University of Glasgow

Department of Computing Science

Lilypank Gardens
Glasgow G12 8QQ

University of St. Andrews
Department of Computational Science

North Haugh
St Andrews KY16 9SS

An Introduction to
PS-algol Programming

Persistent Programming
Research Report 31

An Introduction to PS-algol Programming
Second Edition
Persistent Programming Research Group

Ray Carrick
Jack Cole
Ron Morrison

Department of Computational Science
University of St. Andrews
North Haugh
St. Andrews KY16 9SS

Persistent Programming Research Report 31

CONTENTS

Simple Programs Using The Write Clause.1
Initialisation And Assignment Clauses. rerene
The For And While Clauses.

If Clauses.

Strings.

Vectors.

The Case Clause.

Some Important Odds And Ends.
Procedures.

10 Structures.

11 File Input And Output.

12 Some Complete Programming Examples.

Nelle i N WU IR -NR OV R S I

Advanced Topics

13 Graphiecs. . 83
14 Persistent Data. . 93
Appendices

1 Language Design Methodology. ... 99
2 ASCIICodes. .. 101
3 Reserved Words. .. 102

4 Standard Functions. ... 103

INTRODUCTION

PS-algol is the third member of a family of languages 1o be designed using a methodology based on the
three semantic principles attributed to Strachey, outlined in Appendixl. The first, although we did not
recognise it at the time, was a language invented by David Turmer called algol-s and was used by him and
Ron Morrison as the basis of a Senior Honowurs project at St Andrews University. David Turner
subsequently took up an appointment at the University of Kent at Canterbury and the second language,
S-algol was developed by Ron Morrison and Pete Bailey using the main ideas of algel-s. The third
language is PS-algol and it incorporates the main concepts of both algol-s and S-algol as well as the
concept of persistence developed at the University of Edinburgh.

The Data Curator project began in November 1979 founded by Malcolm Atkinson at the University of
Edinburgh. Malcolm was joined by Ken Chisholm and Paul Cockshott and work began on the theoretical
basis of persistence, its integration into a programming language and a support system for persistent data.
After some dissatisfaction with attempis to integrate persistence with Algol 68 and Pascal contact was
made with Ron Morrison and Pete Bailey in St Andrews.

In 1983, Ken Chisholm left the project and Malcolm Atkinson spent a year (August 1983-July 1984) at
the University of Pennsylvania, USA. On his return he took up the second Chair of Computing Science at
the University of Glasgow. Ron Morrison spent July 1983 to December 1983 at the Australian National
University, Canberra and on his refurn was joined by Alfred Brown and Alan Dearle in St Andrews.

In 1983 ICL began coliaboration with us on Persistent Programming at both Universities funding some of
the work and setting up an absorber project to build compilers for P$-algol on the ICL machines - initially
the ICL 2900 series. Late in 1984 the combined team were notified that they had been awarded funding for
the PISA project, which was aimed at, among other things, further developing PS-aigol.

In 1985 Paul Cockshott left the project but the group expanded with Ray Carrick and Richard Connor
joining St. Andrews and Richard Cooper, John Livingstone and Douglas McFarlane joining the project at
Glasgow. At this time also, Ron Morrison was appointed 1o the Chair of Software Engineering at the
University of St. Andrews.

Work is currently continuing in a wide variety of areas, including: type sysiems, an interactive persistent
enviroment, developing a stable store mechanism, a study of concurrancy issues, database applications,
program development tools and architectures o support a persistent information space.

Peter Buneman
Chris Barter
Ken Chisholm
Paul Cockshott
Tony Davie
John Hurst
Larry Krablin

Present Team Members

University of Glasgow University of St. Andrews ICL
Malcolm Atkinson Ron Morrison Graham Pratten
Richard Cooper Pete Bailey Nick Capon
Jack Campin Alfred Brown John Robinson
John Livingstone Ray Carrick Malcolm Jones
Douglas McFarlane Richard Connor John Scott
Paul Philbrow Al Dearle

Associates

1 SIMPLE PROGRAMS USING THE WRITE CLAUSE

Writing correct programs is a lot simpler if you use a good programming language. To show you how
easy it can be in PS-algol we will write our first complete program straight away.

write "Thisisa PS-algol program.”
The effect of this program is to print out the line of text
This is a PS-algol program.

Although it must be admitted that this is not very exciting, there are a lot of things about PS-aigol
programming that we can leam from it. First of ali the word write is a command to the computer to print
out the value of the expression (or, as we shall see shordly, perhaps the values of a list of expressions)
that follows it. In this case the expression to be printed is

"This is a PS-algol program.”

This particular expression is an example of a string literal. A string is one of the types of daga we can
use and manipulate in a PS-algol program. A string literal is a particularly simple sort of
expression being just an ordered collection of characters including spaces and punctuation marks and indeed
almost any other character you can type from your keyboard. A string literal must always be written in
quotes as shown above. This is to enable the compiler to distinguish it from other types of literal which
we do not wish to regard as strings.

Thus, for example, 156 is an integer literal but "156" is a string literal. The reason for making this
distinction will become clear later. If you want to include a quotation mark " inside a string this
causes a slight problem, since it will be mistaken for the end of the string. We overcome this difficulty
by writing an apostrophe followed by a quotation mark '* side by side if we want the quotation mark
inside the string. The apostrophe is a special symbol as we shall see later. If you want to use an
apostrophe itself in a string you must type ' ', that is, two apostrophes, side by side.

The PS-algol compiler always evaluates expressions following the write command before printing
them. The resulting value of a string literal is particularly simple being just the string itself. The
quotation marks are stripped off by the compiler when the program is read into the computer. This
explains why the output from the program is

This is a PS~algol program.
rather than
"This is a PS-algol program.”

One final point about our first program. The word write has been printed in bold type. This is to
emphasise that it is a special word that has a known meaning in PS-algol. Such a word is called a reserved
word and is one of a whole list of reserved words that you will learn in the rest of this book. We will
always print reserved words in bold type, program text in italic and output from programs in a
fixed spaced font since this makes the program easier to read. When you write programs it is
good practice to underline reserved words in your written copy. However when you type programs
into the computer you don't need any of this formatting, it's simply to help in this book.

page 1

S

For our second example we will take
write 3%¥2+5-7
The spaces are optional and the computer will respond by printing
4
The reason for this is that the expression following the write command is an integer expression and this
is evaluated before printing the result. The asterisk "' indicates multiplication and is used to avoid
confusion between the usual multiplication sign and the letter x. This is common practice in
computing and is a comsequence of poor printing facilities on early computers which had no
multiplication sign. Note that if we had written
write "3*245-7"
the computer would have responded by printing
3 *x2+5~7
since we would be asking it to print a string Hieral,
We mentioned before that we could follow the write command with a list of expressions. To form
such a list we simply write down the expressions separated by commas. It should now be obvious
that the program
write 3+4-9, 3%2 45§
will produce the output

-2 11

since the list contains the two expressions 3 +4-9 and3*2 + 5 both of which are evaluated
separaiely before printing.

It is not necessary for each of the expressions in a list to be of the same type. It is good programming
practice to make your resulis as readable as possible. Thus we could write the program

write "3+2%6=",3+2%6¢
giving the output

3+2 * 6 =15
since the first expression is a string literal and the second an integer expression. You may have
started wondering if the answer to the above example is 15 or 30 depending on the order in which you do
the arithmetic. For the moment we will say that the order is the same as you would do it in ordinary
arithmetic but we will come back to this point in a later chapter. In the meantime if you are in any
doubt you can use brackets to make the meaning clear. Thus

(3*%2)+(4%4)
has the same value as

3*24+4%4
but not the same as

3*¥(2+4)%4

page 2

As another example of mixing expressions consider the program
write "The square of 27 is”, 27 * 27, " and its cube is *, 27 * 27 * 27, ".*
You should now understand why the result printed is
The scquare of 27 is 729 and its cube is 19683.
‘We do not have to stick to integers in doing arithmetic. If we write
write (7.8*%9.2+36)/1.2
we will obtain the result
62.8
We have used here the division sign which, in computing, is the oblique stroke /. The numbers used,
all of which have a decimal point in them, are called real numbers to distinguish them from the integers
which do not have a decimal point but only an implied one after their rightmost digit. Thus
187
is an integer according to the definition but
187.0 and 187.

are both real numbers. A real number must always start with a digit. Thus the fraction 1/, mast be
writien as 0.5 and not just .5.

You are allowed to mix integers and real numbers in an expression but if you do the answer will
always be given as a real number. Thus

write 5 ¥27/12

will give the result
112.5
and
write 6 *27/1.2
will give the result
135.0

‘When we spoke about integer arithmetic earlier on, we deliberately avoided using the division
operator because it is not always obvious what the result should be. If we divide 4 by 2 then the angwer is
2 but if we divide 5 by 2 then the exact answer is 2.5 if we are working in real arithmetic, or 2 with
remainder 1 if we are working in integers. Computers are stupid things and we have to make clear
distinctions in cases like this to be quite clear what we mean. To be fair to computers, some haman
beings have the same problem!

We make the sitnation unambiguous by insisting that the division operation, when we use /. will
always have a real result.
Thus 772 will have the result 35

and 6/2 will have the resuit 3.0

page 3

both answers being real numbers. If we had written it as
Recognising that sometimes we do want to do inieger arithmetic with integer answers we introduce 1w new write3+2,"n", 5*7
operators div and rem which work as follows
the output would have been
9 div4 gives the integer result 2 which is the integer result of dividing 9 by 4 5
and rem 4 gives the integer result 1 that is, the remainder on division of 9 by 4. 35
These new operators can be used in integer expressions in exactly the same way as the other arithmetic At this stage in leaming to program this probably seems a clumsy way to control output but we will see later
operators. Note that both div and rem are reserved words. that it is part of a powerful and flexible system.
The following example uses div and rem 10 converi a given number of days to the corresponding number of
weeks and days.
write 278, “daysis”, 278 div 7, "weeksand ", 278 rem 7, " days.”
will output Exercises 1
278 days is 39 weeks and 5 days. 1.1 Write a program to print your name and address as you would write it on an envelope.
To finish off this chapter we will give one more example of a write clause using a string literal, The program 1.2 ‘Write a program to convert 584 ounces into pounds and ounces. Your output should not just be two
numbers but a statement that the given number of ounces is equal to so many pounds and so many ounces.
wTite
" Mary had a litdle lamb 1.3 In this chapter you have learned three reserved words. What is meant by a reserved word and what are the three
Its fleece as black as soot, reserved words you have learned ?
And everywhere that Mary went, . .
Its soory foot it pus.” 1.4 The expressions you have learned so far are of type string, integer and real. What are the types of the
following expressions and what are their values?
will produce the output @ 3+2*6
(i) "3+2*6"
Mary had a little lamb, (m) 5'4.* 64+23%37
Its fleece as black as soot, (iv) 8div3+15rem6
And everywhere that Mary went, (V? 6+8 /2.
Its sooty foot it put. vi) (-9)div2
The poem is spaced out in lines like this because when the program is typed at a computer terminal, a key giving 1.5 Write a program to print on two lines the statements
anew line has to be pressed and an internal character corresponding to this new line is stored away with the string The square of 24 is 576
itself. Note also that in order to place the output nearer to the centre of the page, the opening quote was put over at The square of 31 is 961 -
the left margin. This took up one character itself so, to give the same number of spaces before each line in the Your program should only use the word write once and should calculate the two squares itself.

actual output, we put the opening M one space further across in the first line. We could have avoided this
particular difficulty by typing the initial quote followed by a new line immediately but this would have left an
extra blank line before the first line of the poem.

In all the previous examples the output generated by different expressions in a list continued on the same line. To
give the user fuller control over the layout of output on the printed page we introduce a new prini line
convention. In addition to being able to get new lines as in the above example you can also get a new line by
typing 'n, that is, the apostrophe character followed by ann, as part of any string literal in the write clause.

To illustrate this point consider the program

write 3+2, 5*%7

with output

page 4

page 5

Solutions to Exercises 1

1.1 write ” Professor AJ.Cole,
“Inisheer™,
Barnyards,
Kilconquhar,
FIFE."

Note the apostrophe, quote symbols around the name of the house appear in the output as single quotes. Why has
the name of the professor not been written above the address? How could you overcome this easily? (See "Mary had
a little lamb™).

1.2 write 584, " ounces is equal to *, 584 div 16, "pounds and ",
584 rem 16," ounces”

Note that although that we have run over to a new line in writing the program, the output will all appear on the
same line since there are no new line symbols inside the string literals and we have not used the 'n symbol. The
output will be

584 ounces is equal to 36 pounds and 8 ounces

1.3 Areserved word is 2 word which has a special meaning in the PS-algol language. Reserved words must only
be used in a program when they have the intended meaning unless they happen to be part of a string literal
when their fixed meaning is ignored. The three reserved words we have met so far are write, div and rem.

14 (i) type integer, value 15
(i) type string, value "3 +2* 6"
(iii) type real, value 43.07

(iv) type integer, value 5. Note that 8 div 3 has value 2 and
15 rem 6 has value 3.

(v) type real, value 10.0. Note that 8/2 is of type real since the operation is
real division. It makes no difference that 2
happens to divide 8 exactly.

(vi) type integer, value 4. This one is a bit unfair since we did not talk about

integer division with negative numbers. The

rule is as follows. Forget about the signs and apply
div as if both numbers were positive. Then if
exactly one of the two numbers is negative make
the answer negative. Note that x rem y is always
x-y*(xdivy)

1.5 write "The square of 24 is ", 24 * 24, "'nThe square of 31 is ", 31 * 31

Note that the new line symbol 'n appears
inside the quotes.

page 6

2 INITIALISATION AND ASSIGNMENT CLAUSES

In Chapter 1, whenever we used a mamber or a string we had to write it explicitly in the program. This
meant that whenever we wanted to repeat the calculation with different numbers or strings we had to rewrite
the whole program. The main reason for using a computer is t0 save time and effort and one way of doing
this is to write programs which will work for many different sets of data. For example, in the program
which worked out the square and cube of 27, the program would be more useful if, instead of just working
with the number 27, it could be modified to read’ an integer and then calculate its square and cube. Thus
the same program could be used io calculate the squares and cubes of many different integers. The
following PS-algol program will do this for us.

write "Please enter an integer: "
fet X = readi()
write “The square of ", X,” is", X *X, "and itscube is ", X * X * X

The clauses in this program need some explanation but first we will give a general idea of how it works.
The program first ‘reads’ an integer which is supplied by the user and makes this the value of the object
called X. You can think of X as being the name of a pigeon-hole inside the machine and the user writes an
integer, say 30, on a piece of paper and pops it in the pigeon-hole. X is then the name of the pigeon- hole
and 30 is the value of X. The effect of evaluating the very simple expression X in the write clause kst is
to find its value which is 30. Similarly X * X works out 30 * 30 and gives the answer 900 and X * X * X
gives 27000. The effect of the whole program given 30 as data is to print

The square of 30 is 900 and its cube is 27000

The clause
let X = readi()
is an example of an initialising declaration and introduces four very important ideas,

(i) The reserved word let is used to indicate that the name of a new object is to follow, in this
case the name is X. Every time we want to use a new name for an object in our program we
do it in this way. Some primitive programming languages allow you to use names without
specifically declaring them in this way, but although this may be easy to start with, it can
cause a lot of trouble later.

(i) The readi() part of the clanse causes the computer to 'get’ an integer from somewhere. For the
moment we will suppose that ‘get’ means that the computer waits for the user, that is you, 1o
type in an integer from the terminal when the program is running. There are many other ways
in which the computer can 'get’ an integer but we will leave these for the present. If, by the
way, you do not type an integer here but perhaps type a string, PS-algol will tell you that you
have made a mistake in the data and stop running your program.

(il The = part of the clause does two things. It puts a copy of the integer you have just supplied
into the pigeon-hole named X and telis the system that this is a constant and must not be
changed in your program during execution. PS-algol will keep an eye on it and if you try to
alter the value of X in the rest of your program it will print yOu an error message at
compilation time. Although this may seem tedious to the beginner it is of great help in
avoiding errors when you come to write more complex programs.

(iv) The fact that we have written readi ensures that the number to be read is an integer. It also
tells PS-algol that X is to hold an integer and this information is also remembered by the
compiler and can be used o detect subsequent errors in your program.

You should now go back and read the above program again and make sure that you understand what it does.
In addition to the readi clause we also have readr and reads clauses which as you may guess read a real
number and a string respectively. Thus

letY = reads()

page 7

will read a string and assign it to Y which will now have the type string attached to it and similarly for
readr. Data supplied by the user at execution time maust satisfy the same syntactic conditions as literals
included as parts of programs as discussed in Chapter 1. In particular, siring literals must be enclosed in
quotes, integers do not have a decimal point and reals may be either in the format described in Chapter 1 or
may be given as integers which will be converied into real numbers internally. Successive reals or integers
must be separated either by spaces or by appearing on a new line. The condition that string literals must
be enclosed in quotes may seem a nuisance to the beginner but the reason for it is to keep t0 a minimum
the conditions o be imposed on the way in which string literals can be written, We will discuss later how
to remove this condition when you have learnt more about programming and when you know more about
the sort of data that may be supplied to a particular program.

Initialising declarations do not necessarily have a read command on their right hand side. Any expression
can be writien. 8o

let N=1
makes the object of name N an integer constant with value 1 and
let P=3.0%65+43

makes P a real constant with value 23.8. Note that PS-algol is clever enough to deduce the type of an
expression without you having to iell it.

Expressions can involve previously declared objects as well as literals. You can declare these yourself or as
in the following example use one such as pi which is predeclared by PS-algol itself.

write "Enter the radius; "
let radius = readr()
let area = pi * radius * radius
Yet circumference = 2.0 * pi * radius
write “The area of a circle of radius *, radius, "is”, area,
" "nand its circumference is ", circumference, ".'n"

If the value 2.6 is given to radius then the result will be

The area of a circle with radius 2.6 is 21.2372
and its circumference is 16.3363.

You can use as many letiers as you like for the name of an object. You may also use digits and the full
stop character provided that you always start the name with a letter. Thus

aerage
K9
Jather.christmas
are all valid object names. On the other hand
148
is not since it does not start with a letter and
santa claus

is not since it has a space in the middle. (sanfa.claus is of course valid). It is good programming practice
to give names to objects which indicate their use since it makes the program easier to read and understand.

page 8

This is why you are allowed to use the full stop and you can use names like

lower limit
or

pupil.name

All the above declarations introduce names which are to be used and make them constant. We also need 1o
use variables whose value can change during the execution of a program. This is possible using a slightty
different declarative clause. For example

let count := 0

declares the variable with name count to be an integer with initial value 0. The combination of characters
= isused in place of = to indicate that count is a variable whose value can be changed later. Once the
variable's name has been declared in a let clause, subsequent clauses which change its value are written
without the let. For example

count := count + 1

This clause may be read as 'count becomes count plus one' and the meaning is always, 'evaluate the right
hand side and assign the new value to the variable named on the left. The clause above thus adds one to
the current value of the variable count. PS-algol will check for you that the type of the expression on the
right is the same as that of the identifier on the left and will give an error message if it is not. To the
beginner this may seem an added and unnecessary complication but the reason is again to enable PS-algol
10 help you avoid obscure errors in more complicated programs you may write later on. The one exception
to this rule is that integer expressions may be assigned to real variables in which case their values are
automatically changed to real for you. We will now give some examples of the use of these ideas. The
first example is to print the value of an expression which uses a complicated factor several times.

letQ=173+42%0.73
write 5.69/(2*Q) +416/((3*Q-777)i(4%Q})

Note that PS-algol sorts out the mixture of reals and integers and prints the answer as a real. Next we print
out the square and the cube of a number by a method different from that above.

write "Enter a number: *

let X = readr()

letY .=X*X

write "The square of ", X," is ", Y
Y:=Y*X

write “andits cubeis ", Y," 'n"

In this case X is a real constant with a value that is read in, say 3.86. Y is declared to be a variable of type
real with its first value being X squared. The first write clause produces the output

The square of 3.86 is 14.8996

Y is then given a new value which is the old value times X. That is, the new value of Y is X cubed and
the second write clause prints

and its cube is 57.512456

on the same line as the first since we have not used a new line symbol in either clause. This is rather a
clumsy way of solving the problem since the program

write “Enter a number: "
let X = readr()
write "The square of ", X,” is”, X *X, "and its cube is ", X* X *X

would do the same thing. However, the example shows that X is a constant and Y is a variable in the
program,

page 9

It is useful to put comments into a program, 1o help explain to the reader what is being done, but which
are not really part of the program itself. In PS-algol this is very easy. We use the exclamation mark
symbol ! 1o indicate that anything following it on the same line is a comment and should be ignored by
the PS-algol compiler. It is good practice to put a comment at the start of each program giving your name
and what the program is intended to do. For example, we could write a program to convert money in
sterling to francs and lire reading in the sum of money we wish to convert and the exchange rates from
British to French and Italian currency as follows.

! Joe Bloggs. Conversion from sterling to francs and lire
! Data is a value in pounds and pence written as one decimal
le.g. 28.18, and the current conversion rates for francs and lire

write "Enter the amount in sterling: "

let sterling value = readr()

write "Enter the franc and lire rates please: "

let franc.rate = readr () ; let lire.rate = readr()

write sterling.value, pounds convertto", sierling.value * franc.rate,
"francs and ", sterling.value * lire.rate, " lire'n"

We have slipped in a new idea here. We have put two clauses on one line and separated them by a
semi-colon. You can separate clauses in this way anywhere you like in your program if you feel that it
makes it easier to understand.

If you are a beginner this is probably the most difficult chapter to understand in the book. If you have had
any difficulty go back and read it again. If you still do not fully understand it do not despair. Read it again
after the next few chapters.

Exercises 2

2.1 Write down initialising declarations for the following
(i) An integer variable P with value 6.
(ii) A real constant Q with value 3.68 * R + 2.2,
(iii) A string constant with value "Yes".

2.2 What is the type of the name T in each of the following clauses. Indicate also whether it is constant
or variable.
@) letT=59dvi3
(ii) let T = reads()
@y T:=5+7/3
(iVietT="14"

2.3 Write a program to convert a temperature in degrees fahrenheit to degrees centigrade. Your program
should read the number of degrees fahrenheit as a real number. Include comments to say what you are
doing and use meaningful names.

2.4 Write a program to work out the value of pi squared using the value of pi given by PS-algol. Also
work out the number 22/7 and write out its value and its difference from the value of pi given. Do the
same thing for pi squared and 22/7 squared putting your answer on a new line. You should include
comments on what you are doing and also include string literals in your write clause to make the
whole output understandable without reading your program.

page 10

2.5 A simplified tax system computes the tax due on the income for a given person by first computing
the taxable income by subtracting the personal allowance and child allowance for each child from the
income. The tax due is then equal 1o the current tax rate times the taxable income. The nett income
is equal to the income minus the tax due. Assuming that the child allowance is $500 per child and the
tax rate is 28% write a program to read in, for one individual, the salary, personal allowance and
number of children and to print out the income, taxable income, tax due and net income. Both your
program and your output should be self-explanaiory.

page 11

Solutions to Exercises 2

21 ()letP:=6
(i)let 0 =3.68*R +22
(ifi) let § = "Yes"

2.2 (i) integer constant
(ii) string variable
(iii) real variable. Remember that a / b is real
(iv) string constant

23 ! Jack Cole. Convert from fahrenheit to centigrade.

let fahrenheit = readr()
write fahrenheit, " degrees fahrenheit converts o ",
(fahrenheit - 32) * 5/9," degrees centigrade'n”

2.4 ! Jack Cole. Comparison of pi with 22 /7
! and the comparison of the corresponding squares.

let piapprox = 2217
write "The value of pi is ", pi,
"nand the value of 22 1 7 is ", pi.approx,
"'n and their difference is ", pi - pi.approx,
"'n The value of pi squared is ”, pi * pi,
"n and the value of 22 | 7 squared is ", pi.approx * pi.approx,
"“n and their difference is ",

pi * pi - pi.approx * pi.approx, "'n"

Note that it might have been better to introduce two new constants by

let pisqg = pi * pi
let pi.approx.sq = pi.approx * pi.approx

and to have used these values directly in the write clause. Try rewriting the program using this idea.

25 ! Jack Cole. Program to compute tax etc.
let child.allowance = 500 IMore readable than writing
let tax.rate = 0.28 1500 and 0.28 in the program.

let income = readr()
let allowance = readr()
let no.of children = readi()

let taxable.income = income - allowance - no.of children * child.allowance
let tax.due = taxable.income * tax.rate

write "Income” income,
"nTaxable income" taxable.income,
"nTax due” tax.due,
"nNett income" income - tax.due,”'n"

Note that you have not yet learnt how to test for a negative taxable income. We will show you how to do
this in Chapter 4 so we will assume for the moment that the data supplied is compatible wi_th the method
of solution! You will also learn how to control the layout of real numbers in a write clause in Chapter 8.

page 12

3 THE FOR AND WHILE CLAUSES

The programs we have written so far have been simple lists of clauses with each clause being executed once
only. Computers are particularly good at doing repetitive tasks and we write programs to make use of this
fact. Since many problems can be solved in this way, we introduce some special clauses to help in making
the computer repeat sequences of clauses.

