University of Glasgow

Department of Computing Science

Lilybank Gardens
Glasgow G12 8QQ

University of St. Andrews
Department of Computational Science

North Haugh
St Andrews KY16 9SS

Polymorphic Persistent Processes

Persistent Programming
Research Report 39
June 1987

Polymorphic Persistent Processes

R.Morrison, C.J.Bartert+, A.L.Brown, R.Carrick,
R.Connor, A.Dearle, A.J.Hurst™ & M.J.Livesey

Department of Computational Science, University of St Andrews,
North Haugh, St Andrews, Scotland KY16 9SS
Tel 0334 76161

* Department of Computer Science, Australian National University,
G.P.O. Box 4, Canberra, ACT 2601, Australia
Tel 062 49 5111

++ Department of Computer Science, University of Adelaide,
Box 498, G.P.O., Adelaide, South Australia 5001
Tel 08 228 5333

Abstract

The problems of shared access to large bodies of information raise difficulties in the
understanding and semantics of concurrency, distribution and stability. When the
information is held in a persistent object store, the problems of understanding are extended
to the interaction of the concepts of persistence and store with those above.

In this paper, we identify these difficulties and propose a model of concurrency
which is integrated with a polymorphic type system. Such integration allows polymorphic,
persistent processes, the advantage of which are discussed.

1. Introduction

In our attempts to design and build a persistent information space architecture
(PISA) [1] we have identified a number of interacting and sometimes conflicting problems
with regard to persistence, stores, concurrency, distribution, transactions and stability.
Some of the difficulty is in deciding at what level the persistent architecture operates, be it a
hardware or software architecture. Other difficulities arise in the complexity of the
problems of concurrency. In this paper we identify these difficulties and clarify them. We
propose a model of concurrency that may be used as solutions to the problems. It is based
on the rendezvous of Ada and integrated with a polymorphic type system. Such integration
allows us polymorphic, persistent processes.

2. APersistent Information Space Architecture

2.1 [Persistence

We have defined the persistence of data to be the length of time for which the data
exists and is useable[2]. In a persistent system the use of all data is independent of its
persistence. Here we extend this notion of persistence to abstract over all the physical
attributes of data, for example where data is kept, how long it is kept and in what form it is
kept. We have discussed the advantages of persistence elsewhere [3,13,14] and will not
labour them here. It is sufficient to say that by ensuring that all data objects are persistent
and that the persistence of data is invisible to the programmer, then this level of abstraction
yields powerful software engineering gains in the life of large systems. The figure often
quoted is 30% of the total cost of a system throughout its life cycle[2].

At this level of abstraction all physical properties of the data are invisible to the user
since persistence is a concept that abstracts over them. It is important to distinguish
between the conceptual and physical problems of building and using persistent spaces in
order to identify the areas on which we need to concentrate to achieve true persistence. In
the following discussion we will pursue this theme, separating the conceptual or logical
properties of the persistent information space from the physical ones. This is not always an
easy task especially with regard to concurrency.

We wish to build a total system capable of providing for all programming activity.
Our traditional view of the persistent information space is that it will subsume the functions
of a plethora of mechanisms currently supported by components such as command
languages, editors, file systems, compilers and interpreters, linkage editors and binders,
debuggers, DBMS sublanguages and graphics libraries[1]. The information space is
composed of objects, which may be simple or highly structured, defined by the universe of
discourse of the type system of the PISA architecture. Without prejudging the universe of
discourse of the language used to program the information space or indeed the style of

language itself, we are left with the conceptual requirement that the space must be
unbounded. That is, the user has the facility to create persistent objects forever. Most
modern programming languages, database systems and operating systems provide this
facility and if we are to unify these mechanisms then the persistent space must also provide
it.

Our previous work[2] has shown that one of the main difficulties in using an
unbounded space is in remembering an unbounded number of names. Traditional solutions
to this problem have included block structure in programming languages, hierarchal file
directories in operating systems and data dictionaries in database systems. None of these
solutions are totally satisfactory and often other mechanisms, such as those for module
construction to augment block structure in programming languages, have arisen.
Mechanisms for controlling and using this unbounded name space must be made available
to the user. y :

We define context to be the manner in which the persistent information space
controls the unbounded number of names but will defer discussion of how context may be
defined in the architecture language until later. The important point is that we have
identified context as a conceptual requirement of using the persistent information space.

2.2 Stores

In all our work so far the persistent information space has been built in the form of a
store[5,7]. This is not entirely necessary but languages without store semantics, such as
the applicative languages, can be accommodated as trivial subsets of the store semantics
languages as far as persistence is concerned.

A store in the denotational semantics sense is a mapping from L-values to R-values.
This definition says nothing about other desirable properties of a persistent store so we will
add some of our own. These are

a an unbounded capacity to store objects
b infinite speed
c stability

There are, of course, a number of problems in building and using a persistent store
with the properties above. The conceptual problems of persistent stores arise out of how
the store is used and the physical problems arise from the engineering difficulties in
building the store. We will look at each of the requirements on the persistent store given
above to identify these conceptual and physical problems.

2.2.1 Unbounded capacity to store objects

The need for unbounded capacity comes from the unbounded nature of the
modelling performed by the programmer in the persistent store. The conceptual problems
of using an unbounded store are the same as for an unbounded persistent space. That is,
we must contend with an unbounded number of storage identifiers.

