University of Glasgow
Department of Computing Science

I/

SN

YA b
RDETitoRe

Lilybank Gardens
Glasgow G12 8QQ

University of St Andrews
Department of Computational Science

North Haugh
St. Andrews KY 16 8SX

Data Types for Data Base

Programmirng

Persistent Programming
Research Project 30

PREFACE

This is a revised version of the paper presented at the
Persistence and Data Types Workshop, Appin, August

1985 - see PPRR-16-85.

DATA TYPES FOR DATA BASE PROGRAMMING

Peter Buneman?

Department of Computer and Information Science
University of Pennsylvania

1. Introduction

There are three data types that find ubiquitous use in data base programming. They
are

- record types,
- index or table types, and
- set or relation types.

It is suggested in this paper that the three types can be derived from one underlying
construct, a partial function, or map as we shall call it that is well-behaved with respect to
inheritance. Moreover the behaviour of these functions provides a link with the substantial
research on datbase theory [Ullman 82] which, sadly, has yet to have any great influence
on the types of database programming languages although it is generally regarded as
extremely important in data base design. Another reason for wanting to find 2 unifying
framework for these types is to form a better understanding of how the functional data
model {Shipman 81, Buneman 82] relates to the relational data model [Codd 70] and how
these in turn fit with inheritance.

To take an example of how these various types are used in data base programming
languages, one of the earliest such languages is Pascal-R [Schmidt 77], which extends Pascal
with a relation data type so that one can declare for example,

type Employee = record

EmpNo : Integer;
EmpName : array[1..30] of char;

end;
var EmpRel : relation <EmpNo> of Employee;

There are various methods in the language for performing the usual operations of the
relational algebra; in addition, it is possible to use a relation such as EmpRel as an index

1 This research was carried out on a British Science and Engineering Council Fellowship
at the University of Glasgow

that, given a key of type integer, returns a record of type Employee. Thus EmpRel[1234]
returns that record - if it exists - whose EmpNo is 1234. In some sense the relation EmpRel
is doing double duty both as a set and as an index. More recent database programming
languages such as Taxis [Mylopoulos et al. 80], Adaplex [Computer Corporation of America
83] and Galileo [Albano et al 83] provide similar constructs although in some cases the
index type is not directly available to the programmer but is nevertheless implemented as
a method for optimisng the manipulation of relations or similar types.

Although these types are all implemented, they are not necessarily treated unifomly
within the language. One reason is undoubtedly that two of these types, index and relation,
may be single out as persistent types and the implementation of persistent types may
restrict what can, for example, serve as a component type for a relation or the input and
output types for an index. A survey of the problems associated with persistence and data
types is to be found in [Atkinson and Buneman 85]. A more fundamental problem is
what the precise definition of these types is, and how they interact with one another. In
particular, one might ask whether there is a single underlying type of which each of these
three types is a manifestation. Another question is how the basic operations of, say, the
relational algebra act on these types. For example, is the most “natural” of all relational
operations, the natural join, a primitive operation, is it something that the programmer
can define in terms of more primitive operations., or is it something that is not directly
available? In the case that it is primitive or programmer-defined, what is its type?

This paper dscribes a simple notation for partial functions, and an informal description
of inheritance. A more formal description of maps - partial functions that are well-behaved
with respect to inheritance is then derived, and it is shown how records, relations and in-
dexes can all be derived from this one construct. It is also indicated, briefly, how this notion
of a partial function connects with relational database theory. A final section outlines how
type-checking can be implemented to give a somewhat more faithful representation of
relational and other database operations in a typed programming language.

2. Records and Inheritance

The clue to providing a unified set of types for database comes from the idea of inheri-
tance. The importance of inheritance (sometimes called generalization or subsumption has
been recognized for some time in programming languages [Xerox 81], data bases [Smith
77] and in semantic networks. Recent work [Cardelli 84] has shown that, at the level of
types, inheritance can be cleanly combined with functional programming; and [Aft-Kaci
84] shows that inheritance can itself serve to model computation and to provide a form of
logic programming. Here we shall initially describe inheritance at the level of values, as is
done, for example, in [Attardi 81]. To provide an informal introduction some notation is

introduced for describing partial functions on a finite set of values. The expression,
{'Susan’ = 3490 Peter’ = 7731; Karen' => 8535}

describes a very small telephone directory - a partial function from strings to integers. If
the range of the partial function contains just one element, , we may use an abbreviated

description
{7;123;22}

for
{7={};123= {}22={}}

Such partial functions apparently correspond to subsets of the input set of values, but we
shall shortly modify our definition of partial function so that this correspondence is not
entirely correct. When the input to the partial function is a set of labels as in

{Idno = 12345; Namne =' Jones'; BirthY ear = 1957}

we may think of the partial function as a record whose output is taken from some hetero-
geneous space of values.

