University of Glasgow
Department of Computing Science

Lilybank Gardens
Glasgow G12 8QQ

University of St. Andrews
Department of Computational Science

North Haugh
St Andrews KY16 9SS

A Practical Algebra for
Substring Expressions

Wilfred J. Hansen

Persistent Programming
Research Report 42
June 1987

A Practical Algebra
for Substring Expressions

Wilfred J. Hansen*

Computing Science Department
University of Glasgow

May 1987

* Author’s present address:
Information Technology Center
Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract. This paper introduces an algebra for sequences
which has a number of desirable properties as a basis for
string processing. In the algebra, string values are modelled
as markers, each of which represents a selected substring of
some underlying base string. Six primitive functions on
markers are described: next(, start(Q, extent(, baseQ,
newbase(), and replace(). Together with appropriate
definitions for comparison and assignment, these are shown
to be sufficient for all string processing and, moreover,
conducive to the construction "of readable, error-free
programs. Examples are given in Ness, a small language
incorporating the algebra.

1. Introduction

;‘&n algebra is a set of functions closed over a domain of values. A
practi_cal" algebra is one suited to provide a component of a
programming language, for example the algebras of integer and Boolean
values. A practical algebra must be convenient, expressive, consonant
with the remainder of the language, representation independent, and
efficiently implementable. It should be based on a minimal core of
functions which are sufficient to compute all values over which the
algebra is defined. Practicality is not a formal property which can be
proven; it is subjective and must be demonstrated by considering its
applications.

None of the algebras for string values implemented in major
programming languages has been optimally practical; all are at too low or
high a level. Most assume that characters are represented by a single
eight-bit byte, which does not provide a sufficient variety of characters
for modern text processing. Many define a string as an array of
characters, an organization which is prone to off-by-one errors with the
use of integer subscripts. Others require reorganization of the entire
structure of the language. In desperation we designed a new string
processing facility based on the substring algebra presented below. In
this algebra, string values are "markers", each of which refers to a
substring of some underlying base string. Since the functions of the
algebra are closed over substrings, there is no need for integer indices.
Although the algebra is sufficiently general to describe algorithms over
any sequence of objects, this paper does not explore that aspect. The
algebra has been implemented in a research language called Ness, which
will be used for examples [Hansen, 1987a).

The environment for this work is the Andrew system developed at
Carnegie-Mellon University as a joint project with the IBM Corporation
[Morris, 1986). In conjunction with this effort, Carnegie-Mellon has been
developing a version of the TUTOR language [Sherwood, 1977] used in
the PLATO system [Alpert & Bitzer, 1970). The new language is called
CMU-Tutor [Sherwood and Sherwood, 1986] This language is semi-
interpretive with an operator-operands syntax similar to BASIC. The
language has always provided extensive capabilities for generating
graphics and analyzing student responses to questions, but has lacked
string processing.

The earliest programming languages had few or no capabilities for
strings. Fortran could only print strings and the syntax was the
notorious "Hollerith constant” which required the programmer to count
the number of characters in the string: 3HUGH.

-3-

Later versions of Fortran and other major languages like COBOL have
generally treated strings as arrays of characters with all the limititations
of arrays: storage must be allocated at the time of writing the program
and characters must be selected with integer subscripts. One perrenial
programming problem with integer subscripts is the question of whether
the value refers to a character or the space between two characters;
confusion over this point has led to numerous off-by-one errors.

PL/IL, although it treated strings as arrays of characters, did attempt to
provide some amenities. It offered concatenation, but the result had to be
assigned to a variable, and all variables had a maximum size. Parameters
were call-by-reference, but if a string variable was passed to a function,
there was no way of determining its maximum size. There was provision
for selecting a substring, but the position and length of the substring had
to be given as integers. A substring could be replaced, but only with
another piece of text of exactly the same size.

The XPL environment [McKeeman, 1970] may be the closest antecedent
to the algebra presented here. String variables in that language refer to a
substring of some other string. Each string expression produces another
such substring value. The only string operations, however, are the
integer based operations of INDEX and SUBSTR inherited from PL/L
Substrings could not be replaced; a new string value had to be created
with concatenation. An unfortunate feature was that the
implementation restricted strings to a maximum length of 255
characters, which is far too small for many applications.

Even PostScript [Adobe, 1985), which has been designed specifically for
complex typography, :treats strings as arrays of characters which are
accessed with integer subscripts. styles are not an attribute of a string
but are described by the program containing the string. Strings are not
variable-length encoded, boundless, or elastic. They are delimitable in
that the search operator divides a string into three parts, but there is no
other means of delimitation.

SNOBOL [Farber, 1964] provided a language entirely oriented to string
processing. Strings are so dominant that a portion of every statement is
devoted to a pattern to be matched against a string. The mechanism for
flow-ofcontrol is supplanted by goto’s based on "failure” to accomodate
the fact that string pattern matching must return both the location of
the match and an indication of success.* There is no way to refer to a
substring so there is much copying of strings and there are even two
forms of assignment which may be embedded in patterns. SNOBOL has
many clever ways to shorten algorithms, but this results in a vast
vocabulary that impedes learning the language. There is no set of
fundamental concepts with which the language can be understood and to
which the programmer has direct access.

* "Failure” is an elegant control mechanism which should be considered
for any language design. I did not use it in Ness because I wanted to
concentrate on the substring algebra and eliminate anything else
superfluous or extraordinary.

The recent language Icon [Griswold, 1979] has resolved many of these
difficulties, bu? strings are still indexed with integers and provisions for
pattern matching have still a large influence on the entire design of the
language.

Nong of the problems with the above languages is sufficient by itself to
require a new approach, but a new problem has arisen: programs for bit-
mapped qukstations must process text in a far wider range of character
representations. For efficiency it is still desirable to represent most
characters with a single byte but some characters may require more. The
complexities of text are such that they should be dealt with by system
programming rather than as a part of every application program.

Exarmnmg the problems with existing languages, we can say that a
string processing tool should offer:

Convenience and Expressivity. The notation should easily
express common string processing tasks and should fit
comfortably within a traditional programming language.
The programmer should not have to predeclare a finite
length for the string and it should be possible to replace a
portion of the string with a piece of a different length.

Reprfwe_ntation Independence. There should be no
restriction on the size or representation of each character.

Necessity z_md Sufficiency. The core of the notation should
be a few simple functions which are sufficient for all string
processing.

Efficiency. Common characters should be represented in a
single byte and there should not be unnecessary copying of
string values.

In short, the algebra presented here did not arise as an abstract
mathematical entity, but has been designed as a solution to human
requirements. In that design process, when requirements conflicted the
solution chosen usually was the one that best satisfied Convenience and

Expressivity.

The solution eventually. reached was a notation based on the algebra
presented below and implemented in an otherwise minimal language
called Ness. In addition to the functions of the algebra, Ness offers
marker declarations, assignment, if-then-else, while-do, predicates,
. compound statements, function definition, call (with call-by-value
parameters), and return. Spare as it may be, Ness was sufficient to write
a preprocessor from itself into C.

The substring algebra is an example of an Abstract Data Type (ADT):
the actual implementation of strings is hidden from the application
programmer. Much recent research has studied general mechanisms for
incorporation of ADT’s into programs from libraries. Unfortunately, as
Section 7 will show, the substring algebra cannot readily be
implemented as a library of subroutines.

Section 2 defines the most fundamental primitives, applications of which
are shown in Section 3 where they are used to define other functions to -
access substrings and Section 4 where they are used to define pattern
matching. Section 5 introduces additional primitives for modification of
substring values and Section 6 uses all the primitives to show that the
algebra implements universal computability. Sections 7 and 8 discuss the
implementations of the Algebra and experience with it, while Section 9
describes a few open problems.

2. Substring Primitives

Consider the problem of finding words in a text. If we have one word
and want to find the next, we first must find the leading character of the
next word. For simplicity we asume that any non-blank character starts
a word and write the algorithm in Ness as

-- NextNonBlank(w) assumes w is a marker for a word
- in a base string and returns a marker for the first
- non-blank character after the end of that word.
-- If there is no such character, the function returns
- an empty marker at the end of the base string.

function NextNonBlank(w) ==
marker ¢; -- will refer to a character of the text
¢ = next(w); -- start with the character after w
while ¢ =" " do -- skip blanks
¢ = next(c); -- advance ¢ to next character
return c; -- return the present value of ¢

}

In NextNonBlank(), w and ¢ are marker values which encode not only a
particular string, but also the position of that string within some larger
string. Each call on next(c) returns a reference to the character at the
position one past the substring represented by c; this reference is then
assigned to c¢. In the Icon language, the underlying string would be a
global value; in the substring algebra, it is implicit in the value of the
variable. Each variable in the program may refer to a portion of a
different base string.

