University of Glasgow
Department of Computing Science

Lilybank Gardens
Glasgow G12 8QQ

University of St. Andrews
Department of Computational Science

North Haugh
St Andrews KY16 9SS

Andrew, Unix and
Educational Computing

Wilfred J. Hansen

Persistent Programming
Research Report 40
June 1987

Aon Deds

Preface

This report contains two papers by Professor Wilfred J. Hansen:
Andrew and Unix

The Andrew Environment for Development of Educational Computing

Andrew and Unix

Wilfred J. Hansen

Computing Science Department
University of Glasgow
Glasgow, G12 8QQ

Scotland

Information Technology Center
Carnegie-Mellon University
Pittsburgh, PA 15213

USA

December, 1986

This note sketches some of the ways in which choice of Unix as an
operating system influenced the design of Andrew, the workstation
software developed by the Information Technology Center at Carnegie-
Mellon University as a joint effort between the University and IBM
[Morris, 1986). (UNIX is a trademark of AT&T Bell Laboratories) I will
consider the file system, window manager, menus, text manager, and
scrollbars.

The target of the ITC effort was to produce a system so students faculty
and staff could access a uniform file system from any of 5000 or more
personal workstations of the IBM 6150 class (RT/PC). These
workstations provide computing power sufficient for students to utilise
application packages similar or identical to those they will encounter in
industry. A shared file system was important because it provides
communication between users without the physical transport of floppy
disks; the campus had grown accustomed to a shared file system from
years of time-sharing.

Unix Features

Three aspects of Unix 4.2BSD had a significant impact on our planning of
the Andrew: sockets, select, and its non-real-time nature.

2.

Sockets provide a convenient interprocess communication mechanism,
especially when used in a client-server model. A server process listens on
a socket bound to a well known port and clients connect to it by
referring to the same port. As a result of the connection sequence, each
process possesses a file descriptor on which it can read and write to
communicate with its opposite. We have usually used sockets in a
remote procedure call mode: applications in the client process call
procedures which reside in the server. A specialised interface intercepts
the call, passes the parameters to the server, awaits the response, and
passes any returned value back to the client.

Select enables a process to await input on more than one file descriptor.
This is crucial because a server may not have any way to predict which
client will next submit input. For example, several applications serve as
monitors executing other applications. They wait at a select for input to
arrive either from the process running the application or from the
keyboard or mouse.

Real-time constraints are difficult to meet in Unix because processes share
the processor and none is guaranteed any given level of service. For this
reason we initially designed the user interface to make minimal use of
dynamic interaction techniques such as dragging with the mouse. As we
have progressed to faster hardware, we have increasingly turned toward
more dynamic interaction.

File System

The most important impact of Unix on Vice, the Andrew file system, is
in the design of the semantics. The entire campus-wide file system is
made to appear as a single Unix file tree, so the name of any given file
depends on its position in the hierarchy rather than its physical location.
The Unix protection scheme is observed, but has been augmented by a
more powerful scheme which permits precise specification of which users
can access the files in any directory.

To provide universal access to files, they are stored in file servers
accessible from all workstations. When a file is opened, it is transferred
from the server to a cache directory on the workstation; thereafter, access
to the file is performed on the local copy. If the file is modified, it is
copied back to the server when the file is closed. For load balancing, the
files of any given user may be moved from one server to another, and
this is transparent to the user.

The file server utilises select to await various forms of events, and
communicates with clients through a socket. In this case one socket
communicates with all clients because there are not enough file

descriptors to give one to each client. Instead, the remote procedure call
implementation sends packets directly, performing itself all the
functions required for message transport, including checkpointing,
fragmentation, sequencing, and error recovery. A special purpose light-
weight process system allows one server process handles requests from all
clients.

Within client workstations a user-level process called Venus handles
communication with the file server. There are a few kernel
modifications which trap file opens, closes, and other crucial system calls.
These traps transmit messages through a file descriptor to Venus which
then communicates to the file server, updates the local file cache, and
returns status information to the kernel. At the heart of Venus is a
select waiting for messages from the kernel and file server.

Window Manager

The Andrew window manager allocates the screen space under user
control, draws images thereon for clients, and multiplexes the mouse and
keyboard to send inputs to the proper client.

The usual initial reaction to Andrew windows is to notice that they are
tiled on the screen rather than overlapping. Initially this was done in
the belief that tiled windows could be more quickly implemented and
that overlapping windows could later be added in a manner transparent
to the application. By the time we understood that the latter hope was
incorrect we had found that we liked tiled windows because they avoid
"window washing,” a phenomenon where users spend considerable non-
productive time managing screen allocation manually.

(The implementation problem with overlapping windows lies in the
redraw strategy. In Andrew, a client is told simply that the window
contents must be redrawn, but for overlapping windows it is important
to be able to tell a client which portion of a window needs to be
redrawn. To use overlapping windows Andrew client programs can be
revised to accept and act on partial redraw requests.)

A variety of mechanisms have been chosen for the relationship between
window manager and client applications [NeWS, 1986). For Andrew the
window manager was made a separate process that contains the display
screen bitmap in its process space. This choice was taken partly because
4.2BSD Unix does not offer shared memory and partly because we
wished to avoid the kernel modifications that would be necessary to
protect the screen space of clients one from another.

As with the file system, the heart of the window manager—client

4

interface is sockets and select. The remote procedure call mechanism in
the client queues up messages to the window manager requesting it to
draw lines, perform raster-ops, fill trapezoids, and display text. When
these messages are sent across the socket, the select call in the window
manager indicates which client made the request so the image operations
can be carried out on the corresponding window. One reason the whole
process is not intolerably inefficient is that very few of the procedure
calls to the window manager return results. Thus many messages are
queued together while the client process executes and all are performed
together after the messages are transmitted and the window manager is
swapped in.

Implementing the window manager as a separate, user-level process has
made it easy to port to a variety of workstations and display devices. It
has also made it trivial to run applications on one processor and view the
results through windows on a workstation. For example, we have a
large Unix mainframe without bitmapped displays of its own; to access
it we run the Andrew shell interface and text editor on it from a
bitmapped workstation, getting the combination of a mainframe and an
interactive interface.

Menus

Menus in Andrew are "attached” to the middle mouse button. When it
is pressed, the menu pops up at the current position of the cursor. The
menu appears as a stack of cards, with those behind the first staggered to
the northwest, Figure 1. As the mouse is moved to the left, cards behind
the first are made visible, obscuring those in front, Figure 2; and as the
cursor is moved to the right cards more forward in the stack reappear.
In general, the visible card is the one for which the cursor is in the left
margin. As the cursor is moved up or down the margin, the menu option
on that line is highlighted in reverse video. If the mouse button is
released while there is a highlighted option, it will be executed.