Most programming languages have a for clause and PS-algol is no exception. The following program
works out factorial n. Factorial n is defined asn * (n-1)* ... * 2 * 1 for a given .

1J.Cole. Factorial program

write "Enter number: "
let n = readi() ; let factorial := 1
fori=2 ton do

factorial := i * factorial

write "factorial ", n, "is ", factorial, " ‘n"

There are three new reserved words used here, namely for, to and do. The for clause does several things.
Firstly it declares a new integer i. This integer i is initially set to 2 and the clause following do is
executed provided that n = 2. The effect of the clause following do is to multiply 1 by 2 and put the
result in factorial. The computation then goes back to the start of the for clause and adds 11to i making
itsnew value 3, tests this againstn and if i <= n repeats execution of the clause following do making
the new value of factorial equal to 6. It continues in this way until, for the first time, the new value of i
exceeds the value of n. At this point it skips over the clause following do and continues with the write
clause. Notice we have put the clause

factorial :=i* factorial

a little across the page. PS-algol ignores spaces so we can write our programs like this to make them
more teadable. The way we have written out the program emphasises the fact that this clause is the one
‘controlled’ by the for clause. You should get into the habit of laying out your programs so that they are
readable. Keep an eye on how it is done in this book and try to copy the ideas.

There are several points to note about the for clause. The name i used above can be replaced by any other
name we wish to use. To be consistent with our earlier notation for assignment we have used = rather
than := in the for clause. At first sight this appears to be a contradiction since i takes successive values
2,3, ... and in this sense is not a constant. However the logical interpretation is that each time the
computation returns to the for part of the clause it defines a new constant i with the incremented value.
The important thing is that i is a constant in the clause controlled by the for clause (ie. factorial ;= i *
factorial) and cannot be changed by programmed assignment. This is good programming practice since
even experienced programmers find logical difficulty in using for clauses in languages which allow internal
assignment to the control variable. If you really want to program this way you can do it by using the
while clause to be described later in this chapter but the effect will be entirely your own responsibility.
Note that i only exists while the for clause is being executed. If we tried to print i instead of # in the
write clause we would be told by the compiler that it no longer existed.

The numbers 2 and # used in the above for clause are simple examples of integer expressions. You can
use any integer expressions you please in for clauses. The value of i is set initially to the value of the
first expression and the limit for is set to the second.

The above form of the for Joop always counts in 1's. If we wished to count in 2's say, we could modify
the clause to

fori=1 ton by2 do

The new reserved word by tells PS-algol that the count is to be done in steps of 2 (in this case). More
generally we can put any integer expression in place of 2.

page 13

It would be very restrictive to allow only one clause as writien above to be controlled by the for clause. If
we want to execute several clauses we can do this by taking a sequence of clauses and surrounding them
with braces (and }, or by the reserved words begin and end. For small sequences of clauses it is probably
clearer to use braces. The sequence of clauses is a very important concept in PS-algol and although the
sequence contains several clauses inside itself, it is regarded as a single clause. We regard a complete
PS-algol program as a sequence of clauses in this sense.

The following example illustrates the use of a sequence controlled by a for clause.

! J.Cole. Program to print a shopping list and total cost,

write "Shopping list 'n" I This gives a heading to the output
fet total := 0.0 {This initialises the total cost to zero
let no.of.items = readi() IThis gets the total number of items
for/ =1 to no.of.items do

begin

let quantity = readi()

let name = reads()

let cost.per.item = readr()

let line.total = quantity * cost.per item

total = total + line.total

write quantity, name, " at ", cost.per.item, line.total, " n"
end Notice the program layout
write "Total cost of bill is ”, total, " 'n"

The meaning of this program should be obvious. Note that the only variable in the program is toral.
Although quantity, name and cost.per.item all change their value, they remain constant during any one
particular execution of the sequence of clauses. Because the word let is inside the sequence for each of the
items, they are redefined as new constants each time the sequence is repeated. On the other hand, total is
declared outside the sequence since we want 10 set it to zero initially, accumulate its value and then
eventually print it out after all the items have been read in and added to the list.

A suitable data set for this program could be

6

2 " Ibs of sugar " 0.16
1 "ibofbutter " 0.60
6 “ oranges " 0.10
3 " bottle coke " 0.27
1 " tin pears " 0.48
6 "boxes maiches " 0.03

Note that the items may be separated by either a new line or at least one space. By writing out the data as
we have done, we ensure that the strings all have the same length by padding them out with spaces, so we
will get a nice neat layout for our bill. We will describe more elegant ways of doing this later on.

‘We could have used braces here instead of the words begin and end but it is clearer not to. It is probably
better to save the braces for use when all the clauses in the sequence can be put on the same line.

To avoid confusion in the future we need to introduce briefly a new idea, namely that of the scope of an
object. As we have seen in the above example we can declare new objects by iniiialisation clauses
anywhere we like in the program. However, if we define a new object in a particular sequence of clauses
that object only remains in existence at execution time from the point of its declaration to the end of the
sequence. This is called the scope of the object. The moment we leave the sequence, that is, execute
another clause outwith the sequence, then all the objects declared inside the sequence are no longer in scope.
If after leaving the sequence we enter it again a new 'instance’ of the object is created and this has no
recollection of previous instances.

Declaring total in the program above as a variable in the outer sequence allows us 10 accumulate a running
total each time we enter the inner sequence. None of the other information in the inner sequence is required
in the long term so it can be safely declared there and does not remain in existence to cause possible trouble

page 14

later. Note also that although, for example, quansity may well be given a different value each time we
enter the sequence in which it is declared, that value remains constant during the current execution of the
sequence. It can and should be declared using '=' rather than "='. It would not be wrong 1o use "="but it is
betier programming practice to recognise which objects are constant and which are variables and to declare
them accordingly.

This discussion of scope should help to clarify the argument for regarding the control identifier in a for
loop as a constant rather than a variable.

One final point about scope. If we declare an object in an inner sequence with the same name as one in an
outer sequence then the existence of the outer object is temporarily suspended and a new object with the
same name is created. On leaving the inner sequence this new object is discarded and the old one reinstated
along with its suspended value. This facility is not of much use to the beginner but is very useful when
programs are being written jointly by several people, so that someone writing an inner sequence does not
have to be told and have to check the name of every object in the outer sequence so as to avoid using these
names twice with different meanings.

The while clause gives us an alternative way of constructing a repetitive part of a program. We begin by
rewriting the first example using the while clause.

!J.Cole. Alternative factorial program.

let n = readi() ; let factorial := 1 ;let I :=2
while/ <=n do{ factorial := I *factorial :[:=I+1 }
write “factorial ", n, "is", factorial, " 'n"

The way in which the while clause works is that the condition which follows the word while is evalnated.
The answer could be true or false. If it is true then the clause following do is evaluated and then the
condition is evaluated again. So long as the condition remains true this process is repeated bot as soon as
the condition becomes false the program jumps over the clause following do and continues with the next
part of the program. Try following through the action of this program with n being given a value 5 say.

‘We have 1alked about the condition following the word while. It would have been more accurate to have
referred 1o this as a beolean expression. A boolean expression is an expression which evaluates to one of
two values true or false. The particular example that we have given namely I <= n is either true or false at
any particular instant in time. We will see later on that we can write quite complicated boolean
expressions and any such one will do to control a while loop.

Notice that one of the clauses in curly brackets changes one of the variables in the condition. If this were
not the case the boolean value of the condition would never change and the looping operation would goon
for ever.

This particular example makes the programming slightly more difficult than the previous one using the for
clause. However, there are many cases in which we cannot replace the while clause by an equivalent for
loop. To show the full power of the while loop we really need some more examples but we will illustrate
the point with the shopping list program above. One very artificial thing that we did in the example was
to count the number of items in our list and give that number as the first piece of data. This was necessary
so that we could set up the count for the for Joop. We will eliminate the need to count the number of data
items, making the computer do it for us, by adding one extra Tow to our shopping list data with a value
that cannot possibly occur. For example we will never want to include a line for zero articles, so we set up
the data as follows

2 “lbs of sugar " 0.16
1 "Ib of butter " 0.60
6 "oranges " 0.10
3 "bottle coke " 0.27
1 "tin pears " 0.48
6 "boxes maiches " 0.03
0

page IS

and we write our program using the while clause.

write "Shopping list ‘n”
let rotal == 0.0 ; let quantity = readi()
while quantity ~= 0 do

begin
let name = reads() ; let cost.per.item = readr()
let line.total = quantity * cost.per.item
total := total + line.total
write quantity, name, " at ", cost.per.item, line.total, " 'n”
quantity := readi() 'This is where we change the condition
end

write "Total cost of bill is *, total, "' 'n"

Notice that the program starts by reading the integer 2 at the start of the first line. The iest is to see if 2 is
not equal to 0 and this is true. We proceed to read the other two itemns on the line and continue with the
calculations as before. Finally, the last clause reads the first integer on the next line and then goes back to
test the condition

quantity ~= 0

again. The symbol ~= is "not equal t0". So this clause is "quantity is not equal to 0" (he not symbol
may also be used before any boolean as can be seen in the next example). It continues to repeat this
operation until it finally reads O and at this stage the condition 0 ~= 0 is false and for the first time we
jump out of the loop and finish off the program. Motice also that by being cunning and putting the second
two read clauses inside the sequence at the beginning we only have to put a single O on the last line and not
a whole line of redundant data.

An even better way to terminate the input of data for this problem requires another programming concept,
namely that of the file. In most computer systems it is possible to record collections of information in
files and to refer to these files by their names. In particular your terminal is regarded as a file and you
supply the information for the file from the keyboard. Other files in the system have a predefined fixed
amount of information in them and are always terminated by an end of file (eoi). On your terminal there
will be some combination of keys (e.g. control z) which signifies that no more information is to be
supplied from that source. You will need to consult your operating system manuals to find the particular
eoi symbols for your terminal. Once you have terminated input in this way you need special techniques,
which we will not discuss here, to continue input again. However, in our example, we do not need to put
in any more data after the end of our shopping list so, instead of a single 0 as above we can terminate our
input with eoi. We can now use ~eoi as the boolean expression controlling our while loop. The ~ symbol
means boolean negation. That is, if eoi is false then ~eoi is true and therefore ~eoi will not terminate the
execution of the loop until input ceases with eoi. This also avoids the clumsiness of having to declare
quantity outside the loop and then to alter its value at the end of the clause controlled by the while lcop.
Furthermore, quantity becomes a constant rather than a variable. The complete program is now

write "Shopping list'n”

let total ;= 0.0
while ~eoi do
begin

fet quandity = readi() ; let name = reads(} ; let cost.per.item = readr()
let line.total = quantity * cost.per.item

total := total + line.total
write quantity, name, "

at ", cost.per.item, line.iotal, " 'n"
end

write “Total cost of bill is ", total, " 'n"

The while clause as described above has its test for execution before any of the code in the controlled
clause. This means that whenever the test fails, including possibly the first time that the test is made, the
controlled clause is skipped over. Thus the controlled text can be executed zero or many times. It is useful
1o have another construct which tests after the execution of the controlled clause, thus ensuring that the
controlled clause is executed at least once.

The repeat construct enables us to do this. For example

x=05*(x+alx)
while rabs(x - a/x) > 0.000001

This piece of program assumes that x has been initialised to some suitable starting value and then applies
the Newton iterative square root calculating formula until the condition is satisfied. The calculation for a
new x is carried out at least once. A function rabs has been used here. It calculates the absolute value of
the real number which is its argument. A corresponding function abs calculates the absolute value of its
integer argument. We will see later that functions are a very important and powerful programming
mechanism that we will make good use of. It is tedious to have to write out very small or very large
constants in full. To alleviate this problem we use the notation 1.0e-6 to indicate that 1.0 is to be
multiplied by 10 raised to the power -6. We could have written the constant 0.000001 in this way.

As another example, consider the following program segment to calculate factorial n where n is assumed to
have been assigned an integer value > 1

let factorial := 1 ;leti:=2
repeat
begin
factorial ;= factorial * i
Pr=i+]
end
while i <=n

A third variation on the position of the test condition in this construction would be for it to appear in the
middle of the controlied clause rather than at the beginning or end. This can be done with a combination of
the repeat and while constructs. As an example, consider the problem of reading a large number of positive
real numbers in order to find their how many there are, their sum and the sum of their squares. Very often
we don't know how many numbers there are and there is no point in counting them if we have a computer
to do it for us. In some cases where information is being gathered as the computation procecds we may not
even know how many pieces of data there are going to be. In our case we have assumed that all the data is
positive so we will arbitrarily terminate our data with a zero which is not to be counted as a real data item.
You can almost always choose some impractical value as a terminator for the data in practical problems as
we did in the second attempt at the shopping list example.

A program sequence to carry out the above calculation wonld be

iet number ;=0 ; let sum ;= 0.0
fet sum.sq := 0.0 ; letitem := 0.0
repeat item '= readr()

while item > 0 do

begin

number := number + 1

sum ;= sum + item

SUm.sq ;= sum.sq + item * item
end

Here the test takes place after each new item has been read and so long as the test has the value true, the
segment following it is evaluated followed by a new evaluation of the segment immediately following the
word repeat. Note that the initialisation of the variables number, sum and swm.sq must take place before
the word repeat. The reason for initialising item to 0.0 before the repeat rather than by writing

let item := readr()
is more subtle. Briefly, the reason is that the clause between repeat and while is syntactically separate from

that following do. The declaration of a variable in the first clause would not be in the scope of the second
clause and would lead to a syntax error being indicated.

page 16

page 17

Exercises 3

3.1 Determine the values written out by the following programs.

3.2

3.3

3.4

35

3.6

3.7

(i) forl=3 to7 dowrite/
(i) forJ=1 t09 by2 do writeJ
(iii) for K =0 to 15 by 3 do write X
(iv) forL =1 to8 by2 dowrite L
V) letK=3; letM=35
for/=K toM*K by M rem K do write J
(vi) forI = 10 to3 by -3 do write/

‘Write a program to output a heading saying 'number square cube' and then use a for
loop to output a table of squares and cubes of integers between 1 and 20. The fifth line, for example,
should read

5 25 125

It is permissible to write a for clause inside a for clause. Work carefully through the following
program step by step to see what it does.

for/=1to5 do

begin

write " 'n", |

let Ko=1*]

forJ=1t03 do {writeK ; K:=K*])
end

Rewrite your answer to question 3.2 using a while loop instead of a for loop.

‘Write a program to read in three real numbers a, b and ¢ where a is less than b and print out a table of
squares and cubes starting from a and going in steps of ¢ as far as you can without getting greater than
b. Thus, for example, if a=3.10, b=4.20 and ¢ = 0.35 your output should look like

number square cube
3.10 9.6100 29.791000
3.45 11.3025 41.063625
3.80 14.4400 54.872000
4.15 17.2225 71.473375

Write a program to read in the names of football teams together with the number of wins, losses and
draws and print out the same information together with the total number of points giving 2 for a win,
0 for aloss and 1 for a draw. Thus a typical line of information could be

"East Fife™ 14 0 5
and the corresponding output would be
East Fife 14 0 5 33

The data should end with a team name of "*#%*",
You are not expected to sort them into order (yet!).

Determine the values printed by each of the following program segments

@) leti:=1
while i < 10 de
begin
P=iti
write i, “'n”

end

(i) leti:=1
repeat
begin
i=i+i
write i, " 'n”
end
while i < 10
(iii) leti =1

o

repeat writeZ, " 'n
whilei < 10 do i:=i+i

Solutiens to Exercises 3

31 (@ 34567
@@ 13579
(i) 03691215
(iv) 1357 Note that the output stops here because the next number will exceed §.
(v) 3579111315
(vi) 1074

32 write "number square cube n”
for[=1 t020 dowritel, I*], I*I*] "'n"

3.3 This program writes 2 table of an integer, its square, cube and fourth power from 1 to 5. Thatis

1 i 1 1

2 4 8 16
3 9 27 81
4 16 64 256
5 25 125 625

Convince yourself by working through step by step that this is what the program does. It also works
out the fifth power but does not write this out.

34 write "number square cube’n”
et =1 I'This initialises the count
while / <= 20 do { write, I*1, J*I*], "'n" ; I:=I+1]}

3.5 This example is more difficult to do with a for loop since you can only count in integer steps in a for loop.
Using a while loop we could write the program as follows

1J.Cole. Solution to exercise 3.5
let a :=readr() ;let b =readr() ;let ¢ = readr()
while a <= b do
begin
writea, a*a, a*a*a, "'n"
a=da+c
end

Note that we have made a a variable but b and ¢ are constants. It would not be wrong to make b and ¢ variables tco

but it is good programming practice to declare things which are really constants like b and ¢ by '=' rather than "=".

3.6 let name = reads
while name ~= "% do
begin
let wins = readif) ; let losses = readi(} ; let draws = readi()
write name, wins, losses, draws, 2 * wins + draws, " 'n"
name := reads()
engd

An alternative solution which only uses one reads command rather than two is
let name := "" IThis is a string with no characters in it
repeat name ;= reads()
while name ~= "*FE do
begin
let wins = readif) ; Yet losses = readi() ; Yet draws = readi()

write name, wins, losses, draws, 2 * wins + draws, " 'n
end

Why do we still need the declaration of name before the repeat command? If you don't understand why, read the last
part of Chapter 3 again.

3.7 The printed output will be
@ 2 (i) 2 (i) 1
4 4 2
8 8 8
16 16 8
16

4 IF CLAUSES

In the previous chapter we showed how sequences of clauses could be repeated a number of times. In this
chapter we will ook at the possibility of choosing whether a piece of program is to be executed at all, or
alternatively a way in which one of two pieces of program can be chosen to be executed and the other one
ignored.

In the middle of a program we ofien want to test some condition and if it has been met, to do something
special and then carry on with the main flow of the program. For example, we might want to output a lot
of numbers in the form of a table with say six numbers 10 a line. As we output each number we can add
one o a column count and when it reaches six we can output a new line symbol. To do this we need to
declare and set to zero a column count earlier in our program by a clause

let column.count := 0

The program may be in a repetitive loop in which it is calculating new values of x say and when it outputs
each new x it tests first to see how many have been output already by using the following piece of
program.

write x
column.count := column.count + 1
if column.count = 6 do
begin
write " n"
column.count ;=0
enrd

Thus if the value of column.count is 6, then since we started with the value 0, six numbers have already
been written out and so a new line symbol is output and the count reset to 0. To make this quite clear let
us write a whole program to print the first 42 Fibonacci numbers. The Fibonacci numbers are formed by
starting with the first two both equal to 1 and always forming the next one by adding the previous two
together. Thus the first few Fibonacci numbers are

112358132134 ..
A program to do this is as follows

write "Table of Fibonacci numbers ‘n'n”
leta:=1leth.:=1
write a, b 'This prints out the two starting values
let totalno 1= 2 This tells us we have printed 2 numbers
let column.count =2 Two columnns already printed
while total.no < 42 do
begin .
letnewfib=a+b
write new fib
column.count := column.count + 1
if column.count = 6 do { write " 'n
total.no = total.no + 1
a=b; b:=newfib 1Getready for next Fibonacci number

”

; column.count := 0}

end

This gives us a nice table of 7 rows and 6 columns, The numbers in a column will all be above each other
since PS-algol always uses 10 spaces for each integer printed unless you tell it to do something else. We
will tell you how to control output yourself in a later chapter.

As in the case of the while clause the expression following the word if must be a boolean expression and
will evaluate to either true or false. If it evaluates to true then the clause following do is executed. Ifitis
false then the clause following do is skipped over.

The other type of if clause involves the choice of one of two alternatives. Suppose, for example, that we

page 22

were reading a list of numbers successively into a variable x and we wanted t0 accumulate separately the

sums of the negative and positive values and also the single sum of all their squares. A piece of program
to do this is

if x > 0 then pos.sum := pos.sum + x
else neg.sum = neg.sum + x
sum.sq 1= sum.sq + x * x

The meaning should be obvious given that the piece of program immediately following then is executed if
the boolean expression after if has the value true and the piece of program immediately following else is
evaluated if this value is false. The final clause is executed in both cases. Note the program layout to
emphasise this fact. As in Chapter 3, if we want to execute several clauses after then or else we make
them into a single clause by either putting the words begin and end around them or by enclosing them in
braces. We illustrate this point with a full program to carry out the above calculation but also counting
the numbers in each case and printing out the averages of the three sums.

1J.Cole. Averages program.

let pos.sum ;= 0.0 ; let num.pos := 0
let neg.sum := 0.0 ; let num.neg := 0
let sum.sq := 0.0 ; let x != readr()

while x ~= 0 do !'We suppose none of the numbers are
begin
ifx> 0 then { pos.sum := pos.sum + x ; num.pos := num.pos + 1)
else { neg.sum ;= neg.sum + x ; num.neg := num.neg + 1)
sum.sq ;= sum.sq + x * x
X = readr()
end

'We will assume here that neither num.pos nor num.neg is still zero
write "The mean of the positive numbers is ", pos.sum | num.pos, " 'n",
"The mean of the negative numbers is ", neg.sum | num.neg,"n",
"The mean of the squares is ', sum.sq/ (num.pos + num.neg), * 'n”
As in the previous example we have assumed that none of the numbers is zero and used this fact to control
the while loop using zero to terminate the input. If we wanted to include zero as a possibility, included
with the positive numbers say, we could have chosen the boolean expression after if to be x >= 0 and
chosen some large number which could not possibly occur in the list to use in the while loop test. For
example, if ali the numbers are less than 10,000 we could have used
while x < 10000.0 do
and terminated the list with 10000.0 or any greater number. We could also have used an eoi technique.
‘When we first introduced the if .. then .. else clause we were careful to talk about the ‘piece of program'
following the then part or the else part. We did this deliberately because this clause can also be an
expression. For example

ifa<b then0.25 else 1.0

We could use this as part of an assignment clause as follows

cost :=(ifa<b then 0.25 else 1.0) * basic.cost
We have put the whole if clause in parentheses because otherwise it would be ambiguous. We would not
know if * basic.cost was just multiplying the 1.0 or both the 0.25 and the 1.0. To avoid such

ambiguity you should get into the habit of enclosing any such part of an expression in parentheses.

Notice there is no similar case for the if .. do because this would leave the expression unfinished if the

page 23

condition were false. We use the word do because it implies that we are going to carry oul some complete
action such as an assignment rather than evaluating an expression which is only part of something else.

The following complete program to compute the greatest common divisor of two positive integers uses the
standard mathematical technique for solving this problem.

write "Enter the two numbers: "
let @ o= readi(}; et b = readi()
write "The g.cd. of ", a, "and ", b, " is"

while ¢ * b ~= 0 do Istop if either is zero
ifa>b theng =a rem b
elseb:=bh rema

e

writeifa =0 thenb elseq, "n

Statements involving if ... do and if ... then .. else clauses are ofien made more complicated than
necessary. For example the statement

if ch="7" them query '= true else query = false
can be simplified to
query = ch="7"

We are assuming here that the variable query is of type boolean. A fuller discussion of objects of type
boolean is given in Chapter 8. Similarly, the program segment

ifx <0 then sign '= frue
else

x>0 then sign '= false
else write "Value is zero n”

could be simplified 1o

1

if x =0 then write "Value is zero 'n" else sign == x <0

To complete this chapter we write a rather silly program (o teach the user a single fact. We will give 2
more realistic example of programmed learning when we have learned a little more about programming!

J.Bloggs. (I am ashamed {0 put my name 1o this)
{Programmed learning. First example.

write "hello’n”
let ang := """
while ans ~= "Ching” do
begin
write "Which country has the most people 7
ans ;= reads()
if ans ~= "China” do write " 'nNo, the answer is China 'n”
el
write " ‘ncorrect ‘'

The above program would go on for ever if it was not given the correct answer 10 the question. We could
modify it by putting in a count 5o that the program stopped afier say three ries.

J.Bloggs. Slightly better program

write "hello’n”

letans :=""; let count := 0

while ans ~= "China” and count ~= 3 do
begin

write "Which country has the most people 7
ans ;= reads() ; count := count + 1
if ans ~= "China” do
write " 'aNo, the answer is China 'n”
end
if ans = "China” then write "'ncorrect n"
else write ""'nHave you thought of joining the foreign office as a career? ‘n"

The boolean expression following the word while is more complicated than earlier examples but it still
evaluates to either true or false. The boolean operator and tells us that the answer is true if both the
surrounding boolean expressions are true. If we had used the word or instead of and then either (or both) the
surrounding expressions would have to be true to yield the result true. As shown in the following diagram:

a b ~a aad b aowh
frue true false true true
true false false false true
false true true false true
false false rue false false

At the end we tested for the answer being "China” and not for n=3 since this is what we really needed to
give the required output. We know that if the answer is not "China" then n must be 3 anyway 10 have left
the previous loop. Notice also how easy it is to modify the code to bring in new ideas and be sure that
your program is still correct.