Now there is a natural ordering on partial functions. If we think of records as descrip-
tions of some “real world” object or or event, this ordering corresponds to the notion of

“better description”. For example
{IdNo = 1234; Name =' Jones’; BirthY ear = 1957}
is a better description than
{IdNo => 1234; Name =' Jones'}

by virtue of having more fields and agreeing on those foelds that are common to the two

descriptions. Similarly
{IdNo = 12345; Address = {City =>' Philadelphia; Zip => 19118}}
is a better description than
{IdNo = 12345; Address = {City =’ Philadelphia'}}

because the field values in one are themselves decriptions and are better defined in one
than the other.

This last expression has introduced the possibility that partial functions may be “higer
order” and that the input and output functions may be spaces on which there is an ordering.
The question now arises whether any partial function we can write down in this notation
is allowable. Consider the following three expressions.

{{Emp# = 1234} = {Name =' J.Brown'; Of fice = Philadelphia};
{Emp# = 1234; ShoeSize = 10} = {Name =' K.Smith’}}

(a)

{{Stud# = 3456} => {Name =' D.Dare'};
{Coursed# =' C15123'} = {C Name =' DatabaseSystems'}
{Stud# = 3456; Course#t =' C15123} = {Name =' D.Daré’; (&)
CName =' DatabaseSystems’;
Grade =' A'}}

{{Emp# = 1234} = {Name =’ J.Brown'; Of fice = Philadelphia}
{Emp# = 1234; ShoeSize = 10} = {Name =' J.Brown'; Of fice = Philadelphia}

{Emp# = 1234} = {Name =" J.Brown'}}
()

Example (a) is badly behaved. In return for a better input it has produced a less
informative - and contradictory - output. Example (b) is the sort of behaviour one might
expect from a database system. There is a extra information to be gained by providing a
better specified input. Example (c) is redundant in that we can infer the second and third
input-output pairs from the first, but we can nevertheless consider these pairs as part of
the partial function. Of course, it is difficult to imagine how a typed programming lan-
guage would allow us to assign a type to any of these examples, although several database
management systems allow us to represent data like those of example (b).

Example (¢} poses a question of representation. Should we think of the “redundant”
part of the partial function as not being part of the partial function at all, or should we
adopt the notion that a partial function is really a (binary) relation that includes all the
redundant parts. We adopt the latter notion

3. A Domain Theoretic Description of Partial Functions

In order to prevent badly behaved partial functions such as the one we have just seen,
we need to set up some formal apparatus to describe what partial functions are admissible

with resepect to inheritance. The mathematical results in this section are all well-known
in domain theory; only their interpretation with respect to data bases is new. We shall
define a partial function as a subset F of Vi X V; where V; and V; are domains. The
conditions we impose are

1. (L1, 1z} e F.

2. (z,y) € F, 2’ Jz,and y J ¢ imply (z',y') € F.

3. (z,y1) € F and (z,y3) € F imply (z,y1 Uyz) € F.

The second of these condiditions guarantees that the partial function is well-behaved
with respect to inheritance; the third ensures that the relation F is “functional”, namely
that there is a unique “best” output for a given input. The first condition is for conve-
nience in simplifying further definitions. I shall use the term map to describe a subset
of V1 x Vo with these properties and use V; +— V, to denote the set of such maps. Pro-
gramming language semanticists will recognise the definition of a map to be similar to the
definition of an approximable mapping in [Scott 82], and this connection deserves much
closer examination. However, our purpose in this paper is to examine the consequences of

regarding a map as a practical data constructor.

Maps are ordered by inclusion. If Fy and F; are maps in V; — V5, we can define
FiNF,=FN"nNnEkF,

and
FLuF, = U{FIF €V Vo, F D FyandF D Fz}
the latter only being defined when the intersection is non-empty. Thus maps themselves
form a domain.
We can call 2 map elementary if it is generated by a single pair of elements, i.e. it is
of the form
{Z,..Lzlz € Vl} U {(z,)yl)]z, € Vh y, € V27$, g z,y 2 y,}

for any z € V; and y € V,. A map is defined to be finite if it is of the form FyUF .. .UF,
where Fy, Fs,..., F, are elementary. The notation of the previous section provides us with
a method for describing finite maps (provided the notation is consistent with a finite map.)
It follows from these definitions that if ; and Fs are finite then so are F; U F, and FyNF,
whenever these exist. Another useful observation is that the composition of two maps,

FoG={(z,2)|y.(z,9) € F,(y,2) € G}

is a map and that F o G is finite if F is finite or if G is finite.

