University of Glasgow
Department of Computing Science

Lilypank Gardens
Glasgow G12 8QQ

University of St. Andrews
Department of Computational Science

North Haugh
St Andrews KY16 9SS

PS-algol Machine Monitoring

Persistent Programming
Research Report 37
June 1987

PS-algol Machine Monitoring

Z. Loboz

Australian National University™

* This work was done while its author was at the Department of Computational Science of St. Andrews
University, Scotland on leave from Regional Computer Center CYFRONET, Cracow, Poland on a scholarship
from the Australian National University, Canberra, Australia.

Contents

Section One - on the Macintosh

1. Problem Description.
2. Basic Monitoring.
3. Timing Other PS-algol Instructions.

4. Extended Monitor - implementation and results.

5. Analysing the PS-algol Machine
6. Tuning Possibilities.

Section Two - on the Vax.

1. Introduction.

2. The Vax Implementation Monitoring.
3. General Results

4. Jumps

5. Procedures

6. Strings

7. Heap Traffic

8. Garbage Collection

9. Summary and Disclaimers

10. Acknowledgements

Section One

Ps-algol Machine Monitoring On the Apple Macintosh

1. Problem description.

The PS-algol compiler produces an intermediate code which is interpreted by an
interpreter written in C. The details of the virtual machine architecture and instruction set are
described in [PPR111].

The monitored PS-algol system runs on a 512kb Macintosh computer. The Mac is
equipped with 60Hz clock which allows the measurement of only those events lasting more
than 1667 ps.

The interpreter works by fetching the next instruction stored at the global code pointer and
then calling an appropriate C-procedure to execute it.

The objective is to design and implement a monitor for a PS-algol machine. The monitor
should be cheap in terms of resources used and unobtrusive enough to be used on a regular
basis. It should provide information on where the machine spends its time. The information
provided should assist the tuning of the PS-algol machine performance.

2. Basic monitoring 2
2. Basic monitoring

This part describes the first version of a monitor installed in the interpreter and from
which results were received. The objective of the first version was to gather enough data to
have a general idea about the PS-algol machine behaviour and the various trade-offs involved,
in order to build a more sophisticated system.

2.1 The monitor implementation

To reduce to an absolute minimum the changes required in the interpreter, only the main
interpreter loop was altered. This was augmented with a counter that counted the number of
instructions executed. Before entering the main interpreter loop, the current time is written to a
disk file. Upon leaving the interpreter the current time and the table containing the instruction
counters is written to a disk file.

In this way, after a program is executed by the interpreter, it is known how much time the
whole execution has taken and how many times each PS-algol machine instruction was
executed. Times used by the PS-algol machine instructions are not monitored during program
execution.

To estimate the measuring capabilities of the monitor (i.e., how much information can be
extracted from such data), the PS-algol compiler was compiled on a monitored PS-algol
machine. The compilation of the PS-algol compiler was chosen as a benchmark of the PS-algol
machine and its monitor capabilities because it is the biggest program written so far in this
language, and therefore provides some non-trivial behaviour of the system.

2.2 Test's results

The compilation of the PS-algol compiler required 1234.93 seconds. The number of
executed instructions was 5,505,220. Of 237 PS-algol machine instructions, 124 were used.
For the complete list of instructions used and their number of calls, see the table instruction list.

From the above data we can infer that the average time required by an instruction
execution cycle (interpreter fetch and decode time + instruction execution time) is 224 ys.
Usually, in determining the timing of a program unit, a call to a system clock is made before
and after the execution of the unit, which allows us to measure the time used by the program
unit. Unfortunately the average PS Abstract Machine instruction execution time is well below
clock resolution (224 vs. 1667 ys), and this makes this profiler method infeasible.

2.3 How to measure the time used by instruction execution.

Given the above difficulties, an alternative method must be found. In principle it is
possible to measure the time used by any procedure by executing it many times in a loop. This
will work only for procedures with execution times independent of the data with which they are
supplied. Fortunately, many of the procedures for executing PS-algol instructions have this
feature. An example of such a procedure is the procedure ghi_I which looks like this:

gbl_1{)
{
register psint tmpl;

tmpl = (psing) (*gcp++);
*imsp++ = ((psint *) (lpsb[4] }) [tmpl];

2. Basic monitoring

For such a procedure the time used is identical on each call (providing that exrors such as
address out of range do not occur). So it is possible to write a short program simultating the
behavior of the PS-machine registers involved and execute this procedure (say) 1 million times.
The time used will be of the order of seconds, and well above clock resolution. This method
will be referred further as off-line timing, because the time used by an instruction execution is
not measured during a PS-algol program run.

In the case of this procedure it took 40.83 seconds to execute it 1 million times. The
clock accuracy being 0.0017 sec, the relative error of estimating the instruction execution time
is neglible. It could be made as small as desired by executing the procedure more times. The
figure 40.83 seconds refers only to the time needed to execute the code of the procedure and it
does not include the time used to call and return from the procedure. Such a time is referred to
subsequently as an instruction execution time.

The PS-machine instructions for which the instruction exececution times are the same on
each call are further called elementary instructions. Of the total of 237 PS-machine
instructions, 125 are elementary and were timed by the off line method described above. Their
execution time is usually in the range from 20 to 70 ps, although some of them are over 1000
s (in particular, the floating point operations).

How does this improve our understanding of the PS-machine behavior? During the test
program run 68 of 125 elementary instructions were used. They were called 2,523,896 times,
which represents 45.9% of all calls. The total time used by their execution (not including the
time to fetch and decode the instruction, or to call and return from the instruction execution
procedure) was 101.0 seconds, which represents 8.09% of the total test time. The three most
frequently executed instructions of this type were

instruction calls seconds
GBL_1 422,675 17.26
PLC_1 376,319 14.29
LC_1 357,578 13.06

These results mean that for approximately half of the instructions executed on the PS-
algol machine, the only kind of monitoring needed is to count them, which is indeed a simple
method. But they also mean than some other method must be used to identify the instructions
responsible for the remaining time used by the test.

2.4 Timing the main interpreter loop,
The main part of the interpreter, performing the fetch and decode cycle, is the most
freguently used fragment of code. Its code looks as follows:

1) next instr:

2) if (sepend != (psint) 0)

3) tmpl = sepend ;

4) sepend = (psint) o;

gg) sys_event ((int) tmpl);
7 Jns [(int) (*gep ++)] ();

8) goto next_instr;

This sequence of statements contains an if construction, therefore its execution time is
not the same on each execution, depending on the if condition being true or false. However, in
the case of the PS-algol interpreter this condition is false only at the end of program execution.
So we may consider the main monitor loop to be an elementary instruction and time it in a
manner similar to the other elementary instructions.

2. Basic monitoring

Lines 3 to 6 (inside the if) are executed only at the end of a program, so we may assume
that it is enough to measure the time used by lines 1, 2, 7, 8. A program was written to
simulate the behaviour of the PS-algol machine with variable sepend always equal 0. Line 7,
in which the appropriate procedure to execute a PS instruction is called, performs several
actions: update global code pointer, fetch the next instruction code and call an appropriate
subroutine. All these actions were timed separately. Instead of subroutines executing real
instructions, the empty subroutine (text: emiysub () {}) was substituted. Hence the time of
the interpreter loop found in this way describes the time needed to fetch the next instruction,
select an appropriate procedure, call the procedure and return from it. The time of the goto
instruction was measured separately. Times (individual and cumulative) of components of the
main interpreter Ioop in Us are as follows:

component timne cummsiative
if { sepend != (psint) 0) 5.12 5.12
(*gep++) 7.95 3.07
(int) (*gcp++) 3.12 16.19
fus [(int) (Fgep++)] 4.37 20.56
s [(int) (*gep++)] () 15.42 35.98
goto next_instr 1.91 37.89

To monitor the frequency of instruction execution, the following (not very optimal) line
was added after line 1 of the main interpreter loop:

moncntaf (int) (¥gep)] ++;

moncnta is an array of 32bit integers holding instruction counts. The time needed to
execute main interpreter loop with this line added (it increments the instruction counter of the
next instruction to be executed) is 51.10 ps.

The main interpreter loop is executed each time a PS-instruction is executed. During the
test 5,505,220 instructions were executed, so the total time used by the main interpreter loop
was 208.6 seconds and by the monitor 72.2 seconds. This represents 16.9 and 5.8 percent
respectively of the total test tirne.

2.5 Preliminary conclusions

At this point it is possible to conclude that a simple monitoring augmented with an off-line
(i.e. outside normal program execution) timing of interpreter behavior enables us to know what
the PS-algol machine is doing for 46% of all instruction executions and for 31% of the total test
time. The cost of monitoring is not exhorbitant (6%) and may be reduced (if needed) to about
3% by a more optimal coding.

The measured version of the interpreter uses procedure calls to execute PS instructions.
This creates an overhead because of the time needed to call and return from a subroutine. The
other version of the interpreter in use on other machines uses a case switch method, without
execution subroutines. It was not practicable to use this method on a Mac. If it had been, it
would have cost about 22.00 s per interpreter cycle (vs. 38.6 for procedure call) and the
resulting gain in this test would have been 91.3 seconds (7.4 %).

2. Basic monitoring

An interesting (and paradoxical) conclusion concerns the system clock. We are much
better off without a microsecond clock than with. Let us assume for the moment that the
Macinitosh clock is a microsecond clock with resolution fine enough to measure the time
needed by any PS instruction execution. To measure the time used by an instruction execution,
3 operations are needed as a minimum: read the clock time before executing an instruction, read
it afterwards and add the difference of both to the total time already used by the instruction.
This costs on the Mac 142 ps, and doing it for all instructions executed would have added 781
seconds to our test time. In other words, it would have resulted in a monitor using 43% of the
machine time. This is an obviously unappealling scenario for a “cheap and simple” monitor. In
addition, with the Mac having a simple single-user operating system, the system clock call is
relatively cheap. On a bigger computer it should be expected to cost much more.

3. Timing other PS-algol machine instructions

3. Timing other PS-algol machine instructions.

The technique used in chapter 2 allows for full monitoring (i.e. number of executions and
time spent) of 125 out of 237 PS-algol machine instructions, They comprise 45.9% of all
instructions executed during the program run, and are responsible for 8.09% of the test's time.
Because instructions are only counted during program execution, the method is cheap. It will
be therefore worth trying to extend it to other instructions, if feasible.

3.1 il type instructions.
Let us take for example instruction JUMPF_2, for which the executing procedure looks
as follows:

J;lmpf_z {)

register psing tmpl;

tmpl = (psint) (*gep++) << (psing) 8 ;
tmpl [= (psint) (*gcp++)
JU!(*--lmsp)) gcp += mmpl ;

This procedure contains an if instruction, and its execution time depends on a condition
being true or false, so its execution time is not constant. It is impossible to find out the time
used by the instruction during the PS-algol program execution using the previous method only.
However, this procedure has only two possible execution times - one for if{faise) and one for
ifftrue). 1t is therefore possible to consider the instruction as two elementary instructions and
measure (off-line) the time required in each case (if true or if false).

To know the total time used by both branches of the instruction during a PS-algol
program run, information on how many times one of the branches was used is needed (one
only, because the total number of the procedure calls has already been counted by the basic
monitor; this holds also for if-then-eise sequences). This requires an installation of one
additional counter in the instruction code.

To time such an instruction, a short program was written simulating the behavior of the
PS-machine registers involved. Then the instruction was executed in a loop 1 million times for
if{(false) and 1 milion times for if (rue). The execution time for if (false) was 46.86 s and for
if(true) 54.36 ps.

In the test case the instruction was called 441,781 times and the if(true) branch was
executed 134,892 times. So the total time used by both branches of an instruction during the
test was 23.00 seconds.