One approach to this problem is to take the Ethernet solution. That is, all objects in
the universe have a unique storage identifier. Most Ethernet systems do not actually run
such a regime. Usually only rather large components of the universe, like machines, have
unique addresses and smaller components are addressed contextually. This sensibly
reduces the need for large addresses for all data objects. The great problem with the
Ethernet solution occurs when machine addresses are accidently duplicated, as
practicioners in the field will know happens every day, or when another Ethernet system is
shipped in from outer space to be connected to an existing one, a less likely occurance.

The Ethemnet solution gives us a large, potentially infinite, flat address space which
is the model we wish to appeal to. Without any context mechanism it is equivalent to a
telephone system where every subscriber is listed in the same large telephone directory.
The telephone system analogy is a good one since in practice we do not use a large single
directory but navigate around the world's telephone system by a collection of local
directories. That is, a context mechanism.

Of course we cannot build a store with an infinite capacity. Any attempt to give the
illusion of such a store will be built out of components, which may be of disparate
technologies, and may include software technologies such as stacks and garbage collectors
to reclaim unused space. This is, however, an engineering-constraint and therefore a
physical view of the store although it does introduce the notions of locality and distribution
which cannot be seen at the persistent space level.

A data object can be resident in a local store or in a distributed store. Two data
objects reside in the same locality if they live in the same physical store and are distributed
from one another otherwise. By combining locality and distribution we can compose very
large stores. Note, however, that locality and context are not necessarily equivalent since a
context can easily spread over a number of localities or indeed a locality can contain many
whole or partial contexts. Only when an object in the contextual name space is mapped
onto a locality in the physical store does context and locality coincide. Context is a property
of the conceptual space whereas locality a property of the physical store.

2.2.2 Infinite speed

An advantage of an infinitely fast store is that it can be operated sequentially since
there is no speed advantage in operating it concurrently. This makes the semantics of the
store easier to understand. A second advantage is that the programmer need never take

account of where information is stored. Multiple copies of objects for speed trade offs are
unnecessary since there is no speed advantage to moving the object closer to its point of
use. Thus the object may always reside in the one place.)
Again we cannot build this infinitely fast store. The only way we know of
approaching this is to duplicate components and make them operate concurrently. This
again gives rise to locality and distribution but also adds a new dimension at the physical
level - that of concurrency. This form of concurrency, for speed advantage, is an
engineering decision and not fundamental to the operation of the persistent store.

2.2.3 Stability .

All users of the persistent store would wish it to be stable. This mechanism ensures
that data is always kept (or copied) on non volatile storage devices. Thus in the event of a
system failure no data will be lost. This, of course, is only an illusion since no system can
guarantee that even the non volitile devices are free from corruption by malice or error.
Usually, however, an adequate level of reliability can be provided for any system.

Stability is a property of the physical store medium and is therefore a physical
property of the information space and hidden from the user. In some systems stability and
transactions are synonomous leading to some confusion of how the concept of stability

arose.

From the above discussion we can see that the main conceptual problem that we
have in using the persistent information space is that of context. That is, how do we
partition the name space in order that we can master the complexity of a potentially
unbounded number of names. The physical problems centre around how to build an
infinite stable store. The issues of locality and distribution, that is where an object lives,
allow us to simulate unbounded capacity out of smaller components. At this level,
concurrency allows us to simulate higher speed out of slower components and stability can
be simulated by a number of techniques such as incremental and total dumping.

2.3 Concurrency

We have argued above that a major motivation for concurrent activity is execution
speed. The need for concurrency increases as machines approach their theoretical speed
limit at the same time as the complexity of the applications becomes great enough to require
even greater power.

There is, however, a second major need for concurrency. Many of the activities that
we wish to model are inherently parallel. For example, in a model of a supermarket there
will be many customers and shop assistants working autonomously and in parallel. If we
wish to capture the essential nature of this real world activity then we require language

primitives powerful enough to model it.

One of the major breakthroughs in the design and understanding of operating
systems was gained by modelling the system as a set of co-operating sequential
processes(8]. Since most of the early operating systems modelled in this manner ran on
uni-processor machines this modelling was not done to simulate infinite speed. It was done
to simplfy the complexity of the system being built in order to gain greater insight into its
operation. This method of modelling, first applied to operating systems, has now been
applied to database systems, graphics systems and general problems in computer
science[9]. It yields a new style of program construction and understanding and therefore
can no longer be regarded as a physical property of the store.

In order to accommodate this wish to model using concurrency, a host of languages
have been invented or proposed that include the notion as part of their universe of
discourse. Thus concurrency in the persistent information space sense is not a conceptual
requirement of the space but of the manner in which we wish to model. This is equivalent
to deciding as to whether we wish 10 use other data objects such as arrays or functions to
model with. However, since we wish to unify the activity of operating systems and
database systems with our information space it would be wise to have concurrency as a
conceptual requirement of the language or languages supporting the space.

We therefore make concurrency a conceptual requirement of thePISA architecture
rather than the information space itself which we traditionally view as figure 1.

Persistent
Information
Space

&

A

Stable
Store

Figure 1 A Persistent Information Space Architecture

The persistent space is composed of objects defined by the universe of discourse of
the PISA language. For the present the only requirement that we have of that language is
that it must support concurrent computation and an unbounded name space. At this level
the programmer has no notion of where the data resides, be it locally, on disk oron a
remote processor, how long the data may be kept or in what form it may be stored.

At a lower level the information space is supported by a stable store. This store may
be distributed over many storage devices and machines and is likely to be built out of many
disparate technologies both software and hardware.

