog prog.c -I/usr/local/mc /usr/local/mc/libem.a
Finally the program itself is executed, passing whatever args are desired:
prog args

If you copy prog to another directory or an offline medium, remember to
copy and transport the prog.cons file as well as the binary.

-21-

Diagnostics.

Mc is a research tool rather than a production language; it offers only
tWO error messages:

adding a) in call to function-name . '
A semicolon has been encountered before a closing right

parenthesis.

adding " to end constant "constant-text"
A newline has been found in a constant string.

Other errors usually generate incorrect C code, which generates an error
during the C compilation.

During the C compilation the messages about "statement not m;eached:
should be ignored. They arise because mc always generates a "return
statement even though a function may already end with one.

_22.

Appendix C. Inclusion of C code

Since the mc processor is a preprocessor for C and since mc does not
provide all data types, provision is made for inclusion of C code within
an mc program:

Outside of functions, text is passed over unchanged until meeting one of
the keywords "marker” or "function". The text after the first of these
extends to the the next semi-colon; the text after the second extends to
the end of the subsequent statement.

There are some restrictions on inclusions after "marker”. It is safest to
include nothing but comments.

Within function definitions dollar signs ($) are deleted and subsequent
text is passed through unchanged. If a dollar sign is not followed by a
left square bracket, the dollar sign is deleted and the unchanged text
extends to the end of the line. If the dollar sign is followed by a left
square bracket, both are deleted and the text is then left unchanged up
to the next right square bracket, which is deleted. Formal and actual
parameter lists are processed so inclusions with §{ . . .] are left in the
parameter list so they are passed by the call rather than as values on the
marker stack.

Lines for the C preprocessor begin with hash signs (#); these and the
remainder of the line on which they appear are passed through to the
compiler undisturbed.

Mc converts Ness functions into C functions which accept their
arguments from a stack and store their result there. Consider this
sample program:

marker glob;
function fun (a, b)
{ text between right parenthesis and double equal
marker c;
-- assignment
c = start(a);
} return b;
function main(args) ==
glob := "global string constant”;
print(fun("for a", glob));

-23 -

For this sample, the output of mc is:

#include "em.h")

#lefine EmQNConsts

Emark EmQConEmQNConsts+1};
Emark glob;

fun 3;ext between right parenthesis and double equal
{

#lefinea 1
#efine b 2

#lefine ¢ 3 \

EmFrame(2, 1); {

; ignment */
/EEanslsIZgonadLocal(a), EmStart()), EmStoreLocal(c);
{ EmLoadLocal(b);EmResult(0);}

} ,

#undef a

#undef b

#undef ¢

EmLoad(EMPTY); EmResult(0);

main(EmQargc, EmQargv) char *EmQargv;

EmnitQ;
EmQLoadConsts(" t.cons”, EmQCons, EmQNConsts);

EmQConvertArgs(EmQargc, EmQargv);

#define args 1

EmFmIr,oadame(l’ % {ns[l]) EmStore(glob);
? m $ 4
(}(EEmLoac(l?érranQCCoons[ZD, EmlLoad(glob),fun()), EmDupQ,
EmPrint(stdout)),EmPop(;

}
#undef args

EmLoad(EMPTY); EmResult(0);
}
}

-24-

The main program calls Emlnit to initialize the Em package,
EmQLoadConsts to initialize the constant string table, and
EmQConvertArgs to transform the command line to the mc form.
Global variables need not be initialized because they are initialized by C
to NULL, which is understood as a valid former value by EmStore().
The value of EmQConvertArgs remains on top of the stack as the first
argument for the EmFrame.

Useful C Routines
The following routines may be of interest when writing C inclusions:

EmlLoadLocal(name), EmLoad(variable). These f unctions load a
value onto the top of the stack. EmLoadLocal is for names specified with
#define’s; all other values should be accessed via EmLoad().

EmStoreLocal(name), EmStore(variable). These functions pop the
stack and store the value removed. EmStoreLocal is for names specified
with #define’s; all other values should be accessed via EmStore(). Before
the first EmStore into a non-local variable, it should be set to zero.

EmDiscard(variable). When the value of a global variable is no longer
needed, it and it associated string storage can be released by passing the
variable to EmDiscard().

EmString(C-string). The C-string is a normal C reference to a string.
An Em string for the same value is created and a marker for it is pushed
onto the stack.