The non-realtime nature of Unix contributed to the decision to include
the menu package as part of the window manager. Mouse tracking
information is transmitted directly to the window manager and acted on
there without a process swap to the client. This also gives the advantage
that the menu package is the same for all applications and can be
changed consistently without rebuilding the application code.

Many interactive systems have menus that reside in some particular
place on the screen. There are two problems with this scheme, depending
on how often the given menu option is chosen. If the option is chosen
frequently, the user must move each time to the position on the screen
containing the option; this can require major arm movement on large

screens. If the option is chosen infrequently, then the screen space
devoted to it can probably be better spent on some more useful
information. With the Andrew pop-up menus, 30 or more options can be
available at any point on the screen and large numbers of infrequent
options can be made available by providing a pop-up menu from a screen
space. For example, the small icon at the right of windows titles in
Figure 1 refers to a menu with 20 infrequently chosen options.

Text Manager

Text is managed for Andrew applications by a subroutine package that
offers full typographic quality text: various fonts and point sizes,
margins, tabs, justification, and so on. Text on the screen is generally
justified to both the left and right edges of the space available. (This is
not WYSIWYG; the text is justified to the screen space it occupies rather
than to the arbitrary limits of a piece of paper.) Among the applications
that employ the text manager are a text editor, a shell interface, and
mail tools.

Unix influenced the design of the text manager rather peripherally. The
fact that 4.2BSD implements virtual memory as well as it does made it
possible to utilise an internal data structure where the text of the
document is stored as a single sequential string [Hansen, 1987). Printing
of text is implemented by converting from the internal format to troff
input.

Scrollbar

Part of the text manager package is a scrollbar that shows the user what
part of the file is visible and offers options to view any portion of the
file. The scrollbar appears to the left of the text it controls, as shown in
Figure 1. The relation of the white portion of the scrollbar to the entire
scrollbar is the same as the relation of the visible portion of the file to
the entire file. The white portion may be "dragged” with the mouse so
any random portion of the file can be made visible. To scroll forward in
the file by a short distance, the user presses the left button opposite some
line of the visible text, which is then moved to the top of the window.
This provides for scrolling forward by an arbitrary distance up to the
height of the window. Similarly, the right button scrolls backward.

Since Unix is not a realtime system, we initially did not implement the
scrollbar with dragging. Pressing on the left half of the scrollbar
scrolled up or down as described for clicking above, and pressing on the
right half scrolled to the corresponding arbitrary point in the file. A
few experiments showed that dragging was possible even with the

Figure 1. A view of the Andrew screen. Applications shown include

—

the clock, the shell interface, the text editor, and the editor for text

styles. The menu is the one made available inside selected text; it

provides the options for giving typographic styles to text.

process swap from window manager to client and back, so the current

sqe)

ar

Treuznanb yia ajiodel HOwd :peatedsy
. €8 PT IS:6T 98 020 € PR <9LOZOVY>
10050 yLssed] nILsS3d e PT {ST°€/21°'p) mps nus Asipue god AqQ :peatsoey
IHO SS:0 98 980 v ‘BLILCOR PY
Spaty 4INS wItA uoﬁ%m *m? A0 0¥ T30 S0 PYE ”
ppn paxtgy preg ppt 1of rrog q {S0T°6v2 2 82T] woil :pearadsyfl
napuy udre iy nfrg ey . IR 65:0 98 990 b
e agey ‘E9LBOTR DT IS WA OV TN 69 Teea
g XN 0 "TIN ‘60 PHY WOX] pIATsIBY
maeN ysnp g3y Y2 9L 1L B 9+ 2 ¢ swghpuy L3R 62:0T 98 220 § ‘Svzioaf pt
dINS YI1a jeuisyly eia
O+ ¥+ 2+ 2~ b O- WBu-ya] 9t 02 ¥1 01 £ ¥+ Z- 9~ MOV 12060 1AW AQ IXRA-C3-TON ®WOIJ PSATEISY
3ub 6£:€5:22 98 0°g § ‘114 > oe ‘acheeth o
paynsny mw) 06 8L 7 6 e £+ £- 6 | A Apry 56 4q 3693 '50 190 wo13 :paateacy
Wog spoyy az71g o g LY:BS:2Z 98 980 § ‘Tia ‘M 2e aobeeth 'eo "euues
A&q n oe ‘acHeeth £0 wo13 :pearedey
Aepdstg vondmsag waoNIvuLD g | 9861 82:85:22 § %20 IiJ
- Sy onuon S spiL Ansnp Biieot ERLLE npe ‘nwd ‘AsIpUe "ZodgAs IPUR MU ‘NPILFGOq W01
= - 2ERMISTIYY AIISH :9Y. 6061/TF
[iE] p'bnnynbnnynysylaysiasry s3jA1511p 3 85:22 § 980 TiJ NP? NI ASIPURHLAOq T NC
e isaueld = =y asu 1 obessow 1 : ufa/Trew/Toode/asny/,
Jaue|d Trew 3
= prfnmm p-onnin ax g
RIS L P OANNN<=SSK 00NN
piog SSH°OnMIN eqe %
- P ‘utwpe YE P onmin SSK onmin
asejday - 8T %
xaou P UTEDE D oAnIn Am %
ny SSH°onnIn pesasw g
<+ ‘Y 31 01 pIAow MG P onmin P 'onnin
ua2q Pu sures 3 s spy, “nusw oy y3nanp Buyddog -z amBpg T %
bunym/s/~ po g
%007 1 60:TT 9861 920 9 T6ELET SSK onmin &~
v chm 986T 2°Q & 19€2 118 a01IA A~
w01 01 $3141s omyde Bodls S 1cg suondo a1p sapynosd E2ics oer aoh a7 Cietr o | ows b
3 9%3) parda? Anen 0 31 5] MUAWE Y, °*SIAIS 1K1 J0J J0IPI AN pUB 10)PD XN 8C22 9861 AON ¥Z bLSZ 175 SIOArE0 A-
L ‘dRLII 1B nsnp hasoys suopeonddy "usaIds marpuy oy} Jo MTlA ¥ T amdlg 8S:TZ 986T AON bZ 9¥b9 I1S SONIMIS f-
§v:6 9861 AON 92 GBEZ oud dd A~
Tv 0S°22 9861 AON 12 9£2tb a ROYO A~
Y6 9861 AON 6 8092 oud a10dd A~
. SE:1Z 9861 AON 9T EGEb SSK ¥4 A~
(9861 190) matatea() [eonnyaa L, Areuruniasd SMeN ‘SuRsAsoniy ung (9061 ‘SmMaN] s xTpsw g
“ITe® ASU 2ARY NOZ
"T0Z-¥81 (9861 2 I) € ‘6T WOV - x
unue] ‘puawuonauy Sunndwo) puosiad panqrusig v o imapuy R 18 “H[‘stuoly {9841 ‘sLuoi] ‘hax nayt,
baazt qoniys UCIT/ 8N/
“(pompatps } baagx uu:u%nuz.: uum.\.
, . Y ./39u/ ° baxyr dezbe g
uer) @ 101pg 1x3) paddvpy-ng v 1of sampnnS veg “f PAGUM UIsSUR arIsue
(B61 Ue() kg “soppy sxa) paddniy-1ig v s0f S 2Q “f PIGAM H 861 H] T o TIEETLS
WAOP S| UONNG AN YA a u
JRGRONIS I UTNLA UTBUIST 0} PAUTRASUOD ST 105MD ISNOW M SYLNY WA UOnIRINY 2[qissod Jwq yum [
[ER A e it D DNNNIYBINNNIS st oot ioapt s YGRS o i NS [euues 9861 9 vaQg %2012
- [R — B i — o . . ——
SES S 2 0§ 3
- O m B, S ot
ECEE & ¢ 7§
3B a= = S . =
m n.w. v O i A m % ’
0SS mw e B 8
P o D o]
£ m 2@ © K M P g
- m vm — 1.5
- B, 3 —~ B
gad5 <, 3 . B2
g8 0 m “ p m% m =
- WT 8 o - B
5§82 9 M < H m Ehs
GEE® Y (3 | = 2
L ®E g 5 L]
E58F & Pe w ! w o
ToE55 &, 3g B — £ 8
] 3] 82 N o W E
m = L 4 Da A Z - g o S o
£ 88 = S] Bz 8 -
Y 5 s 3) 2.0 88 = g2 8
S E D -0 g £2E.TE = g3
&5 VES g o< ¢ SERRES =
E2 b=~ 8 TE e (3] s ag@s, e E g E S
=9 o £Eg ©E 3 o A=tdgez & |5 .S
Ssgy S5 GE B || SBpESS & £
frcct By H8 ¢ E g
m B 5 S = 2|2 _ en m
mw 2 mm Sg & s gL T M g
o b & = ~~
[o
Bk ES EE 29 g%
o B o § ® £ 3 = o
g O o =S A
5 g = 5 5 o [N R=]
o wm © W o =~ 0 ey W = o nm ©
S 0T b s ©~ Vo) \O m Qs
o g YR o - ok oo D«
BWY o o 5 XN & o w
m = 5 - - B ot W.
u.m,w.mt S myw s . B0
T L 8
s 5P 85 §% &5 %9 g
. N
G585 &8 28 28 &
=