A base string is a sequence of characters. A character is an understood,
but undefined, primitive object. Examples include: A, a, 1,:, $, fi, o, o0,
-, QD . A character may be unrelated to others, or be part of an
alphabet (say, latin letters) or an extended alphabet (say, ASCI); the
decision is made when the character is entered into the system, either as
part of a program or as part of a data file. It is immaterial to the algebra
whether a bold letter is a different character than the corresponding
plain letter, although for most applications it may be preferable to have
them be the same character and to have the programming language
provide other functions for manipulating the styles of strings. Such
functions are beyond the scope of this paper.

To formally define the values used in this algebra, we will introduce the
notion of a substring marker value, which represents a piece of a string.
(Values will not be written this way in programs.) In the notation, a
pair of angle brackets delimits a sequence.of characters:

<slc>

The identifiers appearing within the angle brackets are meta-variables
which refer to individual characters or to sequences of zero or more
characters. More commonly a marker value will also contain square
brackets:

Definition: A substring marker value (or "marker") is written as
<sl[s2]s3>

where each s; is a sequence of zero or more characters. The portion s2 is
the marked or delimited portion of the string. The entire string < sl s2
s3 > is the base of the marked value. If s2 is of length zero, the marker
is an empty marker. ' :

It may appear that the definitions below require copying strings; the
intended interpretation—and the implementation of Ness—does not

require copying strings for any of these functions other than
concatenation.

Traditional programming constructs have the following behavior with
respect to substring marker values:

"some text” => < ["sometext"]>
A string constant returns a marker for the entire string.
<s1[s21s3> " <s4[s51s6> => <[s2s5]1>

Concatenation is written with "~ " and constructs a new string

composed of the juxtaposition of the arguments, returning a
marker for the entire value. (Concatentation is not necessarily
primitive. A redefinition is given when the algebra is extended in
Section 5.)

< s1[s2]1s3 > relop < s4[s51s6 > => g2 relop s5

Comparison of marker values is defined to be string comparison of
the delimited portion.

print(< s1[s2 183 >) => 82 is printed

The printed value for a marker value is taken to be the delimited
portion. .

marker varl, var2, ..
Declarcs varl, var2, ... to be marker variables.

f(< s1 [s2] 83 >) passes the entire substring marker value to the actual
parameter. :

-8 -

In the examples all function arguments are markers and are not
declared. Parameters are call-by-value.

The algebra of substring expressions has the following primitive
operations; their arguments and values are all substring marker values.

start{(< s1[s2]s3 > => < s1[Js2s3 >

Start() returns a marker both of whose limits are at the beginning
of the argument.

next(< s1{s2]cs3 > => <s1s2[cls3 >
next{(< s1[s21> => <sts2[>

Next() returns a marker for the character following the argument.
If the argument was at the end of its base, next(Q returns the end
of the base.

base(< s1[s21s3>) => <[s1s2s3]1>

BaseQ) returns a marker for the entire string surrounding the
argument.

extent(< s1[s2]s3 >, < s4[s5]s6>)

=> <sgi[s7]s6> if <81s52s3>=<s4s5s6>
& < 8283 >=< s7s6 >

=> < s4s85[]s6> if <sls2s3>=< s455s6>
& < 81 >=<s485s88 >

=> < ["ERROR"]>, otherwise

Extent(a, b) produces a marker extending from the beginning of
its first argument to the end of its second argument. If the second
argument ends before the start of the first, the result is an empty
marker at the end of the second argument. The constant string
"ERROR" is produced if the arguments are not equivalent. (The
precise meaning of = will be made clear below. For now, we
remark that the implementation of extentQ does nor require
testing the equality of the argument strings.) '

Figure 1 illustrates the effect of start(), next(), base(), and extent(.

For illustrative purposes we prove in some detail that NextNonBlank()

-9-

returns a value meeting its specification. The proof is by induction on
the number of blanks following the marked portion of w.

Theorem: NextNonBlank(<sl [w]bl .. bn x s2 >) returns the value
<sl wbl..bnlx]s2>and NextNonBlank(< s1 [w]1bl .. bn >)
returns < sl w bl ... bn [] >, where w is the text of w, the bi are blanks,
n 20, x is a non-blank, and the si are arbitrary sequences of characters.

Proof: The invariant of the loop Just before testing the predicate is

(i) the marked portion of c is a single character or an empty
mark at the end of the base string, and

(i) the marked portion of extent(next(w), start(c)) is all
blanks.

Part (i) is preserved throughout because c is always assigned the result of
next().

The meaning of the expression in part (i) is "all characters after w and
before ¢". This can be verified with reference to the definition by
supposing that ¢ is

<slwbi.[bi]l.bnxs2>

With this ¢, the extent() expression in (ii) evaluates to

extent(next(w), start(c))

= extent(next(< s1 [w]bg . bi .. b x52),
start(< sl wby .. [bi] .. bR xs2 >)

=extent(< sl wlbjl..bi ..bnxs2 >
<slwbi..bi.bnxs2>)

=< stwlby..]bi ..bnxs2>

The meaning is similar if ¢ is x or if x and s2 are absent and ¢ is an
empty marker after bn.

If the invariant is preserved and the function returns ¢, then ¢ must be
the first non-blank after the end of w.or the end of the base: part (i)
guarantees that c¢ is a single character or the end of the base, part G
guarantees that the only characters between w and c are blanks, and the
loop predicate guarantees that c is not a blank.

It remains to verify part (ii) of the invariant. Initially, i is zero and the
predicate is trivially true because the extent() yields an empty marker.
If we enter the loop body, ¢ must be one of

-10-

<slwby..[bil.brnxs2> ,
<slwhbi..bi.[brn]lxs2> ,or
<stlwbr.bi..[bnl> .

These are converted by the loop body to, respectively,

<slwby.bilbyy]lbrxs2> ,
<slwby..bi.bnlx]s2> ,and
<slwbi..bi.bnll> ,

all of which again satisfy part (ii). Thus the invariant is preserved and
the theorem is proved. B

With the aid of NextNonBlank() we now define NextWord(). In Ness
the convention for unsuccessful searches is that they return an empty

marker at the beginning of the original argument. Our definition of
NextWord(adheres to this convention:

-- NextWord(w) assumes w is a word in a string and returns
- a marker for the next word. A "word" is any text
- delimited by blanks or the end of the base string.
- If there is no such word, the function returns start(w).
function NextWord(w) = { ’
marker a;
a = NextNonBlank(w),
if a="" then -- reached end of base string
return start(w);
wi=a
whilea/="" & a/="" do --scan for next blank
a = next(a);
-- now a points to the first blank after a non-blank after w
- or it is an empty at the end of its base
return extent(w, start(a));

}
Theorem: NextWord() correctly meets its initial comment.
Proof: The argument w to NextWord() rr;ay be initially
w=<sl[w]sb>

where sb is a sequence of blanks. In this case, the specification of
NextNonBlank gives us that

a=<slwsb[]>

-11 -

so the if predicate is satisfied and the function returns start(w), as
specified. The alternative and more interesting values for w are

<sl[wl]lsbxw2bls3 > or
<sl[wllsbxw2>

where w2 is a seqﬁence of non-blank éharactcrs, bl is a blank, and s3 is
some sequence of characters. In this case, the specification of
NextNonBlank(Q provides that a is

<slwlsb[x]w2bls3 > or
<slwlsb[x]w2>

and one of these is subsequently assigned to w. By an argument similar
to that for NextNonBlank(, the while loop gives a the value

<slwlsbxw2[bl]ls3> or
< slwlsbxw2[]>.

In each case, the extent() constructs a correct return value for the
function:

<slwlsb{xw2]bls3> or
<slwlisb[xw2]> .=

In order for a set of functions to be teachable and memorable, they
should be based on an underlying set of functions that are as small as
possible. The next section will present a number of additional substring
functions all of which can be defined in terms of the primitives above.
To show that the primitive set cannot be reduced we have:

Theorem(NecessityX The four primitive functions—startQ), nextQ,
base(), and extent(Q—are all necessary for computation with the algebra.
That is, none can be expressed as a functional composition of the others.

Proof: We wish to demonstrate for each of the primitives, P, that there
is no definition "function P(m) = E" which behaves as defined above for
P and yet does not contain P in the expression £. We do this by
exhibiting a particular value for m and argue for each primitive that no
such expression £ exists that converts this value appropriately, and
therefore no expression E exists which implements P for all arguments.
The particular value v.is < "ab" ["c¢d”] "ef” > Note first that

next(v) = < "abed” ["e” 171" >,
start(v) = < "ab" [] "cdef” >, and
base(v) = < ["abedef”] >

3.

-12 -

For extent() no E can exist because the value returned may have to be of
any length and the other functions return only markers of zero, one, or
all the characters of a base.

For base) no E can exist because none of the other functions can
otherwise generate a marker beginning before the left bracket of v.

For next() no £ can exist because no other function creates a marker that
starts at the end of v.