The focus of this paper is to look at how concurrency may be integrated with the
persistent information space. In particular what primitives are necessary to support
concurrency in the language and at what cost do we include them? For example, if we
promote concurrency to being a conceptual requirement of the system what must we bring
with it? Are we forced to accept distribution as a conceptual requirement and what then of
locality and stablility?

3. Concurrency Models

In designing a concurrent language for use in programming the persistent store we
have two conceptual problems. The first is how to impose context on the unbounded name
space. The second is how to specify concurrent activity, that is separate threads of control.

There are many different styles of concurrency in modern programming languages.
The applicative languages such as SASL[15] have implicit concurrency due to the fact that
they are referentially transparent. This style of concurrency is transparent to the user and
will merely add speed to the execution of the programs. It is difficult to see how the
applicative languages can make full use of a persistent store since the store would have to
remain static to ensure referential transparency.

Store semantics languages have themselves split into two paradigms. The firstis a
shared store semantics where the whole store is available for use by all customers. The use
must be synchronised to avoid indeterminate results. The shared store model roughly
characterises a multiprocessor system where many processors share the sarne store.

The second paradigm is a message passing paradigm where independent tasks have
their own store and communicate with other tasks by sending messages to them. The
message passing paradigm roughly models a distributed system where separate
processors, perhaps with their own local store communicate over a communications
channel.

It is generally accepted that where large amounts of communication are required then
the shared store model is more efficient in speed since local store is usually faster than a

communications channel. However, where large amounts of computation are performed
between communications then the message passing model may be more appropriate.

Our dilernma should now be apparent. For persistence we wish to appeal to the large
flat store model on which we can impose some context mechanism. Thus the shared store
model would seem more appropriate. On the other hand we know that this unbounded
information space will be constructed out of components and it would seem sensible to
build this in from the beginning to allow for expansion. For this the message passing
model is more appropriate.

The answer is to have a model that will allow the programmer the freedom to
choose.

3.1 Napier Model

We have proposed the language Napier in which the persistent store may be
regarded as an unbounded collection of objects, each one sharable among the active
processes in the system. We will use this language to demonstrate the concepts necessary
to allow polymorphic, persistent processes.

In Napier, all data is persistent. That is, data is kept for as long as it is useable. This
can be determined from the fact that it is reachable by the computation of the transitive
closure of objects from the persistence root, called PS. When a process terminates all its
dara objects may be destroyed except those that the process has arranged to be reachable
from PS. It should be noted that the persistent store will in general be a graph since itis a
generalised data structure and it may be distributed over many machines. Given such a
model of the information space we must define mechanisms for context and concurrency.

3.1.1 Context

Context is controlled by two methods in Napier, one static and one dynamic. The
block structure of the language allows objects to be hidden to the outside world. Thus
within the context of the block the name has a unique interpretation. Block structure forms
a tree of contexts which may be used to segment the unbounded information space. The
space, however, needs to be a graph and not a tree and that would suggest that block
structure is not powerful enough to model all the required contexts.

In most programming languages it is recognised that block structure is not sufficient
for all our modelling needs. Recursive data structures with references that outlive the block
in which they were created are a common solution to this problem.

In languages with higher order functions, such as Napier, we can overcome this
same difficulty by another method. For example, we could write a block that returned a
procedure which held wuhm@ﬁ closure a hidden object. A random number generator is a
good example of this. . 2

let random = begin
fet rand := maxint div 2
proc (-> int)
begin
rand := rand div (maxint -1)
rand
end
end

The block expression when executed, returns a procedure which contains the actual
random number, rand', in its closure. ‘rand' is initialised in the block expression. When
we exit the block the object 'rand' cannot be destroyed as it will be required if the
procedure random is called. Languages with such semantics are called block retention
languages and any block structured language with higher order functions falls into this
category. By adding some concurrency control to the system we could ensure mutual
exclusion on the access to rand and extend the block to a monitor{10].

Although the above method allows users to dynamically create and manipulate
contexts, the technique is essentially static since the scope of the objects must be defined
by the programmer and may never be changed. A second method of context control is
provided in Napier. The technique is similar to block structure except that we are allowed
to dynamically nest the blocks. To do this the data type environment is used.

Objects of type environment are collections of bindings, that is name-value pairs.
The distinguished point of the persistence graph, PS is of type env. Objects of type env
belong to the infinite union of all cross products of named-value pairs. They differ from
structures in this and by the fact that we can dynamically add bindings to objects of type
env. This is perhaps best shown by example. We will create an environment that contains a
counter and two procedures, one to increment the counter and one to decrement it. This
may be done by

fet e = environment ()

letcount:=0ine

we have now placed the binding count : int = 0 in the environment €
use ¢ with count : int in

let add = proc (n : int -> int) ; {count := count + n ; count} in e
let subtract = proc (n : int -> int) ; {count := count - nn ; count} in e
end
!the environment now has three bindings, count, add and subtract

The use clause binds an environment and its field names to the clause following the
in. In the above the name count is available in the block as if it had been declared in the
immediate enclosing block. The binding occurs at run time since in general the
environment value, 'e', may be an expression evaluating to an environment. The binding is

10

therefore dynamic and is similar to projection out of a union. The difference is that here we
only require a partial match on the fields and other fields not mentioned in the use clause
are invisible in the qualified clause and may not be used.

The environment mechanism provides a contextual naming scheme that can be
composed dynamically. The use clauses can be nested and the environments involved
calculated dynamically and therefore the name bindings can be constructed dynamically.
This does not yield full dynamic scoping in the Lisp sense since all the objects in the
individual environments are statically bound. The technique complements the block
structure in the language and completes the context mechanisms required for persistent
information spaces.