Such instructions will be further called il instructions (i for if, 1 for one additional
counter). There are 15 such instructions in the PS-algol machine.

7/
3.2 Ilx type instructions
The next class of instructions which can be timed off-line are instructions similar to the il
class, but containing in one of the if branches a call to another procedure. Such instructions are
further called i1x instructions (x for external).

3. Timing other PS-algol machine instructions
An example of such instruction is PGBL_1:
I{ngl_l()
register psint tmpl ,tmp2 *ptrl;
onpl = (psint) (*gep++) ;

prl = (psing) (*Ispb(-4]) ;
tmp2 =purl [1]] (psint) 4 - tmpl ;

tmpl = prl [omp2];
if (tmp < (psint) 0){
compl =pirl ;

tmpl = (psint) (ill_adr (impl}) ;
compl [imp2] = tmpl ;

Y
*-lpsp = impl ;

This instruction, inside an if , contains a call to the ill_adr procedure. This makes full
timing of the instruction impossible, as the procedure called is in itself complicated enough to
discourage any attempts to time it. It is possible, however, to time the part of an instruction
executed when the if condition is false. Similarly, as for an il instruction type, an additional
counter must be added to count during a PS-program execution, the number of times one of the
instruction branches was used.

Using the same technique of simulating the PS-machine registers involved in a short
program, tl%e time of executing this instruction was found out to be 131.8 s for if{cond) false
(i.e. external procedure not called).

In all, there are 14 such instructions in the PS-algol machine. The method does not allow
one to find out the whole time used by such instructions during the PS-algol program run,
because it is impossible to find out off-line the time required by an execution of any called
procedures. However, in most cases, procedures are called o handle unusual'suuauons (like
errors), and so the number of i1x type instruction calls which could not be timed should be
small.

3.3 i2,i2x, ... type instructions] _ o

There is a small group of instructions which can be considered as a combinations of
instruction types il and ilx. Their code contains 2 or 3 if's and sometimes a call to a procedure
in one of the if branches. They may be timed using the technique described in the previous
sections. Installation of additonal counters to monitor how many times the particular branch of
an if instruction was executed is required. Execution time for such instructions may be timed
off-line, either fully, in the case of i2,i3 instructions, or partially, in the case of instructions
calling procedures in one of the if branches.

There are 7 such instructions in the PS-algol machine.

3.4 Special cases . o

The results of the basic monitoring had pointed out a singnificant percentage of
executions of instructions which do not belong to any of the instruction types described so far.
To increase the percentage of fully monitored (i.e. number of calls and time used) instructions
two special cases were timed off-line.

3. Timing other PS-algol machine instractions 8 3. Timing other PS-algol machine instructions 9

3.4.1 String comparison,

There are three instructions (CJUMP_S_2, EQ_S, NEQ_S) which comprise 6.05% of all
instruction executions during the test ran. The procedure for the CJUMP_S_2 contains an if
instruction, while the procedures for EQ_S and NEQ_S contain a simple sequence of
commands. They cannot, however, be timed directly, because they call an eg_string
procedure. In the case of CIJUMP_S_2, the procedure is called while evaluating the if
condition, and therefore even partial off-line timing is impossible. The eq_string procedure
compares two PS-algol strings and returns the value true if they are equal and false otherwise.

To measure their instruction execution time, instead of eq_string a dummy procedure was
substituted and a time used by these instructions without comparing the strings was measured.
In the case of CJTUMP_S_2 the method used was similar to i1 type instructions, in two other
cases as for the elementary instructions. The execution time found reflects only the time needed
to execute the instructions. It does not include the time for a: call and return from the
instruction procedure (for consistency with instructions measured so far); string comparison;
nor call and return from string comparison instructions.

The eq_string procedure looks as follows:

psint eq_string(s1,52)
register psint *sl,*s2 ;

register char *cl,*c2 ;
register psint len ;

if (51 == 52) return{ PSTRUE) ;
if(Is1 /] 152) return{ PSFALSE) ;

len = *si++ & LOWERIG6 ;
if (ler != (*s2++ & LOWERIG)) return{ PSFALSE) ;

cl={(char*)sl;c2=(char*)s2

while (len-- > (psint J0) if (*cl++ I= *2++ Jreturn{PSFALSE);
return{ PSTRUE) ;
}

It is basically a sequence of statements. After each statement the procedure may finish its
execution. This holds also for the while loop. To find all information about all possible
execution paths several counters must be added, practically one after each line. One counter
was added also in thewhile loop to count how many characters were compared.

The execution time was measured for each situation (each possible rerura). In the case of
the while instruction, an average time of comparing two characters was measured.

Using this data it is possible to find out how much time was spent by the PS-algol
program executing these 3 instructions (without the time used to compare strings). It is also
possible to compute separately the time used by the eq_string procedure. This does not give all
information about the time used to execute each of the 3 instructions, because a) procedure
eq_string may be called also from other places, and b) the number of characters compared by
eq_string may not be the same when called from EQ_S procedure as when called from NEQ_S
or CJUMP_S_2 procedures.

3.4.2 Instruction APPLY_OP
This instruction comprised 3.66% of all instruction executions during the test run, so
therefore an attempt was made to time it off-line as fully as possible.

The procedure execution is complicated. It contains two nested if constructions and 3
while constructions. It also calls 4 other procedures: go_stand (which, in turn, calls standard
functions), claim, to obtain heap space, garb_coll, to perform garbage collection, and
Sys_event, in error situations.

Additional counters were installed to count the number of times each branch of an if
instruction was executed (and a procedure was called). The counters were also installed to
monitor execution ofwhile loops.

A call to the claim procedure is used to evaluate one of the if's conditions. Fortunately
the claim procedure is similar to an il type instruction and can be timed separately.
Additionally, those paths of the APPLY_OP instruction not calling other procedures were timed
off-line. This effectively allows us to compute the time used by the procedure in situations
when neither standard function nor garbage collection nor sys_event procedures are called.

3.4.3 Garbage collection timing

The procedure performing garbage collection was called relatively rarely (41 times)
during the test. Neverthless, the algorithm is complicated, and its execution time exceeds clock
resolution. Therefore two counters were installed in that procedure: one counting the number
of calls; another computing the time used by the procedure.

It is worth pointing out that this is the only situation in the monitor when a time used by
the PS-algol machine is measured directly during the PS-algol program execution.

4. Extended monitor - implementation and results

4. Extended monitor - implementation and results.

This part describes the implementation and results received from the second version of the
monitor. The second version is built on the same principle as the first one. It does not fime
any instructions (save garbage collection). But additional counters were added to count
instruction execution in more detail. The added counters reflect the need to compuie the
frequency of any given execution path for instructions described in the previous chapter. An
off-line measurement of instruction execution time for each path was done. These two types of
data combined allow us to compute the time used by instructions of the types described in
chapter 2, while executing the PS-algol compiler program. In addition, further counters were
added to count the number of times each standard PS-algol function was called.

At the beginning of execution of a PS-algol program the monitor file is opened and the
current clock time written to it. Upon finishing the program execution the current clock time
and all the counters are written to this file. Hence the time used by the program is known. By
analysing the counters we can also deduce how many times each instruction was called, and in
the case of certain instructions, how many times each path inside an instruction in question
were executed. Combining this information with the data received from an off-line instruction
timing (as described in chapter 2) it is possible to ascertain the derails of the behaviour of the
PS-algol Abstract Machine.

This chapter describes the results received as seen from the point of view of evaluating
various aspects of monitor performance,

4.1 The test

The test performed was identical to that used during the basic monitor test. The PS-algol
interpreter was augmented with additional counters. The PS-algol compiler was compiled on
the PS-algol machine using the monitored version of the interpreter. The monitor file produced
by the interpreter was analysed with other programs.

4.2 The monitor performance criteria

The two basic monitor performance criteria are: the amount of system resources (such as
disk space, procesor time, memory) used by the monitor, and the amount of information
obtained from it. In the case of this monitor, because of the off-line timing technique used, it is
also interesting to know how much of the PS-algol program running time can be accounted for.

4.3 The resuits

The total time used by the compilation of the PS-algol compiler was 1249.22 seconds. It
is 14.29 seconds more than during the test of the basic monitor. Because the same program
was compiled in both cases, the additional time represents the time used by counters added in
the second version of the monitor.

~This monitor extension may be considered a very cheap one, in terms of processor time
used, using only 1.15% of total test time. The basic monitoring (see 2.4) costs 72.2 seconds
(5.8%), so the total cost of monitoring is 7% of the PS-algol machine time. This is not
exhorbitant, and the monitor time could be halved by some simple changes in coding. Apart
from the processor, the monitor uses one table for counters. The table contains 512 entries
occupying 2Kbytes of memory. It is difficult to determine precisely the memory required by
the code inserted to count the instructions, but it is certainly less than 1Kbytes. Apart from
this, some 2056 bytes disk space is required for a monitor file containing times and counters.

10

4, Extended monitor - implementation and results 11

Considering the above, the monitor may be described as “a cheap and dirty one™. It
remains to be seen how much information we can exiract from it. It is important to know what
percentage of instruction executions can be fully monitored and what percentage of the time
used by a program can be explained.

.3.1 Elemen instructions.) o
431 %he resut?tl;y received are, of course, identical during the basic monitoring (cha}pter 2)._ Of
all 125 elementary instructions, 68 were used during the test. Of 5,505,220 instructions
executed during the test 2,523,896 were elementary, or 45.85%. Their combined execution
time was 101.0 seconds, or 8.09 % of total test's time. The average time to execute an

elementary instruction is 40 us.

The three most frequently executed instructions of this class and the times used by them
were:

instruction calls seconds
GBL_1 422,675 17.26
PLC_1 376,319 14.29
LC 1 357,578 13.06

4.3.2 il instructions.]

Of 15 instructions of this type, 10 were used during the test. They were called 991,461
times, or 18.01% of all instruction executions. Their combined time was 65.2 seconds, or
5.22% of total test time. The average execution time in this class was 66 yis.

. . . . by them
The three most frequently executed instructions of this class and times used by
were: JUMPF_2 (441,781 calls, 23.00 seconds), LL_INT_1 (327,468 c, 11.82 s),

JUMPFF_2 (122,076 ¢, 6.33 s).

3 A maatio of this type 7 were used. They were called 827,699 times. Only in 757
cases (0.09%) a call to them resulted in calling an external (to .the mte;pretg:r) procedure. This
means, that it is possible to compute the time used by this instructions in 826,942 cases -
15.02% of all instructions executed. Their total execution time (for measurable 826,942
executions) is 108.0 seconds. The average execution time is 131 pis.

The three most frequently executed instructions in this class and times used by them were:

instruction executions seconds
PGBL_1 460,894 60.73
PGBL_2 252,300 36.24
SVA_S 67,782 4.51

In the case of PGBL_1, 6 executions resulted in a call to an external procedure. The time
used in these cases is not included.

z inations of i1x and il instructions. . .
434 ’(I;l(l):;: a.tng 10 instructions whose type is a combination of il and ilx types. They were
executed 403905 times, in 3453 of these executions (0.09%) an external procedure was called.
So there were 400,499 measurable executions, or 7.27% of all instruction executions. The
total execution time for measurable executions was 106.0 seconds, or 8.49 % of test time. The
average execution time was 256 pis.

4. Extended monitor - implementation and results

The three most frequently executed instructions of this class and times used by them were

instruction executions seconds
DPGBL_2 134,397 22.80
SRTN_V 93,274 40.84
SUBV_S 78,142 11.33

4.3.5 Instructions using the string comparison.

The three instructions calling eg_siring procedure to compare strings were called 333,028
times, or 6.05% of all instruction executions. Their total time, without the time used to
compare the strings, was 16.1 seconds, or 1.29 % of total test time.