EmToC(O. The top value is popped from the stack and copied into a
buffer, terminated with a \0’. The address of this buffer is returned and
can be passed to C routines. The buffer is re-used each time this function
is called. (The marked value must be 499 bytes or shorter.)

EmWrite(fd). The top value is popped from the stack and written to
the specified file descriptor.

Boolean EmRead(fd, len). Reads up to len bytes from the file attached
to descriptor fd and leaves on the marker stack a marker for the bytes.
If len is O, the entire remaining file is read. Returns False if end of file
OT ETTOr OCCUTrs.

long EmPeek(. Returns the long value corresponding to the first
character of the marker on top of the stack. Returns zero if the marker
‘was empty.

EmChr(v). Converts the long value v to a character, makes a base

-25-

string containing that: character, and leaves the base string atop the
marker stack.

Appendix D. Compiling the Compiler

The mc compiler for Ness is in file mc.mc . Thus compiling it is similar
to compiling any other mc program. The important difference is that the
new version may be sufficiently incorrect that the compiler could no
longer compile itself.. Therefore earlier versions must be retained. 1
generally utilize three versions of mc: ok, new, and test.

ok. The ok version is the last one known to work well; it
compiles the compiler and the suite of example programs.
This version has four files: mc.ok, the binary; mc.ok.mec, the
source; mc.ok.c, the output of the compile; and mc.ok.cons,
the run-time constants.

new. This version is the result of compiling me.mc using
the ok compiler. There are mcnew, MCNEW.C, and
mMC.NEW.Cons.

test. This version is the result of compiling me.mc using
the new compiler. There are mctest, mc.iestc, and
mgc.test.cons.

Here is a typical compile and test sequence:

construct new compiler

cp mc.ok.cons mc.cons # set up proper .cons file

mc.ok me.amc # do the compile

MV me.c MC.New.c; mv mc.cons mcnew.cons # save the results

cc -g -0 mc.new me.new.c -I/usr/local/me/em.h \
/usr/local/mc/libem.a

use new compiler to compile itself, making the test version

cp mc.new.cons mc.cons # set up proper .cons file

mMCNew me.me # do the compile

mv mc.c me.test.c; mv me.cons mc.testcons # save the results

cc -g -0 mc.test me.test.c -I/usr/local/mc/emh \
/usr/local/mc/libem.a

execute the test version and check its output

cp mc.test.cons mecons # set up proper .cons file

mc.test mc.mc # do the compile

diff mc.c me.test.c # these two diff's should both indicate
diff mc.cons mc.test.cons # NO DIFFERENCES

‘When all is well, the new compiler can be made the ok version:

#save the ok version (this is superstition)
mv mc.ok.mc mc.old.mc

mv mc.ok.c mc.old.c

mv mc.ok.cons mc.old.cons

#set up new version

MV mc.new me.ok

mv mcnew.c mc.ok.c

mv mc.new.cons mc.ok.cons
¢p mc.mc mc.ok.mc

- 26 -

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,
Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,
Glasgow G12 8QQ
Scotland.

or
The Secretary,
Persistent Programming Research Group,
Department of Computational Science,
University of St. Andrews,
North Haugh,
St. Andrews KY16 9SS
Scotland.

Books

Davie, AJT. & Morrison, R.
"Recursive Descent Compiling", Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.)
"Databases", Pergammon Infotech State of the Art Report, Series 9, No.8, January 1982,
(535 pages).

Cole, A.J. & Morrison, R.
"An introduction to programming with S-algol”, Cambridge University Press, Cambridge,
England, 1982.

Stocker, P.M., Atkinson, M.P. & Grey, P.M.D. (eds.)
"Databases - Role and Structure”, Cambridge University Press, Cambridge, England, 1984.

Published Papers

Morrison, R.
"A method of implementing procedure entry .and exit in block structured high level
languages”. Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z.
"The Graffiti graphics system”, Proc. of the DECUS conference, Bath (April 1978), 5-10.

Atkinson, M.P.
“A note on the application of differential files to computer aided design", ACM SIGDA
newsletter Summer 1978.

Atkinson, M.P.
"Programming Languages and Databases”, Proceedings of the 4th International Conference
on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78, 408-419. (A revised
version of this is available from the University of Edinburgh Department of Computer
Science (EUCS) as CSR-26-78).

Atkinson, M.P.
"Progress in documentation: Database management systems in library automation and
information retrieval”, Journal of Documentation Vol.35, No.1, March 1979, 49-91.
Available as EUCS departmental report CSR-43-79.