For information to outlive the process it must be reachable from the distin guished
root, PS. In the above case we could do this by adding e to PS by

letee =ein PS
ladd the binding ee : env = ¢ to the environment PS

and to retrieve it again we could use
use PS with ec : envin ...

Having defined a mechanism for the conceptual problem of context we must now
define one for concurrency.

3.1.2 Concurrency

The model of concurrency in Napier is based on CSP [9] and Ada [11]. Processes
are a type in the language and many instances of processes of the same type may be
created. Two processes are equal only if they are the same process. They have the same
type if they have the same entries. A process may be specified by the following syntax

<process_type>
<entry_list>

process (<parameter_list>){with<entry_list>]<clause>
<identifier_list>:<proc_type>[,<entry_list>]

Thus the example of a counter given earlier may be extended to a safely updated
counter by specifying the type

type shared_counter is process (init : int) with add, subtract : proc (int ->int)
<clause>

i1

where the clause specifies the synchronization of the operations 'add' and 'subtract'. For
processes that do not offer any services the entry list may be empty. Inside the process
there is only one locus of control and therefore only one entry maybe active at any one
time. To receive entries the process must execute a receive clause which is defined as

follows
<entry_clause> u= receive<identifier>([<parameter_list>])[do<clause>]

In the receiving process, the protocol for communication is wait for sender and the
rendezvous is only active during the execution of the entry clause. Thus very short
synchronization can be achieved when there is no do part of the entry clause.

Non-determinism is provided by the select clause. The syntax is

<select_clause> u= select<guarded_command>
[or<guarded_command>]*
default : <clause>

<guarded _command> = [<guard>]: <guard_clause>
<guard_clause> u= <entry_clause> | <clause>
<guard> = <boolean_clause>

The select clause evaluates all the guards in the or options. An option is open if it has
no guard or the guard is true. One open option is chosen for execution
non-deterministically. If none of the options is open then the default option is selected.
Thus the shared counter example could be written as

type shared_counter is process (init ; int) with add, subtract : proc (int -> int)

leti:=1nit

while true do
select o)

receive add (val : int) do { 1:=1+\(a1;1 })

or receive subtract (val :int)do {i:=i-val;i}
default {}

end

end

This specifies the type 'shared_counter' which is a process requiring an integer
parameter on creation. Processes of this type have two entries 'add' and 'subtract’ which
are used to call services in the process. The process will loop forever receiving requests to
'add’ and 'subtract’ in any order. The critical sections are governed by the do clauses.

A process of this type may be created by

12

fet counter = shared_counter (0) Icreate a new process running in paraliel

Thus 'counter' is a handle on a process of type 'shared_counter’ which is executing
in parallel. The process 'counter' will run forever but may be garbage collected when it is
no longer possible to communicate with it. To the creator process, the entries of the created
process act like procedures. Calling one of the entries establishes a remote procedure call
with the protocol of wait for reply.

For convenience we can rename the entry procedures. For example

let Add = counter (add) ; let Subtract = counter (subtract)

and we can pass the procedures 'Add' and 'Subtract' to other components of the system.
We may wish to establish a rendezvous by calling the procedure. For example

let answer = Add (2)
The process itself will ensure mutual exclusion of multiple calls.

3.1.3 Locality and Distribution

So far all the processes that we have described are lightweight in that they share the
address space of their creators. It so happens that in the 'shared_counter' example, the
processes do not use any free variables and create their own environment, thus making it
look heavyweight in nature. This we can use to our advantage to give both lightweight and
heavyweight processes in the persistent store.

Our ideal model of the persistent architecture is a large flat object space fragmented
by the context mechanism. We know, however, that the system will be built out of
localities and we can accommodate this by arranging that localities are always controlled by
one context. By making the context mechanism the environment, we can achieve the
correct mixture of bindings necessary to support a distributed system.

To support the distribution mechanism we require two procedures to be built into the
system. They are

let copy = proc [t : type] (item : t->t)
let copy_to_env = proc [t : type] (environment : env ; N : name[t] ; item : t)

The copy procedure makes a 'copy’ of the object. That is, it copies the transitive
closure of the object to ensure that it will work correctly. The 'copy_to_env' procedure
makes a copy of the object using the copy procedure and moves it into the same locality as

13

the environment placing a new binding in the environment. The new binding is the name
'N' to the copy of the value 'item'.

The 'copy_to_env' procedure is essentially the bootstrap mechanism for a new
locality being added to the persistent store. Initially there is one distinguished point PS. To
add a new locality, a binding is placed in PS or any environment reachable from PS, so
that it may be seen by all users. Binding to this new environment, and thus locality, is
performed by the environment binding mechanism described above. The placing of the
new locality in the environment is equivalent to plugging in a new component to the system
and must be performed by a low level implementation as it is not possible at this level of

abstraction.

3.1.4 Stability

Each locality is stabilized independently in the system. When the standard procedure
'stabilize' is called the locality in which the processes is operating is stabilized. This may
be done automatically or by the user. The 'stabilize’ procedure calculates which objects are
in the locality that it is going to operate on by computing the transitive closure of all the
objects local to the environment. Cross locality pointers are ignored. The procedure is
made available to users so that higher level transaction mechanisms may be built.
Krablin[12] has shown how this may be done in the language CPS-algol.