The eqg_string procedure comparing the strings was called 346,818 times (so 13,790 calls
to this procedure, or 0.04%, were made from other places than these three instructions). The
total time used by this procedure was 42.2 seconds, or 3.38% of total test ime. It may be
estimated, however, that due to the significant number of counters installed in it, about 6
seconds were spend on monitoring. :

4.3.6 APPLY_OP instruction.

This instruction was called 201,141 tmes. 46,264 of these calls were calls for a
standard function. 41 calls resulted in a call for a garbage collection. In all, 154,386 calls
representing 2.81% of all instruction executions may be timed. Their total execution time is
90.2 seconds, which represents 7.22% of total test time. This time does not include either the
tinllle spent calling and executing standard functions, nor the time spent performing garbage
collection.

4.3.7 Garbage collection.

The garbage collector was called 46 times during the test. The time used by the garbage
collector was 42.2 seconds, which gives an average time to perform garbage collection of 0.92
seconds. The relative error of the measurement is about 1%.

4.3.8 The basic interpreter loop.

As described in the chapter 2, the time used by the basic interpreter loop is 212.8
secoréds, or 17.04% of the total test time. The time spent monitoring the loop is 72.2 seconds,
or 5.8 %.

4.3.9 Summarizing percentages.

In all, the instructions mentioned in this section comprise 95.01% of all instructions
executed, giving thus nearly complete coverage in this aspect. This means that it is possible to
compute the time used by almost all instructions executed on a PS-algol machine using the
technique of line monitoring and on-line instruction counting.

The total time used by the instructions for which the execution time may be measured off-
line, together with the time used by the monitor, the main interpreter loop, the garbage
collection and the string comparison, is 878.2 seconds. This represents 70.3% of the total test
tune.

12

4. Extended monitor - implementation and results

4.4 What is not covered?

The results received so far point out that although 95% of all instruction executions on the
PS-algol machine can be accounted for, only 70% of the time is accounted for. In other words
the remaining 5% of instruction executions are responsible for 30% of test time. What kind of
instructions are executed during this 5% of executions? Is it possible to explain (if not measure
directly or off-line) this missing time?

4.4.1 Estimnating i/o time.

The most frequently executed instruction which was not timed was the READ_OP. It
was executed 128,749 times, or 2.34 % of all instructions executed. Another one was the
WRITE_OP, with 57,665 executions and 1.05% of all instruction executed. The third one (a
part of the APPLY_OP instruction which calls a standard function 46,305 tmes) represents
0.84% of all calls. In all, these three items total 4.2 % of all calls. The remaining 0.8% belong
to IS_OP - 0.3% (with logic too complicated to time it off-line easily) and several other
instructions with the number of executions less than 10,000.

Of these instructions only the input/output operations can be suspected of using much of
the remaining 30% of test time. The other ones are relatively short procedures with estimated
execution time too small to account for the missing 371 seconds. The input /output operations
are, however, too complicated to be timed off-line. They cannot also be monitored with a direct
timing, because even superficial analysis of the problem suggests that their average execution
tirme is about the same as the clock cycle time, and a short test confirmed this.

However, analysing what our test is doing, it is possible to devise a method of
estimating, although roughly, the time used by the input/output. There are 3 basic i/o
operations executed while compiling the PS-algol compiler: reading the compiler text by one
character at a time and testing for the end of file, writing on a display a compiler listing with line
numbers appended, and writing the pseudocode file.

To estimate how much time was used reading the compiler text, a short program in PS-
algol was written with a basic loop while ~eof(infile) do ch := read(infile). Then the program
was executed using the PS-algol compiler as input. The resulting monitor file was analysed to
find out how much of the program time was unexplained (the assumption being that the
unexplained time was spent performing i/o, as no other operations were performed by the
program). Of 88 seconds execution time, 58 were accounted for - interpreter time, monitor,
some simple instructions. That left 30 seconds for the file read.

To estimate how much time was spend producing the program listing, with line numbers
appended, another short program was written. As the compiler text is 2477 lines long with an
average line length 29 characters, a short program was written. Using afor loop and a string 29
characters long, 2477 lines were printed on a screen together with their line numbers. The
resulting monitor file was then analysed, as in the previous case. Of the total time of this test
300 seconds were unexplained. So, it may be assumed that this is the minimal time to get that
amount of text on the screen. (Minimal, because the listing may be produced by a compiler in
many ways and each one of them will require more time than the one tested).

The time to write out the PS-algol code file cannot be estimated that way. It is difficult 1o
create a model program to perform the writing in a similar way to the PS-algol compiler.
However, let us assume for a moment that the time to write this file is of the same order as the
time to read it character by character. This will require about 20 seconds.

So the time used by the 3 i/o operations is about (very roughly) 350 seconds, leaving
about 20 scconds of the main test time unexplained. (And 1.6% of all instruction executions
not timed).

13

4. Extended monitor - implementation and results

4.5 Summary of monitor performance.

Of 237 different PS-algol machine instructions 142 may be timed fully using the off-line
timing. 125 of them are elementary, 15 of il type, 2 of i2 type. A further 24 instructions may
be timed partially during executions not calling another procedure.

During the test run it was possible to account for the time of 95% of all instructions
executions. Together with the time used by the fetch-decode cycle, monitoring, garbage
collection - 70% of the test time can be precisely accounted for.

Input/output operations were responsible for 3.34 % of all instruction executions and a
rough estimation suggests that the time used by them is almost 30% of total test time. That
leaves 1.76% of all instruction executions too difficult to time off-line, and about 20 seconds
(2%) of the test time unaccounted.

The monitor used about 7% of the test time, about 3 Kbytes of memory and about
2KDbytes of disk space.

It is cheap enough to be incorporated into the interpreter as a standard option.

| | elementary

6.18% 2:6%8.08%
5.22%

y

itxcomb
[streqins

17.04% 8.84%

g
1

B eq_string
i garbcoll

1.29% apply_op
3.37%
3.82%
28.02% 7.009% 3 fetch-decode

8.49%

SR

/o (estimate)

Bd main monitor
other

SUMMARY OF THE TIME USED BY THE VIRTUAL MACHINE

5. Analysing the PS-algol machine

5. Analysing the PS-algol machine.

This chapter describes the results received during the test from a point of view of the PS-
algol machine.

The compilation of PS-algol compiler was chosen as a benchmark, and it is assumed that
the reader is aware of the advantages and disadvantages of this.

The time needed to compile the compiler was 1249.22 seconds. 5,505,220 PS-algol
machine instructions were executed during that time. Of 237 PS-machine instructions 124 were
used.

5.1 Description of tables.
The table INSTRUCTION LIST lists the names of all PS-machine instructions, their
codes, number of executions during the test, and the time used. The following legend is used.

Name instructions names as defined in the PS-algol interpreter.

Code instruction code.)

Type type of instruction as seen by the monitor. e for elementary instructions, il,
ilx, as described in chapter 2.

Utime time (in ps) needed to execute the instruction once. For instructions of il
class the time of only one branch is given here.

Calls pumber of times the procedure executing the instruction was called (= number
of instruction executions).
Pecall number of instruction executions as a percentage of all instruction executions.

Tottime total time used by the instruction during program execution. For il
instruction type this is the time used by both branches of the instruction. For
iIx instruction type this is the time used by the instruction branches which do
not call an external procedure. For instructions using the eq_string procedure
the time given does not include the time spent comparing the strings. For the
APPLY_OP instruction this is the time spent executing only measurable
branches, without garbage collection, standard function calls.

The second table, FREQUENCY, contains similar information as the first one, but only
for the most frequently used instructions sorted in frequency of use. There is one additional
column.

Cpecalls cumulative percentage of number of instruction executions.

Additionally, data for certain instructions should be regarded with caution (see the next
section for explanations).

5.2 Comments.
This section contains additional explanations to the instructions listed in table
FREQUENCY

CIJUMP_S_2 calls eq_string procedure, the total time given for the instruction does not
include the time to call and execute this procedure.

APPLY OP_2 calls several procedures depending on the situation in the PS-algol machine.
The total time given does not include the time used by this instruction and
procedures called by it, while a call to perform garbage collection or execute
standard function was made. It does however include the time used by the
claim procedure.

15

5. Analysing the PS-algol machine

READ_OP no total tire given, as this instruction was not timed off-line.

EQ S see CYUMP_S_2

WRITE_QOP sece READ_OP

NEQ_S see CTUMP_S_2

1S_0opP see READ_OP. Also: this instruction can be timed off-line partally, but it
was used too rarely to undertake this rather complicated job. The same holds
for all other non-timed instructions in this table.

5.3 Additional resulis.

The tables do not cover some additional results obtained, because they were not directly
connected with specific instructions.

The timing of the main interpreter loop is described in 2.3 and the results in this version
of the monitor are identical, because that part of the PS-algol machine was not changed. The
same holds for the tirme used by the part of the monitor instalied in the main loop.

5.3.1 Garbage collection.

Garbage collection was performed during the test 46 times. The total time used was 42.2
seconds, the only case when the time used by the PS-algol machine is measured directly during
a program execution. The average time to perform the garbage collection was thus 0.92
seconds. The garbage collection time constitutes only 3.7% of the total test time and several of
the instructions used more time. Neverthless, with the time per execution being so high, this
overhead in the PS-machine may show up in applications requiring more intensive garbage
collection.

In all 170,002 items were put onto heap. The total size of all items was 2,730,372 4-byte
units, which gives average item size 16 (64 bytes).

These values do not include 2 memory units needed for each item in the heap for
administration. The size of heap that would have been required to execute the program without
any garbage collection is 12,281,504 bytes.

60 [
56 |2 size of heap items
52 14 (unit: long word)
48 |3

2

1

1

94692

16

5. Analysing the PS-algol machine

5.3.2 String comparison.

Procedure eq_string was called 346,818 times. It is called from various PS-machine
instructions to return the value rrue if the two sirings to be compared are equal and the value
false otherwise.

Counters installed to monitor an execution of this procedure allow us to obtain some
additional information.

The total time used by this procedure was 42.2 seconds (it may be estimated that about 6
seconds of this are spend on monitoring).

At the beginning of its execution the procedure tests two trivial items: if the passed string
pointers are identical, or one of them is zero. This enables it to return the result faster (without
going into a detailed string check). This happened 36,515 times (10% of all calls).

In the next step the subroutine computes lengths of strings to be compared: if they are
different it returns value false. This happéned 77,166 times (22% of all calls). The average
length of the string to compare was 2.99 characters.

All the preliminary tesis being positive, the procedure performs character by character
comparison of strings using the while loop. This loop was executed in 68% of all calls to this
procedure. A total of 279549 characters were compared, which gives on the average 1.2
characters comparisons per string to compare.

string length during
comparison
(by eq_string function)

458667

O~ NWAOON®

17

5. Analysing the PS-algol machine 18 5. Analysing the PS-algol machine 19

5.3.5 Jumps.
56 Jumps comprised about 20% of all processed instructions. Most of them (1 million) were
52 without strings length 1 forward jumps, 800,000 of which were conditional jumps. 200,000 conditional jumps were

executed, i.e. after the condition was evaluated, the program counter was updated. In all a
Jjump (including loop evaluations) was executed on the average after each ten instructions.

forward jump length

266733 28

’ 226645
191485
4206723

5.3.3 Standard functions. -
The standard functions are called through APPLY_OP instruction (which also performs - forward jump length

other duties). There were 46,264 calls to the standard functions. Nine of them were called: 960 1245 (without jumps < 64)

LENGTH (9,717), IFORMAT (10,663), LETTER (2), LINE_NUMBER (8,973), SHIFT_R 896

(3), SHIFT_L (60), B_AND (20), B_OR (36), B_NOT (4). 832

The time to execute standard functions was not measured off-line or by any other method. 704
It is, however, possible to do so for certain functions.