Exercises 4

4.1 Write a program (o read in 3 real numbers a,b and ¢ and check if it is possible for a triangle with sides
equal in length to a,b and c to be drawn. The easiest way to do this is to calculate the
semi-perimeter

S=(a+b+c)/2
and then to check if § - a, S-band S - ¢ are all positive. If so the triangle can be drawn. The
resulting output should be readable as usual!

Supply two sets of data to check that the program is working correctly.

4.2 Write a program to read in a football result such as
"Colinsburgh United" 6 "St Andrews” 0
and to print out the same line together with one of the three comments
Home Win Away Win Draw

4.3 Write a program 1o read in two words (strings) and write them out in alphabetical order. Note that if a
and b are strings thena < b has the value true if @ precedes b i n a dictionary and false otherwise. It
does not matier about the lengths of the strings being different. For this reason "dog” < "doggerel”
has the value true.

4.4 You are captain of the starship Enterprise and you are approaching a primitive society which still
measures distance in miles, yards and feet. Your range finder can read in feet to the nearest integer
number of feet. Write a program to convert from feet to miles, yards and feet (1 mile = 1,760 yards,
1 yard = 3 feet) and print out the answer, leaving out 2 term if its value is zero. Thus your output
should be able to distinguish between

5287 feet = 1 mile, 2 yards, 1 foot

5286 feet = 1 mile, 2 yards

5281 feet = 1 mile, 1 foot

5279 feet = 1759 yards, 2 feet and so on.
The tricky problem here is to leave out the commas as welll

4.5 Revision example
(i) Explain why the clause
letnewfib=a+b
rather than let newfib:=a+b
is used in the Fibonacci number program. Would the last clause be wrong in this context?

(ii) Which clause in the Fibonacci program causes a possible change in the while clause boolean
condition test ?

page 26

Solutions to Exercises 4

4.1 kta=readr(); letb = readr(),; Yt c = readr()
letS=05*(a+b+c)
write “A figure with sides ', a, b, c,
fS-a>0apdS-b>0and S-c>0 then"is"
else "isn"t ",
" atriangle’n”

You may be surprised by this solution but note that in a write clause list the expressions are
evaluated before printing and this gives us just what we want Test data
467 359

4.2 1J.Cole. Football result.

let home.team = reads() ; et home.score = readi()
fet away.team = reads() ; Yet away.score = readi()
write home.team, home.score, away.team, away.score, " 'n”,
if home score > away.score then "Home Win" else
if home.score < away.score then "Away Win" else "Draw”

4.3 11.Cole. Word sort
let a = reads() ; Yetb = reads()
ifa < b then writea, b
else write b, a

4.4 1].Cole. Feet to miles conversion program.
let dist = readi() ; let feet = dist rem 3
letyards = (distdiv3) rem 1760 ; let miles = dist div (3 * 1760)
write "The disiance is "
let comma = false !This introduces a boolean variable called comma.
{This is the first time we have come across this
tidea. We will use it to test if we need to
loutput a comma between terms.
if miles ~= 0 do
begin
write miles, if miles = 1 then " mile
comma (= rue

"

else " miles "

end
if yards ~= 0 do
begin
write if comma then ", else ™, yards,
if yards = 1 then "yard " else " yards "
comma := true
end
iffeet =0 do
write if corvna then ",” else ", feet,

if feet = I then " foot ” else " feet "

This is quite tricky but useful to be able to do. We only want to put commas between items if we
have already written something. We set comma to the value false to start with and set it to true as

soon as we have written something. It has to be set to true in both the first two if clauses because
one or both may not be executed. When we write if comma the boolean expression is
very simple being just the boolean variable with the name comma which has the value true or false.
The bad grammar that you often see in computer output is usually due either to an inflexible
programming language, to bad programming or to both.

4.5 (i) The clause is inside a sequence controlled by the while clause and is not given a new value inside
this sequence. It would not be wrong to write := but it is better practice to indicate that objects
are constant when they really are.

(ii) The clause total.no = total.no + 1

page 27

5 STRINGS

‘We have already met string literals and we are now going to extend the idea of strings to allow us 10
manipulate {ext in our programs.

let s = "Scotland”

declares a string constant, 5, with the value "Scotland”. We can join two strings together by using the
concatenation operator . For example

let 51 = "Scotland” ; et 52 = "Ireland”
let 53 =51 ++ " and " ++ 52

write 53

will result in
Scotland and Ireland

s3 is the result of concatenating s/, the string literal " and ” and s2. Swring sI is of length 8 since it has
8 characters and 52 is of length 7. "and ” is of length 5 since it includes two spaces to make the final
output correct. Spaces are simply characters and it is the programmer's responsibility to include these
where necessary inside a string. There is a lengrh function in PS-algol which allows you to find out the
length of any string. In the above program

write length(51), length(s2), length(53)
would give the answers

8 7 20

As well as being able to join strings together we can also extract part of a string in order to create another.
For example

sI(5/4)

creates a new siring which has the same characters as s/ starting at character 5 and copying 4 of them.
Therefore

letsd =s1(5/4)
gives s4 the value "land”. There is one rule that may appear odd to the beginner. That is, you cannot
change part of a string to something else. If you wish to change the value of a string variable you must

create a new string with the correct value and assign it to the variable. For example

let s := "Scotland”
let 57 ;= "Eng" ++ s(5/4)

5! now has the value "England” and
sl = "Eskimo” ++ s1(4/4)
alters it 1o "Eskimoland”. So also, of course, would
"Eskimo” ++ s(5/4).

In both cases the integer literals used in the substring selection can be replaced by integer expressions.

page 28

There would have been no need to introduce a new variable s/ if we had had no further need for the string
literal "Scotland”. 1t would be quite valid to write

s :="Eng" ++s(5/4)
This of course could only be done because s is a variable and not a constant.

We can now assign values to string variables and alter them. It is often useful to compare strings as we
have already seen in previous sections. Thus in exercise 4.3 we had

let a = reads() ; let b = reads()
if a < b then write a, b
else write b, a

This program reads in two strings and writes them out in dictionary order. Strings may have more than
Just alphabetic characters in them. In fact they can have any character in the ASCII code (see Appendix II).
The ordering of the characters is defined by the ASCII code. However, for the present it is sufficient to
know that

"y < g,
"< ngr
AT ¢
nZn<|van ’
and "9 < "A"

and otherwise that the ordering is as in a dictionary.

If the two strings are not of the same length, the characters in them are compared one by one and if the
strings are still equal after the comparison the shorter one is considered to be less than the longer. Thus

"Morris” < "Morrison”

One final point is that it is sometimes useful to use the empty string. This is represented by "". It has
length 0 and is less than any other string in dictionary order.

To illustrate the use of strings we will now write a program to read in a string which consists of digits.

The string may or may not contain leading zeros. The output from the program will be the string of digits
without the leading zeros.

IStrip leading zeros program.

let s = reads() ; let count := 1 ; let more.zeros := true
while count <= length(s) and more.zeros do
if s(countf/1) = "0 then count := count + 1
else more.zeros = false

if count > length(s) them write "The resultant string is empty”
else write s(countflength(s) - count + 1)

There are several things to notice about this program. The integer variable count indicates the position in
the string of the character that is under consideration. The boolean variable more.zeros becomes false as
soon as a non-zero leading character is found. The while loop terminates if count gets larger than the
string length or as soon as we find a character other than "0" in the string. In this case count will contain
the position of the first non-zero character in the given string. The loop inspects each character in turn,
Finally, we check for the situations that may occur after the loop has terminated and print out a suitable
message or the required string.

You may already be getting tired of having to put quotes around strings in your data. The reason for doing

page 29

this is to give ine beginner as much fexit
sirings including new line gymbols. The more wm
routines using the read command as described in

5.4 Write a program 1o read a string s and to find its reverse (i.e. the characters writien backwards)
(D) as the value of a new string s/ leaving s umaltered
(if) as the new value of 5 without using any other string variables. Your program should still work if
s is the empty string.

code and decode
Characiers are vey
The function cod;
character 7 rem 128 as its result. Similarly,
returns the integer value of the ASC

The function lerter(s) takes a siring 5 as its ar enl and produces as iis result a boolean v
the string is of length 1 and is a letier of the 2 phabu either
Similarly the function digiy 5) mkos asiring s a8 ts argui
of length 1 and is a digit and false o A

and if 50, 10 put the corresponding int

e true if
er or lower case and £ 1sc omazwrﬂ

y see if a given siing n is a digit
Bger uiu, of it Ldjﬂl inanin ariable / could be
é £

i digitf{ n) do i = decode(n) - decode(0")

For this we need 1o
this assignmsnt cla;

ecutive, Check that the right hand side of
or digits,

5.1 ¥What is the length of each of the following strings?

(i) "Ronald”

(il "Jack Cole™

(111) 5255

(1V> BN

(V) "Writing is done’'n™

5.2 Write a program 10 read in a string. The siring may or may not starl with any number of 2's or A's
(or a combination of both). Write out the siring without the lsading a's or A's and follow this
immedisiely with the leading part of the siring that is a's or A's.

5.3 Write a program to read in the following sitings
(i) somebody's name --- namel
(if) some social function e.g. "wedding"”, "birthday party” eic.
(iii) a date
(iv) a second name --- nameZ

and print oui a lester saying

Dear <namel>,
Thank you for your kind invitation o your <function> on <date>,
which I am very pleased io accept.
Yours sinceraly,
<namel>

where the objects in angled brackets are replaced by the data with which you have been supplied. Do not
expect the nser to put in blanks around his data.

7 then write s siring is empty”
if count - 1 = lengih(5) then s{ countflengthl 5) - count + 1)

else ", s(Ijcouni- 1)

53 gram 10 accept in
ned = reads() ;) let function = reads()
date = reads() ; let namel = reads()

ite "Dear *, aamel, ", 'n"

vi=1 tolengih aoenel)+ 6 dowrite 77

write "Thank you for your invitation to your ", function, "on'n ",

date, ", which { am very pleased to accept. 'n”
do write " "

ncerely, 'n”

=1 to 30 do write “ "

write nameZ, " ‘a”

If we really wanied to write a good program here we would check o see if the number of of
i <function> and <daie> fued in 10 the line. Try modifying the program o d assuming vou 4o not
want more than 65 characters on a line (the maximum width of 2 line is usuaily 80 for a terminal and 132
for a printer page).

54

t

I
et}

let 5 = reads

fari=1t

) let st o=
y length(s) 4o 5] =501) ++ sl
write "Original siring is 'n”, s, “'n Reversed string is 'n", s1, "n"

[=]

Work through the program to verify why it works both with empty and non-empty §

"

= lengih{ 5} 18aves computing lengih(s) many
i=1telen-1de s:=s(1fi-1)++5(lenj]) ++
write "nThe reverse siring is'w", 5, "n”

fet Jen

#

and also the fact that when { = J, the second 1erm 3(1/i-7) becomes
tring.

Mote the order of concater
s{ 1/0) which is the emp

6 VECTORS

In many calculations we want to record linear lists or tables of objects to use in the calculation. For
example, if we have been carrying out an experiment a number of times we may want to hold all the
results of the experiment together and perhaps sort them into order to see which is the biggest and which is
the smallest and so on. In PS-algol we can use a data structure called a vector to do this. There are two
basic ways in which we can declare a vector for subsequent use. There are several things, however, that we
have 10 do in both cases. Firstly we have to say how many objects the vector is going to contain and what
type these objects are. Secondly we need to be able to refer to each of the objects in the vector by some
name. The usual way of doing this is to give the whole vector a name, say X, and then refer to the
separate objects by using a subscript on X. Because most computer terminals do not have an easy way of
printing subscripts we use the notation X(i j to mean X with subscripti. We need to know the range of
the subscripts for X. That is, where they start and finish. Quite often the starting value for a subscript is

0 or 1 but it is very restrictive to insist on either of these. The simplest way to declare a vector is to write
for example

)

let X = vector 1::8 of 0

This declares X to be a vector of 8 integers with subscripts going from 1 to 8 and with each integer
element being set initially to 0. PS-algol deduces the type of the elements in the vector from the
initialising value given after the reserved word of. Thus if we had written

let ¥ = vector 0::20 of 0.0
this would declare a vector of real numbers with 21 elements starting with subscript 0, and
let Z = vector 1::100 of " "

would declare a vector of strings all being initialised to a single space. We point out straight away that if
we subsequently give new values to the elements of Z they can be of any length. They are not restricted
to their initial length or to be all of the same length.

You may be wondering why we have used '=' and not =". The point is rather subtle and we will not
make t0o much of it in this introduction. Suffice to say, there are two ways in which a vector can be made
constant. Either the whole vector is a constant in the sense that we cannot assign another complete vector
to that name, or else the elements of the vector are constant and cannot individually be changed. The
notation '=' and =" are used to distinguish between constant and variable complete vectors. Do not
worry about this too much if you do not really understand it - you really need to know some more about
programming and to read the later chapters of this book. If you stick to using '=' in declaring vectors for
most of the examples in this book you will not get into difficulties. We also discuss the point further a
little later on in this chapter.

Having declared a vector we can assign values 0 individual elements by clauses like

X(i)=3
where { is a previously declared integer with a value between 1 and 8 (look back at the declaration of X).
PS-algol checks for you at run-time that the value of the subscript i is indeed in the correct range and that

the value being assigned to the element is of the correct type.

Suppose that we wanted to read in 10 real numbers and print out the smallest and the biggest. We could do
this without using a vector but we will use one to illustrate the ideas.

page 33

letx = wertor 1110 of 0.0

fori=1 1010 doxi) =readr()

let smallest := (1) ; let largest :=x(1)

IThe above line starts things off with x(1) for both vales

fori=2 t0 10 do
begin
(i) < smallest do smallest :=x(i)
ifx(i)> largest dolargest = x(1}
end
write "The smallest number is ", smallest,
" and the largest is ", largest

We will now write a more ambitious program to read in a list of real numbers and sort them into order.
We will do this by writing one for loop inside another one with the inner loop range getiing smaller and
smaller. At each stage in the inner loop we will put the smallest object to the bottom of the part of the
vector under consideration,

let n = readi() 1This gives the number of objects
let x = vector 121 0F 0.0
fori=1 ton dox(i):=readr() Isortcode starts here
fori=1 ton-1 do
begin
let smallest :=x(i); letk:=i
forj=i+1 ton do
ifx() < smallest do { smallest :=x(j) k =i}
fh~=ido{x(k):=x(i);x(i):=smallest}
endl
write "The sorted list of ", n, " numbers is'n'n"
fori=1 ton dowritex(i), "“n"

You should try working through this program step by step with say » = 5 doing exactly what PS-algol
does.

If you start off with the numbers
13 66 11 28 37

the order at the end of each loop will be
11 66 13 28 37
i 13 66 28 37
11 13 28 66 37
11 13 28 37 66

Notice that we have declared the vector x with subscripts going from 1 to n. Under the appropriate
circumstances either of the Emits of a vector can be wriiten more generally as any integer expression.

Quite often we want to use two-dimensional vectors, that is tables with both rows and columns. We can
declare such a vector by writing a list of subscript limits as follows.

fetp = vector 1::10,1::8 of 0

We like to look at this as a vector of vectors rather than as a two-dimensional array for a reason we will

explain shortly. In this case it is a vector with 10 elements, each element of which is a vector of integers
with 8 elements.

There are two ways in which we can refer io particular elements in such a vector of vectors. The usual
shorthand method is to write p(i,j) to represent the i,jth element but it is also permissible to write pD(G).
This form is clumsier and will not usually be used when referring to individual elements. We note
however that p(i) does have a meaning, namely the whole vector in the ith position in p. This is quite a
sophisticated but powerful idea whose use we will illustrate shortly.

page 34

Let us consider first an example to read in a table of real numbers with n rows and m columns and to form
anew vector containing the row sums. We can do this easily as follows

let p = vector l::nl::m of 0.0
fori=1 ton do
forj=1 tom dop(ij) =readr() !Readsin values by rows

let p.rowsum = vector 1::n of 0.0
fori=1 ton do
forj=1 tom dop.rowsum(i):=prowsum(i)+p(ij)

A slightly more elegant program would be

letp = vector 1.:n,1::m of 0.0
let p.rowsums = vector I::n of 0.0
fori=1]ton do
forj=1 tom do
begin
plij) = readr()
prowsums(i) = prowsums(i) +p(ij)
end

A common problem is to sort the rows of a table of values into order depending on the values in some
particular column. Suppose we want to do this with the above vector of vectors p and for the rth column
where 1 <r<m. We can do this with a simple modification to the sort loop of the program given above.

let n = readi() ; let m = readi()
letp = vector I::n ,1::m of 0.0
fori=1 ton do

forj=1 tom dop(ij):=readr()

let 7 = readi() !column for sort key
fori=1 tom-1 do
begin

letsmallest :=p(i); letk =i
forj=i+1 tom do
ifp(jr) <smallest(r) do { smallest :=p(j) k:=j}
fk=ido{p(k):=p(i);p(i):=smallest]}
end

Note that smallest is the name of a vector which is initially the ith row of p. The comparison of elements
p(jr) < smallest(r)

has correct subscripts since p is a vector of vectors and smallest is a vector. Finally, whenever a change of
row is required, this is done by changing the row pointers rather than the individual elements. Note
however that it is not possible to change columns in this way. One should therefore think carefully about
choosing the order in which vectors of vectors are defined.

In each of the above examples we have initialised the vector elements all to the same value. Although we
have used 0 for integers we can use any integer expression for initialisation and similarly for vectors with
elements of other types. Quite often we want 1o initialise vector elements to a collection of different
values. We could do this by reading data into them, but if we always need the same values for a particular
program it would be better to do it as part of the program.

In PS-algol we do it by a clause of the foliowing sort.
lett= @I ofimt/ 1,234,56])
This needs some explanation. The notation @17 is an indication of where the subscripting is o start.

This we call the lower bound. The value 1 can be replaced by any integer expression. The words of int
say that the elements in the vector are all to be of type integer and furthermore are variables. If we want

page35

them 1o be constants we would write of cint instead. The actual values are given as an expression list
enclosed in square brackets. 'We do not need w0 give the upper bound of the vector since PS-aigol will
count the elements for us.

If we want 10 initalise a vector of reals like

let X = @0 of realf 0.0,1.0,-3.7,2.0]

we do not need to put in the decimal point in the integers since PS-algol will convert them for us as we
have seen earlier. We could thus write

letX = @0 ofreal/0,1,-3.7,2]
As another example we will write
let days = @1 of cstring/ "Sun”, "Mon”, "Tues”, "Wed”, "Thurs", “Fri*, "Sat”]
Mote that the strings need not all be of the same leagth.

The flexibility of the vector notation allows the data structures to be of any complexity that we wish. We
could for example write

let triangular.array = @I of * cintf @1 ofcint/ 1],
@1 of cint/ 1.1],
@] ofcintf 1,21],
@I ofcint/ 1331],
@I ofcintf 1464,1]]

o give a representation of the Pascal triangle

[
R
[« VS

1

41

The type *cint used above indicates that each object in the vector friangular.array is itself a vector of
objects of type cipt. We discuss this further below.

To illusirate these ideas we will give an example which, given the day of the week on which a given
month starts and a date within the month, will work out which day of the week it falls on. We have to
think of a way of solving the problem before we can program it. First of all we must find if the day given
for the start of the month is the 1st, 2nd...... 7th day of the week. Call this i, Then we find the remainder
on division by 7 of the actual day given. Call this date. If date = 0 then the aciual day is the same as /,
if date = I then the day is i + 1 and so on. The actual day requested is therefore always

(date+i)rem 7
A program to do this is
Program to find the day of the week,

letdays = @0 of cstring/ "Sunday”, "Monday", "Tuesday", "Wednesday",
"Thursday”, "Friday”, "Satwrday”]

let first.day = reads()

leti:=0

while first.day ~=days(i) doi =i+ 1

Yet date = readi()

write "Day “, date, " of the month falls on e ", days((i + date yrem 7 }

In introducing the concept of a vector we have not mentioned the data type of this sort of object. The
elements of a vector can be of type integer, real, boolean, string or indeed vector or any other data type in

page 36

the language. The data type of a vector is denoted by an **'. Thus a vector with integer elements is of type
*int if the elements are variable and *cint if the elements are constant. A vector declared by using =" is
itself variable and may have other vectors assigned to it whereas if it is declared by '=' it is constant.

Thus if we had written

letX = @] ofint{ 1,2,3]
letY '= @1 ofint{ 6,789]

we can write later on in our program
X:=Y

and X will now have the same value as Y i.e the same vector. Note that in this case, the elements of the
original X are now lost for ever.

If we had used
letX = @1 ofint{ 123]

then the subsequent

would be invalid since X is a constant.

Since vectors may be assigned, it is often necessary to interrogate the vector to find its bounds, The
functions upb and /wb are provided in PS-algol for this purpose. Thus if q is a vector defined by

letg= @I ofint/ 2, 4, 6, 8 10, 12]
then upb(q) has value 6 and Iwb(¢) has value 1.
Similarly, if s is a vector of vectors defined by
let s = vector 0::6,1::10 of "
then upb(s) has value 6, hwb(s) has value 0 but upb(s¢ 3)) has value 10 and Iwb(5{ 3)) has value
1.
There is no reason why vectors of vectors of vectors and so on should not be defined. PS-algol allows you
to do this by an obvious exiension to the notation. Thus, for example, one can define
let t = vector 1::8,1::6,1::3 of 0

and so on.

Exercises 6

6.1 Why in the example to sort numbers have we declared vector x with an '=' but use =" 10 assign a
value 0 x(1)?

6.2 A bubble sort works in the following way. Given a vecior of size n, the first scan of the bubble son
works from 1 to n - 1 looking at successive pairs of numbers. If the first is Iess than or equal 1o the
second they are left unaliered. Otherwise they are swapped. At the end of this scan the largest will be
at the top. Repeat the process with n-1 elements, excluding the top one which is in the correct place,
until all the elements are sorted. Write a program to do this. Warning. If you need to swap the
clements of a vector it is not correct to write

page37

6.3

6.4

6.5

6.6

i)r=xf);xj)=x1)
because the first assignment destroys the old value of x(i). You will need 1o write

lettemp =x(i) ; x(i)=x(]);x(j):=temp

Bubble sort can be stopped as soon as you do not have to change anything in one complete scan.
Modify your program above to set a boolean variable 1o false if any change is made in the order and
test it to see if you need to continue. You will need to use a while clause rather than a for clause for
this program. Note that bubblesort is one of the most inefficient methods of sorting.

Write a program to output all the verses of "On the twelfth day of Christmas”. If you can do this
without looking at the solution you are well on the way 10 becoming a programmer! (Unless you
just write out the song word for word).

Write a program to read in a list of words, each one as a string, and sort them into dictionary order.