3.1.5 Polymorphic processes

In the following example we demonstrate that by integrating the process concept
with the type system, we can define polymorphic persistent processes. The example is that
of readers and writers accessing a shared database. The procedure that creates the database
is given an initial value for the database, which is copied to remove any aliases, along with
the database type. The procedure creates a process to contol access to the database and
returns the procedures 'read' and 'write', in a structure, which may be used to access the
database in a controlled manner. Indeed since the database is always copied it is the only
manner in which it may be accessed. The example can be extended to allow alteration to
parts of the database but that is not relevent here. The algorithm is taken from Barnes [4]
page 228.

let Readers_Writers = proc [t : type] (init: t
-> structure (Read : proc (->t) ; Write : proc (1)))

type Control is process () with start : proc (int),
stop_read, write_it, stop_write : proc ()

in
let readers := 0 ; let writers :=0 ; let READ =0 ; let WRITE =1
while true do

begin

14

select
writers = 0 : receive start (service : int) do
if service = READ then readers := readers + 1
else writers := 1

or : receive stop_read () ; readers :=readers - 1
or readers =0 : receive write_it ()

or : receive stop_write () ; writers := 0

default {}

end
end

let control = Control () ; let item := copy (init)
struct (Read <- proc (->1)
begin

control (start) (READ)
let result = copy (item)
control (stop_read) ()
result
end,
Write <- proc (X : t)
begin

control (start) (WRITE)
control (write_it))
item := copy (X)
control (stop_write) ()
end)
end

let synchronised_integer = Readers_Writers (0)
let Read = synchronized_integer (Read) ; let Write = synchronized_integer (Write)

In this example, with the call Readers_Writer(0), the user process creates a database
which is a synchronised integer with initial value zero. The two database operations are
given local names 'Read' and ‘Write', which will give controlled access to the integer.

While the process itself ensures mutual exclusion of access to its entries, the
procedures 'Read' and 'Write' may be made available to any number of other (user)
process, to provide concurrent interfaces to the database. Because such procedures execute
within the closure of their creator (in this case the procedure ‘Readers_Writer"), care must
be taken with access to shared variables in this closure; in this example, only ‘item’ is
shared, and access to it is controlled by the process 'Control',

3.1.6 Protocals and inheritence

The entry list for a process specifies its type and can be considered as the protocol
through which it may be accessed. By utilising the muitiple inheritence scheme of Cardelli
[6] we can place process types in the type lattice and define a partial ordering of processes.
Thus it is possible to define procedures that will operate on processes with at least a given
defined protocol. If the process has a more specialised type then that may also be used. For
example

N

15

type RON is process (init : int) with add : proc (int -> int) <clause>
type FRED is process (init : int) with add, subtract : proc (int -> int) <clause>

let Ric = proc [t: type <Ron] (A :t)
begin

let g = A (add (2))
end

! create a process of type RON
! pass it to the procedure Ric

let ron = RON (0)

Ric [RON] (ron)
fet fred = FRED (1) ; Ric [FRED)] (fred)

The procedure 'Ric' takes as a parameter an object of type 't which is a process
with at least the entry 'add’. In the example, the procedure is called twice with a process
parameter. The first 'ron’ has exactly the entry ‘add’ whereas the second 'fred' has more.
Inside the procedure, only the entry 'add’ may be used. By using this subtype inheritence
we can abstract over entry protocols that are common to processes.

4. Conclusions

‘We have presented a model of a persistent information space which is composed of
objects. The information space is unbounded in that the user has the capacity to create
objects forever. A context mechanism is introducted in order to control the unbounded
name space.

It is argued that at a persistent level of architecture, concepts such as locality,
distribution and stability are physical properties of how we might build an unbounded
information space. By using one of the contextual mechanisms of the system to incorporate
locality we can provide all the necessary functionality by two procedures 'copy_to_env’
and 'stabilize'. '

The integration of the concept of a process with a polymorphic type system allows
us to write polymorphic descriptions of processes. Since these are then naturally persistent

we have polymorphic, persistent processes.
5. Acknowledgements

This paper is the result of an intensive 5 day study group held in St Andrews during

16

the study leave periods of Chris Barter and John Hurst and during a subsequent visit by
Ron Morrison to Adelaide. Although the views in the paper do not accurately record all the
contributions of the participants, they are all listed as authors. We see this as a fitting

conclusion to the exercise. We are, of course also grateful to our collaborators in the PISA
project, particularily Francis Wai and Malcolm Atkinson at Glasgow University who are
also working on these problems and with whom we have shared many ideas. The work
was supported by SERC grants GR/D 4326.6, GR/D 47790 and GR/D 8823.

10.

References

Atkinson, ML.P., Morrison, R. & Pratten, G.D.

Designing a persistent information space architecture. 10th IFIP World Congress,
Dublin (September 1986),115-120. North-Holland, Amsterdam.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
An approach to persistent programming. Computer Journal 26,4 (November
1983),360-365.

Atkinson, M.P. & Morrison, R.

Procedures as persistent data objects. ACM.TOPLAS 7,4 (October 1985),539-559.
Barnes, J.G.P.

Programming in Ada. 2nd Edition. Addison-Wesley (1984).

Brown, A.L. & Cockshott, W.P.

The CPOMS reference manual. The Universities of Glasgow and St Andrews
PPRR-13. (1985).

Cardelli, L.

A semantics of multiple inheritence. In Lecture Notes in Computer Science. 173,
51-67. Springer-Verlag (1984).

Cockshott, W.P., Atkinson, M.P., Bailey, P.J., Chisholm, K.J. & Morrison, R.
The persistent object management system. Software, Practice & Experience 14
(1984).

Dijkstra, E'W.

The structure of THE multiprogramming system. Comm.ACM 11, 5 (May 1968),
341-346.