For start() there can be no £ whose return value is generated by base()
or next() because they generate values with end brackets after the end of
v. If the return value is generated by extent(), its second argument must
end at the start of v, but it must ultimately have gotten this value from
baseQ) or next(), which it cannot have done.

Since none of the functions can be expressed in terms of the others, all
are necessary. B

We have experimented briefly with various alternative sets of primitive
functions. For instance, the symmetry of the algebra permits previous()
instead of nextQ or end() instead of start(); but either would emphasize
right-to-left processing instead of the more natural left-to-right
processing. We could replace base() with startofbase() which gives a
zero-length marker at the start of the base; the present base() function
could then be defined with a next() loop to find the end of the base and
an extent() to build the value. Next() could return an empty marker
after the following character. Experimentation showed that these and
other alternatives were not as convenient for programming.

Substring Functions

Many substrings of the base for marker m can easily be computed from
m with the substring algebra. The ones that follow are illustrated in
Figure 2. :

end(m) - Returns a marker for the empty substring just after .

function end(m) == return start(next(m));

rest(m) - Returns a marker for all characters of m other than the first.
If m is empty, so is rest(n).

function rest(m) == return extent(next(next(start(m))), m);

13-

{Note that the definition of rest() exploits the clause in the definition of
extent() which specifies that an empty result is at the end of its second
argument.} <

first(m) - Returns the first character of m. If m is empty, so is first(m).
function first(m) = return extent(m, start(rest(m)));

second(m) - Returns a marker for the character following first(m), if
there is one.

function second(m) == return first(rest(m))
advance(m) - Returns a marker extending from just after the first
character of m to just after next(m). In general advance(m) will have

the same number of characters as m, but it may be shorter if the end of
m is at the end of the base string.

function advance(m) == return extent(end(front(m)), next(m))
front(m) - Returns a marker for the first character after start(m), if
there is one, otherwise m must be empty at the end of its base and this

value is returned. Unlike firstQ, frontQ returns a character for all cases
other than the very end of the base.

function front(m) == return next(start(m));

allprevious(m) - Returns a marker for the substring of the base of m
that precedes the start of m.

function allpreviousGm) == return extent(base(m), start(m));

allnext(m) - Returns a marker for the substring of the base of m that
follow the end of m.

function allnext(m) = return extent(end(m), base(m));

last(m) - Returns the last character of m.- If m is empty, so is last(m).

function last(m) == {
if rest(m) = "" then return m;
else return last(rest(m));

}

{The above implementation of last) would be grossly inefficient in
practice. Fortunately it can be implemented by scanning backward in

~14 -

the base string. This can safely be done if there is a maximum length to
the encoding of each character and the byte value that introduces a
multi-byte encoding cannot appear within an encoding.}

previous(m) - Returns a marker for the character preceding m. If m is
at the beginning of its base string, previous(m) returns the value
start(m).

function previous(m) == last(extent(base(m), startGn)));

For the purposes of later theorems we prove the correctness of some of
these functions:

Lemma (Rest(Q): The function rest(), defined as above, has the value

Drest(< sl cs21s3> => <slcl[s2]s3> and
() rest(< s1[]s3 > => < stf}s3 >

Proof: The proof of (i) has three cases depending on the lengths of s2
and s3. When s2 has at least one character we write s2 as < c2 54 >and
the proof proceeds thus:

rest(< sl[cc2s41s3>)

= extent(next(next(start(< sl [c c2 s4] s3 >))),
<sl[cc2s4]s3>)

= extent(next(next(< s1 Jcc2s4s3>), <sllcc2s4]s3>)

= extent(next(< s1{c]c2s4s3>), <sl{cc2s4]s3>)

=extent(< sl c[c2]1s4s3>), <sl{cc2s4]s3>

=<slc[c2s4]s3 >

The second case is where s2 is empty and s3 has one or more characters.
In the third case s2 and s3 are both empty. In each of these cases the
marker is reduced to a empty substring at its former end. These cases
can be verified by an argument similar to that of the first.

For part (ii) we observe that the first argument to extent(Q is
next(next(start(sn))), which cannot yield a marker starting before the
beginning of m and the second argument. is m, which ends at the end of
m. Since m is empty, the extent() must yield a marker equivalent to m.
=

Lemma (LastQ): The function last() defined as above has the value

Dilast(< s1[s2c¢c)s3> => <s1s2[c]s3 >and
() last(< s1[0s3>) => <s1[ls3 >

-15-

{That is, last(s) produces a marker for the last character in s if 5 has any
characters and otherwise returns s.}

Proof: Part (i) when s2 is of length zero and part (i) both follow
directly from the RestQ) Lemma. For part (i) where s2 is of length
greater than zero we argue by induction. Suppose.s2 is <cs4> In this
case the predicate fails (by the RestQ Lemma) and so the value is

last(rest(< s1 {cs41s3 >) |
=last{< sl cls4]s3 >)

Since s4 is a shorter sequence than s2, the inductive hypothesis applies
and the theorem is proved. B

Lemma (PreviousQ): The function previousO has the value

(@) previous(< sl c[521s3 >) => <sl[cls2s3 > and
(ii) previous(< [s2]s3 >) => < [s2s3 >

Proof: By the deﬁnitiéns of base(, start(), extent(, and lastQ:

previous(< sl c[s21s3 >)
=last(< [s1¢c]s253 >)
=<sl[cls2s3>

and
previous(< [s2]s3 >)
=last(< []s2s3 >)
=< [s283 >

In both cases the desired value is computed. ®

With the aid of the substring functions, it is possible to write an
expression for any substring of a string. To demonstrate this, consider
the set of all substrings of a string. This set consists of each instance of a
substring starting at one position in the string and continuing to the same
or another, later postion. Here are functions to print all the substrings of
a string:

function printsubstrings(s) = {
printsubsub(s, s);
if 5 /= "":then
printsubstrings(rest(s));
}
function printsubsub(z, s) == {
print extent(s, start(®))
if £ /="" then

-16 -

| printsubsub(rest(z), s)

It is not difficult to show that printsubstrings(s) prints all substri
We begin with a lemma. g(s) p rings of s.

Lemma (Tail Recursion) If P is an operation and Q is a sequence of

zero or more Vvariables each preceded by a comma, then the function fO
defined by

function f(x Q) = {
P(x Q);
if x /="" then
\ f(rest(x) Q)

performs P once for each tail of x, including the final em i
1S . , pty substring.
Thatis,if xis < s1[cl c2...cn1s3 >then P is executed for each of &

<sllclc2...cn]s3 >
<slcl[c2...cn)s3 >

<sl cle2...[cnls3 > and
<slclc2...cn[Is3 >

Proof: If x is <sl [] s3 > then n is zero and P is executed once; the
thCI'l claus_e is not executed because x = "" is True. When n >0 we argue
by induction. A call to fO evaluates P once for the current value of x
an_d then calls f recursively for rest(x). By the Rest() Lemma, rest(x) is a
tail of x so 7 is one less and the general case holds by induction. B

Lemma (printsubsub) The call printsubsu ints .
of s that begin at start(s). P b(s, s) prints all substrings

{P.roof: By the Tail Recursion Lemma, printsubsub(s, s) executes
print(extent(s, start(z))) for ¢ being each tail of s. This is exactly the
subsets of s that begin at the beginning of 5. ®

Lemma (printsubstrings) The call printsubstri i
e P ngs(s) print all

Proof: By the Tail Recursion Lemma, printsubstrings(s) ex:

) : - ecutes
{)nntsubs;lllg(s, s) for s being each tail of the initial s. By the preceding
emma, this call prints the substrings beginning at each positi ithi
which is the entire set of substrings. ® £ position within 5

Theorem (Sufficiency): The substring algebra is sufficient to generate

4.

-17 -

all substrings of the base of a string.

Proof: By the preceding Lemma, if s is a string, the call
printsubstrings(base(s)) will print all substrings of the base of s. Since
they are printed, they must have been generated. Since only the
functions of the algebra have been used to operate on string values, those
functions must be sufficient. &

Note that the Sufficiency Theorem proves that all substrings can be
generated, but not that any specified substring or set of substrings can be -
generated. This more general result will be established in Section 6.

Pattern Matching

Pattern matching is a fundamental operation on string values. SNOBOL,
as pointed out in [Griswold, 1980), even has two distinct linguistic
components: one for i traditional computation and one for pattern
matching. The algebra as described so far has no provision for pattern
matching at all, however, it is not difficult to express pattern match
primitives within the algebra. In a practical implementation, these
would be hand coded for speed.

One of the difficulties in defining pattern match functions is that a
pattern match needs to return two factss whether the match succeeded
and, if so, the location of the matching substring. This problem has
usually been solved by introduction of failure as a control flow
mechanism. It is not the purpose of this paper to consider control-flow
architectures; failure is an elegant tool and can be used in conjunction
with the substring algebra. However, failure is not necessary because
marker values are already returning two facts: the two ends of a
substring. ’

By convention, a pattern matching operation in the algebra returns the
matched string for success. For failure the operation returns an empty
string at the beginning of the argument susbstring. This convention has
turned out to be the most useful of the various possibilities; it allows
nested searches to have suitable behaviors.