Gunn, HLE. & Morrison, R.
"On the implementation of constants”, Information Processing Letters 9, 1 (July 1979), 1-4.

Atkinson, M.P.
“"Data management for interactive graphics”, Proceedings of the Infotech State of the Art
Conference, October 1979. Available as EUCS departmental report CSR-51-80.

Atkinson, M.P. (ed.)
"Data design", Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R.
"Low cost computer graphics for micro computers”, Software Practice and Experience, 12,
1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"PS-algol: An Algol with a Persistent Heap", ACM SIGPLAN Notices Vol.17, No. 7, (July
1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Nepal - the New Edinburgh Persistent Algorithmic Language", in Database, Pergammon
Infotech State of the Art Report, Series 9, No.8, 299-318 (January 1982) - also as EUCS
Departmental Report CSR-90-81.

Morrison, R.
“S-algol: a simple algol", Computer Bulletin 1I/31 (March 1982).

Morrison, R.
"The string as a simple data type", Sigplan Notices, Vol.17,3, 46-52, 1982.

Atkinson, M.P,, Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming", presented at CREST course UEA, September
1982, revised in "Databases - Role and Structure”, see PPRR-8-84.

Morrison, R.
“Towards simpler programming languages: S-algol”, IUCC Bulletin 4, 3 (October 1982),
130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
“Problems with persistent programming languages”, presented at the Workshop on
programming languages and database systems, University of Pennsylvania. October 1982.
Circulated (revised) in the Workshop proceedings 1983, see PPRR-3-83.

Atkinson, M.P.
"Data management", in Encyclopedia of Computer Science and Engineering 2nd Edition,
Ralston & Mecek (editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Algorithms for a Persistent Heap", Software Practice and Experience, Vol.13, No.3,
259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"CMS - A chunk management system", Software Practice and Experience, Vol.13, No.3
(March 1983), 273-285. Also as EUCS Departmental Report CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming”, presented at the DEC workshop on
Programming Languages and Databases, Boston, April 1983,

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"An approach to persistent programming", The Computer Journal, 1983, Vol.26, No.4,
360-365 - see PPRR-2-83,

Atkinson, M.P., Bailey, P.J., Chisholm, K.I., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming”, 10th Australian Computer Conference,
Melbourne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.
"High level language support for 3-dimension graphics", Eurographics Conference Zagreb,
North Holand, 7-17, Sept. 1983. (ed. P.J.W. ten Hagen).

Cockshott, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Morrison, R.
"POMS : a persistent object management system", Software Practice and Exerience, Vol.14,
No.1, 49-71, January 1984.

Kulkarni, K.G. & Atkinson, M.P.
"Experimenting with the Functional Data Model”, in Databases - Role and Structure,
Cambridge University Press, Cambridge, England, 1984,

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough”, Foundations of Software Technology and
Theoretical Computer Science (ed. M. Joseph & R. Shyamasundar) Lecture Notes in
Computer Science 181, Springer Verlag, Berlin (1984). ' :

Atkinson, M.P., Bocca, J.B., Elsey, T.J., Fiddian, N.J., Flower, M., Gray, PM.D.
Gray, W.A., Hepp, P.E., Johnson, R.G., Milne, W., Norrie, M.C., Omololuy,
A.O., Oxborrow, E.A., Shave, M.J.R., Smith, A.M., Stocker, P.M. & Walker, J.
"The Proteus distributed database system", proceedings of the third British National
Conference on Databases, (ed. J. Longstaff), BCS Workshop Series, Cambridge University
Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R.
"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985) - see
PPRR-9-84.

Morrison, R.,Bailey, P.J., Dearle, A., Brown, P. & Atkinson, M.P.
"The persistent store as an enabling technology for integrated support environments", 8th
International Conference on Software Engineering, Imperial College, London (August
1985), 166-172 - see PPRR-15-85.

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment”, proceedings of Data Types
and Persistence Workshop, Appin, August 1985, 1-24 - see PPRR-16-85.

Davie, AJ.T.
"Conditional declarations and pattern matching", proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

Krablin, G.L.
"Building flexible multilevel transactions in a distributed persistent environment, proceedings
of Data Types and Persistence Workshop, Appin, August 1985, 86-117 - see PPRR-16-85.

Buneman, O.P.
"Data types for data base programming", proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.
"Addressing mechanisms and persistent programming”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 363-383 - see PPRR-16-85.