_ The Andrew Environment
for Development of Educational Computing

Wiifred J. Hansen

In formation technology Center
Carnegie-Mellon University

and

Computing Science Department
University of Glasgow

April, 1987

Abstract: Andrew is being developed at Carnegie-Mellon
University as an environment for computing by all
members of the campus community. The system includes a
file system, user interface software, and the CMU-Tutor
facility for building instructional material. This
demonstration focuses on the latter environment, showing
how it provides excellent facilities for generating images
and evaluating student responses to questions.

I. Introduction

Carnegie-Mellon University recognized some years ago that computing is
an important community resource. They began, shortly thereafter, joint
development with IBM of the system which has since become known as
Andrew [Morris 1986]. The goal of this effort is to make possible
universal interconnection of advanced workstations, one for each student,
staff, and facuity member. These computers support training by offering
the tools that professionals use in practice. They support research by
providing common tools of statistical analysis and data bases. Perhaps
even more importantly, they support the community with the mundane
tasks of communication: electronic mail, class work, scholarly
publications, and documents of all kinds.

With such pervasity of computing, it has become possible to explore
non-traditional education with computers. In pursuit of this, the Tutor
system was seen as the most promising of the approaches and a similar
approach was developed for Andrew. This is the CMU-Tutor
programming environment for the construction of "lessons,” where each
lesson is a tutorial program which leads a student through learning some
topic of knowledge [Sherwood, 1986a; 1986b].

In this paper I will briefly sketch the Andrew file system and user
interface and then describe the CMU-Tutor environment.

II. Vice, The Andrew File System

Vice, the Andrew file system, enables each user to sit at any workstation
on campus and access all files to which he or she has access from any
workstation. Moreover, this is done within a name hierarchy that hides
for the user the physical location of his or her files. The user’s view of a
file is a name, a set of access permissions, and a contents. The files for
user xxx in department ddd will all have names beginning with
/cmu/ddd/xxx/, a top-down hierarchical structure. The access
permission scheme is more detailed than that of other systems: each
directory may be controlled as to exactly which users or groups of users
have access to it.

The file system stores files in dedicated file server computers. These and
all other workstations on campus are connected via IBM token ring
technology. Each workstation has a local disk to cache files and a Venus
process to communicate with the file server. When any other process on
the workstation tries to open a file, Venus is notified, communicates with
the server to get the file to the cache and supplies the cached copy of the
file to the process.

OI. Virtue, The Andrew User Interface

Andrew is predicated upon advanced workstations with large screen,
bit-mapped displays, so it was necessary to develop user interface
software to provide for sharing the screen among applications and
exploiting the graphic and textual potential. The lowest level of this
software is a window manager, wrm, which tiles the screen into a separate
window for each application, as shown in Figure 1. In this Figure, the
window in the upper left is a clock, the window in the lower left is a
shell interface for giving commands to the system, the window in the
upper left is a text editor, and the window in the lower left is the
educational lesson gt.

The wm window manager is implemented as a separate process to which
other processes communicate for window allocation and graphic services.
It also listens to the keyboard and mouse, distributing inputs from them
to the appropriate destination processes. The gt window, for example,
draws the axes of its graph with calls like these:

wm_MoveTo(GX(0), GY(500))
wm_DrawTo(GX(0), GY(O));
wm_DrawTo(GX(25), GY(0));

where GX and GY are macros which convert from coordinates for the
graph to coordinates within the g¢ window.

The three windows in Figure 1 other than the clock window all employ
Andrew’s base editor for manipulation of text. This facility provides
full typographic text including fonts, font sizes, indentation, justification,
tabs, and sub- and superscripts. User manipulation of this text is the
same in all windows so the user need learn only one set of conventions
for dealing with text. The advantages for the programmer are enormous
because individual programs need not handle text interaction.

The gt application is a prototypical educational application, and was the
first constructed for Andrew. It is a simulation intended to teach the
relationships of position, velocity, and acceleration. The graph in the
middle of the window depicts six posts with ramps between them along
which a ball can roll. The height of each post can be adjusted by
pointing above or below its top and clicking the left mouse button.
Below the posts and ramps are two bars to select the initial position and
velocity for the ball; the user chooses a value from these bars by pointing
at a position on them and clicking the mouse. When the user selects the
Roll Ball option from the menu, the ball rolls on the ramps and a graph
of its position, velocity, or acceleration is displayed in the top portion of

_4-

the window. To give the user a goal, a graph is shown for a selected
configuration of the parameters and the user is challenged to match that

graph.