With this convention, the Ness implementation of the algebra offers five
pattern match functions. Each searches the substring extent(m,
end(base(rm))) for some substring matching a criterion:

search(m, target) - If successful, returns a marker surrounding the first
substring of the source that is equal to target.

match(m, target) - Determines whether the source begins with a

-18 -

substring identical to target; if so, it returns a marker for that substring.

.fzpan(m, clist) - Returns a marker for all characters of the source from
its beginning to just before the first character not in clist. That is, span
matches the longest initial substring of the source that is composed of
characters from clist.

anyof(m, clis.t) - Finds the first character in the source that is one of
the characters in clist and returns a marker for the character.

token(m, clist) - Searches the source for the first substring consisting of
characters from clist and returns a marker for the substring.
function token(m, pat) = return span(anyof(m, pat), par);

Here are the definitions of two of the pattern matching functions in
termos of the primitives. The others are similar. The most fundamental

pattern match is search(m, pat), which searches for an exact match of its
second argument:

function search(m, pat) = {
marker pf, startm, tm, tp;
startm = start(m); '
m = front(m);
if pat = "":chen return startm;
pat:=pat” ""; - copy pat
pf = front(pat);
while m /="" do {
-- search for first char of par
while m /= pf do {
m = next(m);
if mi="" then
| return startm;
-- compare pat at m
-- if (pat is at m)
- return pat at m;
tm=m
tp = front(pat); .
while tm /="" & tm = tp do {
tm = next(tm);
tp = next(tp);

if zp="" then
return extent (m, start(zm));
else m = next(m);

-19 -

return startm; -~ failure

}

In this definition, m is always a single character. The inner while loop
advances m until it is equal to the first character of pat. When it is,
subsequent characters are checked. against the rest of paz. The outer
while loop continues this process until a match is found or the end of
base(m) is reached.

The span function ‘clearly illustrates the utility and implementation of
the convention of returning an empty string for failure of a search:

function span(s, clist) = {
marker m;
m = front(s);
clist =""" clist; -- copy clist to limit the search
while search(clist, m) /="" do
m = next(m);
return extent (s, start(m));

}

In this function, m is always a single character. It is checked by the
search(Q) call to see if it is in clist and if so, m advances. If not, the
desired string extends from the start of s to the start of m. The reader is
invited to study what happens if the first character of s is not in clist or
if all characters of s are in clist.

The pattern functions above can easily be incorporated sequentially in a
program to check for a pattern which is a sequence of items. However, it
is not as clear that complex patterns can be implemented simply. To
understand this problem, the author examined a collection of clever
SNOBOL algorithms [Gimpel, 1976]. The measure of a complex pattern
was taken to be the appearance of the operator "I' which is the most
general way in which back tracking is required by a pattern. Of the 148
algorithms in the collection only 36 utilize the "" and only an average of
twice per algorithm. Moreover, about half the instances are concerned
with end conditions* rather than real alternatives. In the substring
algebra, end conditions are more easily dealt with because the ends of the
base string can be referred to directly.

* Of the 73 patterns that contained "', 30 used it only for " | REM", "
| NULL", or " | RPOS(0)".

In addition to complex patterns, SNOBOL is an interpretive systemand

~20-

offers many clever and unusual facilities. However the disadvantages of
their complexity and diversity are many, as summed up in [Iconk

(1) An excessively large vocabulary. ‘

(2) Complexity of the pattern matching algorithm,

(3) Unnecessary backtracking and lack of control over the
pattern-matching algorithm.

(4) Confusion between pattern construction and pattern matching.
(5) Difficulties with program structuring, especially the necessity
of using side-effects. '

(6) Inefficiency inherent in run-time construction of patterns.

(7) Dichotomy of languages, with a further increase in total
vocabulary and a linguistic schism.

(8) Lack of a mechanism for defining matching procedures.

The solution proposed m Icon is to develop new control constructs based
on failure such that pattern matching is not a facility of the language
but can be expressed very cleanly. There is no conflict between the
constructs developed in Icon and those here; marked substrings could
easily be the basic string representation in Icon. However, with marked
substrings we have found few tasks where pattern matching was an
issue. It appears that it is sufficient to be able to refer to substrings of a
base and access ad jacent strings through functions calls.

One of the examples often cited for complex pattern matching is that of
recognizing arithmetic expressions. Simple recognizers for such
expressions can easily be expressed in SNOBOL. For instance the
following set of SNOBOL patterns read as though they were a grammar
themselves.

PRIM ="x" 1"y 1"z" | "(" *EXP ")"
ADDOP = "+""."

MULOP = "*" "/"

TERM = PRIM | *TERM MULOP PRIM
EXP = TERM | *EXP ADDOP TERM

(The prefix asterisk operators are peculiar to SNOBOL; they defer
evaluation of forward references. The grammar here is an adaptation of
one in [Griswold, 1980], which does not give an Icon recognizer for the
grammar.) Using the subexpression algebra, a recognizer for the
grammar can be written as:

function acceptPrim(s) == {
if search("xyz", front(s)) /= "" then
return front(s);

i

-21-

if front(s) = “C then ‘
return extent(s, next(acceptExp(next(front(s))))
return start(s);

}

function acceptTerm(s) = {
marker ¢;
t = acceptPrim(s); -
while search("*/", next(t)) /= "" do
t == acceptPrim(next(next(z)))
return extent (s,)

}

function acceptExp(s) = {
marker t;
t = acceptTerm(s);
while search("+-", next(t)) /="" do
t = acceptTerm(next(next(z)));
return extent (s, £);

}

Note that each function adheres to the convention of returning the strmg
it matches or else an empty string at the beginning of its initial
argument. ‘-

The acceptXxx functions are undeniably longer than the SNOBOL
patterns, but they have many advantages. It is easier to sce.how to
extend the algebraic version to handle white-space, identifiers of
indefintie length, integer constants, syntax errors, and generation of code.
Indeed a version that handles all these and interprets the resulting
pseudo-code was coded and debugged in four hours. Traditionally it is
challenging to permit a compiler to accept identifiers of any length, but
this was accomplished trivially with the span(function.

5. String Modification

Functional programming has been an important recent research area
emphasizing the desirability of side-effect-free computation. In such
systems, values once created never change. The algebra presented so t.”ar
is completely functional: values are created as constants or with
concatenation and thereafter remain inviolate. Efficiency is gained
because substring values need not be copies: they are references to pieces
of existing strings.

Some programmers, for some applications, nonetheless desire to modify
values rather than create new ones. The simplest way to accomodate this

-22-

desire is to augment the algebra with an operation which appends a
string to the end of an existing string. We will use the notation ~ := for
this operation, even though it is not an exact analog of concatenation.
Since it will modify an existing string, we will represent this string by
variable m with initial value < sl [s2]s3 > The operation is then
defined as .

m =< s4[s5]1s6 >
=> mé=<s1[s255]> s3isempty
=> < ["ERROR"] >, otherwise

The marked value of the second operand is inserted at the
end of the first operand. The variable which is the first
operand is altered to refer to both the old and new text.
The operation sets m to the value "ERROR" if there are any
characters after the right bracket in the first operand.

W‘ith append, it is possible to efficiently produce an altered copy of an
existing string. The existing string is processed from left to right and
pieces are appended to the result string as they become known.

For general string modification algorithms, ~ == may not satisfy some
people. Therefore a third version of the algebra can be defined by
introducing two additional primitives, replace() and newbase(). To keep
the underlying algebra as small as possible, these new functions are then
used to redefine append and concatenation.

The replace() function is defined formally by:

replace(< s1[s21s3 >, < s4[s5]1s6 >)
=> < 81[s5]s3 >,
if < s1[s2 1s3 >is not a constant
=> < ["ERROR" 1>, otherwise

Replace(m, s) modifies the string marker value m so its
marked portion now contains the marked portion of string s
instead of its former value. The value returned is a
marker delimiting the new copy of the replacement value.
All strings "= to < sl [52]s3 > are also modified (see
below).

This function replaces one non-empty substring with another, but can
also perform an insertion or deletion. For insertion, an empty marker is
replaced with non-empty text; for deletion, a non-empty substring is
replaced with empty text.

Since the purpose of replace() is to modify existing values, rather than

-23-

create new ones, the definition of = used in the definitions of extent()
and replaceQ) must indicate that the two markers are not only the same
value, but they are the same instance of that value. We model this
situation formally by representing the state of memory as a sequence of
base strings: '

1< 821> < 510>,...)