The time used by APPLY_OP instruction to issue a call to a standard function is 180 ys. 512
This does not include the time used to call and execute the standard function procedure. So the 448
total overhead (not included in the APPLY_OP time in the tables) was about 8.3 seconds.

5.3.4 Input/output operations.
The READ_OP instruction was executed 128,749 times. The following input operations
were used: READ (50,088), EOF (69,622), READ_NNAME (9,036).

2 98384

The WRITE_OP instruction was used 57,665 times. The following output operations
were used: WRITEI (2,536), WRITES (55,095), OUTBYTE (34).

The length of the file containing the compiler text is 74,000 bytes (2477 lines). The
number of READ and EOF operations performed allow us to deduce that this file is read
predominantly in a character-by-character way with an end-of-file test after each character. On
this assumption the time used by the two operations was estimated (see 4.5.1) to be about 30
seconds.

It is difficult to estimate the time spend writing the code file, because both output files (the
program listing and the code file) were written as a sequence of strings of unknown length.
Therefore the time used to produce a listing was estimated in a way described in 4.4.5, and
yielded a value of about 300 seconds. The estimate of the time used to produce the code file is
20 seconds (see 4.5.1).

5. Analysing the PS-algol machine 20

256
240 |
224
208
192
176

backward jump length

£

T~ coooo o o

o}

160
144]
128

5.4 Results' sumrnary.

The first chart depict the distribution of calls to the instruction classes as defined for the
monitor. Except for the i/o instructions, calls to standard functions and 0.8% of other
instruction executions, all instruction executions are fully monitored.

FREQUENCY OF INSTRUCTION EXECUTION
(by monitoring class)

other [{41839 (not timed)
std functs (46305 (not timed)
ilo 186414 (time estimated)
apply_op | | 154836
streqins |
ilxcomb
i1x
i1
. 2523898

S . I i . g
T L T T Uy T 1

0 500000 1000000 1500000 2000000 2500000 3000000

elementary

The next chart depict the distribution of time used while executing the PS-algol
interpreter. The biggest single item is i/o, about 350 seconds.

5. Analysing the PS-algol machine

other 32.7 (estimated)

main monitor "
feich-decode
350.0
{estimated)

i/lo (estimate)
apply_op |
garbcoil
eq_string |
streqins
iixcomb

i1x

i1
elementary

¥ + t |

.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0

21

6. Tuning possibilites 22

6. Tuning Possibilities.

This chapter describes possible improvements to the PS-algol interpreter, which, when
implemented, will result in its increased speed.

Results received during the testing phase of the monitor allowed the identification of some
PS-machine instructions which are using enough machine time to be worth more detailed
analysis. The interpreter is written in C. The code is extremely tight and there are practically
no possibilities left to improve interpreter speed by irying to write the instructions in a "more
clever way".

There are however some possibilities for speeding up the interpreter if we consider the
interface between the microprocesor used and the C compiler. There are also some tuning
possibilities in the area of string comparison and the coding of the main interpreter loop (the
fetch-decode cycle).

6.1 Division - shift.

The most frequently used instruction is PGBL_1 (see its code in 3.2). Its execution time
is 131.8 us and the total time used by it during the test is 60.73 seconds. The execution time is
surprisingly high for such a simple sequence of statements. One statement in this procedure
looks as follows :

wmp2 = pir(1] (psint) 4 - tmp1;

Anmalysis of the code produced by the C compiler for this instruction shows that the
division is really translated into a 32-integer division, which is a time consuming algorithm for
the 16-bit arithmetic unit of M68000. In such a situation, division by 4 may be replaced by a
right shift of 2 bits - the result will be identical.

Such a change will improve the instruction execution time by about 51 microseconds (38
%), bringing it down to 81 s, The time used by this instruction during the test will go down
from 60 to 37 seconds.

There are several such instructions in the PS-algol machine. SRTN_IB, for example,
uses 3 such divisions and its execution time is 337.8 ps. Substituting shift for division brings
down its execution time to 175.8 ys.

Shift was substituted for division in such instructions and a new version of the interpreter
was used to perform the same test. The new execution time was 1143.80 seconds (vs.
1249.22 for the standard version). So the improvement was 105.4 seconds.

6.2 Getting an integer from code stack.

Instruction parameters frequently reside on the code stack. Many instructions require as a
parameter a 16-bit integer, which is taken from the code stream byte by byte. The following
sequence is used:

tmpl = (psint }(*gcp++) << (psint)8 ;
ompl [= (psint) *gcp++) ;

Such a sequence is optimal at the C-language level.

It results in the following assembly code:

6. Tuning possibilites 23
1 = (psint) *gcp++) << (psint)8 ;
ntmloli)e.l (P gcp)(_ ’dgcp ; addres of the code pointer into a2
addl #1,8cp ; increment the cp in memory
moveb (a2),d3 ; contents of the cpinto d3
andl #3143 ; convert to psint
move.l da3,d4 s result to d4
asll #8,d4 ; and shift it to the second byte
1 /= (psint)} *gcp++) ;
;nmgze./l (7 gcp_,a% » once more cp address inio a2
addl #1,8cp ; increment cp address in memory
move. (a2)d3 ; next byte from cp stack to d3
andl #3ff.d3 ; convert to psint
orl d3,d4 ; construct 16-bit integer

This is far from optimal for this (and practically any other) microprocessor. The 16-bit
integer cannmot be taken from the code stack in one operation, because such operations have to
be aligned on a word boundary, and it is difficult to assure that it will always happen.
Moreover, the bytes taken from stack are in reverse order, due to the addressing scheme of the
M68000. Neverthless, some obvious redundancies may be eliminated and following code used
instead:

move gep_a2 saddress of cp to a2

addl #2,8cp ,update ¢p

clrl H ,prepare result

move.b (@2)+,d4 ;get first byte from stack

asli #8,d4 ;shift it to the second position
move.b (a2).d4 ,get second bytereside

This sequence is faster than the previous one by 14.79 ps. As an example let us take an
instruction like PGBL._2, which uses both division (as described in the previous sccthn), and a
16-bit integer from code stack. Its execution time is 143.6 Us. After a shift is substituted for
the division, the time is 92.9 ys. With additional optimization of stack access, this becomes
78.1 us.

Although this optimization requires changes on the assembler level, it is simple to
implement. The C compiler produces, optionally, an assembly language file and using the
editor, one set of lines is replaced by another. Such a replacement was made and a new version
of an interpreter was tested using the same test as previously. The execution time was 111825
seconds, some 25.5 seconds faster than previously.

6.3 Comparing strings.

Strir?gs werge compgared rather frequently during the test program (see 5.3.2) and the total
time used by the eq_string function was 42.2 seconds. This function is called mostly (96% of
all calls) from 3 instructions: CTUMP_S_2, NEQ_S, EQ_S. The results show that the average
length of compared strings is 2.99 characters. On average 1.2 characters are compared before
finding an answer.

These results suggest a need for another approach to the algorithm used. The procedure
tests firsts (5.3.2) some trivialities and afterwards, in a while loop, checks characters one by
one. The overhead is caused by the procedure call and the while loop.

6. Tuning possibilites 24

The string in the PS-algol starts with a long word containing its length on the lower 16
bits. The long words after the first one contain characters padded to a long word boundary.
The new algorithm should be similar to the previous one - first test trivialities, after that test
equality of first 4 characters in the siring (there are always first 4 characters, due to padding).
This should be done not in a subroutine, but directly in a PS-instruction. If the result is true -
only then should the eq_string procedure be used. The eg string procedure should be rewritten
to compare 4 characters at a time. Such a solution will significanly reduce the number of calls
to the subroutine.

The following macro may be used instead of a call to the eq_string subroutine in siring-
COomparison instructions:

#define COMPSTR \
{fperd | Iper2]\
((*pri & LOWERIG) != (*pr2 & LOWERIG6)) I\
{(prl{1] 1= por2[I]I\
) ? PSFALSE : eq string (prrl pr2)

Its second line checks if one of the pointers is zero, the third line tests if the lengths of
strings are not equal, the fourth line compares the first four characters of both sirings. The only
mising (in comparison with original procedure) part of an algorithm is a test for identical
pointers - rather difficult to implement in this way and rarely producing the true answer.

The times used (in 15) to Tetirn a result to compare strings with the following properties:

eq_string ACTo
one of string pointers zero 60.10 7.88
different length 87.17 24.38
different 1st char 115.67 32.40
different 2nd char 139.55 32.40
different 3rd char 163.34 32.40
different 4th char 187.32 32.40

As it may be seen from this an elimination of the subroutine call overhead brings a
significant speed-up. Also impressive is the reduction due to the elimination of the while loop
to compare the first four characters.

The estimate of the time which would have been used by this algorithm during the test is
9.72 seconds (instead of 42.2). (Only an estimate is possible, as only the average number of
characters compared is known, and its distribution is not.)

The disadvantage of the new solution is lack of opportunity to monitor about 99% of
string comparison operations. Judging by the test results, the new eq_string procedure will be
called rarely and all the monitoring counters can be installed only there.

6.4 Main interpreter loop.

The main interpreter loop is the most frequently executed part of the PS-algol interpreter.
It performs the fetch-decode cycle. With the monitor installed, it counts also the number of
times each instruction was executed. This is performed by the following 2 lines:

moncnta [(int) (*gcp)] ++, /* increment instruction counter */
fns [(int) (gcp++)] (); I* call a procedure to execute instruction */

6. Tuning possibilites 25

The fetch-decode cycle costs 37.89 us per execution, for the interpreter with basic
monitor - 51.10 ps. Transformation of a current byte (instruction code) into an array index is
done twice. Going to the assembly language level we can remove the second transformation
and optimize the first - the new execution time is 41.43 us. This gives the total execution time
for main interpreter loop 228.1 seconds instead of 281.3 previously. The difference between
41.43 s needed to execute the main interpreter loop now and 38.89 s to execute main
interpreter loop previously is (approximately) equal to the time used by the basic monitor. It
may be estimated that the total time used by basic monitor is now about 20 seconds instead of
73 seconds.

6.5 The code pointer handling. .)

The global code pointer is the most frequently used register of the PS-machine. It is used
in the fetch-decode cycle of the main interpreter loop. Many instructions are also using it to
obtaing a parameter. The standard C construction used to obtain the next byte from the code
stack and update its pointer is

tmpl = (psing) (*gep++);
which is translated into following machine code.

move.l gep a2

addl #1,gcp_
moveb (a2)d3
andl #31.d3
move.l d3,d4

There are two possibilities to optimize this code. In the first step we can substitute "clear
register” instruction, instead of using the masking, and remove one interregister transfer by
moving stack contents directly to the result register. This will result in the following code:

movel gcp a2

addl #l,.gcp_
clrl 2]
move.b (a2),d4

The time to execute the original sequence is 17.79 us, the modified one - 15.39.

So the improvement is a very small one - 2.4 microseconds. It was implemented in the
main interpreter loop. But its implementation in all instructions of the interpreter may bring
improvement of only (about) 10 seconds - which does not seem worthwhile. (The estimate is,
that while 5.5 min instructions are executed and 80% of them used this sequence the resulting
gain in speed will be too small to justify such an troublesome change).

The second method of speeding up this operation is to have pointer to the global code
stack in the processor register all the time. This would have saved the need to move it from
memory to the register each time. Also, instead of updating in memory (by ADDQ instruction
of M68k) postincrementation could be used while getting the next byte from the stack. The code
would be as follows:

clrl H
move.b (a2)+,

6. Tuning possibilites 26

The time needed to execute this code is 7.36 ps. This code would have been used during
the test about 10 min times (5.5 in the main loop, 4.5 executiong instructions) - and the
resulting gain would have been abount 80 - 100 seconds.

Such an optimization, however, would have required extensive changes in the interpreter.