Gt illustrates two important differences between educational lessons on
bit-mapped workstations with mice and small screen personal computers
without. First, the graphics are designed to adapt to any size window
the user may choose.* This is essential anyway because it cannot be
known what display hardware will be available. Second, there is no
"dialogue” between systern and user to adjust the apparatus. With PC
based versions of gt, the user is forced to answer a series of questions: Do
You want to ad just the parameters? yes Do you want to change a post
height? yes Which post? 4 Height is 1. What new height? 2 Do you
want to change another post? no Do you want to change the initial
velocity? no Do you want ad nauseum . . . This entire exchange in gt
is a simple click above the second post. After then choosing two menu
options the image looks as in Figure 2. Both this simple command
interface and the adaptability of size contribute to a feeling in the user
that he or she, rather than the computer, is in control.

(footnote)

* Perhaps a short digression on variable-sized windows is appropriate.
The small additional programming complexity for this adaptability
amounted to about a page of code in gt, but helps the system build in the
user confidence that he or she is in control rather than the computer.
Programmers who have not yet written Andrew applications sometimes
complain that this makes rational planning of screen usage difficult, but
after experiencing use of the system in developing material, such
complaints vanish. If the user gives an application a window that is too
small, the application may choose to complain and wait for a larger
window; but if it just goes ahead and does its best a dissatisfied user can
easily adjust the window size.

IV. CMU-Tutor

Broadly defined, educational computing is any use of a computer that
teaches someone something. Andrew supports all such computing.
Sometimes, however, it is desirable to use a computer for presentation of
material, as could be done with a book. The advantage of the computer
is that it can offer animations and other interaction with the student.
The pace of the presentation can be controlled by the author and the
student can be questioned to ensure understanding of one concept before
proceeding to the next. Such a controlled presentation of material is

called a "lesson”.

Building lessons with traditional programming languages is tedious.
Images must be constructed from the lowest level graphical primitives,
sequencing has to be handled in every detail, and the interaction with
the user must be written so as to cope with a great diversity of inputs.
In Andrew, it is also desirable to utilize the Virtue base editor, with its
typographic quality text options. Facilities to eliminate or reduce all
these problems are provided directly by the CMU-Tutor programming
language and development of lessons is supported by an associated
programming environment.

The CMU-Tutor environment includes a lesson editor, a lesson executor,
and a growing body of lessons. The executor is a portion of the lesson
editor, so that while an author is preparing a lesson its pieces can be
executed without waiting for a lengthy compilation. Error diagnostics
indicate the exact position where an error is detected by moving the
editor selection to that point. A comprehensive on-line manual is
available and can be referenced by typing or pointing at a keyword.

Each piece of the lesson is called a "unit", and typically describes a single
step in the sequence of images that the student will see. In some cases
each unit clears the screen at its start, displays some image or animation,
and asks for a student response. In other cases units are subroutines that
generate some portion of an image or simply massage some data. Lessons
are stored as base editor documents in a directory together with a "shell”
script. To initiate a lesson, the student types a command which is
actually the name of the shell script. This in turn loads the CMU-Tutor
executor, giving it the lesson document and the names of any ancilliary
files (fonts or data, perhaps). In the lesson document the instructions are
stored in machine-independent source form and are compiled as the
student executes the lesson. The compilation delay is almost invisible
because of the speed of the computers used and a clever design of the
executor.

We can demonstrate CMU-Tutor with the lesson waves developed by
David Trowbridge, who has developed a number of lessons on Andrew
[Trowbridge, 1986] Waves teaches a student how to write equations for
periodic motion such as a point on a rolling wheel. As the lesson begins,
the student soon comes upon the page shown in Figure 3. Here the Anim
button in the lower right invites the user to start an animation by
pointing at the button and clicking a mouse button. Then the image of
the ball in the upper right moves in a counter-clock wise circle returning
to its present position at three-o’clock on the circle. (Sorry, this is not a
live demonstration; no amount of clicking the Anim button in Figure 3
will budge the ball by even a pixel!)

lraws f’ﬂ.g A
~efe ence

-6-

After the animation, waves asks the user to describe the motion of the
ball. The correct answer is that the ball is making a uniform, circular
motion, which is the first form of equation the lesson is going to teach.
When the student types a response it is echoed at the arrow just below
the top left portion of the window. The response is compared by the
CMU-Tutor executor against a number of possibilities anticipated by the
author and the program prints a message. PFor this instance, the author
has permitted misspellings and alternate word orders, so any answer
saying something about "uniform” and "circular” will be accepted.
Possible answers include "uniform circular motion”, "smooth circle”, "it
goes around steadily” "unform circul”, "round reguler”.

After Figure 3, waves displays the "Reference Circle” shown in Figure 4.
In this Figure, notice the use of boldface and alternate fonts in the text,
features which are easy when the lesson is an Andrew document, but
which would be tedious in a C program. Note also that the question is
asking for an equation as the answer. Here again the CMU-Tutor
environment simplifies the lesson author’s task: the system automatically
accepts such diverse replies as wt, w*t, (w)/t, wwt/w. (The equation is
evaluated for a few random values of the variables and accepted if it
gives the correct answer.)

The author’s view of the waves lesson is shown in Figure 5, where the
execution of the lesson is visible in the lower portion of the window.
The upper portion of the window is a base editor document containing
the programs source of the lesson, in this case the portion of waves which
makes—the-ball-meve—in—a circle. When the author selects the menu
option "Execute Current Unit", execution is begun for the unit whose
source text in the top of the window contains the edit cursor or selection.
The results of the execution are shown in the bottom of the window.

For image construction, the band across the middle of the window
provides a choice among the most used CMU-Tutor operations. Clicking
on one of these words inserts a line into the current unit with the edit
cursor positioned for insertion of the arguments. In most cases the
arguments are coordinate positions in the image; these are entered into
the program by clicking on the image area. Each click inserts one
coordinate pair in the current line, with correct punctuation. Modifying
the program to change coordinates can be done by modifying the
program text, but it is often easier to use a clever CMU-Tutor trick:
select the coordinate pair in the lesson source and click in the lesson
image. The new coordinates will replace the selected coordinates in the
source and the unit will be re-executed to show the result. The author
can repeatedly revise a coordinate until it is exactly right.

Once the lesson has been constructed, the author can insert a single line
in the CMU-Tutor source indicating how the lesson should be resized in

-7-

response to varying window sizez When the lesson is executed its
imagery, including font heights, is adjusted in accordance with the size
of the window provided.

To give some indication of how CMU-Tutor programs can build images,
Figure 6 gives an extract of waves showing the unit that draws the
reference circle in the upper right of Figure 4.