Norrie, M.C.
"PS-algol: A user perspective", proceedings of Data Types and Persistence Workshop,
Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.
"On the need for a Flexible Type System in Persistent Programming Languages”,
proceedings of Data Types and Persistence Workshop, Appin, August 1985, 423-438 - see
PPRR-16-85.

Morrison, R., Brown, A.L., Bailey, P.J., Davie, AJ.T. & Dearle, A.
"A persistent graphics facility for the ICL. PERQ", Software Practice and Experience,
Vol.14, No.3, (1986) - see PPRR-10-84.

Atkinson, M.P. and Morrison R.
"Integrated Persistent Programming Systems”, proceedings of the 19th Annual Hawaii
International Conference on System Sciences, January 7-10, 1986 (ed. B. D. Shriver), vol
IIA, Software, 842-854, Western Periodicals Co., 1300 Rayman St., North Hollywood,
Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.
"A Persistent Information Space Architecture”, proceedings of the 9th Australian Computing
Science Conference, January, 1986 - see PPRR-21-85.

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.1, (1986)
38-45.

Buneman, O.P. & Atkinson, M.P.
"Inheritance and Persistence in Database Programming Languages"; proceedings ACM
SIGMOD Conference 1986, Washington, USA May 1986 - see PPRR-22-86.

Morrison R., Dearle, A, Brown, A. & Atkinson M.P.; "An integrated graphics programming
environment", Computer Graphics Forum, Vol. 5, No. 2, June 1986, 147-157 - see
PPRR-14-86.

Atkinson, M.G., Morrison, R. & Pratten G.D.
"Designing a Persistent Information Space Architecture”, proceedings of Information
Processing 1986, Dublin, September 1986, (ed. H.J. Kugler), 115-119, North Holland
Press.

Brown, A.L. & Dearle, A.
"Implementation Issuses in Persistent Graphics", University Computing, Vol. 8, NO. 2,
(Summer 1986) - see PPRR-23-86.

Kulkarni, K.G. & Atkinson, M. P.
"Implementing an Extended Functional Data Model Using PS-algol”, Software - Practise and
Experience, Vol. 17(3), 171-185 (March 1987)

Cooper, R.L. & Atkinson, M.P.)
"The Advantages of a Unified Treatment of Data", Software Tool 87: Improving Tools,
Advance Computing Series, §, 89-96, Online Publications, June 1987.

Internal Reports

Morrison, R.
"S-Algol language reference manual”, University of St Andrews CS-79-1, 1979,

Bailey, P.J., Maritz, P. & Morrison, R.
"The S-algol abstract machine”, University of St Andrews CS-80-2, 1980.

Atkin§0n, M.P., Hepp, P.E., Ivanov, H., McDuff, A., Proctor, R. & Wilson, A.G.
"EDQUSE reference manual”, Department of Computer Science, University of Edinburgh,
September 1981.

Hepp, P.E. and Norrie, M.C.

"RAQUEL: User Manual", Department of Computer Science Report CSR-188-85
University of Edinburgh.

»

Norrie, M.C.

"The Edinburgh Node of the Proteus Distributed Database System", Department of
Computer Science Report CSR-191-85, University of Edinburgh.

Theses

The following theses, for the degree of Ph. D. unless otherwise stated, have been produced
by members of the group and are available from the address already given,

W.P. Cockshott
Orthogonal Persistence, University of Edinburgh, February 1983.

K.G. Kulkarni

Evaluation of Functional Data Models for Database Design and Use, University of
Edinburgh, 1983.

P.E. Hepp

A DBS Architecture Supporting Coexisting Query Languages and Data Models, University
of Edinburgh, 1983.

G.D.M. Ross
Virtual Files: A Framework for Experimental Design, University of Edinburgh, 1983,

G.0. Owoso

Data Description and Manipulation in Persistent Programming Languages, University of
Edinburgh, 1984,

J. Livingstone

Graphical Manipulation in Programming Languages: Some Experiments, M.Sc., University
of Glasgow, 1987

This series was started in May 1983. The following list gives those which have been

produced at 9th July 1986. Copies of documents in this list may be obtained by writing to

Persistent Programming Research Reports

the addresses already given.