6.6. The "case" solution

The interpreter wersion monitored uses a subroutine call to execute a PS-machine
instruction. The overhead, while using a case solution, is smaller (see 2.4). And the resulting
speed-up would have been 91 seconds for the test. The case solution is commonly used for
interpreters in other PS-algol implementations, so this should not be considered as an
optimization comparable with the ones described earlier.

6.7 Processing jumps

Forward jump instructions are 3-bytes long, one byte for an instruction code, Z bytes for
the jump length. During the test 99% of forward jumps processed was for lengihs shorter than
256 byties - 1.e. they could have been coded in one byte. This would have reduced the dynarnic
code size for processing forward jump instructions from 3 to 2 mb. Total dynamic code size of
the test program was 12mb (static: 30kb), so the reduction in the dynamic code size would have
been small but significant. Such optirmization would have also resulted in time savings,
because only one byie would have been required as 2 parameter - see 6.2 for tmings.

Further possible optimization along these lines is to introduce 'a very short jump
instructions’ - 25% of all used jump lengths may be coded in 2 bits, 56% in 3 bits, This would
have reduce the dynamic code size by further 0.5 mb - aldhough at a cost of significantly
changed instruction set.

One kind of optimization which does not require any changes in the virtual machine is
different coding of conditional jump instructions. With the present coding an instruction iakes
jurnp length (two byies) from code area, evaluates condition and updates (or - more frequently -
not) code pointer. The coding in which condition is evaluated first and if rue the jurnp length is
obtained and program counter updated (otherwise program counter updated by the length of a
parameter) would have required in worst case the same time. And less memory acceses for
jumps not executed.

6.8 Optimization possibilities - summary
The optimization possibilities described in 6.1..6.4 total (in test case) to about 216
seconds and they are easy to implement.

In the test case, of 1249 seconds total time, about 350 were spend on i/o. The remaining

900 seconds may be considered 1o be spend executing processor-bound instructions. If the

"case version" of the interpreter would have been used, the time to execute processor-bound
instructions would have been abount 810 seconds. Therefore it may be estimated that the
optimization described in sections 6.1 to 6.4 improve the overall processor speed of the PS-
algol machine by 27%. (These optimizations are not version-dependent.)

The optimization described in 6.5, if implemented, would have improved the speed by
further 10%.

27

Section Two
Monitoring the PS-algol virtual machine
YAX implementation

1. Introduction

This text describes a continuation of work on monitoring the PS-algol virtual machine,
started by monitoring the Mac implemetation and described in a separate report. The monitored
interpreter of the PS-algol machine used for the Mac version of the PS-algol was wansferred to
the VAKX,

Because of the machine architecture and the peculiarities of the UNIX clock, time
measurements done exiensively on the Macintosh version were not made on the VAX. The
YV AX has a cache memory - and this means that an off-line timing method cannot be used, as
the execution time of any PS instraction is not the same on each call and depends on cache
administration algoritm, This obsiacle conld be partially overcome during an off-line timing by
filling in the cache memory with (say) an array of numbers before and after an execution of
each timed PS-instruction. In this way the speed-up effects of the cache memory would have

cen nullified. However, they are present during real execution of PS programs and their effect
is difficult to estimate.

Unix being a multiprogramming system executes several processes at the same time.
The process time logging is done in an approximate way, namely at the end of each 1/60th of a
second it is assumed that the process active at this moment was active for the last whole 1/60th
of a second and such a value is added to the process time. However, a processor scheduling
algorithm allows the processor assignment to the process at any moment during such interval.
The total effect of these two factors can be seen during off-line tirning of some PS instructions:
their measured execution times were accurate only to 2 significant digits regardless of the
number of iterations {while on the Mac accuracy was a simple function of the number of
iterations).

But the VAX implementation has some bonuses. Monitoring anything on the Mac
severely restricted the range of tests, because of memory limitations. In fact, on a 512k Mae full
compilation of the PS-algol compiler by the PS-algol compiler was impossible and some errors
had to be introduced into the text, reducing the memory requirements. Although the test
obtained was more similar to an average user program (they more often than not contain errors)
it can hardly be maintained to be a satisfaciory solution. In that aspect there were no such
limitations while monitoring the VAX version - there was plenty of memory available. This
enabled to perform not only the kind of monitoring done on the Mac, but also extend it to
measure PS-machine behavior in detail.

2. Vax Implementation 28

2. The VAX implementation monitoring

The same version of an interpreter and monitor was used as for the Mac version - each
PS-machine instruction was executed by a separate C procedure. Some additional counters
were added to obtain more details about machine behavior. Heap traffic and garbage collection
were monitored in greater detail.

Two tests were used. The first one consisted of running on a monitored PS-algol
machine the PS-algol compiler (a PS-algol program in itself) which was compiling a PS-algol
program. The second test consisted on running on a monitored PS-algol machine the S-algol
compiler (an S-algol program in itself) which was compiling an S-algol program. These tests
will be further referred to as the PS-test and S-test, respectively. In both cases the program to
compile was a PS-algol compiler. Because standard PS-algol compiler is written in S-algol it
could not be used for PS-test. The second version of PS-algol compiler, this time in PS-algol,
was created. This version was as similar as possible to the original and functionally identical. In
this way, a comparison of the results received during the S-test and the PS-test is, to some
extend, also a comparison of these two languages.

From the point of view of the PS-algol machine, on which they are processed, the
programs differ only in one area - heap load. S-algol does not have first class procedures
therefore, upon procedure return, the space on the heap used by a procedure can be reclaimed
immediately. In PS-algol any procedure containing a block stays on the heap till the garbage
collector reclaims the space used by it.

In general, the PS-machine interpreter installed in the system tries to grab as much
memory as possible to satisfy the heap requests. In the monitored version of the interpreter
heap size was preset to be 1 megabyte during program execution and all the results are for this
version - unless specified otherwise.

Additional counters were installed in the interpreter to obtain distribution of such
characteristics as number and type of parameters on procedure call, procedure memory
requirements, location, age and type of heap items. To accomodate these counters the monitor
table was expanded to 8 kilobytes. These changes resulted also in a singnificant increase in
processor usage.

The monitored version of the PS-algol interpreter was run as a separate program, with
its own data base. THis ensured that the operation of the interpreter was independent of any
system database activity.

3. General Results

3. General results

During the S-test 13,311,308 PS-machine instruction i
13311, s were interpreted. Total o
used was 1550 seconds (with ‘unix accuracy' -+ 50 seconds).During the PSIAIt)est the numbern;?
mstmguons interpreted was 14,067,987 - 5.7% more than in the S-test . Time used: 1700
é&;gg;&b S d(ggaxrlel gvivslttélnﬂ-- S(f) sglc_ondsfacizlcu?é:yil. The above timings are for tests during which the
ton-registering facility of the PS-algol machine monitor t (. With
mechanism working, the times received are about 1000 seconds bigg:,r?s umed off. With that

o It Igust_be pointed out once more, that the timings quoted are very approximate. While
nning indentical tests several times user process time as returned by the UNIX system varied

by a factor of 2 - which S]l()WS Oonce more]l()w al)le fime asuremen
T unmn
eli me ments.are on this

It is worth noting, thart the same operation as performed by the S-1 7hi
by an S-compiler installed in the system takes 150 sé%onds - but ghisifm;%; ?sﬂ:ugiim?:g
native mode, not on an interpreter. To perform the same task as the PS-test, the PS—gaIgol
compléer installed in the system (and running in a native mode, not on an interpr%ter) used 210
{si?%on s. Further results suggest sirongly, that for the system compilers this 60 second
; erence in speed is largely due to the garbage collection. As for any comparisons of speeds
of system and interpreted compilers we shuld take into account that the monitored interpreter is

not the fastest version of the PS-algol inte iti
' reter and, addition itori i
this case about 10% of test's time. P ally, cost of monitaring was in

) Of 237 PS-machine instructions 127 were used. The freque i
instruction usage on all 3 tests (Mac, S-test, PS-test) was similar a;%uitzcgisggbztsio?fet:r?e
identical '(despue the fact that on the Mac test abont 5 milion instructions were processed) Thg
diagram frequencies of most frequently executed instructions’ shows that for each test onl
first 25 ?f most frequently executed instructions had execution frequency over 1% Thz
diagram ‘cumulative percentages of instruction executions' shows also very similar distribution

for all tests - with fi - : : . -
instructions ex‘:;uteéfﬁ 35-37 most frequently executed instructions comprising 90% off all

4, Jumps

4. Jumps

In all, jump instructions comprised 22.97 of all processed PS-instructions. Their
detailed characteristics looks as follows

count % all jumps
unconditional jumps forward 433695 13.42
conditional jumps forward 2648901 81.96
unconditional jumps backward 147075 4.55
conditional jumps backward 2179 0.07
conditional jumps forward executed 1540058 58.14 % of cdf
conditional jumps backward executed 724 33.23 % of cdb

distribution of forward jumps length: 28.83 % - encoding in 2 bits
43.50 % - encoding in 3 bits

96.18 % - encoding in 7 bits

98.92 % - encoding in 8 bits

distibution of backward jumps length 0.00 % - encoding in 3 bits
64.11 % - encoding in 7 bits
96.05 % - encoding in 8 bits

Practicaily all forward jump instructions processed are for jumps shorter than 256 -
which means that they may be coded in one byte, instead of 2. Such encoding would have
required significant changes in the compiler itself or a poStprocessor to convert intermediate
code appropriately.

The size of the code processed by the interpreter while processing jump forward
instructions was about 9 megabytes, and one-byte encoding of shorter jumps would have saved
processing of 3mb. It may be estimated that, similarly like for the Mac version, the total
dynamic code size of the executed program would have been reduced by this about 10%.

For forward jumps there is also a significant percentage of jump instructions which
lengths may be coded in 2 or 3 bits. This points to the possibility of using 'very short jump'
instructions with opcode directly specyfying jump length. The reduction in the dynamic code
size would not be as high as in the previous case, but still significant.

If any such changes are implemented, the percentage of short jumps should increase,
because their presence in a static code will lead to the overall shortening of it and some jumps
presently over the threshold will became “short™.

30

4, Jumps

Of all conditional jump f i i

) i jump forward instructions processed, 58% had

jgg; il;z;ﬁac\gl;wa:rd Jump instructions this percentage was 33%. Intcrpretaﬁtyer?lé%l af)ggio;i[tli]gga?