To illustrate the CMU-Tutor facilities for answer judging, Figure 7
shows the code that evaluates the students attempt to describe the
motion of the ball in Figure 3. Two commands, -arrow- and -endarrow-,
are the crux of answer judging. They begin by displaying an arrow at
the coordinates given and then await the student response. When the
student finishes the response by typing RETURN, statements after the
-arrow- up to the -endarrow- are executed. Among these are "answer
judging” commands which compare the student response against some
anticipated response. If a match is found, the commands indented under
the judging command are executed and control skips to the endarrow. If
the -answer- or -ok- commands match the response, the -endarrow- exits.
If one of the other judging commands match, the -endarrow- returns
control to the -arrow- so the student can try again. In the example, the
operand to the -ok- command is a boolean expression which is true the
third time the student makes a response; thus the student is given only
three tries before the system gives the correct answer and proceeds with
the lesson.

V. Conclusion

This paper has described Andrew: its file system, its user interface, and
the CMU-Tutor environment. The Ilatter provides to an author
comprehensive tools for image construction and answer judging.

As do all computer users, the users of Andrew will apply it in diverse
ways. Almost all will use it for communication—mail, documents—and
most will use it for various computational purposes. All will use the file
system to access their personal files from diverse workstations, and all
will interact through the user interface.

As part of an educational institution, the members of CMU will also use
computers for education: faculty will create lessons and students will
take them. The CMU-Tutor environment helps both. It simplifies lesson
construction and generates lessons with a consistency of user interface
that enables students to concentrate on the material instead of the system
commands needed to get through it.

Clock Apr 11987 cara {usrieduigraph/graphhelp.d @
]
‘ m [] O i D graph: A Grapher, Calculator, and
T 5 Differential Equation Solver
Typeseript wih car Bruce Ame Sherwood and Robert T. Schumnacher

gt

¥ 1lg -1 /tmp
lrexryxrvx 1 root 20 Jan 16 17:15
/tmp ~> /public/cara.usr/tmp
%1z -1 ftmp/o™

~I¥-r~~r-~- 1 hamzah 44 Mar 31 21:17
/twp/snapshot-1. sst.
~X¥-r-=+f-= 1 wih 102420 Mar 31 23:47
/tmp fsnapshot-2. sstf
~tw-g-~f-- 1 wjh 102420 Mar 31 23:47
/tmp/snapshot-3. astf |
-T¥-r--r-- 1 wih 102420 Mar 31 23:47
/tmp/snapshot-4. sstf
~f¥-r--r-- 1 wih 102420 Mar 31 23:48

/tnp/snapshot-5. sstf
% ¢cd ~/1/CALS7
% 1ls -1 sn™

graph offers three services:

CDEC and Physics
Carnegie-Mellon University 1985

Programmed in part by Eric Shulman.

Optics sections by Ned S, VanderVen

In Program Mode you can write equatons to produce a graph, or solve a system of up to

three first order ODE's,

In Caleulator Mode you have a fiexible desk calculator.

Try to reproduce the given
graph for this example of
rectlinear motion.

-fw-gr--r=-- 1 ¥jh 102420 Mar 31 23:28 .
enapshot-1. sstf |

~r¥-r=-r-~ 1 wjh 102420 Mar 31 23:29 gt
snapshot-2. sstf

~r¥-g=-=-r-- 1 wih 102420 Mar 31 21:28
snapshot-3. sstf

~r¥~z--r-- 1 wijh 102420 Mar 31 21:32
snapshot-4, sstf

%

Use the mouse to setup
your apparaws.

Press the left button above
or below the ramp joints
to raise or lower them,

Use the left button to select
values for Inidal Positdon
and Inital Velocity.

Then use the middle button
for menus with other

antione

Graph Type]

edisplay Example
Judge Answer
Next Exampie

Quit

X (cm)

Inital Posidon

Ly t t t t + +

0 100 200 300 400
Initial Velocity
60 -50 -40 -30 -20 -10 O

500

10 20 30 40 50 &0

< dog gs
222 S¢
i A

§ = e
on o <h
S s

. g
g€ 58
gE, 5 S
59 &5

w « o

Q &Y9 dm..
S 588 E
O P18 m
o .o P 0
G5 0 we g
MoEgg M%(
a2 k=
® & B B .
s5E &S558

* - Q L d
mmc it
A]%m
hn m Q%.W
— % . ©58
ST g & E
P [e ¥ »] - 3
A s of
—“"gd 1
=TT
mﬂm) B]
EEEQ £8k
224S BSES

1986) 135-142.

tions at Carnegie-Mellon"

(Nov 1986) 15-17
A sampler of educational software
Diego (June,

idge, D. ©
Proc Nat Educ Comp Conf, San

[Sherwood, 1986b] Sherwood, B. A. "(Worksta

[Trowbridge, 1986] Trowbr

at CMU,”

Proc FJCC, IEEE Comp. Soc.

31 Posts Wrong Position Wrong Velocity Wrong

L
28492
+ [t m 1Y)
ggoE
& v &
Yﬂm
Y
8e L .
Wmm@
g8 %3

indicating where the next key typed w

ace). The cursor is in the g¢ window,
"Roll ball" option and other options for gt.

Andrew screen image. Clockwise fro
clock, text editor, gt (a lesson in mechani

Figure 1.
windows are:
(a shell interf
inverse video,
shows the

Example 1

v {cm/s) Velocity vs. Time
150

Try to reproduce the given
graph for this example of
rectilinear moton. 100

Use the mouse to set up 50
your apparatus.
o] f . '
Press the left button above % §\/\/M/ 15 \/\27 t(s)

or below the ramp joints
to raise or lower them,

Use the left button to select
values for Initial Position
and Inidal Velocity.

Then use the middle button
for menus with other
options.

4
N
n
N
3
N
[
-

itde bt Lo b 5

Initdal Position N !
0 100 2000 300 400 500
Inital Velocity .

60 -50 40 -30 -20 -10 O 10 20 30 40 50 €0

Figure 2. Gt after adjusting a post. Since the time of Figure 1, the
mouse has been clicked above the fourth post, a menu option has been
chosen to change the graph type to Velocity vs. Time, and Roll Ball has
been selected.

{usrledutvavesivaves
Reference Circle

How would you describe its motion?

juniform circlar,

F igl'xre 3. Snap shot of an animation. To introduce uniform circular
motion, waves displays this image. When the student clicks on the Anim
button the "ball” in the upper right is moved in a counter-clock wise
circle 160 pixels in diameter. Then waves displays the question in the
upper left. As this picture was taken, the student is answering the
question aftsr the arrow below the question. Although one correct
response is “uniform circular”, the response shown will be accepted
because spelling correction is enabled for this answer.

usriedulvavesivaves.t v ».
Reference Circle |
|

Notice that the angle ¢ increases uniformly. o
-~
Please write an expression for the angle 8, .7 AN
in terms of w and t / é
i %
. \ ,
’
\ N y
~ P
#(t) =y wi, ~ -
" The ball travels

at a constant speed
around the circle.