Suppose x is a vector of vectors defined as

let x = @1 of * cintf @I ofint{ 1,1],
@4 of int[1,21],
@1 ofintf 1,2,32,1],
@I ofintf{ 12,1],
@-2 ofinegf 1,1]]

Determine the value of upb and lwb for each of the following
X
x(2)
x(3)
x(5)

Solutions to Exercises 6

6.1

The '=" sign implies that the vector as a complete object cannot be assigned to. Its individual

elements can be assigned to and this is why we can use =",

6.2

6.3

13.Cole. Bubble sort program.

et n = readi()
let x = vector I::n of 0.0
fori=1 ton dox(i):=readr()

bubble sort starts here

fori=1 ton-1 do
forj=1ton-i do
fx(j)>x(j+1) do
begin
fet temp =x(j)
Xj)=x(j+1)
x(j+1):=temp

tnow write out the answers
write "The sorted numbers are ‘n'n”
fori=1 ton do

write x(i), "'n"

If you did not succeed in solving this yourself try working through the solution step by step with a
vector of say 4 elements,

‘We change the piece of program between the two comments as follows
Ibubble sort starts here

feti =1 let more .= true
while { <=n and more do

begin
more := false
forj=1ton-i do
begin
ifx(j)>x(j+1)do
begin
fettemp =x(j)
X(j)i=x(j+1)
x(j+1):=temp
more = {rue
end
end
j=isl
end

Inow write out the answers

5.4

Uthe first day of Christmas, five verses only. Exira verses need only
la change of data.

let phrasel = "'nOn the”
let phrasel =" day of Christmas'nmy frue love sent to me'n”

let number = @I of estring/ " firsi™,” second"”,” third")” fourth”,” fifth"]
let gift = @1 of csiring/ " a pariridge in a pear tree’n”, " two turtle doves'n”,

" three french hens'n”, " four calling birds'n”,
" five gold rings'n"]

Icalculation staris here

write " The five days of Chrisimas'n'n"

IThe first verse is a special case becanse the word 'and’ is not used.

write phrasel, number(1), phrase2, gifi(1)

Irernainder of verse production staris here

Iet nexi.verse := " and" ++ gifi(1)

fori=2 105 do

begin

next.verse != gifi(i) ++ next.verse

write phrasel, mumber(i), phrase2, nextverse
ead

6.5 The solution is exactly the same as either of the two sort examples given earlier but you need to

7 THE CASE CLAUSE

Programs are often complicated to read because of the amount of testing and branching inside them. The
if ... then ... else clause is a very useful one but even this can be unreadable when similar clauses are
nested in the two different parts of the clause itself. The case clause in PS-algol is a very powerful one
and we introduce it as usual with an example.

case party of

"lab” :no.dab = no.lab + 1
"cons” ! no.cons = no.cons + 1
"Hb” rnoldib = nolib + 1
“smp" : no.snp ;= no.snp + 1

"comm” : no.comm := no.comm + 1
"sdp” :no.sdp = no.sdp + 1

default : no.rest ;= no.rest + 1

We are assuming here that party is the name of a swing which is used to hold the political affiliation
of a person and the effect is to add one to the corresponding total of members of that party. In the general
case the name party can be replaced by any expression of any type and the string literals before the
colons can be replaced by expressions of that same type or even lisis of expressions of that type
separated by commas. The effect is that the expression following the word case is evaluated and its
value is then compared, one by one, with the values of the expressions, or members of the list of
expressions, preceding the colon. As soon as a maich is found further comparison stops and the clause
(or, when relevant, the expression) following the colon is executed. The program then skips over the
rest of the case clause to the next part of the program. Thus, whereas the if clause allows the selection of
one of two alternatives to be executed, the case clause allows one of many. If no maich is found then
the default option is obeyed automatically. A default option must always be written. This is
good programming practice to make sure that yon have not overlooked a case but in the rare case in
which you do not need it you should include either

change the clauses including readr() to reads() and also the vector declaration to a vector of strings. default : (]

or default : { write "No case maiches. Value ## returned'n” ; #4)
! | n
66 upb(x)=5 lwb(x)=1 INote that ## must be replaced by a value of the correct type leg. 0or ™ etc.
upb(x(2))=6 Iwb(x(2))=4
upb(x(3))=5 1wb{x(3))=1 . R .
upb(2(5)) =-1 Iwb(x(5))=-2 An example of a case when all the options are expressions is

no.of.legs := case animal of
"cat”, "dog", "korse”, “cow” - 4

‘ma’ 22
w6
nfid’ 3
default 0

Some programming languages have a variant on the case clause which branches depending on the
value of an integer expression only. Usually the programming has been contorted to obtain the
appropriate integer before the case clause is executed but in our case we do not usually need to think
of this. In the rare case in which we do need 1o use a test for integer values we can write

case integer of
1:..
2.

9.
default : ...

There is no significance in this example finishing with 9. There is no restriction on the number of
choices.

In the rest of this chapter we give a number of examples of the use and power of the PS-algol case
clause.

A common example in introductory books on programming is the solution of a quadratic equation. If
a proper solution is given it is often quite complicated but the following should be immediately
undersiandable. We use here the square root function sqrt which is supported automatically by
PS-algol.

write "Input three real coefficients
let a = readr() ; let b= readr(); let ¢ = readr()
if a =00 then write "This is not a quadratic since a = 0'n"

else
begin
letdiscrim=b*b-40%a*c; letden=20%a
case true of
discrim < -le-6 : write "Imaginary Roots are " -b | den,
"+ or -1 ¥ " sqri(-discrim)iden,”'n"
discrim> le-6 ; begin
et 7l = (-b + sqri(diserim))iden
write "Real Roots are "rl,
“and ".cl{ @ *rl),"'n"
end
defauli : write "Single Root is " ,-blden,”'n"
end

The appareni complication of the discrim > Ie-6 case is nothing to do with the programming but
with the computation to produce an accurate result in all cases. If you do not believe this try solving the
equation

0.08x% +214x+0.14=0

and substituting the answers back in the left hand side to see how near to 0 you get. If you just calculate
b+or-sqi(b¥o-4¥a*c)
you will get bad results for one root.

The use of frue as the expression following case is a particularly useful one. We test each of the
following conditions to find the first one which is also true for our particular equation.

In the next example we are going to write a program which will read in a French regular verb, find its
root and ending and print out the first person singular conjugation of the verb. Our program is not
intelligent enough to find out if the verb given is not a regular verb unless its ending is wrong. So if,
for example you give it "etre” it will work out the present tense as if it were regular.

write "Type a French regular verb "

let verb = reads()

let pronoun = case verb(1/1) of
"a""e","h" i 0", s
default: "je"

letending = case verb(length(verb) - 1/2) of

" o

“er” e

g nign
g s g
default : "x”"

if ending = "x" then write verb, " is not a French regular verb'n"”
else write "The first person present tense of ', verb,
"is", pronoun, verb{lflength{ verb)-2),
ending,'n"

Note that the setting of pronoun is determined by testing for a vowel and the default is for the
remaining consonants,

page 42

Suppose now that we have the results of a survey on a pop record with the survey information being
for each participant :
age sex opinion

where age is an integer, sex is "m" or "[" and opinion is "yes" or "no". Suppose we have a lot of such
data terminated by a single entry of age = 0 and we wish to find the following totals.

(i) number of females < 20 who like the record

(il) number of females >= 20 who like the record
(iii) number of females < 20 who dislike the record
(iv) number of females >= 20 who dislike the record
(v) number of males < 20 who like the record

(vi) number of males >= 20 who like the record
(vii) number of males < 20 who dislike the record
(viii) number of males >= 20 who dislike the record

We will write the part of the program which accumulates the totals and leave the writing out of the
results to you.

let sums = vector /::8 of 0

let age = readif)

while age ~= 0 de

begin
let sex = reads() ; let opinion = reads()
let index = case true of

sex = "f" and age < 20 and opinion = "yes" : 1
sex = "f" and age <= 20 and opinion = "yes" : 2
sex = "f" and age < 20 and opinion = "no" ;3
sex = "f" and age >= 20 and opinion = "no" : 4
sex = "m" and age < 20 and opinion = "yes" : 5
sex ="m" and age >= 20 and opinion = "yes" : 6
sex="m" and age < 20 and opinion = "no” :7
sex = "m" and age >= 20 and opinion = "no" : 8
default : { write "Invalid data *, age, sex, opinion,

"

‘nType corrected data 'n” ; 0 }

if index ~= 0 do sums(index) := sums(index) + 1
age = readif)

end

Note how the default option picks up invalid data. Although this program is readable it is still not a
good program because it has a great deal of almost repetitive writing in it. You could simplify the
program by writing instead of the case clause

letI= (ifsex="f" thenl else5)+
(ifage <20 then O else I) +
(if opinion = "yes” then O else 2)

sums(1) :=sums(1) + 1

but it is not nearly so obvious what you are doing and if you make a mistake it is more difficult to
pick up. Furthermore, you still have to check each data line for possible errors.

A better, and still readable solution is to teplace the case clause by the following piece of program.

feti= case sex of
"f': case opinion of
"yes” . ifage <20 then I else2
"no" : ifage <20 then 3 else 4
default : 0
'm"; case opinion of

.

‘yes" : if age <20 then 5 else6

"no" : if age < 20 then 7 else 8
default 1
defanly : 0

ifi=0 then write "Error indata ", age, sex, opinion,’n”
else sums(i} ;= sumns({) + 1

We have again used a value of i = 0 to detect errors in the string responses. We could have been more
explicit using O for an error in opirdon and -1 for an error in sex say.

Exercises 7

7.1 ‘Wriie a program which will read in three real numbers and check whether a triangle with sides of
these lengths exists and if so whether it is scalene, isosceles or equilateral. Think carefully before
you start writing your program to decide the tests you need to find the result. If you cannot do
this look at the hint at the bottom of these exercises before the solutions and then write the
program,

7.2 Write a case clause which sets a name colour 10 a colour shown for the following objects.

"grass” "green”
"fire engine” "red”
"leaf” "green”
"daffodil™ "yellow™
“carrot” “"orange”
"pillar box" "red"
"emerald” "green”

anything else "black”

7.3 Write a program 1o calculate sums for different combinations for any particular survey data you
like to choose. (For example, a survey of school dinners!)

Hint for solution of 7.1. If you test in a case clause in the following order, each test is simple.
1. test if it is a triangle.
2. testif it is equilateral. Thatisa=band b=c.
3. testif itig scalene. Thatisa~=bandb ~=candc ~=a.
4. default it must be isosceles.

Solutions to Exercises 7

7.1

7.2

73

1J.Cole. Test triangles.

write "Input three real numbers as sides of a triangle
let a = readr() ; let b= readr() ; Yet ¢ = readr{()
lets=05*(a+b+c)

write "The figure with sides 'n", a, b, c,

case true of
s<aors<bors<c :"isnotatriangle'n”
a=b andb=c :"isanequilateral triangle’n”

a~=b andb~=c andc~=a :"Iisascalene triangle’n"
default :"is anisosceles triangle’n”

colour = case object of
"grass”, "leaf”, "emerald” :“green”
"fire engine”,
“pillar box" : "red”
“daffodil” : "yellow”
“carrot” : "orange"
default : "black”

This depends on your choice of survey data but the program will be very similar 1o the examplc
about a pop record in the above chapter but with different expressions in the case clause.

8 SOME IMPORTANT ODDS AND ENDS

We now clear up some points we iefl unfinished in the preceding chapters and also introduce a few new
ideas. Since there are a lot of different topics covered we will use section headings in this chapter.

8.1 Write facilities

We will discuss briefly the way in which you can control your output rather more precisely than hitherto.
We have already introduced the special character 'n as part of a string literal. 'n is the new line symbol.
There are four other special symbols of this type.

‘o allows overprinting of the current line. That is, it causes the printing to go back to the start of
the line you have just completed. The use of this is to enable underlining to be done easily or
to overprint characters if you are building up pictures,

b causes the printer to backspace one place. This gives the same facility as 'o but for just one

character. Clearly you can backspace as many characters as you like in a loop.

t s for typewriters or terminals with a tabulate facility. If you do not know what this means
forget it!

v makes the printer skip 1o a new page.

Note that some of these will give strange results when used on videos where overprinting does not
work correctly. (eg. the Mac)

We have assumed thai our output for integers and reals is always of the same size. As a default option
P5-algol gives you 10 places for an integer and 12 for each real plus two extra spaces afier each number
printed. There are three ways in which you can conirol this part of the output.

1. You can reset the default options by setting any of a number of system predefined variables to
new values. These variables are

(a) L.w which controls the integer width. Thus i.w := 6 would set integer width output to
6 until you change it again. iw is already known 10 the system, as are the others in
this section, and you do not have 1o redeclare it with a let clause.

(b) r.w is the same as 1.w except that it is for the width of reals.
{c) s.w sets the spaces left after printing integers or reals. The default value is 2.

2. You can specify the output size for any particular expression by writing "' followed by an

integer expression in a write clause. Thus
writei:6, 0.5*x:10, j:n, "z": 8

would give 6 spaces for i, 10 spaces for 0.5 * x, n spaces for ; where n is some integer
calculated in your program and 7 spaces followed by a z. All output is right justified, which
explains why "z" : 8 is output as 7 spaces followed by z. You may not realise the full power of
this at the moment but it is 3 very powerful output control facility. If, using either of the
above methods, a number or string will not fit into the space allocated then it is expanded to fit
into the smallest possible space.

3. There are two system functions called eformat and fforma: which give you another means of
controlling output of real numbers. We do not want to go into detail here for beginners but for
the more experienced programmers we will say that eformat and fformat iake three parameters
which are the real number and the number of places before and after the decimal point
respectively. Thus in a write clause you could include

write fformat{ x,3,2)
to give the value of x an output format with 3 places before the decimal point, the decimal
point itself and 2 places after it. If the numbers cannot be printed correctly in the form you
have specified PS-algol will ignore the specification and print them in the usual manner.

8.2 Operator priorities

Standard arithmetic notation is ambiguous. It is not obvious whether the value of

3+2%5
is 13 or 25. We are taught at school that multiplication has priority over addition so the ‘correct’ answer is
13 but this is only a convention. We will however keep to this convention ourselves and note that
multiplication and division have equal highest priority and addition and subtraction have lower but also
equal priority. If ambiguity still remains then we work from left to right.

Thus 6-4-1 hasvalue 1. Note that div and rem have equal priority to / and *.

The boolean negation ~ has the next highest priority followed by the relational operators for comparing
two objects, namely

= o~ L D> L D
all of which have equal priority followed by the boolean connectives and and or both on their own. The
complete order of priorities is

/¥ div rem 4+

+ -

8.3 Simple data types

‘We have introduced four simple data types so far. These are integer, real, string and boolean and when we
spoke about initialising vectors we introduced the corresponding reserved words int, eint, real, creal, string
and cstring for variable and constant integer, real and string elements respectively. We have used the
boolean literals true and false and there are two corresponding reserved words to indicate the type boolean,
namely bool and ¢bool. This apparently curious choice is traditional in computing. bool is an
abbreviation for boolean which is derived from the name of George Boole, a mathematician, who developed
a branch of mathematics which became known as boolean algebra. For example, we use bool and cbool to
declare boolean vectors as follows

let B = @1 of bool [true,true,false,false]

;)z:t BB = @-3 ofcbool/x ory x andy, ~y]
We can also write

let D = vector 1:.8 of true

or

let E = vector 0::6 of false

An example of the use of a vector of booleans is given later in Chapter 12.

8.4 Abort

The reserved word abort simply stops the program.

page 46

paged7

8.5 Functions

We have already mentioned the length and sqrt functions. They are used by giving the name of an object
or an expression in brackets after the function name.

Thus sgri(5 +4) hasthevalue 3.0 and lengih("abc” ++ "def") has the value 6.
There are a number of other functions which are commonly used and they are listed in Appendix IV. Do
not worry about the formality of the declarations. You will understand them after reading the chapter on
procedures. As an example if you want to use sin(x) and cos(x) in your program you can write for
example

yi=a*cos(x)+b*sin(x)
Note that the argument is enclosed in brackets. The comment after each definition in Appendix IV telis
you the type for the argument where appropriate.

3.6 Standard Identifiers

A numnber of standard identifiers exist in the language. They are

rw variable initially 12

A% variable initially 2

iw variable initially 10

5.1 variable set to the standard input

5.0 variable set to the standard output

maxint constant, the maximum integer

epsilon constant, the largest real ¢ such that 1 +e = 1
pi constant, pi

maxreal constant, the largest real

Note that the minimum integer value is -maxint - 1 and the minimum real value is -maxreal.

8.7 Semi-Colons

As a lexical rule in PS-algol, a semi-colon may be omitted whenever it is used as a separator and coincides
with a newline. This, of course, allows many of the annoying semi-colons in a program to be left out,
However, 1o help the compiler deduce where the semi-colons should be, it is a rule that a line may not
begin with an binary operator. e.g.

a *

b
is valid but

a

* b
is not

This rule also applies to the invisible operator beiween a vector and its index list. o.g.

letb=a(l12)
is valid but

letb=a

(12)

will be misinterpreted since vectors can be assigned.

page 48

8.8 Comments

Comments may be placed in a program by using the symbol !'. Anything between the ! and the end of the
line is regarded by the compiler as a comment. e.g.

a+b laddaandb

8.9 Directives

There are certain compiler directives used to annotate the listing of the program provided by the compiler
that the user may wish to invoke. The symbol '%’ is used to denote a directive. They are

Plist print the program listing.

%nolist do not print the program listing.

%title,< string literal > take a new page and use the string as a heading for this and
subsequent pages.

Jelines,< integer literal > Inform the compiler of the number of lines on each page of output
paper.

%ul underline the reserved words in the listing.

Yonoul turn off the reserved word underlining.

Exercises 8

8.1 Inchapter 3 we wrote a program to print a shopping list. Rewrite the output part so that you do not
have to worry about keeping the name of the article strings to the same length when preparing the
data.

8.2 Determine the value of the following expressions. To compare your answers to the solution, put in
appropriate brackets first to show how the priorities operate.

H3I*2+4*8-6*2
(i) 8 divd4 div2

Ay 3.0+6.1/20+13
(iv) true and ~faise or false

8.3 We have seen how we can print a given string in a field of a given width using : n. This right
justifies the string inserting the number of blanks required to the left. Thus if name is less than 20
characters long

name : 20
in a write list, right justifies the name in a field of length 20. Write output list elements to write
‘name’ left justified in a field of lengih 20.

8.4 Modify the program in section 5.3 to put your address at the top right hand side of your page which is
75 characters wide. Again do not expect the user to put in leading blanks. You should expect
them to supply something like

"20, Castle Drive,”
"St Andrews,”
"Fife"

page 49

Solutions to Exercises §

8.1 write quantity, name : 14, " at ", cosiper.item, line.total, "n"

82 (D((3%2)+(4*8))-(6%2)=126
Ay ((8 divd) div2) =1
() ((3.0+(61/20))+1.3)=735
(iv) ((true and (~false)) or false)
= ((true and true) or false)
= {rue or true
= {rue

8.3 name, "":20 - length(name)

We need two write list entries here. name is printed as itself followed by 20 - length({ name)
blanks.

8.4 Program to accept invitations.
et namel = reads ; let function = reads
let date = reads ; let name2 = reads

while ~eoi do
begin
let address = reads
write address : 55 + length(address) +

(20 - length(address) } div 2
end

write "Dear "namel, ",'n"
write "7 :length(namel) + 6
write "Thank you for your invitation to your ", function, "on'n "

date, ", which I am very pleased 10 accept.’n"
write "Yours sincerely,’n" : 47

write name2 : 30 + length{ name2)

,

Note that 55 + length(address) + (20 - length(address) } div 2
simplifies to 65 + length(address) div 2

page 50

9 PROCEDURES

The programs we are now writing are more complicated than before because the actual problems themselves
are also becoming more complicated. One of the aims of a good programming language is to keep the
programs readable so that a lot of program documentation is unnecessary. To help us keep programs more
readable we introduce the idea of a procedure. The idea is that we can write a section of program and give a
name to it and then 'call’ this piece of program or procedure from somewhere else in the main program, or
indeed from another procedure.

This idea leads us to think about writing programs in a different way. Instead of trying to carry everything
in our heads and then write the program as a long linear list of instructions, we start off by thinking of the
solution in general terms and then gradually refine the general solution to a complete solution of the
problem. Such a method is called a top down solution. We illustrate this idea with a few simple
examples.

In example 6.2 we wrote a bubble sort program. In the middle of this we wrote a piece of code

fx(j)>x(j+1) do

begin
let temp = x(j)
Xj)=x(j+1)
x(j+1):=temp
end

which swapped the values of x(j)and x(j+ 1) if x(j)>x(j+ 1). This particular piece of program is
not very difficult to read but we will write a procedure to make it even clearer. When we were writing our
program we could have written

ifx(j)>x(j+1) doswap.xs

and finished writing our program, delaying writing the detailed code for the swap operation until later. We
could then have written a procedure with name swap.xs as follows.

let swap.xs = proc()

begin
let temp = x(j)
Aj)=aj+l)
x(j+1)=temp
end

The sequence of clauses, or procedure body as it is correctly called in this case, is exactly the same as in the
previous program but the advantage is that the main program is more immediately understandable and we
delayed thinking about how to write the code until later. The effect of the procedure call swap.xs in the if
clause is simply to transfer control to the body of the procedure and when this has finished executing to
return control back to the main program.

The name swap.xs was chosen to make it clear to the reader what has to be done in the procedure body.
The rule for inventing such names is the same as for any other name in PS-algol, namely it must start
with a letter and be made up of letters, digits and dots only. We will shortly see how to pass information
10 the procedure body. In the above case the information has come from the main program itself and the
declarations of the objects used in the procedure body apart from femp have already been made in the main
program. femp is purely a local name.

There are two other points to remember about writing procedures. First of all, although we actually
wrote our procedure after the main program we still have to insert it in the program before we make the call
itself. This is because the PS-algol compiler is a fast one which does all its compilation in a single scan.
In order to set up the program links between the call and the procedure it needs to know about the procedure
before the call is made. It can come anywhere in your program before the call but after the declaration of
the main body objects that it uses. PS-algol recognises the word proc in the heading of the procedure
declaration and knows that it does not have to execute any code at that moment.

pageS1

The other point which we have briefly mentioned in the last paragraph, is that in order to compile the code
into machine instructions PS-algol needs to know about the names which have an existence outside the
procedure. In the swap.xs procedurs thers were names x and j which were used. This implies a
knowledge of x andj. We would therefore have 1 put our procedure swap.xs declaration immediately
afier the piece of code

forj=i+1 ton do

begin

This is not very nice, could be very confusing and may easily lead to errors which would prevent your
program compiling if you were io put this declaration in the wrong place. If we stop 1o think a little more
carefully about the procedure we can see that it is a special case of a more general procedure to swap 2
vector elements, say z(i) and z(j) or on another occasion ¢ m) and if n). This leads us to the idea of
a procedure with parameters. We use the notation

let swap = proc(*real 7, cinti, k)

begin
fettemp =T(i)
T(i):=T(k)
(k) :=temp
end

In the brackets alier the procedure name swap we have declared the use of a real vector T and two integer
constants i and k. We call these the formal parameters of the procedure. The word ‘parameters’ just means
that they are names special to the procedure and they are called formal because they are just used w show
how the computation has 1o be carried out in the procedure body. The notation *real is used 10 indicaie that
T is a vector of reals. In our main program we still call the procedure by writing its name but we now
have to say what the actual parameters are. In our case the call would be

Wx(j)>x(j+1) doswap(x,jj+1)

The effect of this call is to execute the code as defined in the procedure declaration but with the formal
parameters 7,7 and k& given the values of x, j and j +] respectively. Note that the constant temp is
local to the procedure and has no existence outside the procedure body. The procedure is now independent
of the actual parameters until it is called and so its declaration can be placed anywhere we like in the
program so long as it precedes the call.

If somewhere else in our program we wanied to swap two other actual real vector elements, say p(s) and
p{ t) we could write

swap(p, s, t)

and the same procedure would swap their values.

One further point about the use of *real 7. We declare our formal parameter as a vector in this way
because we do not want {0 tie ourselves down (o 2 fixed length of vector. Although we have introduced the
idea of formal parameters which are declared along with their type in the procedure heading this does not
prevent us from using parameterless procedures, like our first definition of swap.xs if itis convenient
do so.

Suppose now, instead of just writing a program to read in n numbers and sort them into order we wanied o
sort some numbers as part of 2 much larger program. 1t would be convenient o write a procedure called
sort say, 1o do this. Such a procedore could then be used in several different programs and would also help
in making the main program more readable.

We need to think first about the parameters that we require. The numbers we wish to sort will always be
in a vector so the vector name will be one parameter. We sometimes want only part of the vector so it
would be nseful to give the sort limits as two integers i andj say. Since we will need this procedure later
on we will make the vector of type int and in a similar manner 10 the above we do this by using the formal
parameter *int ¢ meaning a vector of integers called q. (If we wanted a vector of vectors we would write
**int ¢ and 50 on.) Our full declaration of the procedure could now be

page 52

fet swap = pro¢(* int x ; int iy)

begin
let temp = x(i)
xi)r=xj)
x(]) :=temp
end

let sort = proc(*int g, intij)
begin
fors=itoj-! do
forir=s+1 toj do
ifg(s)>q(r) doswap(qst)
end

Note that the declaration of procedure swap must precede the declaration of procedure sort since sort uses
swap internally. An actual call of the procedure sort could be

sort(x,1,n)

which would sort the vector of integers called x fromx(]) tox(n) into order. In the main program we
would have declared an integer vector x with subscripts including the range 1 to n.

So long as it makes sense we can use expressions in place of simple object names in the actual parameter
list. In the above example it does not make sense to replace the actual vector parameter by an expression.
It does, however, make sense to replace i and j by expressions. We could for example write

sort(y,i,i+10)
and this would sort the eleven integers from y(i) to y(i+ 10) into order.

The two procedures we have used above both consisted of complete pieces of code which could have been
written in a sequence directly in the main program. We chose not to do this largely to make our programs
more readable but also to save repeating code if we made more than one call of the procedure in the
prografi.

Sometimes we would like to evaluate an expression and return its value as the result of a procedure call.
For example we may have to evaluate a number of quadratic expressions in a program and it would be
convenient to write a procedure to do this for us. We need to be clear about the type of answer we are
going to produce and in PS-algol we need to declare this along with the formal parameters. For example
the quadratic producing procedure could be

let quadratic = proc(reala, b, c,x-> veal), a*x*x+b*x+¢

Here we have simply written the expression we want to evaluate as the procedure body and have indicated in
the procedure heading by -> real that the result is going to be real.