To indicate that markers share the same base, we label the brackets of
each marker. Thus two markers on the same base could look like:

<sl [s2 [g:s3 1o 54 Ip 85>

where the marked value of o is < s2 83 > and that of 8is < s3s4 >
We require that the labels on all pairs of brackets be unique, so a label
identifies both a base and a marked substring within that base. Two base
strings have the relation base(o) = base(8) when both o and B are
labels for markers within the same <. .. > pair. The value returned by
replace(c, B) is a marker label for the copy of the marked portion of 8
that has replaced the former marked portion of a.

Replace(a, B) must affect any marker formerly on the base of « and
ending after the start of o«. Any marker bracket [y or], that formerly
appeared after], must remain between the characters it originally
separated. Brackets formerly within [. .. Jo and brackets formerly at
the same place as one of these may have to be adjusted. The simplest
rule for this adjustment can be described as inserting the new text just
before all brackets at the position of the Jo bracket and then deleting the
text formerly labelled by «. Formally, this is described by the rules
below, where rule (1) simply makes a copy, @, of the replacement text in
case « and B are on the same base. Then rules (2) and (3) move the
brackets, perform the replacement, and discard w. In these rules w is a
unique marker label, s is a sequence of zero or more characters, ¢ is a
character, bi is a sequence of zero or more brackets, and sbi is a mixed
sequence of characters.and brackets whose brackets taken separately are
denoted by bi and whose characters taken separately are denoted by si.

replace(w, B):

(1) {...<sbl [, sb3 1, shd >
«e. < sb5 [g sb6 Ig sb7 >...},
=>{... < sbl [sb3 1o sb4 >
veo < 5b5 [g sb6 Ig sb7 >... <[y 86 1y >}

i
@) {...<sbl [sb2 cbl3 Josbd>...<[p 56 L, >}
=>{...<s8bl [, b2 86 b3 1, sb4 >...}
i

i
!

- 24 -

@a) {...<sbl c b2 [b3 1y sbd4>... <[, s6 1, >}
=>{...<8bl ¢ [, s6 b2 b3 Josbd >...}

(3b) {...<bé [« 3 1o sbd >... <[y 56 1, >}
=>{4es <[y 56 b2 b3 Jysbd >...}

These rules are illustrated in Figure 3. However, to create robust
algorithms, it is probably best to assume that these rules are unknown
and write the algorithm so it will work no matter what the rules are.

As an example of replace(), here is a procedure to expand the tabs in
string m by replacing them with enough spaces so the text after a tab is
moved to the next available position among 9, 17, 25, 33,...:

function ReplaceTabs(m) == {
marker tab, eight;
eight =" "; -- 8 spaces
tab = eight; -- initial distance to tab
while m /="" do {
if firstGm) = "\ t" then {
-- replace tab with spaces
replace (first(m), tab);
| tab = eight;
else if tab = "" then
-- non-tab at tab stop, set for next tab stop
tab = eight;
else
-- non-tab: shorten distance to tab stop
tab = rest(tab);
m = rest(n);

}

The replace() changes a tab character into just enough spaces to fill to the
next tab stop. Note' the absence of arithmetic for determining the
current output position. As an exercise the reader is invited to write a
version of ReplaceTabs() that keeps track .of tab position with integers.

Observe that the formal parameter m in ReplaceTabs() is modified in two
distinct fashions: it is advanced thorugh the base string and the base
string is modified with replace(). Since parameters in Ness are call-by-
value, only the second of these will affect variables in a routine that
calls ReplaceTabs().

-25-

In an implementation of the substring algebra, it is desirable that
program constants not be modified. If an attempt is made to replace a
portion of a constant string, the program is aborted. It may be desirable
to create an empty string into which text can be inserted with replaceQ.
For this we provide a primitive read-write constant:

newbaseQ => <[>
Creates a new, modifiable and empty, base string.

With newbaseQ) we can now redefine concatentation and introduce an
append operation:

s~ t == base(replace(end(replace(newbase(, s)), t)).

The result contains the concatentation of the marked segments
from s and t.

v =t = v i=extent(v, replace(end(v), t)) ,
(where v is a variable).

The value of variable v is appended with ¢ and v is given the
entire result as its new value.

With these definitions, one common coding sequence can be

t = newbase(); -
while...do{ ¢
t ~ = expression;

}

The variable ¢ is initialized to a modifiable empty string and then text is
appended to it within the loop.

Completeness

One way to show that the substring alg;:bra is "complete” is to show it
provides universal computability as defined by a Turing machine:

Theorem (Universal Computability: The substring algebra is.
sufficient to simulate a Turing machine having a tape with symbols of
"0" and "17, a read head which is examining one symbol of the tape, a
state machine based on the symbol under the read head, and five
operations: move head left, move head right, write a "0", write a "1",

’

- 26 -

and halt.

Proof Outline: The non-empty portion of the tape is represented by a
substring marker value with a single character marked; tPisn is the
current position of the read head. Suppose that in state Sa "0 ur_lder
the read head will cause operation P and transitition to state U while a
*1" under the read head will cause operation Q and a transition to state
V. Then state machine implementation is a collection of procedures, one
for each state, having the form

~ function S() == {
ift="0" then { P; U@}
\ else { @ V() }

The five operations are defined as converting the initial tape ¢ into a new
tape value:

move right: if next(t) ="" then _]
¢ := last(base(t) ~ " "%

else ¢ == next(t);

move left: if previous(t) = "" then
. t=next(start(" " T)
else ¢ = previous(z); :

write a "0": ¢ := replace(z, "0")
write a "1": ¢ == replace(z, "1");
halt: print(e); exitQ;

These operations are incorporated in place of P and Q in the procedures
implementing the finite state machine. The functions do not terminate.
If a halt is reached it prints the tape value and exits.

All the substring functions utilized in the state machine are either
primitive or have been proven to have the appropriate behavior.
Therefore the collection of procedures in the substring algebra
implements the Turing machine, so all functions are computable. &

Note that this version of the Turing machine simulation is not
functional; it utilizes the replace() function. A purely functional
simulation is not difficult and may amuse the reader; however, it would
add bulk without enlightenment to this paper.

The Universal Cofhputability Theorem does demonstrate the

7.

-27-

computational power of the substring algebra, but contributes little to an
understanding of its practicality. It is preferable to observe that the
computable functions include all substring functions and that the
Sufficiency Theorem shows that all substrings can be generated. We thus
have the

Theorem (Completeness): The substring algebra can compute any
function over the set of all substrings of a base. &

Implementation

To demonstrate the practicality of computing with the substring algebra,
here is a quick sketch of an implementation.

Each separate base string is represented by a control block which contains
pointers to the ends of the stored base text and a pointer to a list of all
markers on that base.’ The list of markers is used to find markers that
must be modified for replace(); moreover, when the list is empty the
base itself can be discarded.

Each marker is a compound of four values:

a reference to the beginning of the marked substring,
a reference to the end of the marked substring,

a pointer to the control block for the base, and

a pointer to the next marker in the list from that base.

The definitions of nextO, base(, and start() in this storage structure are
quite trivial, requiring only copying the argument marker and revising
one or both references to the string ends. The extent operation is slightly
more complex only because it ‘must check for several conditions.

Although the substring algebra is an Abstract Data Type, it poses a severe
test of mechanisms for incorporating ADT’s into programs from a library.
The difficulty is that the lists of marker values must be maintained so
every assignment and procedure call must have special handling for
markers. In particular, if a temporary marker value has been passed as a
parameter to a procedure, it must be discarded when the procedure exits.
A real compiler can directly compile the appropriate code because it has
complete control over the stack and heap.

When implementing the algebra as a subroutine package, the most
convenient approach is to implement a separate stack for marker values.
All marker functions are then parameterless procedures which take their
operands from the stack. This makes the simplest marker functions even
simpler because they need only modify the top marker on the stack.

-28 -

In a paging environment, the best organization of the actual string texts
is as a single long string of characters as described in [Hansen, 1987c}.
To reduce the amount of character movement for replace(), gaps are
allowed within the strings.

These techniques have been incorporated in a subrout'ine.packag_e for C
[Hansen, 1987b]l. The compiler for Ness converts its input into an
equivalent C program which utilizes the subroutine package.

To illustrate various aspects of the implementation, here is the function
from the Ness compiler which converts a function call into an
appropriate C function .call.

-- DoCali(id, p, v) processes a call to a function whose name

- is in the source text at the location given by id, whose
- left parenthesis is at p, and using local variables given "by V.
- Returns the character immediately after the closing ")".
-— Converts " func(argl,...argn)”

— into "(argl*,...argn*,func*O)",

- where the ¥s indicate translation.