It completes one revolution
(2r radians)
in a time T seconds.

Thus its angular velocity,
in radians per second, is,
More | W= 2n/v

Contents

Traveling Waves
Quiz

[Help

Figure 4. A complex graphic image. Note the dashed circle, curved
arrow, Greek letters, and bold text. The student is answering another
question at the arrow in the upper left.

TR —{3”
TR TR RO AR R AR R SO R A RK R (lu#*x;’lﬂ’l;li****l#ﬁ!;n!‘i!;x*;ﬂx*t**!ﬁﬁ; 51 "49——‘/
unit maind
*next main$
*back main3 -

g: 2SnimPt_l3 : unit tmPt13
G0 prrase Document | : calc ' X1:=650; Y1:=50; X2:=900; Y2 := 350
go ShowAngle Other 1] ' N:=13
0 SumPul9 Search Yheight = (Y2-Y1)/2
?;& pterase _ ® . Xratio = zheight/zwidth $§ the window’s aspect ratio
The ball rravels Paste origi (X2+X1)/2(Y2+Y1)/2 $$ set the origin
gorigin
at a constant speed bounds -(Xratio/1.2)*Yheight, -Yheight;
around the circle. ggg g_gm gggggg?tn it (Xratio/1.2)*Yheight, Yheight
It completes one revolution scalex 160
(27t radians) scaley 100 .
in a ime U seconds.] Egl;gen dix - %at 0,0 38 start at the new origin
Thus its angul loci :
in radians per second, s, | 5 unit ShowAngle
W= 23/T T Quit calc theta == 1.047 $8 pi/3, or 60 degrees
) rx := radius*cos(theta)
. . . unit errow crcle disk erase move wrte Iy = radius*ﬁn(them)
Absolute InitGraph Graphing Relative Cale Response| mode at drleb dot il text do AnimPt13
pause box clip draw fine vector gcircleb 80 $$ draw dashed circle <<
axes -Xratio*Yheight, -Yheight: Xratio*Yheight, Yheight $$ <<
g g g ght
gdraw 0,0; rx,ry 3% draw radius at angle phi <<
gat 0,0 .
geircle 30,0,60 88 draw the curved acrow <<
gdraw 19,17;16,25 $3 and its arrowhead <<
The ball travels g::aw ;3262’3255 $$ <<
ata constnt speed 2
around the circle. write b 33 print the Greek phi <<
It completes one revolution icons waves]2
(2T ndhas)
! gat X1y
in s time T seconds. plot " O" $$ plOt the ball <<

Thus its angwiar velocity,
fn radfans pex second, i,
wa= 271/ T
Figure 6. Graphics commands. This subroutine draws the reference

circle in the upper right of Figure 4. Each of the lines marked with

"<<" draws a piece of the picture. Unit AnimPt613 sets the graphics

[Help | : origin and bounds. It is used by a number of animations so they share
:‘ ' the same graphics portion of the window.

F igure 5. Creation of a CMU-Tutor Lesson. The lower portion of
tl'.xe window displays the execution of the lesson, the upper portion
displays the source code, and the middle displays a selection of operators
that create statements in the program.

14~

-7
unit GetCirc
calc SaidUnif = FALSE
arrow X1, Y1; X2, Y2
specs nookno, okextra, okspell, noorder

answer [steady steadily uniform unif ormly regular smooth]
[circle circular round around]
do GoodMsg
answer [dont cant don’t can’t not no}
[know say tell sure remember idea]

do OkayMsg $$ "You may have noticed ..."
wrong [smooth smoothly steady steadily uniform uniformly regular]
do SteadyMsg $$ "... be more specific ..."
calc SaidUnif:=TRUE
wrong [circle circular round around]
if SaidUnif
do GoodMsg
judge ok
else
do CircMsg $§ "Yes ... and ..."
judge quit
endif
ok zntries > 2
no
do DntFolMsg(zntries) $$" We don’t follow you..."
endarrow
]
unit GoodMsg
A Print a message
text
That’s correct.
\\

Figure 7. Unit to Accept Student Response. The correct answer is
:u‘niform” circular”, but many variants are accepted. If the student says
"cucular , an attempt is made to get the additional information of
uniform.” The various XxxxMsg units each print an appropriate
message. The ok command will accept any answer if the student has
formerly made two other answers. The no command is unconditional
and will be executed if no other judging command matches the student’s
response; it prints a message that the computer does not follow the
student.

Bibliegraphy

Copies of documents in this list may be obtained by writing to:

The Secretary,
Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,
Glasgow G12 8QQ
Scotland.

or
The Secretary,
Persistent Programming Research Group,
Department of Computational Science,
University of St. Andrews,
North Haugh,
St. Andrews KY 16 9SS
Scotland.

Books

Davie, A.J.T. & Morrison, R.
"Recursive Descent Compiling”, Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.)
"Databases”, Pergammon Infotech State of the Art Report, Series 9, No.8, January 1982.
(535 pages).

Cole, A.Y. & Morrison, R.
"An introduction to programming with S-aigol", Cambridge University Press, Cambridge,
England, 1982.

Stocker, P.M., Atkinson, M.P. & Grey, P.M.D. (eds.)
"Databases - Role and Structure”, Cambridge University Press, Cambridge, England, 1984.

Published Papers

Morrison, R.
“A method of implementing procedure entry and exit in block structured high level
languages”. Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z.
"The Graffiti graphics system”, Proc. of the DECUS conference, Bath (April 1978), 5-10.

Atkinson, M.P.
"A note on the application of differential files to computer aided design”, ACM SIGDA
newsletter Summer 1978,

Atkinson, M.P.
"Programming Languages and Databases", Proceedings of the 4th International Conference
on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78, 408-419. (A revised
version of this is available from the University of Edinburgh Department of Computer
Science (EUCS) as CSR-26-78).

Atkinson, M.P.
"Progress in documentation: Database management systems in library automation and
information retrieval”, Journal of Documentation Vol.35, No.1, March 1979, 49-91.
Available as EUCS departmental report CSR-43-79.

Gunn, H.1LE. & Morrison, R.
"On the implementation of constants”, Information Processing Letters 9, 1 (July 1979), 1-4.

Atkinson, M.P.
"Data management for interactive graphics”, Proceedings of the Infotech State of the Art
Conference, October 1979, Available as EUCS departmental report CSR-51-80.

Atkinson, M.P. (ed.)
"Data design”, Infotech State of the Art Report, Series 7, No 4, May 1980.

Morrison, R.

"Low cost computer graphics for micro computers", Software Practice and Experience, 12,
1981, 767-776.