P e congi is performed in three steps: first the jump length is obtained fromthe cod

g e ttll?:t 15; g\;aggtr;ccégrglg élf ;me) the program counter is updated. The percentageg

,)t y faster execution of such instructi

gggglgiﬁtoc; ??g;gengl; ;}anlﬂtliobzé fustgea:jnd uﬁdate ﬂtlhe program counter latgg.s’[rfht;}i,ssgz‘;ldigj ;
8 : | be wasted to obtain the jump length from th ith thi

the amount of processing will be indentical for jumps %xec%ned, gjt fecgof(lili a}ije;;lx&igx:s;

condition false no ti i i 3 : A
accesed. me will be wasted to obtain jump length - which will save some memory

31

5. Procedures 32 3. Procedures

5. Procedures.
procedure stack requirements - the PS-
The PS-instruction ‘procedure call’ (APPLY_OP) comprised 4% of all instructions red e PS-test
executed during the test. 12.2% of all procedure calls were for standard functions. The

remaining 87.75 % were calls for user-defined procedures. space total % main % pointer %
Due to the PS-algol machine architecture a procedure may be characterized by 4 0 0 0.00 727 0.15 103943 21.41
characteristics. The first two deal with the number of scalar and pointer parameters a procedure 1 6048 1.25 231117 47.60 37986 782
has been called with. The other two describe how much space on the main stack and on the 2 31874 6.57 55766 11.49 41442 854
pointer stack a procedure requires. 3 27145 3.59 92096 18.97 77450 1595
4 151168 31.14 94199 19.40 24478 5.04
5 48970 10.09 2199 0.45 64873 13.36
6 29732 6.12 4483 0.92 55916 1152
frequency of procedure parameters on call 7 69613 14.34 4329 0.89 71246 14.67
8 73687 15.18] 0.00 324 0‘07
9 25782 531 7 0.00 1 0.00
pars total % main % pointer LA 10 283 0.06 245 0.05 196 0.04
0 10154 21.74 259631 55.57 284196 60.83 n ol i be)
1 221094 47.33 171184 36.6 81968 17.55 general, it can be concluded, the that total stack space require: i
2 126663 27.11 27581 5.90 101015 21.62 4 ancclis 8f words. The p;oce%ge call mechanism employed tfy ps.i?gol ﬁgﬁfﬁﬁ;ﬁi’fgé’ﬁﬁﬁ?
3 9134 1.96 8690 1.86 0 0.00 words for administration. This means, that there is a significant memx i
4 8741 1.87 93 0.02 0 0.00 call. # ory overhead in procedure
5 0 0.00 0 0.00 0 0.00

The following table lists the distribution of the space required by procedures on both
stacks. The link words, 2 for main stack and 5 for pointer stack, are not included. The results
are as received for the S-test.

procedure stack requirements - the S-test

space total % main % pointer %
0 0 0.00 716 0.15 12648 21
1 3 0.00 192517 41.21 31898 6.83
2 1890 0.40 34175 7.32 88880 19.02
3 12273 2.63 119139 25.50 102994 22.05
4 92745 19.85 85136 18.22 22489 481
5 50267 10.76 16961 3.63 54491 11.66
6 104766 22.43 6344 1.36 58690 12.56
7 48113 10.30 11655 2.49 66755 14.29
8 77488 16.59 16 0.00 18379 3.93
9 40538 8.68 7 0.00 2240 0.48
10 2432 0.52 197 0.04 280 0.06

For the PS-test the results received were slightly different - they are listed below.

6. Strings

6. Strings

An operation frequently performed by the PS-machine during the test was string
comparison. PS-instructions which execution involves string comparison are calling various
procedures passing them strings’ pointers and receiving a boolean result. Practically the only
such procedure really used is procedere eq_string, which was called 790390 times (5.9% of all
executed instructions tested strings for equality). The other function used was lt_string, called
58971 times (0.04 % of all instructions).

The eq_string procedure is called with two paramaters - strings' pointers - and returns a
boolean result of string corparison. The algorithm it uses is:

1. if string pointers identical return true

2. if any of them 0 return false

3. compute string lengths

4. if differ return false

5. organize while loop, check strings char-by-char

Some counters were installed in this procedure to obtain detailed characteristics of string
comparison.)

7.45% of comparisons returned a value after trivial checks, before reaching step 3 of the
algorithm. 56.88% comparisons returned after step 4, because of different lengts of compared
strings. At this stage average string length was 10.16 characters.

This left 281,958 string comparisons (35.67% of eq_string function calls) to be
performed by the while loop. At this stage the average lenght of strings to compare was 1.41
characters and, on average, 1.25 characters were compared before obtaining the result.

Of 281,959 string comparisons using the while loop 91.73% were comparisons of
strings length one (i.e single characters). In all, 96.45% of strings compared by the while loop
were of length 4 or less, 2.90% of length 5..8.

These results mean that the string comparison comprises significant percentage of the
PS-machine activities. They suggest also that another approach should be taken to optimize
string comparisons. To reduce an overhead arising from a procedure call, instructions calling
the eq_string procedure should do some preprocessing in-place. If this preprocessing would
have consisted only of checking string lengths, it would have reduced the number of calls to the
eq_string procedure by 64%.

Another possible optimization involves checking the equality of strings done by step 5
of the string comparison algorithm. Because most of the compared strings are of length one
their first characters should be compared before entering the while loop - in over 90% of cases
there will be no need to orgranize and enter the while loop.

The above is true also for many other PS-algol-like machines. In case of the PS-algol
this may be further improved by taking into account a string representation. It starts with a
word containing its length and followed by words containg string characters padded toa word
poundary. This means that for strings we can compare words, not characters. It takes the same
time to compare 2 words, four characters per word, as to compare 2 characters (on computers
with 32-bit memory bus). And comparison of the first word of strings is equivalent to
comparing four characters at once - which would have taken care of 96.45 of all string
comparisons involving presently while loop.

6. Strings 35

If the basic preprocessing of string compari i

I I parison would have included I

gg;l;gar'[l%(;n ((:)f ntf;?:r f(“l)xsl;n v;(l)erld,fc thfe eq ti}:rmg fugction would have been called isr:ibtguct:hfciik%mﬁf
. C me menting this was described in the Macint i :

results obtained in the Macintosh test had shown similar prcdominaix?e%sfhsggzlsollégggzo ;tr;eme

36
7. Heap Traffic

7. Heap traffic

i i - in the PS-test -

ignificant differences between heap traffic in the S-test and in t
the argh n?f)esfl;ecs;\glsed by the first class procedures in PS_—algol._The §-algol t;})]rocedures,
corg iled to run on PS-algol machine are using special return instructions to return the (sipa&e on
heappdynamically. PS-algol procedures can do this only if no block was declared inside them.

The net result of this is seen in an increased usage of the heap.

thePS-test the S-test

in ki 46466 36716

g?eﬁ:pace in lobyres 648229 487628
size in words 10598987 8424075

note: the size, if specified in words, does not include 2 words per item used for the heap
administration.
i i i the types of heap items here
The differences included also the type of heap items (‘
defined as they originate in the PS-machine - by which procedure creates them):

types of heap items for the S-test

item type itemns Doitems size % size av size
9 9581 8276114 98.24 17.72
gfgccﬁd e 4671%6 0.01 545 8‘8(1) 28.88
0 0.00 0 . .
gtﬁ?gédm vee 4 0.00 12019 0.14 3003.2)(5)
real vec 0 0.00 0 0.88 0.00
code vec 0 0.00 0 0. O'OO
S o 8 8'88 8 8:88 0.00
Chilo vee 7 0.00 924 0.01 132.00
fmxi vec 4 0.00 1015 0.01 253.;2
mkstrn vec 9080 1.86 21645 0.26 %.64
£ str 2 5976 1.23 27740 0.33 de4
f str 4 0 0.00 0 o.gg 000
makev_ib_2 16 ?)'% 88 8'00 500
0 X X X
2?@‘;‘22 1 0.00 252 0.00 252.00
makev_pr_2 0 0.00 0 0.00 12'(5)8
fortest 4122 0.85 68368 0.81 1659
cvec_pntrs 4 888 33(1) 888 213
gé‘:élrﬁme 8 0.00 0 0.00 0.88
writer 0 0.00 0 0.00 (5).00
IL_n_pr 12 0.00 60 0.88 00
eIT_Tecs 1 0.00 8 0. 0 0.00
imdesc 0 0.00 0 0.0 X

7. Heap Traffic
types of heap items for the PS-test

item type items pet items size pctsize. av size
procedure 485495 74.90 8118393 76.60 16.72
block 142195 21.94 2330648 2199 16.39
procedure vec 0 0.00 0 0.00 0.00
b vec 4 0.00 12019 0.11 3004.75
real vec 0 0.00 g 0.00 0.00
code vec 0 0.00 0 0.00 0.00
string vec 0 0.00 0 0.00 0.00
cstrc vex 0 0.00 0 0.00 0.00
cfile vec 7 0.00 924 0.01 132.00
cfram vec 4 0.00 995 0.01 248.75
mkstrn vec 9314 1.44 21723 0.20 2.33
fstr 2 5837 0.90 27424 0.26 470
fstr 4 0 0.00 0 0.00 0.00
makev_ib_2 16 0.00 80 0.00 5.00
makev_r_2 0 0.00 0 0.00 0.00
makev_p_2 1 0.00 219 0.00 219.00
makev_pr_2 0 0.00 0 0.00 0.00
fortest 4127 0.64 70768 0.67 17.15

Ccvec_pnirs . 4 0.00 331 0.00 82.75

pushframe 6 0.00 0 0.00 0.60

readr 0 0.00 0 0.00 0.06

writer 0 0.00 0 0.00 0.00

I_n_pr 13 0.00 65 0.00 5.00

err_recs 1 0.00 8 0.00 8.00

imdesc 0 0.00 0 0.00 0.00

The above type statistics does not include heap items created during an initialization
phase. The difference between the S-test and the PS-test in a heap items type frequency is
caused by a significant number of blocks on heap in the PS-test .

The basic difference between the S-test and the PS-test is lack of the first class
procedures in S-algol. Therefore, S-algol programs executing on the PS-algol virtual machine
can use special return instructions which reset the heap top pointer to the value it had before a
subroutine was entered. In this way space on the heap used by an S-algol procedure usually
does not have to be reclaimed by the garbage collector. For PS-algol programs only procedures
which does not have a block inside them can return the heap space this way. The table below
summarizes an extent to which dynamic returns differentiate between execution of this tests

dynamic refurns

the S-test the PS-test
% of heap items 87.72 50.09
% of heap space returned 88.94 50.87
% of procedures 91.56 66.87

% of procedure space 90.53 66.42

37

7. Heap Traffic

ically and for
for the S-test almost 90% of the heap spece were returned dynamic;
the PS lt?::es‘ia:rsxfy %O%, the remaining space had to be reclaimed by the garbage collector -

resulting in higher garbage collection frequency for the PS-test .

inti i i for administration
i rth pointing out that big percentage of heap space is used
urposelst. 1.limwz(:verz&e itcmg size in words is (the S-test) 17.26. To this 2 words art; 1added fgé
?he heap administration. But an average item is a procedure - and of this 17 words 11 are us
for links. So, from 19 words for an item on the heap 13 (70%) are used for administration.

38

8. Garbage Collection

8. Garbage collection

Memory available for the heap was limited to 1 megabyte and kept constant during tests.
The main characteristics received were as follows:

the S-test the PS-test
no of collections 5 31
time 147 87.7
time/collection 2.94 2.83
% of active space 22.29 21.93
itemns encountered 66,653 406,812
items per collection 13,306 13,113
mark time per collection 0.42 0.37
passl time/collection 1.43 1.41
pass2 time/collection 1.11 1.04

So, the difference in dynamic returns resulted in six times as many garbage collections
in the PS-test as in the S-test . All other main characteristics were similarly changed. Active
heap space is defined as a ratio of occupied heap space after and before garbage collection, It
was identical in both cases, which is a further proof that first class procedures tend to keep heap
space for no reason at all. Looking at values of the garbage collection characteristics per number
of garbage collections it can be concluded, that garbage collections were practically identical for
both tests - the only difference being that for the PS-test six times as many garbage collections
were required to perform identical task - the compilation of the PS-algol compiler.

To obtain more details about the garbage collection some additional counters were
installed. The counters are updated while garbage collection procedures are performing their
job. This means that the number and distribution of items counted in this way will be different
than in heap traffic analysis. There each item was counted once (during creation) while here any
itern may be counted many times - if it lives through subsequent garbage collections.