PPRR-1-83

PPRR-2-83

PPRR-4-83

PPRR-5-83

PPRR-6-83

PPRR-7-83

PPRR-8-84

PPRR-9-84

PPRR-10-84

PPRR-11-85

PPRR-12-87

PPRR-13-85

PPRR-14-86

PPRR-15-85

The Persistent Object Management System -
Atkinson,M.P., Chisholm, K.J. and Cockshott, W.P. £1.00

PS-algol Papers: a collection of related papers on PS-algol -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

The PS-algol reference manual -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R Presently no longer available

Experimenting with the Functional Data Model -
Atkinson, M.P. and Kulkarni, K.G. £1.00

A DBS Architecture supporting coexisting user interfaces:
Description and Examples -
Hepp, P.E. £1.00

EFDM - User Manual -
K.G.Kulkarni £1.00

Progress with Persistent Programming -
Atkinson,M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

Procedures as Persistent Data Objects -
Atkinson, M.P.Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £1.00

A Persistent Graphics Facility for the ICL PERQ -
Morrison, R., Brown, A.L., Bailey, P.J., Davie, A.J.T.

and Dearle, A. £1.00
PS-algol Abstract Machine Manual £1.00
PS-algol Reference Manual - fourth edition £2.00

CPOMS - A Revised Version of The Persistent Object
Management System in C -

Brown, A.L. and Cockshott, W.P.. £2.00
An Integrated Graphics Programming Environment - second

edition -

Morrison, R., Brown, A.L., Dearle, A. and Atkinson, M.P. £1.00

The Persistent Store as an Enabling Technology for an
Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, A.L. and
Atkinson, M.P. £1.00

PPRR-16-85

PPRR-17-85

PPRR-18-85

PPRR-19-85

PPRR-20-85

PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PPRR-25-87

PPRR-26-86

PPRR-27-87

PPRR-28-86b

PPRR-29-86

PPRR-30-86

PPRR-31-86

PPRR-32-87

PPRR-33-87

Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R.

Database Programming Language Design -
Atkinson, M.P. and Buneman, O.P.

The Persistent Store Machine -
Cockshott, W.P.

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R.

Building a Microcomputer with Associative Virtual Memory -
Cockshott, W.P.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D.

Inheritance and Persistence in Database Programming
Languages -
Buneman, O.P. and Atkinson, M.P.

Implementation Issues in Persistent Graphics -
Brown, A.L. and Dearle, A.

Using a Persistent Environment to Maintain a Bibliographic
Database -
Cooper, R.L., Atkinson, M.P. & Blott, S.M.

Applications Programming in PS-algol -
Cooper, R.L.

Exception Handling in a Persistent Programming Language -
Philbrow, P & Atkinson M.P.

A Context Sensitive Addressing Model -
Hurst, AJ.

A Domain Theoretic Approach to Higher-Order Relations -
Buneman, O.P. & Ochari, A.

A Persistent Store Garbage Collector with Statistical Facilities -
Campin, J. & Atkinson, M.P

Data Types for Data Base Programming -
Buneman, O.P.

An Introduction to PS-algol Programming -
Carrick, R., Cole, A.J. & Morrison, R.

Polymorphism, Persistence and Software Reuse in a
Strongly Typed Object Oriented Environment -
Morrison, R, Brown, A, Connor, R and Dearle, A

Safe Browsing in a Strongly Typed Persistent Environment -
Dearle, A and Brown, A.L.

£15.00

£3.00

£2.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

PPRR-34-87

PPRR-35-87

PPRR-36-87

PPRR-37-87

PPRR-38-87

PPRR-39-87

PPRR-40-87

PPRR-41-87

PPRR-42-87

PPRR-43-87

Constructing Database Systems in a Persistent Environment -
Cooper, R.L., Atkinson, M.P., Dearle, A. and
Abderrahmane, D.

A Persistent Architecture Intermediate Language -
Dearle, A.

Persistent Information Architectures -
Atkinson, M.P., Morrison R. & Pratten, G.D.

PS-algol Machine Monitoring -
Loboz, Z.

Flexible Incremental Bindings in a Persistent Object Store -
Morrison, R., Atkinson, M.P. and Dearle, A.

Polymorphic Persistent Processes -
Morrison, R., Barter, C.J., Brown, A.L., Carrick, R,
Connor, R., Dearle, A., Hurst, A.J.and Livesey, M.J.

Andrew, Unix and Educational Computing -
Hansen, W. J.

Factors that Affect Reading and Writing with Personal
Computers and Workstations -
Hansen, W. J. and Haas, C.

A Practical Algebra for Substring Expressions -
Hansen, W. J.

The NESS Reference Manual -
Hansen, W. J.

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