- If func is not predefined, func* is func; otherwise

- it is the value found in FuncNames, where the

- form of each entry is

- ,predefinedname(),replacementname(!

function DoCall(id, p, v) == {
marker ¢, theCall;
t:= N"l -~ id" HOH;
-- see if the function name is pre-defined
theCall := search(FuncN ames, t);
if theCall="" then
theCall = t;
else - extract the replacement name from the table
theCall = extent(end(theCall),
start(search(end(theCall), "I" 1))
while p /=")" do
—p is n’n or u(a
-- preprocess an argument expression
p = DoExpr(Deblank(end(p)), v}
--now p is the ")
-- remove the function name from the program text
replace(id, EMPTY);
-- insert the function call before ")"
return next(next(replace(start(p), theCall)));
}

In practice, the while:loop contains an additional test for p=";", which

8.

-29-

indicates that a right parenthesis has been omitted. This is fixed by
inserting a right parenthesis and printing an error message.

For strings of ASCII text, execution with the present implementation of
the algebra is not as fast as with routines coded directly in C. The Ness
preprocessor (567 lines) processes itself in under 35 seconds on a Sun
2/140. About a third of this time is taken because each marker variable
is a pointer to a marker value rather than being a marker value itself.
About ten percent of ithe time is occupied in moving strings around,
which can be reduced by introducing an algroithm to apportion gap
space among multiple gaps. Another ten percent of the time can be saved
by recoding anyof(Q) and span() to test bit vectors rather than call
search() for every character.

Experience !

A number of working programs have been implemented utilizing the
substring algebra in Ness and CMU-Tutor. No major difficulties have
been encountered and users have been universally enthusiastic about the
ease of programming. Only time will tell whether this ease will carry
over to a simplicity of maintenance.

The largest program is the Ness compiler of which a sample was given in
the previous Section. This program modifies the input file in memory to
produce a corresponding C file which is output as a whole after the
translation. To illustrate the ease of programming, the entire program
had only three bugs. Modification and extension have continued with
no new bugs being introduced.

Another large program was written to study the feasibility of more
general pattern matching * in Ness. The program parses pattern
expressions, converts them to a tree form, and interprets them by using
them to find substrings in a text. (The tree form is generated with
embedded C code.) The grammar implemented includes exact match,
star for multiple instances, match any of a set of characters, and
alternation of patterns.

Other programs written in Ness include an arithmetic expression parser
and interpreter, conversions in both directions between roman numerals
and decimal, permutations of characters and words, and counting the
words in a file. Programs written in CMU-Tutor include

Reverse a List |
Alphabetize a List
Count Vowels in a Text
Translate to Pig-Latin

i
1

-30-

Plot Two User Functions Simultaneously
Plot Parametric Equations

i - -t bility for
The last two of these exploit the CMU-Tutor run-time capabill
compiling and executing mathematical statements. Th\{s the functions to
be processed are typed in by the user, modified with the substring

-31-

of strings, but these are beyond the scope of this paper.

An open question is whether a flag should be associated with each
marker that would be set when the marked text was modified with a
replace(). No use for this facility has occurred in examples to date, but it
has been used within a text editor.

algebra, compiled, and plotted.

Another open question is whether there should be some syntax for the
substring functions other than named functions. Perhaps ", ¥, +, and -
for start(Q), base(), next(), and extent()? Considerable experimentation is

s needed before we are ready for this step. In the time being we must
The substring algebra has so far been shown necessary and sufficient in a answer the question of whether the function names used above are

narrow sense, but many additional facilities can be proposed which are acceptable. Should they be delimited in some way to distinguish them
not easy to define with the primitives: from other, client-defined functions?

9, Extensions and Open Questions

inalphabet(< s1[cs2]s3 > => < al[cla2z >

he kn lohabets. The definition of replace() specifies a particular behavior for other
where < al c a2 > is one of the known alp

markers on the same base as the destination. This specification has some
nice properties, such as a simple formal description, a simple textual
inalphabet(mn) returns a marker for a copy of the first letter description, and a simple implementation. In none of the examples

of m, but a copy within a string which is the entire considered so far has any other definition been found to be essential, but
alphabet for that character. it is not known if this is the case for all applications.

With inalphabetQ as a primitive, all functions over alphabets can be

. ithi it i On a practical level, it is a common error to assign a constant to a
computed. To give the "name” of an alphabet within a program it is

i taini haracter from that alphabet. X:fiableﬁndft_h]gn ?pend I'al}xc&sn to 1tlhe vgriafbh;h with "= Tsms fails
sufficient to give a string contaiming a ¢) : cause := fails when replac g the end of the constant. Since the
(This assumes that the:editor used to create programs is capable of typing program code looks innocuous, some means should be found to make it
characters in any alphabet.) work. .

bound(< s1[s21s3 > => <[s21> 10. Summary

Bound(m) appears to have the same value asm "", but the
implementation of bound(is such that the v.aluc is not
copied and remains a piece of its original base string.

We began with the notion of a "practical” algebra as one on which to
base a programming languagé data type and then discussed the problems
of existing notations for strings (none of which is a one-sorted algebra).
. A new algebra was then introduced in Sections 2 and 5, based on the
Bound() provides a means to restrict a pattern match to a substring of a primitive operations of next(Q start(), baseQ, extent(), newbase(), and
base. - replace(). A number of theorems were proven demonstrating the power

of the algebra and a number of algorithms were exhibited written in
readonly(< s1[s21s3 > =><s1[s2]s3 > Ness, a research language incorporating the algebra.

The return value is a marker on the same base as the There are certainly; some disadvantages to the algebra. String
original argument, but marked as read only so it has the manipulations will be slower than with unembellished C and systems
same behavior as a constant. programmer Wwill not have detailed control over the character

; representations of data,
Readonly() permits passing a substring to a function and guaranteeing

that the function does not modify the substring or its base. Numerous advantages outweigh these disadvantages, however:

Other functions have been defined to manipulate the typographic styles Convenience and Expressivity. The best measure of the

-32-

felicity of this algebra for programming is the enthusiasm
of the programmers who have used it for substantial tasks.
They like the facts that string sizes need not be estimated,
poritions of strings can be replaced, and integers are not
used as subscripts. They found the pattern matching
functions sufficient without resorting to non-standard flow-
of-control constructions.

Representation Independence. The algebra is suitable no
matter whether characters are encoded with one, two, or
more bytes. These details are hidden from the application
programmer. Indeed, the algebra is not specific to character
strings and can be used with any sequence of objects.

Necessity and Sufficiency. Theorems above have
demonstrated that the primitive functions are Necessary
and Sufficient for substring computations, and moreover, the
algebra provides Universal Computability, so any function
can be computed with substrings alone. Of more practical
importance is that the primitives are a small set which can
be easily taught-and thoroughly understood.

Efficiency. The algebra contributes to efficiency because
strings do not have to be copied for substring computations
and because the representation independence prevents the
doubling in size of all character strings if the domain is to
include more character values than can be encoded with a
single byte. The algebra also contributes to efficiency in
reduced programming and debugging time.

The algebra described above was originally motivated by the desire to
deal with modern string values, possibly containing unusual characters
or typography. After using it for some time, however, it seems to meet
this goal and go far beyond, providing an excellent tool for general string
processing.

Acknowledgements. Bruce Sherwood has been an unending source of
enthusiasm and encouragement as well as the one who wanted the
algebra as a tool for the CMU-Tutor system. I am indebted to him, Judy
Sherwood, David Anderson and others at the Center for Design of
Educational Computing, Carnegie-Mellon University, who have been
implementing and exploring the algebra. This work would not have
been possible without the generous support of the Department of
Computer Science at the University of Glasgow, and the Science and
Engineering Research Council (grant number GR/D89028), both under
the energetic and stimulating direction of Malcolm Atkinson. The work

-33-

has benefitted from conversations with Kieran Clenaghan, David Harper,
Joe Morris, and John Launchberry.

References

[Adobe, 1985] Adobe Systems, Inc, Postscript Language: Reference
Manual, Addison-Wesley, (Reading, Mass., 1985).

Ejixgl%r)t & Bitzer, 1970] Alpert, D, & D. L. Bitzer, Science 167, 1582

[Fa?bcr, 19§4] Farber, D. J., R. E. Griswold, I P. Polonsky, "Snobol, a
String Manipulation Language,” J. ACM 11, 1 (1964) pp. 21-30.

[Gimpel, 1976] Gimpel, J. F., Algorithms in SNOBOL4, John Wiley &
Sons (New York, 1976).

[Griswold, 1979] Griswold, R. E, D. R. Hanson, and J. T. Korb, "The
Icon Prgoramming Language: An Overview," SIGPLAN Notices 14, 4
(April, 1979) 18-31.

[Griswold, 1980] Griswold, R. E., and D. R. Hanson, "An Alternative to
the Use of Patterns in String Processing,” ACM TOPLAS, 2, 2 (April,
1980) 153-172. , :

[H'ansen, 1987a] Hansen, W. I, Ness - Reference Manual, Computer
Science Dept., Univ. of Glasgow, 1987.

[Hansen, 1987b] Hansen, W. J., Em - Reference Manual, Computer
Science Dept., Univ. of Glasgow, 1987.