From the computational point of view it would have been slightly better to have written the actual
calculation as
(a*x+b)*x+c

This happens to save one multiplication operation but is also more accurate i.n awkward cases where for
example x is nearly equal to zero. It also suggests a way in which we can ymw a pro_cedure iy evaluate a
polynomial for an arbitrary value of n. The following procedure will do this for us with a being a vector
of coefficients of the polynomial,

let polynomial = proc(*reala ; realx; intn-> real)

begin
letp:=aln) '
fori=n-] to0 by-1 dop:=p*x+ali)
P

end

page53

This is a slightly more complicated example in which we have 10 execute a sequence before producing the
answer. When we have to do this, we need 10 make it clear just what the required answer is and this
accounts for p being on the last line before the word end. If it is necessary, p can be replaced by an
expression which evaluates to the required answer. Thus our quadratic example is really a special case of
this when there is no exira calculation 1o be done before computing the answer. Before you read on you
should convince yourself that this procedure does calculate a polynomial as required. Try taking n= 3 and
work through the for clause step by step.

To conclude this chapter we give a few more simple examples of procedure declarations and calls.

In chapter 4 we wrote a program to compute Fibonacci numbers and included a piece of the main program
to write these out, six to a line. We will write a procedure to do the output but will make it more flexible
for more general use. We have 1o think carefully first of all about the parameters and the global names that
we need. The piece of code that we are going to convert to a procedure is

write new fib
column.count := column.count +1
if column.count =6 do{ write "'n" ; column.count :=0}

To make this more general we will replace the literal 6 by a name say no.in.line and make this a
parameter of the procedure. It would also be more flexible if we could control the integer output width as
described in chapler 8 so we will include a second integer parameter called width 1o do this. The integer
variable column.count presenis a difficulty. The value that it holds is not local to the procedure since it
needs to be passed in from the main program and the updated value remembered by the main program for
the next time that the procedure is called. This leads us to think rather carefully about the properties of the
parameters of the procedure. In PS-algol we say that all parameters are 'called by value’. This means that
the values of the parameters at call time are passed inio the procedure body and any assignments io the
formal parameters inside the procedure body are purely local to the procedure. That is, the valaes of the
corresponding actual parameters in the main program are not altered by such assignmenis. Declarations of
parameters are thus eguivalent to the declarations of local names with initial values assigned by the
procedure call. Methods of handling parameters are the subject of much discussion by language designers
and we do noi wish to elaborate on owr choice here. 'We will simply say that we believe that this method
of parameter passing leads to fewer program run time errors, than apparently more flexible systems do. We
can easily overcome the problem of the global value of column.count by declaring it in our main program
before we declare the procedure. It thus becomes available for use in the subsequent procedures since the
procedure declaration is in the scope of the name. We can rewrite the program as follows

write "Table of Fibonacci numbers'n'n”
leta:=1; letb =1, letfieldwidih = 10
write afield width, b:fieldwidih

let totalno := 2 ; let column.count :=2

let outpur.no = proc(int number, no.inline, width)
begin
write nwmber ; width
column.count = column.count + I
if column.count = noinline do
begin
write "'n"
column.count := 0
emd
epd

while total.no < 42 do
begin
letnewfib=a+b
output.no(new fib, 6, fieldwidth)
a:=b;b:=newfib
total.no = total.no + 1

page 54

We often want to leave several blank lines before output lines and it is useful to have a procedure to do this
for us. The first example we give is for the case when we want the procedure to issae its own write
command. Such a procedure could be

let lines = proc(intn) fori=1 ton do write “'n”
A subsequent call lines(3) will output three new lines in the output stream.

We may also want a procedure to output a string of new line symbols 'n to include as part of a write clause
list in the main program or another procedure. Such a procedure could be

let new.lines = proc(intn-> string)

begin
lets:=""
fori=1ton dos:=5++"n"
s

end

and it could be used in a write clause as, for example

write "Title of owtput”, newlines(3)
fori=1 tom dowritea(i), b(i), c(i), newlines(1)

to produce a title followed by two blank lines and then the table of values, 3 on a line for m lines.

The observant reader may have noticed that despite our statement that parameters are called by value and
that if we change the value of a parameter inside a procedure, its global value is unaltered, nevertheless in
the procedure the actual values of the elements of the vector have been changed to sort them into the correct
order. This is a difficult point to make clear and one which appears to be an exception to the rule.
Formally, if x is a vector parameter of a procedure, we can assign a new vector to x inside the procedure

without changing its value externaily. In the sorting example we are not changing the whole vector but
rather elements of the vector.

Another useful idea which is common to most algol-like languages is that of recursive and mutually
recursive procedures. In Chapter 12 we will discuss the way in which recursive procedures can be used to

obtain elegant and readable solutions to some difficult problems but here we will just introduce the ideas
with a simple example.

Suppose that we want to read an integer n typed by a user as data for a program and 1o refuse to accept it
until 2 value between 1 and 10 say is typed. With the knowledge we have so far we could write a piece of
program

let not.done := true
write "Enter an integer between I and 10"
while nor.done do

begin
n = readi()
ifn<! orn>J0 then
write "Integer must be between I and 10. Try again”
else not.done := false
end

Another solution would be to write a procedure called get.integer as follows:

page55

let gerinteger = proc(-> int) ; pullproc

getinieger ‘= proc -> int)

begin
iet nn = readi()
ifn<i orn>Ii0 then
begin
write "The integer must be between 1 ond 10. Try again”
get.integer ()
end
else n
end
Note that (i) both branches of the if ... then ... else ... clause produce an integer answer which

is the result produced by the procedure.
(i) 2 name can only be used after its declaration and so 10 use get.integer inside the
procedure body we need to first have 2 dammy declaration and then redeclare it
(ili) nullproc can be used as 2 dummy procedure body for any type of procedure.
(iv) even when a procedure has no parameters it still requires brackets when called, as in
getinteger()

The procedure could now be used in the main program by writing

write "Enter an integer between I and 10"
n = getinteger(}

You might try generalising this example by adding two integer parameters lower.bound and upper.bound to the
procedure definition so that the same procedure can be used from different parts of the program with different integer
bounds on the data. Don't forget to change the message (o take account of this.

The idea of mutual recursion involves two or more procedures which call each other. It is difficult to give
meaningful elementary examples of this idea but perhaps the following will suffice. Suppose we wish to program a
computer game in which there are two types of move called move.a and move.b but in the code for move.a it is
possible (o call move.b and vice versa. For the sake of the illustration suppose both move.a and move.b use board
co-ordinates x,y and a stats indicator called status. Then the procedures could be

let move.a = proe(intx, y, status)
begin

begin

A technical problem with this piece of code is that the procedure move.a calls move.b before it has been
declared and vice versa if we change the order of the two procedures.

We overcome this problem by using a dummy declaration for b as for the recursive procedure above. This
means that the name b can be used within the declaration of ¢ and then we can rewrite b. This looks like :

page 56

let b o= proe(imtx,y, status); mullproc

iet move.a ;= proe(intx, y, staius)
begin

begin

This means that when a is called b has its new value and so the procedures work together in the desired
way.

Another point to note about procedures is that they are values like any other ie they can be assigned, passed
into procedures, put in vectors, returned from procedures eic. This gives a very powerful generality. As a
small example, suppose we wished 10 have a get.integer procedure which read integers between two values,
as given earlier in this chapter, but we wanted to be able 0 generate any number of these procedures then
we could write:

let new. get.integer = proc(int lower, upper -> prog(-> int))

prog/ > int)
begin
write "Enter an integer between”, lower, "and”, upper, ": "
fet n o= readi()
while n < lower or n> upper do
begin
write "The number should be between”, lower, "and”, upper, "Try Again:"
n = readi()
n
end

This is a procedure which, when it is called, is given two integers (the upper and lower bounds of the
numbers to be read in) and returns a procedure 10 get an integer between those two values. This culd be
used as follows:

let int.berween.].and 10 = new.get.integer(1,10)
let i = int.between.].and. 10()

let inr.bepveen5.and.17 = new.getinieger(5,17 }
i:=int.berween5.and.17()

Exercises 9

9.1 Write a procedure without parameters to calculate the distance between two points (x1,x2), { yl,y2 .
Remember that the square of the distance is

(x1~y1)2 + (7&2—y2)2

9.2 Modify the procedure in 9.1 to be a procedure with parameters x1, yi, x2, y2.

page 57

9.3 Use the procedure in 9.2 to write a program to find the pair of points in a list of points
(x(i), y(i)) (i=12,...1n)

whose distance from each other is maximum for the list.

9.4 Write a procedure which given two integers as actual parameters returns the value of the larger as the result.

9.5 Write a procedure which given a string as a parameter returns the value true if the first character is a vowel and
false otherwise.

9.6 Write a procedure 10
(i) discard any leading spaces or new line characters in the input stream.
(if) accumulate the string of characters from this point until the next new line character and
return this string as its result. You may use the function peek which allows you to look
ahead to the next character without actually reading it.

Note that this procedure can be used to read a response from a terminal as a string without enclosing that string in
quotation marks.

page 58

Solutions to Exercises

9.1

9.2

9.3

9.4

9.5

let dist = proc(-> real)
sqri((x1-x2)% (xI-x2) +(yl-y2)% (y1-y2})

let dist = proc(realxl, x2, yl, y2 -> real)
sqri({(xl -x2) ¥ (x1-x2) +(yl-y2)*(yl-y2})

et n = readi()
letx = vector I::n of 0.0
lety = wvector I:in of 0.0
fori=1 ton do
begin
x(1) = readr()
y(i) :=readr()
el

! The vectors x and y are now initialised

! Leti,j be the subscripts of the required points

! initially we set both to 1 and distance w 0.0

! Note that we can work with the distance squared and take
ithe square root at the end,

fetiz=1;letj:=1;letdist:=0.0

| We wriie a procedure dsg 10 work out the

! square of the distance between the

{two points (a,b), {¢,d)

! 1t is unnecessary {0 find the square root at this poini.

let dsq = proc(veala, b, ¢, d-> real)
(a-c)*(a-c)+(b-d)*(b-d)

forp=1] ton-1do
forg=p+1 ton do
begin
letd=dsql x{(p), Yp) =q) yq))
if d > dist do
begin

"The greatest distance is between poinis *, i, "and ", J,

nwithvalues ", x(1), (1), x(j), y(j),
" and the distance equals *, sqri(dist)

write

fet bigger = proc(inti, j-> It)
fi>=j theni elsej

let vowel = proc(string s -> bool)
s~="" and(cases(I/l) of
g gt i P i

Ve, "0, w1 true
default : false)

page 59

10 STRUCTURES

ine = - in
9.6 l;t r.gad,the_llne prog(-> string) It is often useful 1o collect together several pieces of information and give a name to this collection. We
egin S are not referring here to a vector which we have already discussed but rather to something like information
et s = about a person. We may wish to read information about a person’s name, home town, age and sex say and
s:= read) hold this as one unit of data. We can do this by declaring a structure as follows
whiles="" ors="n"

structure person(string name, home.lown ; int age ; string sex)
. = " do s = s b Te) . : : ;
while peek() " ad) This defines the form of the structure and gives names to the items which make up the structure and also a
d s name, that is person, to this type of structure. We can now set up an instance of such a structure by, for
en example
The function read allows you to read the next character in the input stream without the character being enclosed in

string quotes let joe := person(reads(), reads(), readi(), reads(})

This sets up a structure of the given type and allows us o refer 10 joe's name by writing joe(name) and
soon. As usual, the read commands can be replaced by any relevant expressions that you wish. To set up
a complete file of people, say members of class A4 in a given school, we could use a vector of structures
as follows.

structure person(string name, home.town ; int age ; string sex)
fet no.in.class = readi()
let A4 = wvector I no.in.class of ni}

{The above clauses set up a vector of pointers. (see next paragraph)

fori =] tono.inclass do
Ad(i) := person(reads(), reads(), readi(}, reads())

We could now write a program to sort them into any order.
We now have a vector with elements containing this information. Although in this example each
structure is of the same class, it is not a requirement. The piece of program above includes the declaration
of a vector of pil. This is a vector of pointers, or more correctly of type *puir in PS-algol. The pointers
are used to point at structures. Initially they are set to nil which is a predefined name of type pair in
PS-algol, and later in the for loop they are made to point at different instances of person. If we wanted now
o work out the average age of the class we could do it as follows.
et total.age =0
for i = 1 to no.in.class do towal.age = tolal.age + Ad(i)(age)
let average.age = total.age / no.in.class
As with vectors an alternative notation to
Ad(i)(age)
Ad{ iage)

which is probably more readable but that is a matter of opinion.

We can also use potrs in, for example, a new structwre definition. Suppose we wished to set up a parental
family tree structure. We could do this by defining a structure

structure child(string name ; ptr father, mother)

and we could set thesc pointers to the appropriate people when we read in the data. If we want to make this
structure into a real family tee going both ways then we need to handle pointers to children as well, We
can do this by ensuring that the children entry in the structure is of a variable length. That is, a vector of
pointers to children. We use the notation *pntr children to denote a vector of pointers with the name

page 61

children.
The complete definition could then be
structure human(string name ;| potr father, mother ;™ paty children)
If we want to refer to the it child of a vector of human structures with the name Jack we would write

Jack(children }(i)
or
Jack(children,i)

In the following example we are going to help Albert the domino player to play a hand of seven dominoes.
Albert plays according to very strict rules. Whenever he has to play he chooses the domino by the
following rules.

(a) look at the total number of spots on the domino and play the one with the highest
total

(b) if rule (a) fails, Albert always prefers to play a double e.g 2I2 is played before 311

(c) finally if rule (b) fails, Albert will then play the domino with the biggest single field
e.g. 1/5 is played before 2/4

Fizst of all we have to decide how to represent the information we need for the calculation. Each domino
has two fields and because of rule (c) we require to know the larger. Also rule (a) will require the sum of
the two fields. Therefore the domino can be represented by the structure

structure domino(cint larger, smaller, sum)

We make the fields constant integers since once we have created them they will never be altered. There are
seven dominoes in a hand and we can represent this by a vector of pointers to structures, each element
eventually pointing at 2 domino structure. Initially we declare the vector of pointers by

let dom = vector 1::7 of nil
We will now write the program to put the hand into order

input.dominoes()
sort.dominoes()
output.hand()

The main program consists of three procedure calls which will now be refined until we have a complete
program. Let us write the procedure input.dominoes

let input.dominoes = prog()
fori=1 to7 do
begin
let x = readi() ; lety = readi()
dom(i):= ifx <y then domino(y, x,x+y)
else domino(x,y, x +¥)
end

Seven pairs of integers are read in and the seven vector elements are made 10 point at structures representing
each domino. We are now going to sort the vector so that the first element will contain the best domino to
be played and so on. Notice that the values in the structures are not being altered, only the vector elements
which point to them. For the sorting we can use bubblesort

ket sort.dominoes = prog()
fori=1 t06 de
forj=i+1 to7 do
if ~greater(dom(i), dom(j)) do swap(dom, Lj)

This is essendally lh'e same solution as exercise 6.2. However we have abstracied the solution for clarity
and we must now write procedures swap and greater.,
swap can be written by

let swap = proc(*pntrt; inti,j)

begin
lettemp =1(i)
Hi)y:=4j)
1]) = temp
end

which is familiar. I_P‘rocedure greater decides which is the more desirable of the two dominoes according 1o
the rules, The result of this procedure is either true or false and is therefore boolean.)

let greater = proc(patr 4, t] -> bool)
i sum) > t1(sum) or o sum)= tl(sum) and
(i larger) = o smaller) or (1(larger) ~=tI(smaller) and
o larger) > tl{ larger))

You_should sausfy yourself that this largish boolean expression represents the 3 rules for playing
dominoes. All we have to do now is to output the hand. ’
let output.hand = proc()
begin
write "Albert's hand in preferred order is - *
fori=1to7 do

write dom(ilarger), " | ", dom(i,smaller), “n"
el

Careful au.en_tion shopld be pgid to the method of solution to this problem. First, the data siructures (o
repre§ent thg information required were decided upon. Procedures were then used successively to refine the
solution until a program was obtained and finally we put it all together to give the required result. The

procedures must be put in the proper order so that none is referred o before it is declared. This gives us the
full program.

structure domino(cint larger, smaller, sum)
let dom = vector 1::7 of uil

let input.dominoes = proc()
fori=1 to7 do

begin
et x = readif) ; ety = readi()
dom(i):= if x <y them domino(y,x, x+y)
else domino(x, y, x +y)
end

let greater = proe(patr ¢, t1 -> bool
o sum) > tl(sum) or ¢ sum) = tl(sum) and
(i larger) = t(smaller) or t1(larger) ~= (I(smaller) and
i larger } > t{ larger })

page 63

let swap = proe(*potr ¢, inti, j)

begin
fettemp =1(i)
Hi)=4j)
H])=temp
end

let sort.dominoes = prog()

fori=1 106 do

forj=i+1 to7 do

if ~greater(dom(i), dom(j}) do swap(dom,i,j)

let ousput.hand = proe()
begin
write "Albert's hand in preferred order is :- *
fori=1 to7 do
write dom(i, larger), "] ", dom{ i, smaller), "'n"
end

Main Program

input.dominoes()
sort.dominoes()
output.handy()

A putr may point to a structure of any class. In the same way that it is useful to interrogate a vector to
find its bounds it is also useful to test a pointer for the class of the structure it is currently pointing at.
Two relational operators is and isnt are provided for this purpose. For example if we have

structure golfer(cint no.of rounds, no.of-clubs)
structure cricketer{ estring name ;| cint no.of runs)
and
let first = golfer(4,14)
let second = cricketer("Peter”, 1192)
then
first is golfer
yields the value true and
second isnt cricketer

yields the value false. The full power of is and isnt is realised when writing general purpose procedures to
process a large number of structure classes.

Sorting

Structures can also be used for sorting. So far we have only used bubblesort or variations of it in our
programs. Bubblesort is however very inefficient. If there are n elements to be sorted then the number of
sorting operations is proportional to n% We can do much better than this.

We have already seen how a family tree can be modelled using structures. That is one kind of tree.
Another special kind of tree which is useful in sorting is a binary tree. Each node in a binary tree has a left
and a right subtree which may be empty. When used for sorting the tree is ordered such that for any node
the elernents in the left subtree are all less than the elements of the current node and the elements in the
right are greater or equal. The following is a sorted binary tree

page &4

The fields with an ™" in them contain pointers to the next structure, Those with /' all point to nil. The
top of the tree is called the head or the root. In constructing an ordered binary tree the head initially points
o nil. We will now write a program to read in strings and sort them as they are read, using a binary tree
for the sorting.

The structure to hold the data is
structure tree.node(cstring tree.siring ;. paty left, right)

This defines the structure to hold a string and 2 left and right subtree which will be used for the nodes of the
tree. The main program is

let head := nil

while ~e0i() do

head = enter(head, tree.node(reads(), nil, nil))
write “The sorted strings are :-'n”

prinstree()

This initialises the head of the tree to nil and then goes round a loop adding entries to the tree using
procedure enter. The enter procedure which we still have to write, takes as parameters the head of the ree
and the new node and retums the new head of the tree.

If the tree is empty then the new head of the tree is the new node. If the tree is not empty then the new

string value is compared with the string in the head node. If the new node is less than the head node we

place the new node on the left subtree and otherwise on the right subtree. The following code will do this.
let enter := proc(cpntr head, new -> pntr) ;| nuliproc

enier ;= prog(cpnir head, new -> pnir)
if head = nil then new else
if new(tree.string) < head(tree.string) then
begin
head(left) := enter(head(left), new)
head

end

else

begin
head(right) := enter(head(right), new)
head

end

The subtlety of the solation is that it uses recursion to take advantage of the recursive nature of the tree
definition. At any node, the left and right subtree are either empty or are themselves trees. The procedure

Dage 65

Exercises 10
enter may therefore be used 1o add new nodes to these subtrees.

Having set up the ordered tree we now have 1o extract the values in the correct order. To do this we 10.1 A lmkeg list isa List of structures that are linked tgether through one of their fields. For example, a
perform a left to right scan of the tree. This is called a symmetric order traversal of the tree. That is, at linked list of integers may be constructed out of the structure

any node in the trec we print the values in the left hand subtree then the current value followed by the it list i . -

values in the right hand subtree. This is again recursive. structure intlist{ int number ; patr link)

let prins.tree ;= tr head) ; nulh
printiree = proc(cpn) mullproc by the program segment
print.iree = proc{ cpnir head)

. h fet fist = nil
if head ~= nil do
begin fori=1 to3 dolist :=intlist(i, list)
print.iree(head(left)) L
write head(tree.siring), "n" This will result in the list pointed at by list. Given an integer and a list write procedures to perform the
print.tree(head(right)) following . - : .
end (1) add a structure containing the integer to the start of the list.
(iiy add a structure containing the integer to the end of the list
For those in the know, this procedure is the same as the solution to the Towers of Hanoi problem (see (1) gssumn}g the list is ordered from high to }ow, add a structure containing the
Chapter 12) except that it uses data structures. The reader should satisfy himself that the program is integer in such a way as to preserve the ordering.
complete.
The advantage of this type of sorting is that it is fast. For n elements the number of sorting operations is 10.2 Write a procedure (o reverse a list of the above type.
roughly proportional to nlog(n) which is much less that n? for large values of n.
The combination of first class procedures and structures can be used to implement abstract data types. This 10.3 Define a structure to hold information about oil wells, The structure fields should include the name
can be done by hiding the internal structure of the object within the scope of a generator function which nf‘mhe We]?' its f?ap i}eference, the number of men on the well, output per day in barrels and nearest
returns a set of functions to operate on the abstract type. For example a complex number package might neighbouring oil well.

be written as:

structure complex.pack{ proc(real,real -> pnir) new .complex;
proo(potr,potr -> patr) add.complex;
proc{ patr) print.complex)

fet complex.package = proc(-> pnir)
begin
structure complex(veal rpart, ipart)

let n = proc(real i, r -> pnir); complex(i,r)
let a = procf putr cl, c2 -> pntr); complex(cl(rpart) + c2(rpart), cl{ ipart) + ¢2(ipart))
let p = proc(putr ¢); write ¢(rpart), " + ", c(ipart), "i"

complex.pack{ n, a,p)
end

This allows complex numbers to be manipulated without knowledge of their representation, as in the
following program fragment.

let cpack = complex.package()
let new = cpack(new.complex)
let add = cpack(add.complex)

let print = cpack(print.complex)

letcl = new(3,4)
letc2 =new(2,7)
print{ add(cl,c2))

page 67
page 66

Solutions to Exercises 10

10.1 (i)

10.2

(i)

(i)

let add.start = proc(inti; pntrlist-> pntr)
intlist(i, list)

let addend = proc(inti, patrlist-> poir)
if list = nil then int list(i, nil)

else
begin

eand

let temp = list

while temp(link j ~= nil do temp := temp(link)
temp(link) = intlist(i, nil)

list

let add.order = proc(inti, pntr list-> pnir)
if list = nil or list(number) <= i then int.list(ilist)

else
begin

let temp = list

while temp(link j ~= nil and temp(link,number) > i do
temp ;= temp(link)

temp(link) := intlist(i, temp(link))

list

let reverse.list = proc(putr list-> pofr)

begin

end

let temp ;= nil
while list ~= nil do

begin
temp = intlist(list(number), temp)
list := list(link)

end

temp

structure oil.well(string well.name,

int ref.east, ref.north, no.men, barrels
putr nearest.well)

page 68

11 FILE INPUT AND OUTPUT

So far we have said very little about files. This is becanse we did not wish to confuse the issue of
PS-algol as a programming language with the particular environment in which PS-algol resides. For
PS-algol to be an effective programming tool it must provide the ability to communicate with the outside
world 10 receive data and produce results. The outside world in this case is the operating system of the host
computer. The four main implementations of PS-algol are for the operating systems VAX/VMS, UNIX,
CP/M and the Apple Macintosh.

The implementations of PS-algol differ in some respects. This chapter describes the Macintosh
implemeniation. It is good programming practice t0 isolate the sections of your program that are
dependent on the operating system's facilities as this will make it easier to transport your programs from
system {0 system.

PS-algol communicates with the outside world via files. To create an object of type file we must ‘open’ or
‘create’ the file in the file system. You 'create’ a file to bring a new file into existence and 'open’ a file if it
already exists.

The functions to do this are defined by
liet create = proc(cstring name ; cint flag -> file)
let open = proc(cstring name ; cint access.mode -> file)

These functions take a number of parameters that are as yet unexplained and produce an object of type file
which we call a file descriptor. The file descriptor can now be used anywhere an object of type file is legal
and in particular in read and output clauses. For example

let input file = open{ "Ronsfile”, 0)
would allow us o write clauses like
let ¢ = readi(input file)

in which case the integer will be read from the file called Ronsfile instead of the keyboard. The
interpretation of the parameters in the create and open functions are as follows

filename : any string.
flag : put as 0 and forget what it means.
access.mode : 0 for read only, 1 for write only and 2 for read and write.