Hoare, C.AR.

Communicating sequential processes. Comm.ACM 21, 8 (August 1978), 666-677.
Hoare, C.AR.

Monitors : an operating system structuring concept. Comm.ACM 17, 10 (1974),
549-557.

11.

12.

13.

14.

15.

17

Ichbiah et al.,

The Programming Language Ada Reference Manual. ANSI/MIL-STD-1815A-1983.
(1983). Also Lecture Notes in Computer Science. 155. Springer-Verlag (1983).
Krablin, G.L.

Building flexible multilevel transactions in a distributed persistent environment,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
86-117.

Morrison, R., Brown, A.L., Dearle, A. & Atkinson, M.P,

An integrated graphics programming environment. 4th UK Eurographics
Conference, Glasgow (March 1986). In Computer Graphics Forum 5, 2 (June
1986),147-157.

Morrison, R., Bailey, P.J., Brown, A.L., Dearle, A. & Atkinson, M.P.

A persistent store as an enabling technology for an integrated project support
environment. IEEE 8th International Conference on Software Engineering, London
(August 1985),166-172.

Turner, D.A.

SASL language manual. University of St. Andrews CS/79/3 (1979).

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,
Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,
Glasgow G12 8QQ
Scotland.

or
The Secretary,
Persistent Programming Research Group,
Department of Computational Science,
University of St. Andrews,
North Haugh,
St. Andrews KY16 9SS
Scotland.

Books

Davie, A.J.T. & Morrison, R.
“Recursive Descent Compiling”, Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.)
"Databases”, Pergammon Infotech State of the Art Report, Series 9, No.8, January 1982.
(535 pages).

Cole, A.J. & Morrison, R.
"An introduction to programming with S-algol", Cambridge University Press, Cambridge,
England, 1982.

Stocker, P.M., Atkinson, M.P. & Grey, P.M.D. (eds.)
"Databases - Role and Structure”, Cambridge University Press, Cambridge, England, 1984.

Published Papers

Morrison, R.
"A method of implementing procedure entry and exit in block structured high level
languages". Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z.
"The Graffiti graphics system”, Proc. of the DECUS conference, Bath (April 1978), 5-10.

Atkinson, M.P.
"A note on the application of differential files to computer aided design”", ACM SIGDA

newsletter Summer 1978.

Atkinson, M.P.
"Programming Languages and Databases", Proceedings of the 4th International Conference

on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78, 408-419. (A revised
version of this is available from the University of Edinburgh Department of Computer
Science (EUCS) as CSR-26-78).

Atkinson, M.P.
"Progress in documentation: Database management Systems in library automation and
information retrieval”, Journal of Documentation Vol.35, No.1, March 1979, 49-91.

Available as EUCS departmental report CSR-43-79.

Gunn, HI.E. & Morrison, R.
"On the implementation of constants”, Information Processing Letters 9, 1 (July 1979), 1-4.

Atkinson, M.P.
“Data management for interactive graphics”, Proceedings of the Infotech State of the Art

Conference, October 1979. Available as EUCS departmental report CSR-51-80.

Atkinson, M.P. (ed.)
"Data design", Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R.
"Low cost computer graphics for micro computers", Software Practice and Experience, 12,

1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"PS-algol: An Algol with a Persistent Heap", ACM SIGPLAN Notices Vol.17, No. 7, (July

1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Nepal - the New Edinburgh Persistent Algorithmic Language”, in Database, Pergammon
Infotech State of the Art Report, Series 9, No.8, 299-318 (January 1982) - also as EUCS
Departmental Report CSR-90-81.

Morrison, R.
"S-algol: a simple algol", Computer Bulletin 1I/31 (March 1982).

Morrison, R.
"The string as a simple data type”, Sigplan Notices, Vol.17,3, 46-52, 1982.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J,, Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming”, presented at CREST course UEA, September
1982, revised in "Databases - Role and Structure”, see PPRR-8-84.

Morrison, R.
"Towards simpler programming languages: S-algol”, IUCC Bulletin 4, 3 (October 1982),

130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Problems with persistent programming languages", presented at the Workshop on
programming languages and database systems, University of Pennsylvania. October 1982.
Circulated (revised) in the Workshop proceedings 1983, see PPRR-2-83.

Atkinson, M.P.
"Data management", in Encyclopedia of Computer Science and Engineering 2nd Edition,

Ralston & Meek (editors) January 1983, van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Algorithms for a Persistent Heap", Software Practice and Experience, Vol.13, No.3,
259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkins(c:)?/i SMl:\’ Chisholm, K.J. & Cockshott, W.P.
" - A chunk management system", Software Practice and Experience, Vol.13, No.3
(March 1983), 273-285. Also as EUCS Departmental Report CSR-1¥0—82. '

Addrf'son, M.P., Bailey, P._J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
Current progress with persistent programming”, presented at the DEC workshop on
Programming Languages and Databases, Boston, April 1983.