Atkinson, M.P., Chisholim, K.J. & Cockshott, W.P.
"PS-aigol: An Algol with a Persistent Heap", ACM SIGPLAN Notices Vol.17, No. 7, (July
1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Nepal - the New Edinburgh Persistent Algorithmic Language”, in Database, Pergammon
Infotech State of the Art Report, Series 9, No.8, 299-318 (January 1982) - also as EUCS
Departmental Report CSR-90-81.

Morrison, R.
“S-algol: a simple algol”, Computer Bulletin /31 (March 1982).

Morrison, R.
"The string as a simple data type”, Sigplan Notices, Vol.17,3, 46-52, 1982,

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming”, presented at CREST course UEA, September
1982, revised in “Databases - Role and Structure”, see PPRR-8-84.

Morrison, R.

"Towards simpler programming languages: S-algol”, TUCC Bulletin 4, 3 (October 1982),
130-133.

Atkinson, M.P., Chisholm, KJ. & Cockshott, W.P. ~
"Problems with persistent programming languages”, presented at the Workshop on
programming languages and database systems, University of Pennsylvania. October 1982.
Circulated (revised) in the Workshop proceedings 1983, see PPRR-2-83.

Atkinson, M.P.
"Data management”, in Encyclopedia of Computer Science and Engineering 2nd Edition,
Ralston & Meck (editors) January 1983, van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Algorithms for a Persistent Heap", Software Practice and Experience, Vol.13, No.3,
259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P.,, Chisholm, K.J. & Cockshott, W.P.) .
"CMS - A chunk management system”, Software Practice and Experience, Vol.13, No.3
(March 1983), 273-285. Also as EUCS Departmental Report CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming”, presented at the DEC workshop on
Programming Languages and Databases, Boston, April 1983,

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"An approach to persistent programming”, The Computer Journal, 1983, Vol.26, No.4,
360-365 - see PPRR-2-83.

Atkinson, MLP., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming”, 10th Australian Computer Conference,
Melbourne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.)
"High level language support for 3-dimension graphics”, Eurographics Conference Zagreb,
North Holand, 7-17, Sept. 1983. (ed. P.JL.W. ten Hagen).

Cockshott, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, PJ. & Mo_rrison, R. .
"POMS : a persistent object management system", Software Practice and Exerience, Vol.14,
No.1, 49-71, January 1984.

Kulkarni, K.G. & Atkinson, M.P.
"Experimenting with the Functional Data Model", in Databases - Role and Structure,
Cambridge University Press, Cambridge, England, 1984.

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough”, Foundations of Software Technology and
Theoretical Computer Science (ed. M. Joseph & R. Shyamasundar) Lecture Notes in
Computer Science 181, Springer Verlag, Berlin (1984).

Atkinson, M.P., Bocca, J.B., Elsey, T.J,, Fiddian, NJ., Flower, M., Gray, PM.D.
Gray, W.A,, Hepp, P.E., Johnson, R.G., Milne, W., Norrie, M.C., Omololu,
A.O., Oxborrow, E.A,, Shave, M.J.R., Smith, A.M,, Stocker, P.M. & Walker, J.
"The Proteus distributed database system", proceedings of the third British National
Conference on Databases, (ed. J. Longstaff), BCS Workshop Series, Cambridge University
Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R.
"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985) - see
PPRR-9-84.

Morrison, R.,Bailey, P.J., Dearle, A., Brown, P. & Atkinson, M.P,
"The persistent store as an enabling technology for integrated support environments”, 8th
International Conference on Software Engineering, Imperial College, London (August
1985), 166-172 - see PPRR-15-85.

Atkinson, M.P. & Morrison, R.))
"Types, bindings and parameters in a persistent environment”, proceedings of Data Types
and Persistence Workshop, Appin, August 1985, 1-24 - see PPRR-16-85.

Davie, AJT.)
"Conditional declarations and pattern matching”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 278-283 - sce PPRR-16-85.

Krablin, G.L. i
"Building flexible multilevel transactions in a distributed persistent environment, proceedings
of Data Types and Persistence Workshop, Appin, August 1985, 86-117 - see PPRR-16-85.

Buneman, O.P.

"Data types for data base programming", proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.

"Addressing mechanisms and persistent programming”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 363-383 - sec PPRR-16-85.

Norrie, M.C.

"PS-algol: A user perspective”, proceedings of Data Types and Persistence Workshop,
Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.
"On the need for a Flexible Type System in Persistent Programming Languages",
proceedings of Data Types and Persistence Workshop, Appin, August 1985, 423-438 - see
PPRR-16-85.

Morrison, R., Brown, A.L., Bailey, P.J., Davie, AJT. & Dearle, A.
"A persistent graphics facility for the ICL PERQ", Software Practice and Experience,
Vol.14, No.3, (1986) - sce PPRR-10-84,

Atkinson, M.P. and Morrison R.
“Integrated Persistent Programming Systems", proceedings of the 19th Annual Hawaii
International Conference on System Sciences, January 7-10, 1986 (ed. B. D. Shriver), vol
ITA, Software, 842-854, Western Periodicals Co., 1300 Rayman St., North Hollywood,
Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.

"A Persistent Information Space Architecture”, proceedings of the 9th Australian Computing
Science Conference, January, 1986 - see PPRR-21-85.

Kulkarni, K.G. & Atkinson, M.P.

"EFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.1, (1986)
38-45.

Buneman, O.P. & Atkinson, M.P.)
"Inheritance and Persistence in Database Programming Languages"; proceedings ACM
SIGMOD Conference 1986, Washington, USA May 1986 - see PPRR-22-86.

Morrison R, Dearle, A., Brown, A. & Atkinson M.P.; "An integrated graphics programming
environment”, Computer Graphics Forum, Vol. 5, No. 2, June 1986, 147-157 - see
PPRR-14-86.

Atkinson, M.G., Morrison, R. & Pratten G.D.
"Designing a Persistent information Space Architecture”, proceedings of Information
Processing 1986, Dublin, Sepiember 1986, (ed. FL.J. Kugler), 115-119, North Holland
Press.

Brown, A.L. & Dearle, A. :
"Implementation Issuses in Persistent Graphics™, University Computing, Vol. 8, NO. 2,
(Summer 1986) - sce PPRR-23-86.

Kulkarni, K.G. & Atkinson, M. P.
“Implementing an Extended Functional Data Model Using PS-algol”, Software - Practise and
Experience, Vol. 17(3), 171-185 (March 1987)

Cooper, R.L. & Atkinson, M.P.
"The Advantages of a Unified Treatment of Data”, Software Tool 87: Improving Tools,
Advance Computing Series, 8, 89-96, Online Publications, June 1987

Internal Reports

Morrison, R.])
"S-Algol language reference manual”, University of St Andrews CS-79-1, 1979.