[Hansen, 1987c] Hansen, W. J., Data Structures in a Bit-Ma Text-
Editor, Byte (January, 1987). pped

[McKeeman, 1970] McKeeman, W. M, JI. J. Horning, and D. B.
\llgort)man, A Compiler Generator, Prentice-Hall, Inc. (Englewood Cliffs,
70).

[Morris, 1986] Morris, J., Satyarayanan, M., Conner, M. H., Howard, J.
H, Rosepthal, D S. H, S’{nith, F. D. "Andrew: A distributed Personal
gl(c)nlnputmg Environment,” Comm. ACM, V. 29, 3 (March, 1986) 184-

[Sherwood, 1977] Sherwood, B. A. The TUTOR Language, Control
Data Education Co. (Minneapolis, 1977).

-34-

[Sherwood, 1986a] Sherwood, B. A, and J, N, Sherwood, The CMU-
Tutor Language, Preliminary Edition, Stipes Publishing Company (10
Chester Street, Champaign, 111, 1986).

[Sherwood, 1986b] Sherwood, J. N. CMU Tutor Reference Manual.
Center for Design of Educational Computing, Carnegie-Mellon
University (Pittsburgh, 1986). (This is a printed version of the on-line
reference manual.)

- 35-

(@

Lo

< Now-is-the-time-for-a

m 11
bH A H JO
b
start(n) start(m) \ start(p)

next(r) next(m) next(p)

>

{
" A pase(n) ™ base(m) \base@

()

< Now-is-the-time-for-all>
L }
i |

JURN, !
///\K - f

extent(n, m)

extent(m, n) extent(m, p)

Figure 1. The four primitive functions. The base string for all
examples is the non-blank characters between <and >. The marked
portion of non-empty markers is shown as an elongated H and that of
empty markers as a headless up-arrow.

(a) A non-empty marker

m
—
<All-mimsy-were-the-borogoves>

I if
l LY l L

- i
previous(m) { firstGn) rest(mn) end(m)
allprevious(m) front(m) last(m) allnext(m)

(b) An empty marker
n

<All-mimsy-were-the-borogoves>

A

first(r) front(n)

rest(n) last(n)

Figure 2. Some derived substring functions.

-36-

(a) Before

by

<The- qu1ck s11ver b'ox Jumped>

]

(b) After replace(m, "round-f")

Y

<The- quxck round fox Ju;]ped>
L

Figure 3. The effect of a replace() on other markers.

-37-

Bibliography

Copies of documents in this list may be obtained by writin gto:

The Secretary,
Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,
Glasgow G12 8QQ
Scotland.

or
The Secretary,
Persistent Programming Research Group,
Department of Computational Science,
University of St. Andrews,
North Haugh,
St. Andrews KY16 9SS
Scotland.

Books

Davie, AJ.T. & Morrison, R.
"Recursive Descent Compilin g", Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.)
"Databases”, Pergammon Infotech State of the Art Report, Series 9, No.8, January 1982.
(535 pages).

Cole, A.J. & Morrison, R.

"An introduction to programming with S-algol"”, Cambridge University Press, Cambridge
England, 1982,

3

Stocker, P.M., Atkinson, M.P. & Grey, P.M.D. (eds.)
"Databases - Role and Structure", Cambridge University Press, Cambridge, England, 1984,

Published Papers

Morrison, R.
"A method of implementing procedure entry and exit in block structured high level
languages”. Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z.
"The Graffiti graphics system", Proc. of the DECUS conference, Bath (April 1978), 5-10.

Atkinson, M.P.
"A note on the application of differential files to computer aided design", ACM SIGDA
newsletter Summer 1978.

Atkinson, M.P.
"Programming Languages and Databases", Proceedings of the 4th International Conference
on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78, 408-419. (A revised
version of this is available from the University of Edinburgh Department of Computer
Science (EUCS) as CSR-26-78).

Atkinson, M.P.
"Progress in documentation: Database management systems in library automation and
information retrieval”, Journal of Documentation Vol.35, No.1, March 1979, 49-91.
Available as EUCS departmental report CSR-43-79.

Gunn, H1LE. & Morrison, R.
"On the implementation of constants”, Information Processing Letters 9, 1 (July 1979), 1-4.

Atkinson, M.P.
"Data management for interactive graphics”, Proceedings of the Infotech State of the Art
Conference, October 1979. Available as EUCS departmental report CSR-51-80.

Atkinson, M.P. (ed.)
"Data design", Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R.
"Low cost computer graphics for micro computers", Software Practice and Experience, 12,
1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"PS-algol: An Algol with a Persistent Heap”, ACM SIGPLAN Notices Vol.17, No. 7, (July
1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, X.J. & Cockshott, W.P.
"Nepal - the New Edinburgh Persistent Algorithmic Language", in Database, Pergammon
Infotech State of the Art Report, Series 9, No.8, 299-318 (January 1982) - also as EUCS
Departmental Report CSR-90-81.

Morrison, R.
"S-algol: a simple algol", Computer Bulletin II/31 (March 1982).

Morrison, R.
“The string as a simple data type", Sigplan Notices, Vol.17,3, 46-52, 1982.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming", presented at CREST course UEA, September
1982, revised in "Databases - Role and Structure”, see PPRR-8-84.

Morrison, R.
"Towards simpler programming languages: S-algol", IUCC Bulletin 4, 3 (October 1982),
130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
“Problems with persistent programming languages", presented at the Workshop on
programming languages and database systems, University of Pennsylvania. October 1982.
Circulated (revised) in the Workshop proceedings 1983, see PPRR-2-83.

Atkinson, M.P.
"Data management"”, in Encyclopedia of Computer Science and Engineering 2nd Edition,
Ralston & Meek (editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P,
"Algorithms for a Persistent Heap", Software Practice and Experience, Vol.13, No.3,
259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkin"son, M.P., Chisholm, K.J. & Cockshott, W.P.
CMS - A chunk management system", Software Practice and Experience, Vol.13, No.3
(March 1983), 273-285. Also as EUCS Departmental Report CSR-110-82.

Atkiq§on, M.P,, Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
Current progress with persistent programming”, presented at the DEC workshop on
Programming Languages and Databases, Boston, April 1983.

Atkil}ys;\)n, M.P, B}a]xilcy, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
n approach to persistent programming”, The Computer Journal, 1983, Vol.26, No 4,
360-365 - see PPRR-2-83. & £ P ° °
Atkin"son, M.P,, Bailey, P.1., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
PS-algol a language for persistent programming", 10th Australian Computer Conference,
Melbourne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.

"High level language support for 3-dimension graphics", Eurographics Conference Zagreb
North Holand, 7-17, Sept. 1983. (ed. P.J.W. ten Hagen). P g

Cockshott, W.P., Atkinson, M.P,, Chisholm, K.J., Bailey, P.J. & Morrison, R.

"POMS : a persistent object management system”, Software Practice and Exerience, Vol.14,
No.1, 49-71, January 1984,

Kulkarni, K.G. & Atkinson, M.P.

"Exper_imentin‘g with the Functional Data Model", in Databases - Role and Structure,
Cambridge University Press, Cambridge, England, 1984.

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough", Foundations of Software Technology and
Theoretical Computer Science (ed. M. Joseph & R. Shyamasundar) Lecture Notes in
Computer Science 181, Springer Verlag, Berlin (1984),

Atkinson, M.P., Bocca, J.B., Elsey, T.J., Fiddian, N.J., Flower, M., Gray, PM.D.
Gray, W.A., Hepp, P.E., Johnson, R.G., Milne, W., Norrie, M.C., Omololu,
A.(?., Oxborrow, E_.A., Shave, M.J.R., Smith, A.M.,, Stocker, P.M. & Walker, J.
"The Proteus distributed database system", proceedings of the third British National
Conference on Databases, (ed. J. Longstaff), BCS Workshop Series, Cambridge University
Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R.

"Procedures as persistent data objects", ACM TOPLAS 7, 4, 539- -
ppaedures] , 4, 559, (Oct. 1985) - see

Morrison, R.,Bailey, P.J., Dearle, A., Brown, P. & Atkinson, M.P.
'I'The pe.r51su13n(t: stofre as an enabling technology for integrated support environments", 8th
nternational Conference on Software Engineering, Imperial Colle e, Lond A t
1985), 166-172 - see PPRR-15-85. P £ on (Augos

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment", proceedings of Data Types
and Persistence Workshop, Appin, August 1985, 1-24 - see PPRR-16-85

Davie, AJ.T.

"Conditional declarations and pattern matching", proceedings of Data Types and Persi iC
Workshop, Appin, August 1985, 278-283 - see PPRR-16-§;5. P erasence

Krablin, G.L.
"Building flexible multilevel transactions in a distributed persistent environment, proceedings
of Data Types and Persistence Workshop, Appin, August 1985, 86-117 - see PPRR-16-85.

Buneman, O.P.
"Data types for data base programming”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 261-303 - see PPRR-16-85.