If an attempt to open or create a file fails, the file literal vatue of nulifile is returned. This value may be
used as follows.

let s = "a.bad file”
iet the file = open(5, 0) 'try to open a read only file
if the file = nulifile do | was the open a2 success
begin
write "The file ", 5, " cannot be opened'n”
abort
end

Once you have finished with a file it should be closed. close closes a fiie and allows no further access to it
during the program unless it is re-opened. All files should be explicitly closed by use of this procedure.

page 69

The procedure is defined by

let close = proe(cfile descriptor)

and in the above example we could write

close(input file)

to close the file.

Every PS-algol program has two rather special files defined for it called the standard input 5.i and the
standard output 5.0. These names are predefined for you and are variables of type file. The standard input
and output files are set up as the computer terminal but they may be reassigned to other files if required.
The files are special in that they are taken as the default in read and write clauses. e.g.

let s = reads()
is shorthand for

let s = reads(s.i)

and the same is true for all the other read clauses as well as eo0i(). Normally a file acts as a continuous
stream of ASCII characters. The action of reading from a file has the effect of forming the characters at the
current position in the file into a literal of the type of object specified in the read clause and moving the
current position in the file on to the character following the literal just read. If the literal cannot be formed
correctly then an error message will be issued. Also when reading reals or integers ceriain punctuaton that
precedes the literal will be ignored in the file. Punctuation consists of newlines, spaces and tabs. A
summary of all the input functions is given below

read read the next character in the file.

readi ignore preceding punctuation and read an integer literal.

reck ignore punctuation and read a real literal.

readh ignore punctuation and read a boolean literal.

reqels ignore punctuation and read a siring literal.

peck look at the next character without reading it.

read.a.line read from the current position up to a newline symbol. Give the result as a
string without the newline symbol.

eoi test for end of file.

Of these functions read, reads, peek and read.aline are of type string, readi of type int, readr of type real
and readb and eoi of type bool. When we wish to read from another file we simply change s.i t0 another
file descriptor by assigning to it or by replacing itin the read clause. For example
let total = readi(input file)
will read an integer from the file with descriptor input file and use it to initialise the constant total.
Output to files is slightly different. The clause
write "hello'n”

is a short form of
output s.0, "hello'n”

Like write, output may also take a list of items to be written out. When we wish to write to another file
we simply change 5.0 to a new file descriptor in the output clause.

Exercises 11

i‘i'l.l Write a program to open a file and read all the text writing out only the first 15 characters of zach
ine.

11.2 Write a program that will copy a file changing all lower case letters to upper case.

11.3 Write a procedure that will read a PS-algol name. Since a name must start with a letter the procedure

should take that letter as an input parameter. The procedure then reads letiers, digits and dots to form the
name. Take care not to read more characters than is necessary.

Solutions to Exercises 11

111

11.2

11.3

let F = “Input”
let input = open(F,0)
if inpur = nullfile then write "Cannot open file " F,"'n"
else
begin
while ~eoi(input) do
begin
let 5 = read.aline(input)
if length(5) >= 15 then write s(1/15)
else write s
write "n"
end
close(input)
endd

let In.name = "Inpw” ; let Qut.name = "Cuipw”

let in = open{ In.name, 0)

if in = nullfile then write "Cannor open file ", In.name,
else

begin
let out = create(Out.name, 0)
if ot = nulifile then write "Cannor create file ", Out.nome, "
else
begin
let case.diff = decode("a") - decode("A")
while ~eoi(in) do
begin
et s :=read(in)
output ous, if s >= "a"” and s <= "z" then
code(decode(s) - case.diff)
else 5
end
close(out)
end
close(in)
end

let read.an.identifier = proc(estring s-> string)
begin
let result := s ; let s := peek()
while letter(51) or digit(sl) or s1 ="." do
begin
result ;= result ++ read()
sl := peek()

result

e
n

12 SOME COMPLETE PROGRAMMING EXAMPLES

In this chapier we will discuss some complete programming cxamples starting with 2 discussion of the
probiem 10 be solved, the broad principles of the computer solution and finally the development of the
program.

Consider the problem of producing a table of primes up to some given integer n. The method used will be
that of the traditional Sieve of Eratosthenes which notionally sets up a vector of all the integers between 1
and n and then deletes all the composite numbers which are multiples of 2, 3, 5 and so on, leaving only the
primes. At each stage in the process we find the next prime by scanning through the vector from the last
prime found looking for the next undeleted entry. It is only necessary 1o carry out the process up to the
largest integer not greater than the square root of n since any number between this and n cannot possibly be
exactly divided by any number greater than or equal to root n without the dividend being less than root n
itself.

The obvious solution of setting up a vector of integers from 1 to n can be improved upon when we reflect
that it is never necessary 1o inspect the values stored in the vector. We always know that the initial value
in the ith element is 1. The solution is simplified by declaring a boolean vector p of values true and setting
them to false as composite numbers are 'scored out’. We also note that when we consider a prime 7 , we do
not wani 1o erase ¢ itself but only composite numbers with facior i . The first such number will be 2 * §
foliowed by every ith element from that point. The basic loop for eliminating multiples of i from a given
prime i onwards is therefore

forj=2%i ton byi dop(;j) = false
The fact that composite numbers may be st to false several times doss not matier.

We need only enclose this in a loop which counts from 2 1o the integer pari of the square root of n and 10
execute the inner loop whenever p(i) corresponds to a prime, that is, has value true. The required double
loop is

for i =2 1o truncate(sqri{n)) deo
ifp(i) do
forj=2%i ton byi dop(j) = false

where truncate is a function which returns the integer pari of a real number. You should convince yourself
that this piece of program works correctly by tracing its exccution through with a small value of n, say n =
15.

The rest of the program simply reads in the value of n, declares the vector p and writes out the results
neatly, This leads us to the complete solution

! Sieve of Eratosthenes

write "Input highest mumber - "
let n = readi()
let p = vector 2::n of true

for i = 2 o truncate(sqri{ n)) do
¥pli)do
forj=2%i ton byi dop(j) = false

write "The primes less than ¥, n : 4, " are -'n"
tet format.control ;=0

fori=2 ton do
ifp(i) do
begin
write i : 5 | format.control := formal.control + 1
if format.control = 8 do

(write "n" ; format.control :=0)
end

page 73
page 72

The above problem was so simple that we did not need to use any procedures in its solution.

Consider next the problem of writing a general purpose procedure for evaluating the integral of an arbitrary
function f(x) between limits a and b. Since we do not know the explicit function to be integrated and do
not want to have o pass its values either singly or as a vector from the calling program we must use the
idea of a procedure as a parameter of another procedure. Such a parameter will be declared along with the
other parameters in the procedure declaration. This requires some specification of the 'shape’, or more
formally the type, of this parameter. Note that f(x) is a function with one real parameter x and on
evaluation produces a real result. We use the notation

proe(real -> real)f

as the required formal parameter declaration in the procedure heading. This is included amongst the
parameters in exactly the same way as other formal parameters such as int i, real u and so on. The notation

proc(real -> real)

thus corresponds exactly to a type declaration such as int or real and is indeed the 'type’ of this parameter.
Note that we only name the object of this type and do not name the constituents of its type declaration.
This is because we only need to declare the types themselves and at this stage are not concerned with their
actual existence. We can now write down our declaration of the procedure heading as

let integral = proc{ proc(real-> real)f;
reala, b ; cint no.of steps -> real)

Since we do not wish to discuss the intricacies of sophisticated numerical techniques we will use the
trapezoidal rule to perform the integration but this can easily be replaced by other numerical integration
methods.

The required formula to approximate the integral of function f between a and b is

0.5* h* (f(a) + 2 * (f(a+h) + ... + f(a + (no.of.steps-1) * h)) + (b))
where h = (b-a)/no.of.steps.
To simplify the computation slightly we rearrange this as

h* (0.5 * f(a) + f(a+h) + ... + f(a+(no.of.steps-1) * h) + 0.5 * (b))
‘We can now write the complete procedure as

letintegral = proc(proc(real-> real),
reala, b, cint no.of.steps -> real)
begin
leth=(b-a)/lno.of.steps
letsum:=05*(fa)+fb))
fori=1 tono.of.steps-1 do
begin
a=a+h
sum ;= sum + f{ a)
end
h* sum
epd

A call of this procedure to integrate sin(x) between 0 and pi using 10 steps, and to put the result in y, may
be written

y := integral(sin, 0, pi, 10)

page 74

Notice that we just write sin and not sin(x) since we are passing the sin function and not a value of sin(x)
as a parameter,

The function sin can be replaced by any other function in the program such as

let quadratic = proe(realx -> veal), (3*x+4)%x-]
with a corresponding call

integral(quadraric, 1,4, 30)

We can now use this single variable integral to evaluate a double integral of a function g(x,y) where x goes
from a to b and y goes from ¢ o d.

In order to do this we will write a procedure with name double.integral which will integrate f(x,y) in the
y-direction for each value of x and then integrate this new function with respect to x. We cannot use the
integral procedure twice over directly since g is a function of two variables whereas f is a function of one
variable. We overcome this by defining a new function G which is f with the x valoe held constant. A
procedure to do this could be

let double.integral = proc((realreal > real) g ;

creala, b, ¢, d | cint x.steps, y.steps -> real)
begin
let x.coord == a

let G= prog(realy-> real); 8(x.coord)y)

lethx = (b-a)/xsteps
let double.sum := 0.5 * integral(G, ¢, d, y.steps }

fori=1 toxsteps-1 do
begin

x.coord = x.coord + hx

double.sum := double.sum + integral(G, c, d, y.51eps)
end

x.coord = b

hx * (double.sum + 0.5 * integral(G, c, d, y.steps))
end

This uses the procedure integral as defined above.

A typical call of this procedure using a previously defined function h(x,y) could be

double.integral(h,0,1,0,2, 20,40)

A more sophisticated example for the evaluation of a double integral is given in the examples at the end of
this chapter.

Consider next the well known problem of the Towers of Hanoi. A fuller discussion of this problem is

given in Cole (1981) and in Rouse Ball (1896) so we will restrict ourselves to the following brief
description.

mee pegs labelled 2, b, ¢ exist and on one of them, say a, are placed n disks in descending order of size
with the largest at the bottom and the smallest at the top. The other two pegs are initially empty. The

Qroblem ?s to move the disks to another peg, say b, but only moving the disks one at a time and at no
time placing a larger disk on top of a smaller one.,

This is 2 good example of a problem in which on

e needs to think carefully before writing a word of code.
If we only have one disk then the problem is

trivial. We simply move that disk from a to b and are

page7s

finished. Indeed if we have no disks at all the solution is even simpler. We do nothing and the problems
is solved! If n > 0 then some thought leads us to the idea that if we can find a way to move, according to
the rales, the top n-1 disks 1o peg ¢ leaving the largest on peg a, then we may move this larger disk from a
o b and never move it again. We now have almost exactly the same problem as before, but have to move
the disks from peg c to peg b with the vital difference that we have only to move n-1 disks instead of n.
Such a solution, expressing a computational step in terms of itself, is said to be recursive. Itleads to a
solution because of the special cases n=1 and n=0.

The three steps required in the above solution are

(i) move n-1 disks from ato ¢
(ii) move 1 disk from ato b
(iii) move n-1 disks fromc to b

This transforms immediately into the recursive procedure
let hanot := proc(cintn; cstring a, b, ¢) ; nuliproc

hanoi ;= proe(cintn; cstringa, b, c)
ifn>0 do
begin
hanoi(n-1,a,¢,b)
move(a, b)
hanoi(n-1,c,b,a)
end

where n is the number of disks and the strings a, b and c¢ are the names of the pegs. The procedure move
is simply a clause to write out the move of a single disk

let move = proc(cstringa, b); writea, "->", b, “n"
The complete program with a typical call is now as follows:
Towers of Hanoi

let move = proc(cstringa, b)
write @, "> b, “n"

let hanoi := proe(cint n; cstring a.b,c); nuliproc

hanoi := proe(cintn; cstringa, b, c)
if n >0 do
begin
hanoi(n-1,a,¢,b)
move(a, b)
hanoi(n-1,¢,b,a)
end

hanoi(9, "a”, "b", "¢")
Try working this through but with n = 3 or 4 to understand exactty how it works.

Many problems yield elegantly and efficiently to recursive methods. Two such methods are the sorting
algorithms known as treesort which you saw in Chapter 10 and quicksort which we discuss here. The
bubblesort method discussed earlier is of order n? in the sense that the time taken in general to produce a
solution increases as the square of the number of elements n. The reason for this is that in finding the
biggest element in one scan we accumulate no further information about the remaining elements. The
quicksort algorithm is aimed at gaining information at every stage about the relative size of elements and
using this information to reduce the computation time to the order of nlog(n).

The technique is to choose a starting element arbitrarily and then by scanning inwards from both ends of
the vector simultaneously, to split it into two parts, the one on the left having values less than or equal o

page 76

the chosen element. The one on the right has values greater than or equal to it. We can then apply the
algorithm t0 the two parts quite independently of each other. The reason for this techaique being in general
much fasier than bubblesort is that the number of elements in each part is usually nearer to 0.5n than io
a-1. One can of course produce pathological examples where this does not happen but in practice this

seldom occurs. Methods of speeding up the algorithm still further will be discussed in the examples at the
end of this chapter.

Procedure quicksort will have as parameters a vector of values x to be sorfed and two integer variables Ibd

and ubd which delimit initially the part of x currently being sorted. These are not equal in general o
lwb(x) and upb(x).

We will arbitrarily choose the value, split.val for the spliting comparisons (o be the value of the element
with index (/b + ub) div2. An improvement on this choice will be given as an exercise. As an example
consider the values

39467852

in a vecior with indices from 1 to 8. The split point chosen will be in position 4 and this has value 6.
The aim now is 1o split the vector into two parts with the left hand part having elements with values less
than or equal 1o split.val "and the right hand part having elements greater than or equal to split.val. This is
done by scanning in from the left and right and looking for elements which are out of place in this scheme.
If such a pair is found then they are swapped and the process continues until the left and right hand scans
meet. In general this will not be at the previously chosen split point but this does not matter since the
clement there has not been moved.

while Ib < ub do
begin
while 1b < ub and x(b) < splitval dolb:=1b + 1
while Ib < ub and x(ub) > split.val do ub ;= ub -1
i Ib < ub do
begin
swap(x, b, ub)
br=1b+1
iflb<ub doub:=ub-1
end
el

In the above example the first pair of values to be swapped is 9 and 2 and then 7 and 5. The scans finally
meet at the element with value 8. The order of the elements will now be

32465879

with the final split point being at position 6. We now split the vector into two parts with the value in the
position where the scan meets being included with the right or left part depending on whether or not it is
greater or less than the old split value itself. Sometimes the split value will be by chance in the position
where the two poiniers meet and in this case it does not need 10 be included in either subvector. We must
always ensure that /b and ub do not go outside the range from Ibd to ubd. The piece of program (o do this
is writien below immediately after the completion of the splitting code. Finally we make recursive calls of
quicksori on the resulting pair of subvectors only finishing when a subvector is of length 1. The first
split for the above example will be into the subvectors

32465
and 879

The complete program including the swap procedure is therefore

poge77

e e e —————— L

let swap = proc(*intx; cinti,j)

begin
let temp = x(i)
Hi):=x(j)
x(j):=temp
end

let quicksort ;= proe(* intx, cint Ibd, ubd) ; nullproc

quicksort := proc(*intx; cint Ibd, ubd)
begin
let b :=Ibd ; let ub := ubd
letsplitval =x((lb+ub) divd)

while /b < ub do

begin
while /b < ub and x(b) < splitval dolb :=1b+ 1
while Ib < ub and x(ub) > split.val do ub = ub -1
if b < ub do
begin
swap(x, Ib, ub)
b:=1b+1
ub=ub-1
end
end
ub:=1b
! ub may have passed b

letval=x(1b)
1To reduce indexing time

case true of
val > splitval :1b:=1b- 1
val < splitval : ub := ub + 1
default : begin
ub = ub + 1
b:=1b-1
end

if lbd < Ib do quicksort(x, Ibd, Ib)
if ub < ubd do quicksort(x, ub, ubd)

Exercises 12

12.1 Write down formal parameters to be used in a procedure heading corresponding to the following
procedures.

(i) letf= proc(realx; inti-> real)

(ii) letg = proc(**realx, y; int-> * real)

(iii) let h = proc(realx,y, proc(realint-> real)f-> string)
(iv) letp = proc(boolb-> bool)

12.2 Primes frequently occur in pairs p, p+2 and less frequently in triples g, q+2, g+6. For example, 11,

13 and 29, 31 are examples of prime pairs and 5,7, 11 and 17, 19, 23 are examples of prime tripies.
“Write a program to st

() all prime pairs from 3 up 10 some integer n

(i) all prime wriples from 3 up to some integer n

(iii) all prime pairs and triples from 3 up to some integer n but excluding those prime
pairs which are part of a triple.

12.3 Write a piece of program to integrate the function x * In(x) from %=1 to 2 using
(i) 10 steps
(ii) 20 steps.

Compare your answers with the exact integral of this function.

12.4 Determine the effect of the following program
let integral = prog(procf real -> real) F; creala, b-> real)
(b-a)*F{(a+b)i20)

let G = proc(realz-> real)

begin
letep(crealy-> real) exp(z*y)
integral(ep, 3.0,4.0)

write fformat(integral(G,1.0,2.0),4,2), "'n"

12.5 The procedure quicksort can be improved in the following two ways.

(1) by making a special case when the number of terms 1o be sorted is 2.
(1) by choosing the split value 1o be the middle value of x(b), x(1b + ub) div 2, x{ub).

Modify the quicksort program to incorporate these two improvements.

page 79

Solutions to Exercises 12

12.1 (i) proc{ real,int -> real)p
(i) proc(** real, ** real, int -> *real) g
(iii) proc(real, real, proc(realint-> real) -> string) 5
(iv) proe(bool -> bool)¢

12.2 Use the Sieve of Eratosthenes program replacing the write clause by the following :

write "Table of prime pairs'n'n”
leti=3

whilei <=n-2 do

begin
ifp(i) andp(i+2) dowritei:6,i+2:6,"n"
ir=i+?

end

write "Table of prime triples’n'n”
letjo=3

while j <=n-6 do
ifp(j)andp(j+2) andp(j+6) then
begin
writej:6,j+2:6,j+6:6,"n"
Ji=j+6
end
elsejr=j+2

write "Table of triples and pairs not in triples'n'n”
ktk:=3

while k <=n-6 do

ifp(k) andp(k+2) and p(k + 6) then

begin
writek :6,k+2:6,k+6:6,"n"
ki=k+6

end

else

begin
ifp(k) andp(k+2) do
writek:6,k+2:6,"'n"
k:=k+2

end

ifk<=n-2 andp(k)andp(k+2) do

writek:6,k+2:6,"n"

12.3 We need to write a procedure corresponding to the required function and also a call of the integral
procedure, The following will do

letf= proc(realx-> veal); x*In(x)

write "The integral with 10 steps is ", integral(f,1,2,10) , "'n",
"The integral with 20 steps is ", integral(f,1,2,20)

12.4 The procedure infegral in this example computes a simple integral with one variable in one step
using the mid-point rule. The type of the procedure G is proc(real -> real) and is therefore a valid
parameter of the procedure integral. The call

page80

B

L

o O P

bd > ibd + 2

iesi succeeds sorting can continue with both apper
48 by one place. The new quicksori procedure is as follows.

inwar

iet guicksort o= proe(*imt x; cint lbd, ubd) ; aullproc

v{j) = temp

let g =x(1bd)
let ¢ = xf{ ubd |

i ubd

ibd + 1 then
ifa>c do

plitpt = (Ibd + ubd) div 2
b= xf aplitpt }
splitval = if a <= b thes
case frue of
b<=c: b
¢ <=g ! begin
X splitpt)= a
Hibd}:
o ubd) =

@

defanlt: {x(splispt) i=c x(ubd) =56 ;

2nd lower bounds mo

ved

page 81

end

else
case true of
a<=c:{xsplitpt) :=a;x(ibd):=b;a)}

c<=b:{xlbd)=c Hubd):=a b}
defanit: begin
xlbd):=b
o splitpt) :
Hubd) :=a;c
end

a

if ubd > Ibd + 2 do

begin

end

fetlb :=ibd +1; letub :=ubd- 1

while b < ub do

begin
while Ib < ub and x([b) <= splirval dol
bi=ib+1
while Ib < ub and x(ub) >= splitval do
ub = ub -1

if b < ub do
begin
swap(x, 1b, ub)
b:=1b+1
ub :=ub-1
end

end
=1

{ ub may have passed Ib
let val = x{ Ib) 1To reduce indexing time

case trae of
val > splitval ;16 :=16-1
val < splitval :ub :=ub + I
default: begin
ub = ub v 1
br=1b-1
end

if Ibd < Ib do quicksor(x, 1bd, b)
if ub < ubd do quicksort(x, ub, ubd)

1

13 GRAPHICS

The PS-algol graphics facilities provide a method of manipulating image
with a line drawing sysiem. Line drawings have the dam type

Animage is a rectangular grid of pixels of some colowr, Images m
raster operations provided in the language which are generally aval

The picture drawing facilities of PS-algol are a particular implementation of the Ouiline system{10] which
allows the user to produce line drawings in an infinite two dimensional real space. Piciures may be
mapped on 0 an image. Once it has been mapped on 10 an image it may be manipulated as an image or
drawn as an image.

Thus the system provides high level featres for manipulating images in a finite two dim
space and line drawings in an infinite two dimensionat real spacs

sional integer

Images

In general an image is a 3 dimensional object made up of 2 ingular grid of pinels. A pixel has a depth
1o reflect the number of planes in the image and as an X and Y dimension io reflect its size. In
its most degeneraie formt a pixel is one spot which js either on or off, Thus

leta= on
creates a pixel @ with a depth of 1. To form 2 pixel of depth 4 say we could write
letb= on & off & ol & on

which creates & this time with a depth of 4. The expression on the right hand side of #
is called 2 pixel sequence or simply a pixel.

To form an image with an X and Y dimension different from 1 we could write
let ¢ = himage 5 By 0 of on

which creates ¢ with 5 pixels in the X direction and 10 in the Y direction all
images is 0,0 and in this case the depth is 1.

Full 3 dimensional images may be formed by, for example
let d = image 64 by 32 of on & off & on & en
but in order 10 iniroduce the concept of and operasions on images gently we will restrict ourselves for the
present to images with a pixel depth of 1 which is the case on the MAC. Everything that we say will be
true for images of greater depth as we will see later. Thus
et a = image 5 by /0 of on
creates such an image.
Images are first class dain objects and may be assigned, passed as paramelers or retumed as results. e.g
letb,=a
will assign the image @ 1o the new one 5. In order 10 map the operations usual on biunapped screens, the

assignment does not make a new copy of ¢ but merely copies the pointer to it. Thus the image acts like
4 vector or polnter on assignment.

page 83

There are 8 raster operations which may be used

xor b ontoa
performs a raster operation of b onto a using exclusive or. Notice that a is altered 'in sity’. Both images
have origin 0,0 and automatic clipping at the extremities of the destination image is performed. All the
other operations follow the same pattern.
The limit operation allows the user to set up windows in images. e.g

letc = limita to] by5 at3,2

sets ¢ to be that part of @ which starts at 3, 2 and has size 1 by 5. ¢ has an origin of 0,0 in itself and is
therefore a window on a.

Rastering sections of images on to sections of other images can be performed by for example

%xor limit ¢ to] by4 at6, 5 onto
limit b to 3 by4 at9, 10

Automatic clipping on the edges of the limited region is performed. If the starting point of the limited
region is omitted 0,0 is used and if the size of the region is omitted then it is taken as the maximum
possible. That is from the starting point to the edges of the host image. Limited regions of limited
regions may also be defined.

The standard identifier screen is an image representing the output screen. Performing a raster operation
onto the image screen alters what may be seen by the user. e.g.

et a = image 100 by 100 of on
xor a onto Limit screen at 25, 50

will create an image 100 pixels by 100 pixels and raster it onto the screen at position 25, S0, This will
be visible to the user.

The standard identifier cursor is an image representing the cursor. The cursor may be altered in the same
manner as any image. e.g.

copy b onto cursor
To cater for hardware with more than one colour plane, the pixels can also have depth. For example
let a = image 64 by 32 of on & off & on & off

is a 64 by 32 image with a depth of 4 (i.e. 4 planes). The planes of the pixel are numbered from 0 and so a
above has planes 0,1,2 and 3.