39

8. Garbage Collection
8.1 Type of item and its activity

To find out which item types are active in the heap, types of active and inactive items
were counted during the garbage collection.

itemns type and activity
the PS-test
type % active items % total %inactive %ototal
trin 22.17 5.06 2.99 2.30
%lc £ 0.20 0.05 0.00 0.00
structure 72.03 16.46 098 0.76
potr vec 1.87 0.43 0.00 0.00
clos vec 0.40 0.09 0.00 0.00
ib vec 0.20 0.05 0.01 0.00
real vec 0.00 0.00 0.00 0.00
frame 1.30 0.30 96.02 74.08
code vec 1.83 0.42 0.00 0.00
image 0.00 0.00 0.00 0.00
the S-test

type % active itermns % total %inactive ototal

trin 22.37 5.26 17.70 13.54
1sile £ 0.19 0.05 0.01 0.01
structure 7243 17.03 6.25 478
potr vec 1.79 0.42 0.01 0.01
clos vec 0.38 0.09 0.00 0.00
ib vec 0.19 0.05 0.04 0.03
real vec 0.00 0.00 0.00 0.00
frame 0.89 0.21 75.97 58.11
code vec 1.76 0.41 0.02 0.02
image 0.00 0.00 0.00 0.00

From the above data it can be concluded that items active consists predominantly of
structures and strings and inactive items are procedures.

A coefficient describing activity of any given type of items may be cpnstructed by taking
a ratio of frequencies an item of this type may be encountered among active 1tems and among all
items. For example for the S-test strings comprised 18.8% of all items and 22.37% of active
items - so the coefficient is 1.19. Structures, while comprising 22% of items encountered
during the garbage collection found to be active items in 72% of cases - 3.3 times over their
share if uniform distribution would have been assumed.

8. Garbage Collection

activity coeff the S-test the PS-test
string 1.19 30
file 33 4.0
structure 33 4.2
potr vec 43 4.4
closure vec 4.2 4.4
ib vec 24 40
frame 0.015 0.017
code vec 4.2 4.4

From the above coefficients we can see that, upon encoutering a structure while garbage

collecting, its probability of being active is like 3.3:1, while for a frame (procedure) like
0.015:1 (for the S-test).

8.2 Items activity and age

For each item on heap there are 2 bits unused in its header. This two bits were used to
mark the time spend by an item on the heap. During each garbage collection one is added to this
bits if the item is active. If both bits are set (value = 3) no furter updating takes place. In this
way it is possible to find out (with obvious limitations) how much time items are spending on
heap (how many garbage collections they have lived through).

age of active and inactive objects
the PS-test the PS-test without first 3 garb.colls
age activeiterns inactive items active items inactive iterns
0 4932 312628 3406 279289
1 3631 1234 2505 1166
2 3617 1 2949 1
3 80763 6 80873 6
the S-test the S-test without first 3 garb.colls
age activeitems inactive items active items inactive items
0 3793 50886 370 19706
1 3534 100 681 50
2 3336 0 1185 0
3 5004 0 5004 0

From the above data it is obvious that in the PS test items that were active had, at the
same time, high probability of staying on heap for a longer time, while inactive items were
created recently, between subsequent garbage collections. In case of the S-test the tendency of
active data to stay on heap is not so strongly marked - only 5 garbage collections took place and
there was not enough many of them for the active items to reach age 3. (After first 2 garbage
collection no item can reach age 3, so for the S-test only 3 garbage collections were ageing
items to age 3, while during the PS-test - 20) Even with this, it shows clearly that inactive items
were practically always the ones created recently.

41

probability of livin
during a given garb:

reaching age
performed, in which durin

8. Garbage Collection

To find out the picture without the
collections another test was performed with

Using mechanisms installed so far in th
dependecies between age and type of active items.
limited to 4 values, all items living through more
3 - and 3 is ageing limit. To remove
g first three garbage collec
The tables contain results of 4 tests: 2 for the S-test s
two for the PS-test .

age

string

file

structure

vec of pnirs

vec of procs

vec of int or bool
vec of reals
frame

code vector
image

string

file

structure

vec of ptrs

vec of procs

vec of int or bool
vec of reals
frame

code vector
image

g through subsequent
age collection were created recent]

8.3 Active items, their type and age

age of active items by types
the PS-test

0 i 2
1092 791 788
7 6 6
2978 2689 2678
56 56 36
12 12 12
7 6 6
0 0 0
725 16 16
55 55 55
0 0 0

distortion introduced by the first three garbage
out counting active and Inactive items during the
first three garbage collections. Comparison of results shows beyond any doubt - even for the S-
test , with only two collections taken into account - that for an item once active there is a high
garbage collections . At the same time iterns inactive
y - before this and the previous one.

e PS-algol interpreter we can find out
Similarly like in the previous cases age is
than three succesive garbage collections
boundary affects additional test was also
tions no counting of items age took place.
(with and without boundary effects) and

3

17930
168
58606
1568
336
168

0

447
1540
0

the PS-test without first three garbage colletions

779 593

0 0
1963 1912
0

0

1

0
663
0

0

OO OQ

682
0
2266

COmOOOC

17930
168
58606
1568
336
168

0

447
1540
0

42

8. Garbage Collection

age

string

file

structure

vec of pntrs

vec of procs

vec of int or bool
vec of reals
frame

code vector
image

age

string

file

structure

vec of pntrs

vec of procs

vec of int or bool
vec of reals
frame

code vector
image

0
839
6
2744
56
12
6
0
75

35
0

the S-test

1
771
6
2612
56
12
6
0
16

55
0

2

739
6
2446
36
12

6

6

16
55

0

3

1156
12
3546
112
24
12

0

32
110
0

the S-test without first three garbage colletions

0

70
0
279

OO OOOD

i

2
221
964

DODDOOO

1156

3546
112
24
12

32
110

43

8. Garbage Collection

8.4 Position of active items on heap

‘While monitoring information about location on heap of active items was gathered.
Heap space was divided into 16 segments and a number of active items in each segment was
counted. Segment number 0 was at the bottom of the heap space, segment number 15 at the top

location and no of items

the PS-test the S-test
0 837 135
1 5116 825
2 48375 6842
3 34214 4597
4 223 253
5 2717 227
6 265 300
7 330 286
8 294 318
9 329 158
10 335 108
11 308 288
12 204 329
13 347 341
14 498 332
15 991 328

Each of 16 heap segments represents 6.25% of heap space. Remembering that for both
tests the active heap space was 22% it is easy to explain why so many active items are gIoupm;gf
in lower 4 segments. The garbage collection slided active items to lower regions and, because 1
the item is active it is at the same time long-living, they stayed there for a long time. This
tendency is less visible in the S-test , due to the smaller number of garbage collections
performed and bigger masking effects of inactive item distribution during the first garbage

collection, when - lacking any history - item distribution was probably more homogenous.

8.5 Heap size and garbage collection.

To find out how garbage collection characteristics depend on heap size the S-test and the
PS-test vsgare executed v%ith d%fferem (but constant during the execution ofa test)' heap sizes.
Table ‘heap size and garbage collection’ summarizes thp resultg. The times of test's execunfon
and garbage collection shows extend of vagaries of Unix user time clock - running the te_stth :\)lrl
heap size 10x128kb times user process time received varied from 1800 to 5600 seconds wi
other characteristics unchanged.

9. Summary and Disclaimer

9. Summary and disclaimers

This project proves that it is possible to design and implement a monitor under rather
adverse conditions and have it running without paying much (in terms of computer resources)
for its use. Information received is of such quality that enables to spot some tuning possibilities
in an extremely well tuned machine - after all this virtual machine is in use for some years and
close contact with it enabled me to appreciate the degree of tuning done so far.

However, after seeing the results obtained so far some misconceptions may arise and, to
avoid this, some warnings are in order.

The results received reflect as much virtual machine performance as the specific test being
used, C-compiler quality, underlying micropocessor and system architecture - therefore at each
step we should be aware which is which. But this does not mean that the results should be
discarded as beeing too specific - or taken wholly in good faith because all these factors should
balance themselves in a long run. Simply running a several additional programs to have
‘another test' would not have helped also - benchmarking and benchmark programs are - at best
- tricky things. The only good test is to run some real applications - and they are (almost by
definition) very application dependent and rather scarce at this moment.

The monitor performance is satisfactory - but one should keep in mind that the numbers
describing its time requirements do not include measuring distributions (of jump lengths, heap
itemn sizes and so on). Analysis of distributions is costly (up to 50% of test's time) and cannot
be done in a routine way. Incremeting countiers (especially by 1) is cheap and such counters
will give us averages - in many cases enough, but not always satisfying.

Costs of interpretating the code. Although the main interpreter loop (performing the fetch-
decode cycle for instructions) used only 17% of test's time, in fact main costs of interpeting are
spread (hidden) among instructions executions. Because the interpreter is written in C no
explicit control of register assignments is possible - which is usually a key factor to any speed
up. The 'register' declarations’ in C code do not change the fact that on each instruction entry
the virtual machine registers are loaded into the processor registers. And, because most of the
instructions are short ones, this overhead is at least as big as feich-decode loop - to say nothing
of the fact that next instruction interpreted does not know what the last one had left in registers.

On the other hand, this virtual machine works on many different architectures and close
binding to any one of them would have been counterproductive - and lack of portability can cost
heavily in software engineering.

46

10. Acknowledgements

10. Acknowledgments.

i s go to Dr. John Hurst from the Australian National University and
Prof. 11;/21 ?&n(friri:oﬁlaf:‘lfm %t. Andrews University for o;ganizmg my stay in Scoﬂancll).ga;‘;ot;li
like to thank also all members of the PISA group, especially Alfred Brown and aﬁm&l e :l (())1
patient and numerous explanations about the intricacies of the PS-algol system e FS - %he
machine. Thanks to Dr. John Hurst this report's final appearance is much better than
submitted one. Blame for any remaining errors rests on me - only.

References
PPR-11-85 PS-algol Abstract Machine Manual
PPR-12-85 PS-algol Reference Manual
Kane, G., Hawkins, D., and Leventhal, L.

68000 Assembly Language Programming
OSBORNE/McGraw-Hill, 1981

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,
Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,
Glasgow G12 8QQ
Scotland.

or
The Secretary,
Persistent Programming Research Group,
Department of Computational Science,
University of St. Andrews,
North Haugh,
St. Andrews KY16 958
Scotland.

Books

Davie, AJ.T. & Morrison, R.
"Recursive Descent Compiling”, Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.)
"Databases”, Pergammon Infotech State of the Art Report, Series 9, No.8, January 1982.
(535 pages).

Cole, AJ. & Morrison, R.
"An introduction to programming with S-algol”, Cambridge University Press, Cambridge,
England, 1982.

Stocker, P.M., Atkinson, M.P. & Grey, P.M.D. (eds.)
"Databases - Role and Structure”, Cambridge University Press, Cambridge, England, 1984.

Published Papers

Morrison, R.
"A method of implementing procedure entry and exit in block structured high level
languages". Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z.
"The Graffiti graphics system", Proc. of the DECUS conference, Bath (April 1978), 5-10.

Atkinson, M.P,
"A note on the application of differendal files to computer aided design”, ACM SIGDA
newsletter Surnmer 1978,

Amn"slgrrggraMm.Pﬁ ing Languages and Databases", Proceedings of the 4th International Conference
on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78, 408-419. (A revised
version of this is available from the University of Edinburgh Department of Computer
Science (EUCS) as CSR-26-78).

Atkinson, M.P. o)
"Progress in documentation: Database management systems in library automation and
information retrieval”, Journal of Documentation Vol.35, No.1, March 1979, 49-91.

Available as EUCS departmental report CSR-43-79.

Gunn, HI.E. & Morrison, R.)
"On the implementation of constants", Information Processing Letters 9, 1 (July 1979), 1-4.

Atkinson, M.P.)
"Data management for interactive graphics”, Proceedings of the Infotech State of the Art
Conference, October 1979. Available as EUCS departmental report CSR-51-80.

Atkinson, M.P. (ed.))
"Data design", Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R. .))
"Low cost computer graphics for micro computers", Software Practice and Experience, 12,

1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.)
"PS-algol: An Algol with a Persistent Heap”, ACM SIGPLAN Notices Vol.17, No. 7, (July
1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P. .
"Nepal - the New Edinburgh Persistent Algorithmic Language"”, in Database, Pergammon
Infotech State of the Art Report, Series 9, No.8, 299-318 (January 1982) - also as EUCS
Departmental Report CSR-90-81.