Bailey, P.J., Maritz, P. & Morrison, R.
“ eXThe S-algol abstract machine”, University of St Andrews CS-80-2, 1980.

Atkinson, M.P., Hepp, P.E., Ivanov, H., McDuff, A., Proctor, R & Wils'on, AG)
"EDQUSE reference manual”, Department of Computer Science, University of Edinburgh,
September 1981.

Hepp, P.E. and Norrie, M.C. i
pp"RAQUEL: User Manual", Department of Computer Science Report CSR-188-85,

University of Edinburgh.

Norrie, M.C. o .
"The Edinburgh Node of the Proteus Distributed Database System", Department of
Computer Science Report CSR-191-85, University of Edinburgh.

Theses

The following theses, for the degree of Ph. D. unless otherwise stated, have been produced
by members of the group and are available from the address already given,

W.P. Cockshott]
Orthogonal Persistence, University of Edinburgh, February 1983.

K.G. Kulkarni i])
Evaluation of Functional Data Models for Database Design and Use, University of

Edinburgh, 1983.

P.E. He o
A Ig%S Architecture Supporting Coexisting Query Languages and Data Models, University
of Edinburgh, 1983. .

G.D.M. Ross)])
Virtual Files: A Framework for Experimental Design, University of Edinburgh, 1983,

G.0. Owoso o)))) o of
Data Description and Manipulation in Persistent Programming Languages, University o

Edinburgh, 1984.

J. Livingstone)) }) o
Graphical Manipulation in Programming Languages: Some Experiments, M.Sc., University

of Glasgow, 1987

Persistent Programming Research Reports

This series was started in May 1983, The following list gives those which have been

produced at 9th July 1986.
the addresses already given.

PPRR-1-83

PPRR-2-83

PPRR-4-83

PPRR-5-83

PPRR-6-83

PPRR-7-83

PPRR-8-84

PPRR-9-84

PPRR-10-84

PPRR-11-85

PPRR-12-87

PPRR-13-85

PPRR-14-86

PPRR-15-%5

Copies of documents in this list may be obtained by writing to

The Persistent Object Management System -

Atkinson,M.P., Chisholm, K.J. and Cockshott, W.P. £1.00
PS-algol Papers: a collection of related papers on PS-algol -

Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,

K.J. and Morrison, R. £2.00

The PS-algol reference manual -
Atkinson, MP Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R Presently no longer available

Experimenting with the Functional Data Model -

Atkinson, M.P. and Kulkarni, K.G. £1.00
A DBS Architecture supporting coexisting user interfaces:

Description and Examples -

Hepp, P.E. £1.00
EFDM - User Manual -

K.G.Kulkarni £1.00
Progress with Persistent Programming -

Atkinson,M.P., Bailey, P., Cockshott, W.P., Chisholm,

K.J. and Morrison, R. £2.00
Procedures as Persistent Data Objects -

Atkinson, M.P.,Bailey, P., Cockshott, W.P., Chisholm,

K.J. and Morrison, R. £1.00
A Persistent Graphics Facility for the ICL PERQ -

Morrison, R., Brown, A.L., Bailey, P.J., Davie, A.J.T.

and Dearle, A. £1.00
PS-algol Abstract Machine Manual £1.00
PS-algol Reference Manual - fourth edition £2.00
CPOMS - A Revised Version of The Persistent Object

Management System in C -

Brown, A.L. and Cockshott, W.P.. £2.00
An Integrated Graphics Programming Environment - sccond

edition -

Morrison, R., Brown, A.L., Dearle, A. and Atkinson, M.P. £1.00

The Persistent Store as an Enabling Technology for an

Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, A.L. and

Atkinson, M.P. £1.00

PPRR-16-85

PPRR-17-85

PPRR-18-85

PPRR-19-85

PPRR-20-85

PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PPRR-25-87

PPRR-26-86

PPRR-27-87

PPRR-28-86b

PPRR-29-86

PPRR-30-86

PPRR-31-86

PPRR-32-87

PPRR-33-87

Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -)
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R.

Database Programming Language Design -
Atkinson, M.P. and Buneman, O.P.

The Persistent Store Machine -
Cockshott, W.P.

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R.

Building a Microcomputer with Associative Virtual Memory -
Cockshott, W.P.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D.

Inheritance and Persistence in Database Programming
Languages -
Buneman, O.P. and Atkinson, M.P.

Implementation Issues in Persistent Graphics -
Brown, A.L. and Dearle, A.

Using a Persistent Environment to Maintain a Bibliographic
Database -
Cooper, R.L., Atkinson, M.P. & Blott, S.M.

Applications Programming in PS-algol -
Cooper, R.L.

Exception Handling in a Persistent Programming Language -
Philbrow, P & Atkinson M.P.

A Context Sensitive Addressing Model -
Hurst, AJ.

A Domain Theoretic Approach to Higher-Order Relations -
Buneman, O.P. & Ochari, A.

A Persistent Store Garbage Collector with Statistical Facilities -
Campin, J. & Atkinson, M.P

Data Types for Data Base Programming -
Buneman, O.P.

An Introduction to PS-algol Programming -
Carrick, R., Cole, A.J. & Morrison, R.

Polymorphism, Persistence and Software Reuse in a
Strongly Typed Object Oriented Environment -
Morrison, R, Brown, A, Connor, R and Dearle, A

Safe Browsing in a Strongly Typed Persistent Environment -
Dearle, A and Brown, A.L.

£15.00

£3.00

£2.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

PPRR-34-87

PPRR-35-87

PPRR-36-87

PPRR-37-87

PPRR-38-87

PPRR-39-87

PPRR-40-87

PPRR-41-87

PPRR-42-87

PPRR-43-87

Constructing Database Systems in a Persistent Environment -
Cooper, R.L., Atkinson, M.P., Dearle, A. and
Abderrahmane, D.

A Persistent Architecture Intermediate Language -
Dearle, A.

Persistent Information Architectures -
Atkinson, M.P., Morrison R. & Pratten, G.D.

PS-algol Machine Monitoring -
Loboz, Z.

Flexible Incremental Bindings in a Persistent Object Store -
Morrison, R., Atkinson, M.P. and Dearle, A.

Polymorphic Persistent Processes -
Morrison, R., Barter, C.J., Brown, A.L., Carrick, R.,
Connor, R,, Dearle, A., Hurst, A.J.and Livesey, M.J.

Andrew, Unix and Educational Computing -
Hansen, W_ J.

Factors that Affect Reading and Writing with Personal
Computers and Workstations -
Hansen, W. J. and Haas, C.

A Practical Algebra for Substring Expressions -
Hansen, W. J.

The NESS Reference Manual -
Hansen, W. J.

£1.00

£1.00
£1.00
£1.00

£1.00

£1.00

£1.00

£1.00
£1.00

£1.00