Atkin"s“cx);xl, M.P., Btelxiley, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
approach to persistent programming”, The Computer Ji al,
300, approach to persister progr g puter Journal, 1983, Vol.26, No.4,

Atkin"slc))él,aII\/I.I;., IIBailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
-algol a language for persistent programming”, 10th Australian Comput
Melbourne, Sepr. 1983, 70.79 - see PPRR.2-83. fan Computer Conference,

M°"§,S§19,thw “;elatherﬂl, M., Podolski, Z. & Bailey, P.J.
gh level language support for 3-dimension graphics”, Eurographics Conf Z
Nomh Holand, 1-15. Sept 1983, (od. BI W, e Flagen. | F cs Conference Zagreb

kaﬁlgootlt\’/l ;N.P., Atkinson,bM.P., Chisholm, K.J., Bailey, P.J. & Morrison, R.
: a persistent object management system”, Software Practi i
Nol 4571 o 1554 g y ¢ Practice and Exerience, Vol.14,

Kulkal};‘ni, K.G. & Atldnson, M.P.
"Experimenting with the Functional Data Model", in Databases - Role and Struct
Cambridge University Press, Cambridge, England, 1984. e

Atkinsl;)n, M.P. & Morrison, R.

"Persistent First Class Procedures are Enough", Foundations of Software Technology and

Theoretical Computer Science (ed. M. Joseph & R. Shyamasundar) Lecture Ngt}és in
Computer Science 181, Springer Verlag, Berlin (1984).

Atkinson, M.P., Bocea, J.B., Elsey, T.J., Fiddian, N.J., Flower, M., Gray, P.M
Gray, W.A., Hepp, P.E., Johnson, R.G., Milne, W., Norrie, M.C., Omglolu,
A.('?., Oxborrow, E.A., Shave, M.IR,, Smith, A.M., Stocker, P.M. & Walker, J.
C'glrl;elzr:égus %smll;uted &tajl)aﬁg syz;g", proceedings of the third British National
T on Databases, (ed. J. Longstaff), BCS Workshop Series, Cambrid iversi
Press, Cambridge, England, (July 1984). p Series. Cambridge Univenity

Atkin"slg)n, M.P. & Morrison, R.
PPII({)cRe-%l-lgis as persistent data objects”", ACM TOPLAS 7, 4, 539-559, (Oct. 1985) - see

Morr%flgﬁl, R.,Bailey, P.J., Dearle, A., Brown, P. & Atkinson, M.P.

¢ persistent store as an enabling technology for integrated support environments”, 8th

International Conference on Software Engineering, Imperial Coll Lo y
1985), 166-172 - see PPRR-15-85. pieenng, b ollcge, London (Rugust

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment", proceedings of Data T,
and Persistence Workshop, Appin, August 1985, 1-24 - see PPRI;{-IG—SS. 8 o e

Davie, AJ.T.
"Conditional declarations and pattern matching", proceedings of Data Types and Persi
Workshop. Appin, August 1985, 278.283 - sce PPRR.16.85. P ersistence

Krablin, G.L.
“Building flexible multilevel transactions in a distributed persistent environment, proceedings

of Data Types and Persistence Workshop, Appin, August 1985, 86-117 - see PPRR-16-85.

Buneman, O.P.
"Data types for data base programming”, proceedings of Data Types and Persistence

Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.
" Addressing mechanisms and persistent programming”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 363-383 - see PPRR-16-85.

Norrie, M.C.
"PS-algol: A user perspective”, proceedings of Data Types and Persistence Workshop,

Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.
"On the need for a Flexible Type System in Persistent Programming Languages”,
proceedings of Data Types and Persistence Workshop, Appin, August 1985, 423-438 - see
PPRR-16-85.

Morrison, R., Brown, A.L., Bailey, P.J., Davie, AJT. & Dearle, A.
"A persistent graphics facility for the ICL PERQ", Software Practice and Experience,

Vol.14, No.3, (1986) - sec PPRR-10-84.

Atkinson, M.P. and Morrison R.
“Integrated Persistent Programming Systems", proceedings of the 19th Annual Hawaii
International Conference on System Sciences, January 7-10, 1986 (ed. B. D. Shriver), vol
TIA, Software, 842-854, Western Periodicals Co., 1300 Rayman St., North Hollywood,
Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.
"A Persistent Information Space Architecture”, proceedings of the 9th Australian Computing

Science Conference, January, 1986 - see PPRR-21-85.

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.1, (1986)

38-45.

Buneman, O.P. & Atkinson, M.P.
"Inheritance and Persistence in Database Programming Languages"; proceedings ACM
SIGMOD Conference 1986, Washington, USA May 1986 - see PPRR-22-86.

Morrison R., Dearle, A., Brown, A. & Atkinson M.P; “An integrated graphics programming
environment”, Computer Graphics Forum, Vol. 5, No. 2, June 1986, 147-157 - see

PPRR-14-86.

Atkinson, M.G., Morison, R. & Pratten G.D.
"Designing a Persistent Information Space Architecture”, proceedings of Information
Processing 1986, Dublin, September 1986, (ed. H.J. Kugler), 115-119, North Holland

Press.

Brown, A.L. & Dearle, A.
"Implementation Issuses in Persistent Graphics", University Computing, Vol. 8, NO. 2,

(Summer 1986) - see PPRR-23-86.

Internal Reports

Morrison, R.
S-Algol language reference manual”, University of St Andrews CS-79-1, 1979.

Bajlegl, P.J., Maritz, P. & Morrison, R.
The S-algol abstract machine", University of St Andrews CS-80-2, 1980.

Atkiq's;ggb I\éé’E, ngp, PE, Ivznlovl,)H., McDuff, A., Proctor, R. & Wilson, A.G
reference manual”, artm i iversity o i
Sepombes 1581 ep ent of Computer Science, University of Edinburgh,

Hepp',v P.E. and Norrie, M.C.
RAQUEL: User Manual", Department of Computer Science Report CSR-188-85,

University of Edinburgh.
Norrie, M.C.