In systems that support multiple planes the standard identifiers screen and cursor will have a depth greater
than 1. All the operations that we have already seen on images (raster, limit and assignment) work more
generally with depth. Thus the raster operations perform the raster function plane by plane in one to one
correspondence between source and destination. Automatic depth clipping at the destination is performed
and if the source is too small to fill all the destination’s planes then these planes will remain unaltered. The

page 84

limit and assignment operations also work with the depth of the image.
The depth of the image may be restricted by the depth selection operation. For example
letb=a(1/2)

yields & which is an alias for that part of which has the two depth planes 1 and 2. & has depth origin O
and dimensions 64 by 32.

The numbers 1 and 2 above can, of course be teplaced by any integer expressions and a any image
expression. Thus

letc = limita t032 by I6 at8,8(2/1)
yields ¢ which is plane 2 of @ of size 32 by 16 starting at point 8,8 ina . ¢ has origin 0,0 and depth 1.
Pixels themselves may be indexed. Thus
leta= on & off

givesa(0) asomand o 1) as off. This expression is an r-value only and may not be used on the right
hand side of an assignment.

It should be noted that a(7) above is of type pixel which is not the same as
image ! byl of off

which is of type image.

The standard function Pixel will yield pixels from an image. For example, if a is defined as follows

let a = image 9 by 9 of on
Then Pixelf a,1,1}) yields on.
In programs, the type image is written as #pixel and it should be noted that objects of type #pixel are
assignment incompatible with objects of type #cpixel (cf vectors). An object of type #cpixel may be
formed by the standard function constant.image. Thus

let b = constant.image(a)

causes b 10 be of type c#cpixel. In order to ensure that constant pixels are never overwritten a copy of a
is made.

An image of type #cpixel may be used as the source of a raster operation but not the destination.
Furthermore a limit operation on an image of type #cpixel produces another of the same type.

Image Standard Functions
The image associated with the cursor may be made invisible by
cursor.offt)
To return the cursor to normal mode, i.e. it is visible and moves with the mouse we use
cursor.onf)
The cursor image is 2 16 * 16 grid on the MAC. The tip of the cursor may be changed. The cursor tip is

the pixel which decides which pixel in the image screen the cursor is pointing at. The function to change
the cursor tip returns the old cursor tip in a point structure which is defined as follows,

page&S

structure point(cint x.point, y.point)
For example

let a = cursor.tip(point(4,5))
write a(x.point), a(y.point), "'n”

The program will write out 0 16 which is the default cursor tip on the MAC. The standard functions X.dim
and Y.dim give the x and y dimensions of an image. e.g.

let g = imagel by 4 of on
write X.dim(a), Y.dim{ a)

yields
1 4

A straight line may be drawn using the standard function line. This function executes a procedure, which is
supplied as a parameter, at intervals along a line between two points. How often the function is executed
is determined by two parameters which are also supplied to the procedure. For example, to draw a diagonal
line on the screen,

let copyfn = proc(# pixeli)
copy image ! by ! of ononto i

line(screen, 1, 1, X.dim(screen), Y.dim(screen), 1,1, copyfn)

A seed fill standard function is provided that will start at the pixel indicated in an image and recursively
change all the surrounding pixels to the colour specified. The seed fill stops when it meets a pixel of the
given colour or the edge of the image. It may be called by e.g.

fill(screen, on, 99,11)
The system also provides a mechanism for pop up menus. The standard function has the form

proc menu(cipixel tdle ; *citpixel entries ;
cbool vertical ; c*proe(cHpixelint Jactions
-> proc(cint X, Y -> bool))

The programmer supplies a menu title which is an image and a vector of images which are the entries in
the menu. The standard function returns a function which when applied will cause the menu to appear on
the screen with the bottom left hand corner at the point X,Y. The boolean returned from this procedure
indicates whether the user selected one of the options or not (the user is at liberty to select outside the
menu which has no effect). The menu will be arranged vertically if the parameter vertical is true otherwise
it will be arranged horizontally. When the menu appears the user may use the mouse to select an entry by
placing the cursor over the entries { which change to reverse video when passed over) and pressing a mouse
button. The procedure in the actions vector in the same position as the selected image will then be called.
The menu will stay on the screen whilst this procedure is being executed. This procedure is passed the
menu image which was pointed at and the position in the menu (from the top starting at 1).

There is a standard function that allows the user to detect the position of the mouse relative to the screen
'image. The function is called locator and has form,

proc locator(-> patr)
when called it will return a structure which is defined by
structure mouse(cint X.pos, Y.pos ; chool selected ; c*cbool the.buttons)
‘This structure is pre-defined by the system and so doesn't need to be included ina program which uses it.The
boolean selected indicates whether the screen is currently selected for input or not. The vector of booleans

indicate, if true, which button is depressed. The order of these buttons depends on operating system
dependent features outside the control of the system. With the Apple Macintosh there is only one bution

page 86

which is numbered 1 (eg. if mouse.str{ the.buttons X1)). X.pos and Y.pos indicate the screen
co-ordinates.

Pictures

The picture drawing facilities of PS-algol are a particular implementation of the Cutline system [11] which
allows the user to produce line drawings in two dimensions. The system provides an infinite two
dimensional real space. Altering the relationship between different parts of the picture is performed by

mathematical transformations which means that pictures are usually built up of a number of sub-pictures.
Line Drawing Facilities
In 2 line drawing system the simplest picture is a point. The expression
[0120]

defines the point 0.1, 2.0. It may be given a name by a declaration e.g.

let point = [0.1,2.0]
Points in pictures are implicitly ordered. A binary operation on pictures operates between the last point of
the first picture and the first point of the second. The resulting picture has as its first point, the first point
of the first picture, and as its last, the last point of the second. Pictures may be joined together (using the

join operator "\) by 2 straight line from the last point of the first picture to the first point of the second.
For example,

12] [2.2]

{14

leta=[11]712]722]

[3.2)

2,1} 3.4

let b=[32]7[3,1]~2]]

page87

26 46

{121 22]
B2 43

{1,1]
2.1 (3.13

scale zap by 2, 3
ktc=a”b

Two pictures may be combined without connection by using the combine operator '&'. The effect of using
combine (&) in the example above would be :-

43

[1.2] 22

(3,21
(1.1]
2,1 3.4 46 2.5
scale zap by -1, -1
shift adds the shifi {actor to all the points in the picture. This has the effect of shifting the origin to the
scale is used to enlarge or reduce the size of a picture. The x and y co-ordinates of every point in the specified co-ordinate.
operand picture are multiplied by their corresponding scaling factors. To reflect a picture about a line, a For example
negative scale factor should be used. (eg. to reflect in the y-axis a negative x factor should be given). If
calls of scale are nested the result will be accumulative.
For example
1.4
1,2___|2’2 42
2,1

piciure

page§9

3.5

6.3

shift picture by a,b

\\ 2,0

shift picture by -c,d

The command
shift shift picture by a, b by -a,-b
would leave the picture unaltered.

The use of rotate results in the picture being rotated about the imaginary ‘z-axis’. The angle of rotation
is specified in degrees, positive in the clockwise direction and the picture will be rotated about the origin.
To rotate a picture about a point other than the origin, the following steps should be executed:-

(1) the origin should be moved to the point (x,y) by using a call,
shift picture by x, y

(2) the desired rotation can then be performed,
rotate picture by no.of degrees

(3) the origin then has to be moved back,
shift picture by -x, -y

The reserved word text allows the inclusion of text-strings in pictures. The string may be of any length
and may include any ASCII character with the rule that unprintable characters are replaced by a space. Two
co-ordinates representing the start and end points of the string are supplied, the characters will then be
scaled to fit between these points.

The ordering of the points is important. The string will always be written from the from co-ordinate to the
to co-ordinate. To produce inverted text the second co-ordinate should precede of the first. If the space
allowed for the text is too small then the characters may not be recognizable. If this happens either
lengthen the space the string is to occupy or shorten the message. text is a picture expression and the
picture produced can therefore undergo any of the other picture transformations. For example

OHIO'S SOHO

Yy .8

text "OHIQ'S SOHO” from x,y tor, s

XY 8

OHOS S, OIHO

text "OHIO'S SOHO" fromr,s to x,y
A picture may be coloured by a pixel. Thus
colour ¢ inon

will colour the line drawing in the colour corresponding 1o the pixel on in the colour map.

Picture Drawing Facilities
‘We may map a picture on to an image. e.g
draw(an.image, a.pic, 0.0,3.2,1.5,3.9)

will draw the section of the picture a.pic bounded by the box specified by the points (0.0, 3.2) and (1.5,
3.9) on the image an.image. Automatic clipping of the line drawing is performed to make it fit the
bounding box.

The picture may be drawn directly on to the screen or any part of it. Once the line drawing has been
mapped on o an image the image may be manipulated by any of the image operations.

Here is an example of a Sierpinski space filling curve which demonsrates the outline facilities.

let draw.sierpinski = proc(cint complexity)
begin
let rotate.and.draw = proe(cpics; cint width)
dra(screens”
rotate s by -90/~
rotate 5 by -180~
rotate s by -270°
[width - 1,-width + 2] -width,width,-width,width)

let sierpinski ;= proc(cpic s ; cint order,width) ; nullproc
sterpinski := proc(epics; cint order,width)

if order = complexity then rotate.and.draw(swidth)

else sierpinskif (shift s by width,-width”

page 91

page 90

shift rotate s by -90 by width,-width » ' 14 DATA
shift rotate s b width,width A . :) .
iirolates by 90 by width , The persistence of data is the length of time that the data exists. In PS-algol any data item is allowed the
shift s by width,width),order + 1,width* 2) X . . X i .)
full range of persistence (ie. from temporary results in evaluating expressions to data which may outlive
sierpinski([1,0 1,02) the program). It is necessary for the programmer to identify which data is to persist and in which database it
! should persist. This section describes the mechanisms for the storage and retrieval of persistent data.
write "'n enter degree of complexity, integer range I -> 8 =" The mec_hanisms are available yia asetof stz.mdard procedures whic.h are described below. The actual transfer
let complexity = readi() of data is automatic, data being brought into the program's active heap when the program attempts to
XOF Screen Onto screen access .il, and tha}t data which may stilll be accessible being migrated back at times which are left 1o the
draw.sierpinski(complexity) discretion of the implementor or on the insistence of the programmer.

The procedures are divided into two groups, the group concerned with identifying the relationship between
data and database, and the implementation of transactions, and the group concermned with providing a new
data structure, tables.

Database procedures

All data which persists longer than a program execution is held in the database. There being one database
per PS-algol system which is opened as follows:

let open.database = prog(-> patr)
opening the database returns a pointer 1o a table (see below).

‘Whatever operations are performed on the database, no changes are recorded unless and unti) the program
executes a call of commit

let comynit = procf -> pnftr)

This procedure commits the changes made so far 10 the database opened by the program. Either all or none
of the changes will be recorded, so the programmer can use this as a device for ensuring that databases are
consistent. It is only after a commit that the changes made can be observed by other programs. Note that
only the changes prior to the last commit of a program, if any, are recorded in the database. In this case of
an error, an error.record will be returned. If the commit is successful the result is the nil pointer.

Tables

Tables are a system supported data structure in PS-algol. They are commonly used and needed for building
databases, but may also be used for more temporary structures. A table stores an updatable mapping from
keys to values. The keys may be integers or strings, and the values are pointers to instances of any
structures. The implementor will probably have used B-trees or some adaptive hashing technique such as
hashed trees to implement these maps

tet table = proc(-> pntr)

This procedure creates a new empty table and returmns a pointer as a token for it, which is an instance of the
structure class Table. (Note that this structure class name has an upper case iee while the procedure name is
all lower case.)

let s.enter = proc(string key ; patr fable, value)
let ienter = proof int key, patr table, value)

These two procedures may be used to modify the entries in the table given as the parameter table. A table
may contain entries whose keys are integers and entries whose keys are strings, a key of one type never
maitches a key of the other. A new association is recorded in the table between the key and the value, this
supersedes any previous association for that key that was held in the table. If the value is nil the effect is to
remove any existing entry for the given key from the table.

page 93
page 92

let s.lookup = proc(string key ; pnir table -> patr)
fet i.lookup = proc(int key ; putr table -> putr)

This procedure returns the value associated with the given key from the given table. If there is no entry for
that key then the result is nil.

let s.scan = proc(patr table ; proc(string,pntr -> bool) user -> int)
let i.scan = proc{ pntr table ; proc(int,pntr -> bool) user -> int)

These two routines apply the function provided as user to the entries in the stored table given as the first
parameter. The function is applied to every element with a string key by s.scan and to every element with
an integer key by i.scan. The function is repeatedly called with the key as its first parameter and the
associated value as the second parameter. The function is called with keys in ascending numerical order by
i.scan and with keys in ascending lexical order of ASCI strings by s.scan. Repetition continues until
either all the entries for the specified type of key have been parameters to user or until user returns false.
The result of the scan function is the number of times user was called.

Error handling

Certain errors may be detected during the execution of the procedures described in the previous sections. As
far as possible these are reported to the calling program so that it may recover, or at least inform the user in

appropriate terms.

For example commit , if an error is detected, will return an instance of the class error.record which is
defined by

structure error.record(string error.context, error fault, error.explain)

error.context is the name of the procedure called by the user in which the error was detected, error fault is a
short constant string defining the error suitable for testing and error.explain is a readable explanation of the
fault which a simple program might print.

Procedure libraries

Programs can be constructed so as io use procedures which have been separately compiled by using
procedures stored in the database. This may be done by storing in the database a table of procedure names
associated with structures containing the procedures either singly or in logically related groups. The effect
of modules is obtained by storing procedures in this way. Different views of the same module can be
presented and selected by parameterising the module generating procedure with a description, e.g. the class
name of the result structure, of the view required.

Tutorial examples of persistent programs

The availability of persistent data allows a system to be built by constructing a number of programs which
use the same database. Two examples of such systems, necessarily unrealistic in their simplicity, are given
here.

The first is also intended to illustrate the use of tables, by showing four programs to maintain a telephone
and address list. Tables were envisaged as a way of packaging index construction. For example singly and
multiply indexed relations can be constructed using them. But they have also proved popular as a dynamic
data structure constructor.

structure person(string name, phone.no ; patr addr, other)
structure address{ string no, street, town ; pntr next.addr)

let db = open.dmabase()
if db is errorrecord do

begin
write "Cannot open database - *, db(error fault), "'n"
abort
end
write "Name 2 let this.name = read.a.line()
write "Phone number 7" let this. phone = read.a.line()
write "House number 7" let this.house = read.a.line()
write "Street 2" let this.street = read.a.line()
write "Town 2" fet this.town = read.a.line()
! construct the address record

let this.addr = address(this.house, this.street, this.town, nil)
! construct a person record

let this.person = person(this.name, this.phone, this.addr, nil)
let addr.list := s.lookup("addr.list.by.name", db)

Vif this is nil this is the first ever entry
if addr.list = nil do
begin

addr list := rable()

s.enter(“addr.list.byname”, db, addr list)
ead

S.enter(this.name, addr list, this.person)

let committed = commit()

if committed = nil then write "Data recorded'n"”

else "Data not recorded because - ", cormmitted(error fault), "'n"

A program (0 add one person to the address list

Note that the structures used are small and contain a spare pointer field. The first property is an advantage
as only structures accessed will be brought into memory. Thus if a phone aumber is required but ﬂie
adfiress isp’t, the structure containing addresses will not be brought on to the active heap. This applies to
pointer, picture, image, procedure, vector and string fields, only if they are actually used by a program will
they be brought into active memory. Similarly, in most implementations, only the branches of a mee
gcmally traversed will be transferred. The spare pointer is intended to accommodate data structure growth. It
is common 10 find that extra information is required, and this pointer may lead to the first increment of
such additional information. This is not an ideal solution to the requirement for data structure description to
evalve afier the database has been populated, but is a practical compromise used in PS-algol at present.

let db = open.databasef)
if db is error.record do
begin
write "Cannot open database - ", db(error fault), "'n”
abort
end
structure person(string name, phone.no ; putr addr, other)
let addr list = s.lookup(“addr list.by.name”, db)
i addr list = pil do { write "'n no address list yet” ; abort }
write "Name?" ; let this.name = read.a.line()
let this.person = s.lookup(this.name, addr list)
if this.person = nil then write this.name, " not known'n"
else write "Phone number of ", this.name, " is ", this.person(phone.no)

A program to look up the phone number of one person

page9s

The structure declaration in this program is incrementally matched with that in the program that saved data
as follows, Whenever an item of data is recorded in the database, if the description of that data has not yet
been recorded, it 00 is recorded. Whenever data is brought back into active memory, its transfer is initiated
by the program atiempting to operate on that data. The transfer is only allowed if the type of data brought
in matches the type of data expected. In this case this would occur at the start of evaluating this.person(

phone.no) and would result in a comparison between the data corresponding to the first line of this
program and the first line of the previous program. The structure descriptions have to match in name and in
the names, types and sequence of their fields. As the address structure is not used by this program it is not
necessary or appropriate to declare it. Declaring only the structures used gives a subschema facility.

The next program is included to illustrate the use of scan procedures and to show how simple it is to
construct a program to produce some unanticipated derived data by some arbitrary computation over the data
structures.
let db = open.database()
if db is error.record do
begin
write "Cannot open database - ", db(error fault), "n"
abort
end

structure person(string name, phone.no ; putr addr, other)

let addr.list = s.lookup("addr list.by.name", db)
let max.length ;= 0 ! initial values
let longest. number := "

let phone = proc(string nam ; poty val -> bool)
begin ! used once per entry in list
let number = val(phone.no) ; letlen = length(number)
if len > max.length do
begin
max.length := len
longest.number := number
end
true
end

let count = s.scan(addr.list, phone)
if count = 0 then write "Nobody in list yet ‘n"
else write "Longest number is: , longest.number, “'n"

A program fo find the longest telephone number in the address list
The above program applies procedure phone to every entry in the address list.

The next program illustrates the construction of a secondary index by constructing an index on phone
number. If it were to be maintained a new version of the first program would need to be installed

let db = open.database()

if db is error.record do

begin
write “Cannot open database - ”, db(error fault), "n”
abort

end

structure person(string name, phone.no ; putr addr, other)

let addr.list = s.lookup("addr.list.by.name", db)
let phone .number table = table() ! new empty table

let put.it.in = proc(string n ; patr val -> bool)

page 96

{ s.enter{ val(phone.no), phone .number.table, val) ; true }

tet count = s.scan(addr list, putitin)

s.enter{ "addr list.by phone number”, db, phone.rumber table)
let comvmnitted = commit()

if commitied = nil then write "Data recorded’n”

else "Data not recorded because - ', committed(error faul), "'n"

A program to construct a new index onto the address list

As another illustration a program is presented which stores 2 procedure in a procedure lbrary which will
produce a procedure capable of producing artificial unique identifiers of the general form

<fixed-prefix> <sequence number> <fixed-suffix>
Such identifiers are commonly used for part numbers, efc.
structure wid.proc(string uid.doc ;
proc(string,string -> proc(-> string)) uid)

let a.uid = prog(string prefix, suffix-> proc(-> string))

begin

let seq.no ;=0

proc(-> string)

{ seq.no = seq.no + 1 ; prefix ++ iformat(seq.no) ++ suffix }
end

let add pack = uid proc{

“the procedure uid takes two sirings, p and q, it yields a
procedure which itself yields identifiers of the form
<p><inf><q> such that successive calls have successive
values for the <int> part starting at""1"" ", a.uid)

tet lib = open.database()

if lib is error.record do

begin
write "Cannot open database - *, lib{ ervor fault), "'n"
abort

end

s.enter{ "uid proc”, lib, c.uid pack)

let comurtitted = commit()
if commined = nil then write "procedure uid proc put in libraryn”
else "procedure uid.proc not put in library because - ", committed(error fault), "'n”

A program to leave 2 utility procedure in a Ehrary

The above program also illustrates the conventional arrangements for managing procedure libraries. The
next program places two instances of the procedure yielded by the procedure uid into a database which will
be used 10 hold part descriptions and will therefore need to issue part numbers.

It is hoped that this tutorial will have shown the reader how systems may be constructed from relatively
small programs operating on ong or more databases. In the address list example one would imagine
programs to record new addresses, multiple addresses, to print address lisis and directories eic. In the second
one can easily visualise many programs contributing to the library and many programs requiring the
allocation of unique identifiers in the same sequence.

We postulate that because structure is not lost, because the database to program interface is not messy, and
because transfers and validation are incremental, present programmers’ inhibitions about breaking a task
into separate parts will gradually be overcome. When this has happened systems for quite conventional
tasks - such as assemblers - will be constructed from a set of rather simple programs. It remains to be seen

page97

whether users can develop satisfactory conventions for their programs and data so that many programs are
re-usable in different systems.

Note: the system described above is the implementation for the Apple Macintosh which has only one
database. For other systems, with more than one database, the open database procedure is of the form-

open.database(databasename, password -> pntr)
eg let plib = open.database("proc library”, "permission”)
There are then associated procedures to manipulate databases as follows -

let create.database = proc(cstring db.name, pass -> patr)
! create a db with name db.name and password pass. If successful, return a pointer
! to a table else return an errorrecord.

let change.passwd = proc(cstring db.name, oldpass, newpass)
! change the password from oldpass to newpass. If successful return nil else an error.record.

let change. owner = proc(estring dbname | cint newowner -> pafr)
! change the ownership number 10 newowner. This can only be done by the PS-algol system.
! If successful return nil else an error.record.

let list database.dir = proc(-> patr)
! every database is listed on standard output and if succesful nil is
! returned else an error.record,

let rename.database = proc(cstring oldname, newname, pass -> patr)

! database oldname is renamed newname if it's password is pass and there
! isn't already a datbase called newname. 1f successful nil is returned elae
! an error.record.

let remove.database = proc(cstring db.name, pass -> pair)

! the database db.name has its name deleted from the list of databases if its password
! is pass. If successful nil is return else an emor.record. The database can then be

! deleted during disk garbage collection if no other database has references to it.

let restore.database = proef cstring db.name -> patr)

! the database db.name is restored 10 a consistent state from its before look file

! and any locks on it are released, if successful nil is returned else an error.record,
! this procedure ignores locks held on the database.

APPENDIX 1
Language Design Methodology

PS-algol is a member of a family of languages in the algol wradition that are constrained by a design
methodology. This design methodology is based on the belief that most programming languages are too
big and intellectually unmanageable. In addition it is believed that these problerms arise in part from the
languages being too restrictive. The number of rules to define a language increases when a general rule has
additional rules attached o0 constrain its use in certain cases. Ironically these additional rules usuaily make
the language less powerful as well as more complex.

The design methodology is based on three semantic principles which can be attributed to Strachey. These
are

(a) The principie of data type completeness
(b) The principle of abstraction
(c) The principle of correspondence

The principle of data type completeness states that all data types must have the same civil rights in the
language and that the rules for using data types must be complete with no gaps. This does not mean that
all operators in the langnage need be defined on all data types but rather that general rules have no
exceptions. Examples of lack of completeness can be seen in algol W where arrays are not allowed as fields
of records and in Pascal where only some data types are allowed as members of sets. Adhering to the
principle of data type completeness leads to simpler languages since it avoids the complexity of special
cases.

Abstraction is a process of extracting the general structure 10 allow the inessential details to be ignored. It
is a facility well known to mathematicians and programmers since it is usually the only tool they have to
handle complexity. The principle of abstraction when applied to language design is invoked by identifying
the semantically meaningful syntactic categories in the language and allowing abstractions over them. The
most familiar form of abstraction is the function which is an abstraction over expressions.

Finally, the principle of correspondence states that the rules for introducing and using names should be the
same everywhere in a program. In particular there should be a one to one correspondence between
introducing names in declarations and introducing names as parameters,

Armed with the above rules the language may be designed as follows

Data Types

Decide which data types, both simple and compound, are required by the language and define the operations
on these data types. The flavour of the language will be determined by the data objects it can manipulate.
The principle of data type completeness is invoked to ensure that all data objects have the same civil rights.
Ignoring the principle means introducing rules to handle exceptions thus making the language more
complex.

The Store

Introduce the store, if any, and the manner in which it may be used. First of all the relationship between
the siore and the data types should be defined. This includes the implementation of pointers, data locations

and protection on these locations. For example, constants may be regarded as storage locations which may
not be updated.

The introduction of the store also forces consideration of the language control structures.

page$9

Abstraction

Tennent has suggested that the method of applying the principle of abstraction is to identify the
semantically meaningful syntactic categories and invent abstractions for each. This he does for Pascal and
proposes some extensions to complete the abstractions. However, he points out that it is not always an
easy matter to identify these categories in the first place.

Most languages have at least the following

Syntactic category Abstraction
expression function
statement procedure
declaration module

The problem is to identify the useful abstractions. For example, for those of us in love with the algol

scope rules, the module is a peculiar abstraction especially since the same power can be derived from
function producing functions.