Morrison, R.)
"S-algol: a simple algol”, Computer Bulletin II/31 (March 1982).

Morrison, R.)
"The string as a simple data type", Sigplan Notices, Vol.17,3, 46-52, 1982.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with P);.rsistcnt Programming", presented at CREST course UEA, September
1982, revised in "Databases - Role and Structure”, see PPRR-8-84.

Morrison, R.]
OIT%"I‘owa.rds simpler programming languages: S-algol”, IUCC Bulletin 4, 3 (October 1982),

130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Problems with persistent programming languages”, presented at the Workshop on
programming languages and database systems, University of Pennsylvania. October 1982.
Circulated (revised) in the Workshop proceedings 1983, see PPRR-2-83.

Atkinson, M.P.) _) N
"SDoata management", in Encyclopedia of Computer Science and Engineering 2nd Edition,
Ralston & Meek (editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.])
"Algorithms for a Persistent Heap", Software Practice and Experience, Vol.13, No.3,
259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"CMS - A chunk management system", Software Practice and Experience, Vol.13, No.3
(March 1983), 273-285. Also as EUCS Departmental Report CSR-110-82.

Atlkdinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming”, presented at the DEC workshop on
Programming Languages and Databases, Boston, April 1983.

Atknson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"An approach to persistent programming”, The Computer Journal, 1983, Vol.26, Nod,
360-365 - see PPRR-2-83.

Atkinson, M.P,, Railey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming”, 10th Australian Computer Conference,
Melbourne, Sept. 1983, 70-79 - sec PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.
"High level language support for 3-dimension graphics”, Eurographics Conference Zagreb,
North Holand, 7-17, Sept. 1983, (ed. P.LW. ten Hagen).

Cockshott, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Momison, R.
"POMS : a persistent object management system", Software Practice and Exerience, Vol.14,
No.1, 49-71, January 1984,

Kulkarni, K.G. & Atkinson, M.P.
"Experimenting with the Functional Data Model”, in Databases - Role and Structure,
Cambridge University Press, Cambridge, England, 1984.

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough”, Foundations of Software Technology and
Theoretical Computer Science (ed. M. Joseph & R. Shyamasundar) Lecture Notes in
Computer Science 181, Springer Verlag, Berlin (1984).

Atkinson, M.P., Boccea, 1.B., Elsey, T.J., Fiddian, N.J., Flower, M., Gray, P.M.D.
Gray, W.A., Hepp, P.E., Johnson, R.G., Milne, W., Norrie, M.C., Omololu,
A.O., Oxborrow, E.A., Shave, M.J.R., Smith, A.M., Stocker, P.M. & Walker, J.
"The Proteus distributed database system", proceedings of the third British National
Conference on Databases, (ed. J. Longstaff), BCS Workshop Series, Cambridge University
Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R.

"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985) - see
PPRR-9-84.

Morrison, R.,Bailey, P.I., Dearle, A., Brown, P. & Atkinson, M.P.
“The persistent store as an enabling technology for integrated support environments", 8th
International Conference on Software Engineering, Imperial College, London (August
1985), 166-172 - sec PPRR-15-85.

Atkinson, M.P. & Morrison, R.
“Types, bindings and parameters in a persistent environment", proceedings of Data Types
and Persistence Workshop, Appin, August 1985, 1-24 - see PPRR-16-85.

Davie, AJ.T.
"Conditional declarations and pattern matching", proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

Krablin, G.L.
“Building flexible multilevel ransactions in a distributed persistent environment, proceedings
of Data Types and Persistence Workshop, Appin, August 1985, 86-117 - see PPRR-16-83.

Buneman, O.P.
"Data types for data base programming”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.
"Addressing mechanisms and persistent programming", proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 363-383 - see PPRR-16-85.

Norrie, M.C.
"PS-algol: A user perspective”, proceedings of Data Types and Persistence Workshop,
Appin, August 1985, 399-410 - sce PPRR-16-85.

Owoso, G.O.
"On the need for a Flexible Type System in Persistent Programming Languages”,
proceedings of Data Types and Persistence Workshop, Appin, August 1985, 423-438 - see
PPRR-16-85.

Morrison, R., Brown, A.L., Bailey, P.J., Davie, A.L.T. & Dearle, A.
“A persistent graphics facility for the ICL PERQ", Software Practice and Experience,
Vol.14, No.3, (1986) - see PPRR-10-84.

Atkinson, M.P. and Morrison R.
"Integrated Persistent Programming Systems", proceedings of the 19th Annual Hawaii
International Conference on System Sciences, January 7-10, 1986 (ed. B. D. Shriver), vol
IIA, Software, 842-854, Western Periodicals Co., 1300 Rayman St., North Hollywood,
Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.
“A Persistent Information Space Architecture”, proceedings of the 9th Australian Computing
Science Conference, January, 1986 - see PPRR-21-85.

Kulkami, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.1, (1986)

38-45.

Buneman, O.P. & Atkinson, M.P.
“Inheritance and Persistence in Database Programming Languages"; proceedings ACM
SIGMOD Conference 1986, Washington, USA May 1986 - see PPRR-22-86.

Morrison R., Dearle, A., Brown, A. & Atkinson M.P.; "An integrated graphics programming
environment", Computer Graphics Forum, Vol. 5, No. 2, June 1986, 147-157 - see
PPRR-14-86.

Atkinson, M.G., Morrison, R. & Pratten G.D.
"Designing a Persistent Information Space Architecture”, proceedings of Information
Processing 1986, Dublin, September 1986, (ed. H.J. Kugler), 115-119, North Holland
Press.

Brown, A.L. & Dearle, A.
“Implementation Issuses in Persistent Graphics", University Computing, Vol. 8, NO. 2,

(Summer 1986) - see PPRR-23-86.

Internal Reports
Morrison, R.
§-Algol language reference manual”, University of St Andrews CS-79-1, 1979,

Bajlekf, P.J,, Maritz, P. & Morrison, R.
The S-algol abstract machine”, University of St Andrews CS-80-2, 1980.

Atkinson, MLP., Hepp, P.E., Ivanov, H., McDuff, A., Proctor, R. & Wilson, A.G.

"ED " . A
Septgr}xjgeli i'ggelrfnce manual”, Department of Computer Science, University of Edinburgh,

Hepp,{f.. and Norrie, M.C.

"RAQUEL: User Manual", Departmi i

Univarsity of Baabunan P ent of Computer Science Report CSR-188-85,
Norrie, M.C.

"The Edinburgh Node of the Proteus Distributed Datab: "
Computer Science Report CSR-191-85, University of Edinbu:;;l.syswm + Department of

Theses

The following Ph.D. theses have bee i
e foll gsS e givegye n produced by members of the group and are available

W.P. Cockshott
Orthogonal Persistence, University of Edinburgh, February 1983,

K.G. Kulkarni

Evaluati
E(\i'i'(_ln gs?g(;i {)9fSI;1mcnonal Data Models for Database Design and Use, University of

P.E. Hepp

A DBS Architecture Supporting Coexisti iversi
of Edinaan a5, pporting Coexisting Query Languages and Data Models, University

G.D.M. Ross]
Virwal Files: A Framework for Experimental Design, University of Edinburgh, 1983.

G.0. Owoso

Eﬁfﬁb%fgﬁ?fggz? and Manipulation in Persistent Programming Languages, University of

Persistent Programming Research Reports

This series was started in May 1983. The following list gives those produced and those
planned plus their status at 15th December 1986. Copies of documents in this list may be

obtained by writing to the addresses already given.

PPRR-1-83 The Persistent Object Management System -
Atkinson,M.P., Chisholm, K.J. and Cockshott, W.P.
PS-algol Papers: a collection of related papers on PS-algol -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R.

PPRR-2-83

The PS-algol reference manual -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,

K.J. and Morrison, R

PPRR-4-83

PPRR-5-83 Experimenting with the Functional Data Model -
Atkinson, M.P. and Kulkarni, K.G.

A DBS Architecture supporting coexisting user interfaces:
Description and Examples -
Hepp, P.E.

PPRR-6-83

EFDM - User Manual -
K.G.Kulkarni

PPRR-7-83

Progress with Persistent Programming -
Atkinson,M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R.

PPRR-8-84

Procedures as Persistent Data Objects -
Atkinson, M.P.,Bailey, P., Cockshott, W.P., Chisholm,

K.J. and Morrison, R.

PPRR-9-84

PPRR-10-84 A Persistent Graphics Facility for the ICL PERQ -
Morrison, R., Brown, A L., Bailey, P.J., Davie, AJ.T.

and Dearle, A.
PPRR-11-85 PS-algol Abstract Machine Manual
PPRR-12-86 PS-algol Reference Manual - third edition

PPRR-13-85 CPOMS - A Revised Version of The Persistent Object
Management System in C -
Brown, A.L. and Cockshott, W.P.

PPRR-14-86 An Integrated Graphics Programming Environment - second
edition -
Morrison, R., Brown, A.L., Dearle, A. and Atkinson, M.P.
PPRR-15-85 The Persistent Store as an Enabling Technology for an
Integrated Project Support Environment -

Morrison, R., Dearle, A, Bailey, P.J., Brown, A.L. and
Atkinson, M.P.

PPRR-16-85 Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R.

£1.00

£2.00

Presently no longer available

£1.00

£1.00

£1.00

£2.00

£1.00

£1.00

£1.00

£2.00

£2.00

£1.00

£1.00

£15.00

PPRR-17-85

PPRR-18-85

PPRR-19-85

PPRR-20-85

PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PPRR-26-86

PPRR-27-87

PPRR-28-86b

PPRR-29-86

PPRR-30-86

PPRR-31-86

PPRR-32-87

PPRR-33-87

PPRR-34-87

PPRR-35-87

Database Programming Language Design -
Atkinson, M.P. and Buncn{l;an, O.lgf1

The Persistent Store Machine -
Cockshott, W.P.

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrisor%, Ry

Building a Microcomputer with Associative Vi mory
Cockshott, W.P. aive Vil Me)

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D.

Inheritance and Persistence in Database Programmin
Languages - g
Buneman, O.P. and Atkinson, M.P.

Implementation Issues in Persistent Graphics -
Brown, A L. and Dearle, A.

Using a Persistent Environment to Maintai ibli i
g @ Persist aintain a Bibliographic
Cooper, R.L., Atkinson, M.P. & Blott, S.M.

Exception Handling in a Persistent Programming L -
Philbrow, P & Atkinson M.P. & § anguage

A Context Sensitive Addressing Model -
Hurst, AJ.

A Domain Theoretic Approach to Higher-Order Relati -
Buneman, O.P. & Ochari, A. 5 erRetatons

A Persistent Store Garbage Collector with Statistical Facilities -
Campin, J. & Atkinson, M.P acties

Data Types for Data Base Programming -
Buneman, O.P. £

An Introduction to PS-algol Programming -
Carrick, R., Cole, AJ. & Morrison,gR.

Polymorphism, Persistence and Software Reuse in a
Strongly Typed Object Oriented Environment -
Morrison, R, Brown, A, Connor, R and Dearle, A

Safe Browsing in a Strongly Typed Persistent Envi -
Dearle, A and Brown, A.L)Tp nvironment

Binding Issues in Database Programming -
Atkinson, ML.P., Dearle, A., Cooper, R.L. and
Abderrahmane, D.

A Persistent Architecture Intermediate Language -
Dearle, A.

£3.00

£2.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

PPRR-36-87

PPRR-37-87

Persistent Information Architectures -

Atkinson, M.P., Morrison R. & Pratten, G.D.

PS-algol Machine Monitoring -
Loboz, Z.

£1.00

£1.00