"The Edinburgh Node of the Proteus Distributed Databa .
1 se Syst
Computer Science Report CSR-191-85, University of Edinburgi. ystem?, Department of

Theses

The following Ph.D. theses have been prods i
e followiag P e, n produced by members of the group and are available

W.P. Cockshott
Orthogonal Persistence, University of Edinburgh, February 1983.

K.G. Kulkarni

Evaluati . .
Egmgiggc;ﬁ fgfgl;.uncuonal Data Models for Database Design and Use, University of

P.E. Hepp

A DBS Architecture Supportin istd iversi
of Ediniomnah 1585 pporting Coexisting Query Languages and Data Models, University

G.D.M. Ross_
Virtual Files: A Framework for Experimental Design, University of Edinburgh, 1983.

G.0. Owoso

Data Descripti . L . . .
Ecaili?lb uregs}(;‘t’l{lgé)ix and Manipulation in Persistent Programming Languages, University of

Persistent Programming Research Reports

This series was started in May 1983. The following list gives those produced and those

planned plus their status at 15th December 1986. Copies of documents in this list may be

obtained by writing to the addresses already given.

PPRR-1-83 The Persistent Object Management System -
Atkinson,M.P., Chisholm, K.J. and Cockshott, W.P.

PPRR-2-83 PS-algol Papers: a collection of related papers on PS-aigol -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R.

PPRR-4-83 The PS-algol reference manual -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,

K.J. and Morrison, R

PPRR-5-83 Experimenting with the Functional Data Model -
Atkinson, M.P. and Kulkarni, K.G.

PPRR-6-83 A DBS Architecture supporting coexisting user interfaces:
Description and Examples -
Hepp, P.E.

PPRR-7-83 EFDM - User Manual -
K.G.Kulkarni

PPRR-8-84 Progress with Persistent Programming -
Atkinson,M.P., Bailey, P., Cockshott, W.P., Chisholm,

K.J. and Morrison, R.

PPRR-9-84 Procedures as Persistent Data Objects -
Atkinson, M.P.,Bailey, P., Cockshott, W.P., Chisholm,

K.I. and Morrison, R.

PPRR-10-84 A Persistent Graphics Facility for the ICL PERQ -
Morrison, R., Brown, A.L., Bailey, P.I., Davie, A.J.T.
and Dearle, A.

PPRR-11-85 PS-algol Abstract Machine Manual

PPRR-12-86 PS-algol Reference Manual - fourth edition

PPRR-13-85 CPOMS - A Revised Version of The Persistent Object
Management System in C -
Brown, A.L. and Cockshott, W.P.

PPRR-14-86 An Integrated Graphics Programming Environment - second
edition -

Morrison, R., Brown, A.L., Dearle, A. and Atkinson, M.P.

PPRR-15-85 The Persistent Store as an Enabling Technology for an
Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, A.L. and
Atkinson, M.P.

PPRR-16-85 Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R.

£1.00

£2.00

Presently no longer available

£1.00

£1.00

£1.00

£2.00

£1.00

£1.00

£1.00

£2.00

£2.00

£1.00

£1.00

£15.00

PPRR-17-85

PPRR-18-85

PPRR-19-85

PPRR-20-85

PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PPRR-26-86

PPRR-27-87

PPRR-28-86b

PPRR-29-86

PPRR-30-86

PPRR-31-86

PPRR-32-87

PPRR-33-87

PPRR-34-87

PPRR-35-87

Database Programming Language Design -
Atkinson, M.P. and Buneman, O.P.

The Persistent Store Machine -
Cockshott, W.P.

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R.

Building a Microcomputer with Associative Virtual Memory -
Cockshott, W.P.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D.

Inheritance and Persistence in Database Programming
Languages -
Buneman, O.P. and Atkinson, M.P.

Implementation Issues in Persistent Graphics -
Brown, A.L. and Dearle, A.

Using a Persistent Environment to Maintain a Bibliographic
Database -
Cooper, R.L., Atkinson, M.P. & Blott, S.M.

Exception Handling in a Persistent Programming Language -
Philbrow, P & Atkinson M.P.

A Context Sensitive Addressing Model -
Hurst, AJ.

A Domain Theoretic Approach to Higher-Order Relations -
Buneman, O.P. & Ochari, A.

A Persistent Store Garbage Collector with Statistical Facilities -
Campin, J. & Atkinson, M.P

Data Types for Data Base Programming -
Buneman, O.P.

An Introduction to PS-algol Programming -
Carrick, R., Cole, A.J. & Morrison, R.

Polymorphism, Persistence and Software Reuse in a
Strongly Typed Object Oriented Environment -
Morrison, R, Brown, A, Connor, R and Dearle, A

Safe Browsing in a Strongly Typed Persistent Environment -
Dearle, A and Brown, A.L.

Binding Issues in Database Programming -
Atkinson, M.P., Dearle, A., Cooper, R.L. and
Abderrahmane, D.

A Persistent Architecture Intermediate Language -
Dearle, A.

£3.00

£2.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

PPRR-36-87

PPRR-37-87

PPRR-38-87

PPRR-39-87

Persistent Information Architectures -
Atkinson, M.P., Morrison R. & Pratten, G.D.

PS-algol Machine Monitoring -
Loboz, Z.

Flexible Incremental Bindings in a Persistent Object Store
Morrison, R., Atkinson, M.P. and Dearle, A.

Polymorphic Persistent Processes
Morrison, R., Barter, C.J., Brown, AL, Carrick, R,
Connor, R., Dearle, A., Hurst, A.J.and Livesey, M.I.

£1.00

£1.00

£1.00

£1.00