Cockshott, W.P.
"Addressing mechanisms and persistent programming", proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 363-383 - see PPRR-16-85.

Norrie, M.C.
"PS-algol: A user perspective”, proceedings of Data Types and Persistence Workshop,
Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.
"On the need for a Flexible Type System in Persistent Programming Languages",

proceedings of Data Types and Persistence Workshop, Appin, August 1985, 423-438 - see
PPRR-16-85.

Morrison, R., Brown, A.L., Bailey, P.J., Davie, A.J.T. & Dearle, A.
"A persistent graphics facility for the ICL PERQ", Software Practice and Experience,
Vol.14, No.3, (1986) - see PPRR-10-84.

Atkinson, M.P. and Morrison R.
"Integrated Persistent Programming Systems", proceedings of the 19th Annual Hawaii
International Conference on System Sciences, January 7-10, 1986 (ed. B. D. Shriver), vol
IIA, Software, 842-854, Western Periodicals Co., 1300 Rayman St., North Hollywood,
Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.
"A Persistent Information Space Architecture”, proceedings of the 9th Australian Computing
Science Conference, January, 1986 - see PPRR-21-85.

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.1, (1986)
38-45.

Buneman, O.P. & Atkinson, M.P.
"Inheritance and Persistence in Database Programming Languages"; proceedings ACM
SIGMOD Conference 1986, Washington, USA May 1986 - see PPRR-22-86.

Morrison R., Dearle, A., Brown, A. & Atkinson M.P.; "An integrated graphics programming
environment”, Computer Graphics Forum, Vol. 5, No. 2, June 1986, 147-157 - see
PPRR-14-86.

Atkinson, M.G., Morrison, R. & Pratten G.D.
"Designing a Persistent Information Space Architecture”, proceedings of Information
Processing 1986, Dublin, September 1986, (ed. H.J. Kugler), 115-119, North Holland
Press.

Brown, A.L. & Dearle, A.
"Implementation Issuses in Persistent Graphics", University Computing, Vol. 8, NO. 2,
(Summer 1986) - see PPRR-23-86.

Kulkarni, K.G. & Atkinson, M. P.
"Implementing an Extended Functional Data Model Using PS-algol”, Software - Practise and
Experience, Vol. 17(3), 171-185 (March 1987)

Cooper, R.L. & Atkinson, M.P.
"The Advantages of a Unified Treatment of Data", Software Tool 87: Improving Tools,
Advance Computing Series, 8, 89-96, Online Publications, June 1987.

Internal Reports

Morrison, R.
"S-Algol language reference manual”, University of St Andrews CS-79-1, 1979.

Bailey, P.J., Maritz, P. & Morrison, R.
"The S-algol abstract machine", University of St Andrews CS-80-2, 1980.

Atkinson, M.P., Hepp, P.E., Ivanov, H., McDuff, A., Proctor, R. & Wilson, A.G.
"EDQUSE reference manual®, Department of Computer Science, University of Edinburgh,
September 1981,

Hepp, P.E. and Norrie, M.C.

"RAQUEL: User Manual”, Department of Computer Science Report CSR-188-85,
University of Edinburgh.

Norrie, M.C.

"The Edinburgh Node of the Proteus Distributed Database System", Department of
Computer Science Report CSR-191-85, University of Edinburgh.

Theses

The following theses, for the degree of Ph. D. unless otherwise stated, have been produced
by members of the group and are available from the address already given,

W.P. Cockshott
Orthogonal Persistence, University of Edinburgh, February 1983.

K.G. Kulkarni

Evaluation of Functional Data Models for Database Design and Use, University of
Edinburgh, 1983.

P.E. Hepp

A DBS Architecture Supporting Coexisting Query Languages and Data Models, University
of Edinburgh, 1983.

G.D.M. Ross
Virtual Files: A Framework for Experimental Design, University of Edinburgh, 1983.

G.0. Owoso

Data Description and Manipulation in Persistent Programming Languages, University of
Edinburgh, 1984.

J. Livingstone

Graphical Manipulation in Programming Languages: Some Experiments, M.Sc., University
of Glasgow, 1987

Persistent Programming Research Reports

This series was started in May 1983. The following list gives those which have been
produced at 9th July 1986. Copies of documents in this list may be obtained by writing to
the addresses already given.

PPRR-1-83

PPRR-2-83

PPRR-4-83

PPRR-5-83

PPRR-6-83

PPRR-7-83

PPRR-8-84

PPRR-9-84

PPRR-10-84

PPRR-11-85

PPRR-12-87

PPRR-13-85

PPRR-14-86

PPRR-15-85

The Persistent Object Management System -
Atkinson,M.P., Chisholm, K.J. and Cockshott, W.P. £1.00

PS-algol Papers: a collection of related papers on PS-algol -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

The PS-algol reference manual -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R Presently no longer available

Experimenting with the Functional Data Model -
Atkinson, M.P. and Kulkarni, K.G. £1.00

A DBS Architecture supporting coexisting user interfaces:
Description and Examples -
Hepp, P.E. £1.00

EFDM - User Manual -
K.G.Kulkarni £1.00

Progress with Persistent Programming -
Atkinson,M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

Procedures as Persistent Data Objects -
Atkinson, M.P.,Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £1.00

A Persistent Graphics Facility for the ICL PERQ -
Morrison, R., Brown, A.L., Bailey, P.J,, Davie, A.J.T.
and Dearle, A. £1.00

PS-algol Abstract Machine Manual £1.00
PS-algol Reference Manual - fourth edition £2.00

CPOMS - A Revised Version of The Persistent Object
Management System in C -
Brown, A.L. and Cockshott, W.P. £2.00

An Integrated Graphics Programming Environment - second
edition -
Morrison, R., Brown, A.L., Dearle, A. and Atkinson, M.P. £1.00

The Persistent Store as an Enabling Technology for an
Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, A.L. and
Atkinson, ML.P. £1.00

PPRR-16-85

PPRR-17-85

PPRR-1§-85

PPRR-19-85

PPRR-20-85

PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PPRR-25-87

PPRR-26-86

PPRR-27-87

PPRR-28-86b

PPRR-29-86

PPRR-30-86

PPRR-31-86

PPRR-32-87

PPRR-33-87

Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R.

Database Programming Language Design -
Atkinson, M.P. and Buneman, O.P.

The Persistent Store Machine -
Cockshott, W.P.

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R.

Building a Microcomputer with Associative Virtual Memory -
Cockshott, W.P.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D.

Inheritance and Persistence in Database Programming
Languages -
Buneman, O.P. and Atkinson, M.P.

Implementation Issues in Persistent Graphics -
Brown, A.L. and Dearle, A.

Using a Persistent Environment to Maintain a Bibliographic
Database -
Cooper, R.L., Atkinson, M.P. & Blott, S.M.

Applications Programming in PS-algol -
Cooper, R.L.

Exception Handling in a Persistent Programming Language -
Philbrow, P & Atkinson M.P.

A Context Sensitive Addressing Model -
Hurst, A.J.

A Domain Theoretic Approach to Higher-Order Relations -
Buneman, O.P. & Ochari, A.

A Persistent Store Garbage Collector with Statistical Facilities -
Campin, J. & Atkinson, M.P

Data Types for Data Base Programming -
Buneman, O.P.

An Introduction to PS-algol Programming -
Carrick, R., Cole, A.J. & Morrison, R.

Polymorphism, Persistence and Software Reuse in a
Strongly Typed Object Oriented Environment -
Morrison, R, Brown, A, Connor, R and Dearle, A

Safe Browsing in a Strongly Typed Persistent Environment -
Dearle, A and Brown, A.L.

£15.00

£3.00

£2.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

PPRR-34-87

PPRR-35-87

PPRR-36-87

PPRR-37-87

PPRR-38-87

PPRR-39-87

PPRR-40-87

PPRR-41-87

PPRR-42-87

PPRR-43-87

Constructing Database Systems in a Persistent Environment -
Cooper, R.L., Atkinson, M.P., Dearle, A. and
Abderrahmane, D.

A Persistent Architecture Intermediate Language -
Dearle, A.

Persistent Information Architectures -
Atkinson, M.P., Morrison R. & Pratten, G.D.

PS-algol Machine Monitoring -
Loboz, Z.

Flexible Incremental Bindings in a Persistent Object Store -
Morrison, R., Atkinson, M.P. and Dearle, A.

Polymorphic Persistent Processes -
Morrison, R., Barter, C.J., Brown, A L., Carrick, R.,
Connor, R., Dearle, A., Hurst, A.J.and Livesey, M.J.

Andrew, Unix and Educational Computing -
Hansen, W. J.

Factors that Affect Reading and Writing with Personal
Computers and Workstations -
Hansen, W. J. and Haas, C.

A Practical Algebra for Substring Expressions -
Hansen, W. J.

The NESS Reference Manual -
Hansen, W. I.

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