Declaration and Parameters

Invent the declarations and the parametric objects together. There must be a one to one correspondence
between the two. This does not mean that they necessarily have the same syntax but that for every type of
declaration there is an equivalent parametric type. Parameter passing modes are also included in this
correspondence. For example, the declarative equivalent of call by value is an initialising declaration. If
functions, record classes etc can be declared then they can be passed as parameters. Finally, if the language
has a facility to define new data types and give them a name then thie type can be passed as a parameter.

Input and Cutput

The 1/O models for most high level languages tend to reflect the environment in which they were designed.
Some attempts have been made to design and implement comprehensive I/O systems. Unfortunately where
it has not been tied to particular hardware it has never been very successful. Nowhere else in the design of a
programming language does the hardware intervene as much as it does in the I/O system. When a new /O
device becomes available the language must be able to make use of it. Of course, this sitation is hopeless
and perhaps the wisest approach to I/O is to allow the implementor o deal with it for a particular
environment, as the Algol 60 designers proposed.

Jterate

Re-evaluate the language and correct or justify any idiosyncrasies in the design. Hopefully the design
process will converge.

Concrete Syntax

The final stage of language design is to propose a concrete syntax. Ideally different groups of workers could
have a different syntax. However, there are many users who do not wish to design their own syntax and so
the language must provide at least one possibility.

It seems very obvious to say that the syntax should be simple and easy to learn. That may be so but there

is no doubt that some of the success of the language depends on the cosmetics. Also, a carefully chosen
syntax can ease the problem of compilation.

How often the rules can be broken is for the designer's own conscience. However, every time the rules are
broken the language becomes more complex. The rules were introduced to help design simpler and more
intellectually manageable languages and should only be ignored with great care.

page 100

L
-
-

0 nul
8 bs
16 dle
24 can
32sp
40 (
48 ¢
56 8

72 H
80 P
88 X

104 h
112 p
120 x

1 soh
9ht
17 dcl
25 em
331
41)
49 1
57 9
65 A
731
81 Q
89 Y
97 a
105 i
113 g
121y

APPENDIX I

ASCII codes
3etx 4 eot
11 vt 12 £f
19 dc3 20 ded
27 esc 28 fs
35 # 36 8
43 + 44 |
513 52 4
59 ; 60 <
67 C 68 D
75 K 76 L
83 S 84 T
91 [92\
99 ¢ 100 d
107 k 108 1
115 s 116 t
123 { 124 1

6 ack
14 s0
22 syn
30rs
38 &

54 6
62 >
70 F
78 N
86 V
94 A
102
110 n
118 v
126 ~

7 bel
15si
23 eth
31us
39
47 /
557
63 7
711G
79 0
87 W
95 _
103 g
111 o
119 w
127 del

page 101

if

let

upb

bool

file

cbool
false
cstring
read.aline

do

end

Iwb

real

true
cpnir
vector
out.byte

is

int

eoi
cint
begin
readi
string
nullfile

APPENDIX I
List of reserved words
or o
and for
nil then
case isnt
while cfile
readr readb
output repeat
structure proc

forward
read.name

by
div
potr
read

abort
default
read byte

page 102

APPENDIX 4
Public Standard Functions

The following standard functions comprise only those intended for the general user.

A complete lList of additional standard functions for system use is available in the PS-Algol abstract
machine manual.

let sqri = proc(real x-> real)
! the positive square roof of x where x >= 0

let exp = proc(realx-> real)
I e to the power x

letin = proc(realx-> real)
! the logarithm of x to the base e where x > 0

fet sin = proc¢(realx-> real)
! sine of x(radians)

let cos = proef real x-> real)
! cosine of x(radians)

let atan = proc(realx-> real)
! arctangent of x (radians) where - pi /2 <atan{x)< pi/2

let code = proc(intn-> string)
! string of length 1 where s(111) = character with
! numeric code abs(n rem 128)

let decode = proc(string s-> int)
! numeric code for s(111)

let runcate = proc(realx-> int)
! the integer i such that il <= Ixl < il + 1 wherei * x >= 0

let line.number = proc(-> int)
! the program line number

letrabs = proc(realx-> real)
! the absolute value of real number x

let abs = proc intn-> int)
! the absolute value of integer n

let length = proc(string s -> int)
! the number of characters in the string s

let eformat = proc(realn; intwd-> string)
! the string representing n with w digits

! before the decimal point and d digits after

! with an exponent

let fformat = proc(realn; intwd-> string)
! the string representing n with w digits
! before the decimal point and d digits after

let gformat = proc(realn-> string)
! the string representing n in eformat or

page 103

! fformat whichever is suitable

let letter = proc(string s -> bosl)
!length(s)=1and
!s>="A"and s <= "Z" or

won

ls>="a" and s <= "z"

let digit = proc(string s-> bool)
tlength(s)=1and
ts>="0" and s <= "9"

let ifformat = proe(intn-> string)
! integer n as a string of characters

let options = proc(-> *cstring)
! the command line options are given as a vector of strings

let find.substr = proc(string target, substring -> int)
! return the starting position of string ‘substring’
! in 'target', zero otherwise.

let interrupt = proc(-> bool)

! return whether an interrupt (normally control C) has been
! received since the last call of this procedure or the start

! of the program.

letdate = proc{ -> string)
! gives the date and time in a format determined by the implementation

let ime = proe(-> int)
! returns the CPU time used since logging in as the number of 60Hz
I clock ticks.

let random = proc(cint seed -> int)
! random number generator as desrcibed in CACM vol 11,9 po42

let trace = prog()
! print a snapshot of the current procedure calls.

let environment = proc(-> *estring)
! the environment vector for the process is retumed as a
! vector of strings, (this is only available in UNIX).

let ilookup := procf inti; patr:-> pntr)
! this looks up pointer value in the table t corresponding to integer
Tkeyi

let s.lookup := prog(strings; pntr¢-> pntr)
! this looks up pointer value in the table t corresponding to string key s

let ienter := proc(imti,; potriy)
! the pointer value v is entered into table t using integer key i

let s.enter := proc(string s, potrtyv)
! the pointer value v is entered into table t using string key s

let table = proc(-> pntr)
! a new table is created and a pointer to it returned

letiscan := proc(pntr:; proc(int, pntr-> bool) u-> int)
! every value in table t with an integer key is passed to procedure

page 104

! u until the procedure u retums
! false or all integer keys have beon encountered, the result is the
!munbexofﬁmes;mcedmeuixappﬁed

fet s.scan '= proc(patr ¢, proc stringpatr ->bool ju-> int)
!every value in table ¢ with a string key is passed 0 procedure

! until the procedure u returns

! false or all string keys have been encountered, the result is the

! number of times procedure u is applied

let create.database = proc(cstring db.name, pass -> pnfr)
! create a db with name db.name and password pass. If successful, refurn a pointer
! 10 a table else return an error.record.

let open.database = prog(-> pofr)

! for the Apple Macintosh,

! open the system database and if successful return a pointer

! 10 a table eise an error.record. Note there is only one database.

let open.database = proc(cstring db.name, pass - > pntr)

! for systems with more than one database.

! opens the daiabase db.name if its password is pass. If successful a pointer
! to a table is returned else an error.record.

let change passwd = proc(estring db.name, oldpass, newpass)
! change the password from oldpass to newpass. If successful return nil else an error.record.

let change.owner = proc(cstring db.name ; ¢int newowner -> pntr)
! change the ownership number 1o newowner. This can only be done by the PS-algol system,
VIf successful retirn nil else an error.record.

let list.database dir = proc(-> potr)
! every database is listed on standard output and if succesful nil is
| returned else an errorrecord.

let rename.database = proc(cstring oldname, newname, pass -> pair)

! database oldname is renamed newname if it's password is pass and there
! isn't already a datbase called newname. If successful nil is returned elae
| an exror.record.

let remove.database = prog(csiving db.name, pass -> potr)

! the database db.name has iis name deleted from the kst of databases if its password
! is pass. If successful nil is retumm else an error.record. The database can then be

! deleted during disk garbage collection if no other database has references to it.

tet restore.database = proe(cstring db.nome -> patr)

! the database db.name is restored 1o a consistent state from its before look file

! and any locks on it are released, if successfud nil is returned else an errorxecord,
! this procedure ignores locks held on the database.

let commit = proc(-> patr)

tall changes made to objects in the persistent store are made permanent,
t any objects reachable from changed objects are added to the persistent

! store, if successful nil is returned otherwise an error record.

let line = proc(eftpixeli; cintxl,ylx2,y2.dxdy ;
proc(citpixel) style)
'draw a line at dx,dy intervals on the image i from x1,y1 to x2,y2
! the line style is governed by procedure 'style’
! which is executed every dx,dy and is passed the Limit of image i

page 105

let draw = proc(cfipixeli; cpicp; erealxlx2,y1,y2)
! draw the picture p on the image i.
! the picture is bounded by x1,x2,y1,y2 im its coordinate space.

let X.dim = proc(ciipixeli -> int)
! return the x dimension of i

let Y.dim = proe(cffpixeli-> int)
! return the y dimension of i

let locator = proc(patr)

! returns a structure containing information about the status of the mouse.

! the structure returned is a mouse.strc

let cursor.tip = proe(cpntr the.tip -> patr)
! make the effective tip of the cursor ‘the.tip' return old tip
! both pointers are pointers to point.strc(cint point.x,point.y)

let cursor.on = prog()
! make the cursor track the mouse (the default state).

let cursor.off = procf)
! make the cursor invisible.

let Pixel = proc(c#tpixeli, cint xposypos-> pixel)
! return the pixel at xpos,ypos in i.

let constant.image = proc(citpixel i -> #cpixel)
! return a copy of image 1 with constant pixels.

let variable.image = proc(cftcpixel i -> #pixel)
! return a copy of image i with variable pixels.

let fill = proc(citpixel i ; epixel col ; eint xpos,ypos)
! seed fill image i from position xpos,ypos with the pixel col.

let menu = proc(c#tpixel title ; c*citpixel entries ;
cbool vertical ; c*eproc(ciipixel,cint) actions
-> proc(cint,cint -> bool))
! Return a procedure that when called will cause a menu to appear
! with its bottom left hand corner at position Xpos,ypos relative
! to 'screen’
! 'vertical' indicates the menu orientation
! The menu has a 'title’ and a vector of icons called entries’
! Associated with each entry in the menu is a procedure which
! will be called when the entry is selected.
! This procedure is passed the associated image and the entry number
! The boolean returned indicates if the user made a selection

let depth = proe(cHipixeli-> int)
! return the number of planes in image i

let colour.map = proc(cpixelp ; cinti)
! when pixel p is displayed the integer i will be
! sent to the display hardware

let colour.of = proe(cpixel p-> int)
! return the integer sent to the hardware when pixel p is displayed

let string.to.tile = proc(cstring the.string font -> #pixel)
! returns an image which contains 'the.string' in the 'font'

Standard Identifiers

A number of standard identifiers exist in the language. They are

W

s.w

iw
maxint
epsilon
pi
maxreal
screen
cursor

variable initially 14

variable initially 2

variable inidally 12

constant, the maximum integer

constant, the largestreal e such that 1 + e =1
constant, pi

constant, the largest real

constant, image representing the screen
constant, image representing the cursor

Note that the minimum integer value is -maxint - 1 and the minimum real value is -maxreal.

page 107

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,
Persistent Programming Research Group,
Department of Compating Science,
University of Glasgow,
Glasgow G12 8QQ
Scotland.

or
The Secretary,
Persistent Programming Research Group,
Department of Computational Science,
University of St. Andrews,
North Haugh,
St. Andrews KY16 958
Scotland.

Books

Davie, AJ.T. & Morrison, R.
“Recursive Descent Compiling”, Ellis-Horwood Press (198 1).

Atkinson, M.P, (ed.)
"Databases”, Pergammon Infotech State of the At Report, Series 9, No.8, January 1982. (535 pages).

Cole, A.J. & Morrison, R,
"An introduction to programming with S-algol”, Cambridge University Press, Cambridge, England, 1982.

Stocker, P.M., Atkinson, M.P. & Grey, P.M.D. (eds.)
"Databases - Role and Structure”, Cambridge University Press, Cambridge, England, 1984.

Published Papers

Morrison, R,
"A method of implementing procedure entry and exit in block structured high level languages”. Software,
Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z.
"The Graffiti graphics system", Proc. of the DECUS conference, Bath (April 1978), 5-10.

Atkinson, M.P.

"A note on the application of differential files to computer aided design”, ACM SIGDA newsletier Summer
1978.

Atkinson, M.P.
"Programming Languages and Databases”, Proceedings of the 4th International Conference on Very Large
Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78, 408-419. (A revised version of this is available from the
University of Edinburgh Department of Computer Science (EUCS) as CSR-26-78).

Atkinson, M.P.
“Progress in documentation: Database management systems in library automation and information retrieval”,
Journal of Documentation Vol.35, No.1, March 1979, 49-91. Available as EUCS departmental report
CSR-43-79.

Gunn, HIE, & Morrison, R.
"On the implementation of constants®, Information Processing Letters 9, 1 (July 1979), 14,

Atkinson, M.P.
"Data management for interactive graphics”, Proceedings of the Infotech State of the Art Conference, October
1979. Available as EUCS departmental report CSR-51-80.

Atkinson, MLP. (ed.)
"Data design”, Infotech State of the Art Report, Series 7, No 4, May 1980.

Morrison, R.
"Low cost computer graphics for micro computers”, Software Practice and Experience, 12, 1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"PS-algol: An Algol with a Persistent Heap", ACM SIGPLAN Notices Vol.17, No. 7, (July 1981) 24-31.
Also as EUCS Departmental Report CSR-94-81.

Atkinson, MLP., Chisholm, K.J. & Cockshott, W.P.
“Nepal - the New Edinburgh Persistent Algorithmic Language”, in Database, Pergammon Infotech State of
the Art Report, Series 9, No.8, 299-318 (January 1982) - also as EUCS Departmental Report CSR-90-81.

Morrison, R,
"S-algol: a simple algol", Computer Bulletin II/31 (March 1982).

Morrison, R.
"The string as a simple data type", Sigplan Notices, Vol.17,3, 46-52, 1982,

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming”, presented at CREST course UEA, September 1982, revised in
"Databases - Role and Structure”, see PPRR-8-84.

Morrison, R.
"Towards simpler programming languages: S-algol”, TUCC Bulletin 4, 3 (October 1982), 130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P,
"Problems with persistent programming languages”, presented at the Workshop on programming languages
and database systems, University of Pennsylvania. October 1982. Circulated (revised) in the Workshop
proceedings 1983, see PPRR-2-83.

Atkinson, M.P.
"Data management", in Encyclopedia of Computer Science and Engineering 2nd Edition, Ralston & Meek
(editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
" Algorithms for a Persistent Heap", Software Practice and Experience, Vol.13, No.3, 259-272 (March 1983).
Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"CMS - A chunk management system", Software Practice and Experience, Vol.13, No.3 (March 1983),
273-285. Also as EUCS Departmental Report CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming”, presented at the DEC workshop on Programming
Languages and Databases, Boston, April 1983,

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"An approach to persistent programming”, The Computer Journal, 1983, Vol.26, No.4, 360-365 - see
PPRR-2-83.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, WP, & Morrison, R.
"PS-algol a language for persistent programming”, 10th Australian Computer Conference, Melbourne, SepL.
1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.
"High level language support for 3-dimension graphics”, Eurographics Conference Zagreb, North Holand,
7-17, Sept. 1983. (ed. P.J.W. ten Hagen).

Cockshott, W.P., Atkinson, M.P., Chisholm, K J., Bailey, P.J. & Morrison, R.
"POMS : a persistent object management system", Software Practice and Exerience, Vol.14, No.1, 49-71,
January 1984.

Kulkarni, K.G. & Atkinson, MP.
"Experimenting with the Functional Data Model”, in Databases - Role and Structure, Cambridge University
Press, Cambridge, England, 1984,

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough”, Foundations of Software Technology and Theoretical
Computer Science (ed. M. Joseph & R. Shyamasundar) Lecture Notes in Computer Science 181, Springer
Verlag, Berlin (1984).

Atkinson, M.P., Bocea, 1.B., Elsey, T.J., Fiddian, N.J., Flower, M., Gray, P.M.D.
Gray, W.A., Hepp, P.E., Johnson, R.G., Milne, W., Norrie, M.C., Omololu,
A.Q., Oxborrow, E.A., Shave, MJ.R., Smith, AM., Stocker, P.M. & Walker, J.
"The Proteus distributed database system", proceedings of the third British National Conference on Databases,
(ed. J. Longstaff), BCS Workshop Series, Cambridge University Press, Cambridge, England, (July 1984).

Atkinson, MLP. & Morrison, R.
"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985) - see PPRR-9-84,

Morrison, R.,Bailey, P.1., Dearle, A., Brown, P. & Adtkinson, M.P.
"The persistent store as an enabling technology for integrated support environments”, 8th International
Conference on Software Engineering, Imperial College, London (August 1985), 166-172 - ses PPRR-15-85.

Atkinson, M.P. & Morrison, R.
“Types, bindings and parameters in a persistent environment”, proceedings of Data Types and Persistence
‘Workshop, Appin, August 1985, 1-24 - see PPRR-16-85.

Davie, AJ.T.
"Conditional declarations and pattern matching”, proceedings of Data Types and Persistence Workshop,
Appin, August 1985, 278-283 - see PPRR-16-85.

Krablin, G.L.
"Building flexible multilevel transactions in a distributed persistent environment, proceedings of Data Types
and Persistence Workshop, Appin, August 1985, 86-117 - see PPRR-16-85.

Buneman, O.P.
"Data types for data base programming"”, proceedings of Data Types and Persistence Workshop, Appin,
Aungust 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.
"Addressing mechanisms and persistent programming”, proceedings of Data Types and Persistence ‘Workshop,
Appin, August 1985, 363-383 - see PPRR-16-85.

Norrie, M.C.
"PS-algol: A user perspective”, proceedings of Data Types and Persistence Workshop, Appin, August 1985,
399-410 - see PPRR-16-85.

Owoso, G.O.

"On the need for a Flexible Type System in Persistent Programming Languages", proceedings of Data Types
and Persistence Workshop, Appin, August 1985, 423-438 - see PPRR-16-85

Morrison, R., Brown, AL, Bailey, P.J., Davie, AJ.T. & Dearle, A,
"A persistent graphics facility for the ICL PERQ", Software Practice and Experience, Vol.14, No 3, (1986) -

see PPRR-10-84.

Atkinson, M.P. and Morrison R.
"Integrated Persistent Programming Systems", proceedings of the 19th Annual Hawaii International
Conference on System Sciences, January 7-10, 1986 (ed. B. D. Shriver), vol IIA, Software, 842-854, Western
Periodicals Co., 1300 Rayman St., North Hollywood, Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.
"A Persistent Information Space Architecture”, proceedings of the 9th Australian Computing Science
Conference, January, 1986 - see PPRR-21-85.

Kulkami, K.G. & Atkinson, M.P,
"EFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.1, (1986) 38-45.

Buneman, O.P. & Atkinson, M.P.

"Inheritance and Persistence in Database Programming Languages"; proceedings ACM SIGMOD Conference
1986, Washington, USA May 1986 - see PPRR-22-86.

Morrison R., Dearle, A., Brown, A. & Atkinson M.P.; "An integrated graphics programming environment”,
Computer Graphics Forum, Vol. 5, No. 2, June 1986, 147-157 - see PPRR-14-86,

Atkinson, M.G., Morrison, R. & Pratten G.D.
"Designing a Persistent Information Space Architecture”, proceedings of Information Processing 1986,
Dublin, September 1986, (ed. H.J. Kugler), 115-119, North Holland Press.

Brown, AL. & Dearle, A.

"Implementation Issuses in Persistent Graphics", University Computing, Vol. 8, NO. 2, (Summer 1986) -
see PPRR-23-86.

Internal Reports

Morrison, R.
"S-Algol language reference manual”, University of St Andrews CS-79-1, 1979,

Bailey, PJ., Maritz, P. & Morrison, R.
"The S-algol abstract machine”, University of St Andrews CS-80-2, 1980,

Atkinson, M.P,, Hepp, PE., Ivanov, H., McDuff, A., Proctor, R. & Wilson, A.G.
"EDQUSE reference manual”, Department of Computer Science, University of Edinburgh, September 1981.

Hepp. P.E. and Norrie, M.C.
"RAQUEL: User Manual", Department of Computer Science Report CSR-188-85, University of Edinburgh.

Norrie, M.C.

"The Edinburgh Node of the Proteus Distributed Database System", Department of Computer Science Report
CSR-191-85, University of Edinburgh,

Theses

The following Ph.D. theses have been produced by members of the group and are available from the address
already given,

W.P. Cockshoit
Orthogonal Persistence, University of Edinburgh, February 1983.

K.G. Kulkamni)])
Evaluation of Functional Data Models for Database Design and Use, University of Edinburgh, 1983.

PE. Hepp)))
A DBS Architectre Supporting Coexisting Query Languages and Data Models, University of Edinburgh,
1983.

G.D.M. Ross) o)
Virwal Files: A Framework for Experimental Design, University of Edinburgh, 1983.

G.0. Owoso) o)
Data Description and Manipulation in Persistent Programming Languages, University of Edinburgh, 1984,

Persistent Programining Research Reports

This series was swrted in May 1983. The following list gives those produced and ﬁ.lose planne_d'plus their
status at 15th December 1986, Copies of documents in this list may be obtained by writing 1o the

addresses already given.
PPRR-1-83 The Persistent Object Management System -
Atkinson,M.P., Chisholm, K J. and Cockshott, W.P. £1.00
PPRR-2-83 PS-algol Papers: a collection of related papers on PS-algol -
Atkinson, MLP., Bailey, P., Cockshott, W.P., Chisholm,
K. and Morrison, R. £2.00
PPRR-4-83 The PS-algol reference manual -

Atkinson, MLP., Bailey, P., Cockshott, W.P., Chisholm,
KJ. and Morrison, R Presently no longer available

PPRR-5-83 Expenimenting with the Functional Data Model -
Atkinson, M.P. and Kuikarni, K.G. £1.00
PPRR-6-83 A DBS Architecture supporting coexisting user interfaces:
Description and Examples - - £100
Hepp, P.E. |
PPRR-7-83 EFDM - User Manual - £100
K.G.Kulkarni .
PPRR-8-84 Progress with Persistent Programming -

Atkinson,M.P., Bailey, P., Cockshott, W.P., Chisholm,
KJ. and Morrison, R. £2.00

PPRR-9-84

PPRR-10-84

PPRR-11-85
PPRR-12-86

PPRR-13-85

PPRR-14-86

PPRR-15-85

PPRR-16-85

PPRR-17-85

PPRR-18-85

PPRR-19-85

PPRR-20-85

PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PPRR-26-86

PPRR-27-87

Procedures as Persistent Data Objects -
Atkinson, M.P.,Bailey, P., Cockshott, ‘W.P., Chisholm,
K.J. and Morrison, R.

A Persistent Graphics Facility for the ICL PERQ -
Morrison, R., Brown, A.L., Bailey, P.J., Davie, AJ.T.
and Dearle, A.

PS-algol Abstract Machine Manual

PS-algol Reference Manual - third edition

CPOMS - A Revised Version of The Persistent Object
Management System in C -
Brown, A.L. and Cockshott, W P,

An Integrated Graphics Programming Environment - second
edition -

Morrison, R., Brown, A.L., Dearle, A. and Atkinson, M.P.

The Persistent Store as an Enabling Technology for an
Integrated Project Support Environment -
Morrzison, R., Dearle, A, Bailey, P.J., Brown, A.L. and
Atkinson, M.P.

Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R.

Database Programming Language Design -
Atkinson, M.P. and Buneman, OP.

The Persistent Store Machine -
Cockshott, W.P,

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R.

Building a Microcomputer with Associative Virtual Memory -
Cockshott, W.P.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D.

Inheritance and Persistence in Database Programming
Languages -
Buneman, O.P. and Atkinson, M.P.

Implementation Issues in Persistent Graphics -
Brown, AL. and Dearle, A.

Using a Persistent Environment to Maintain a Bibliographic
Database -
Cooper, R.L., Atkinson, M.P. & Blott, S.M.

Exception Handling in a Persistent Programming Language -
Philbrow, P & Atkinson M.P.

A Context Sensitive Addressing Model -
Hurst, AJ.

£1.00

£1.00

£1.00

£2.00

£1.00

£15.00

£3.00

£2.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

PPRR-28-86b

PPRR-29-86

PPRR-30-86

PPRR-31

A Domain Theoretic Approach o Higher-Order Relations -
Buneman, O.P. & Ochari, A

A Persistent Store Garbage Collector with Statistical Facilities -
Campin, J. & Atkinson, MLP

Data Types for Data Base Programming -
Buneman, O.P.

An Introduction to PS-algol Programming -
Carrick, R., Cole, A.J. & Morrison, R.

£1.00

£1.00

£1.00

£1.00