Having covered this groundwork, let us look at some simple classes of maps.

1. Suppose V is a flat domain of values (e.g. the integers) and TRIV is the trivial
domain containing one (non-bottom) element {}. The maps in V ~ TRIV
correspond to subsets of V' \ { L} with M and U rescpectively corresponding to set
intersection and set union. The ordering is the containment ordering.

2. Suppose A is a finite flat domain of labels and V is any domain. The maps in
A > V are the records over V with the ordering described informally in the
previous section. We shall call this domain R(V)

3. Now consider the finite maps in R(V) — TRIV. It is claimed that we can identify
these with the relations over V with U denoting the natural join.

The last example requires some elaboration. In the first place, since R(V) is not a flat
domain there is a distinction between relations and sets (as defined in case 1 above). In
fact, the members of R(V) ~+ TRIV are in 1 — 1 correspondence with the upward closed
subsets, or filters of R(V). Secondly, in data base programming languages, we usually
think of relations as a set of uniformly typed, flat, records (i.e. records whose values lie in
a flat domain.) However there is no need for this in defining the natural join. For example,
the natural join of

{{Name=- "J. Doe’; Dpt = 'Sales’y Add={Cty = 'Moose’ 5
{Name = 'M. Mac’, Dpt= "Manuf’ };
{Name => 'N. Bug’, Add ={ State = "Mo’}}}

and A
{{Dpt = ’Sales’; Add ={ State = "Wy’ }};
{Dpt = ’'Rsrch’;, Add ={Cty =>’Billings’ j35
{Dpt = 'Manuf’, Add={ State ='Mo’ }}}

is
{{Name =-"]. Doe’, Dpt = ’Sales’y Add ={Cty = "Moose’; State=> "Wy'}};
{Name = ’M. Mac’; Dpt = 'Manuf’; Add ={ State = 'Mo’}};
{Name = 'N. Bug’;, Dpt= "Manuf’; Add=>{ State = 'Mo’}};
{Name = 'N. Bug’ Dpt = ’Rsrch’, Add ={Cty = Billings; State = 'Mo’}}}

Thus the definition of natural join extends naturally to “ragged” and “non-flat® (non
first-normal-form) relations. In the case that R1 and R2 are each uniformly typed, our
definition agrees with the usual definition of natural join, and if R1 and R2 have the same
type the natural join, as expected, defines the intersection, and R1 1 R2 gives the union.

We can take this domain-theoretic approach to relations further, and from a relation
R defined on R(V) —> TRIV, define a map R’ in R(V) — R(V) by

(z,y) e R if Vr(r,{})€Randr JzimplyrJy

R’ belongs to the special class of maps known as closures. One way of characterising a
closure is by the following rules. A map F is a closure if

1. zC y implies (z,y) € F

2. (z,y) € F implies (zUw,yUw)EF

3. (z,y) € F and (y,2) € F imply (z,2) € F

The reason for casting the closure property in this form is that any database the-

orist should immediately recognise this definition as Armstrong’s axioms for functional
dependencies (replace T by C and U by U on the set of labels.) The precise connection
is beyond the scope of this paper, however it is worth mentioning that we can derive sev-
eral of the basic results in relational database theory by this domain-theoretic approach
and extend them to ragged, non-flat relations. It should also be pointed out that the
derivation of closure given above is not the way one actually obtains Armstrong’s axioms.
Moreover, for various technical reasons it is necessary to take the elements of a relation R,
the set {r1,7q,...,7s} such that R is the union of elementary maps generated by (ri,{})
(1 €1 < n), as an inconsistent set, i.e. a set of elements which is pairwise inconsistent

(any pair does not have a defined L1.)

4. Implications for Data Base Type Systems

The previous section provided some theoretical justification for using maps as a basic
data constructor for data base programming languages since we could use it to represent
(a2nd perhaps implement) record, relation and index types. The purpose of this section is to
suggest how such structures might be practically incorporated into a typed programming
language. However, we apparently achieved this uniformity by treating labels as values
and this may give us rather more than we had bargained for. For example it is difficult to
attach a meaning to maps such as

{Name = "Jones’; 4 => ’emu’; 1T = Age}

since they appear to be ill typed (although they are perfectly reasonable expressions.)
What kind of type system will exclude such expressions? Fortunately {Cardelli 84] has
provided us with most of the groundwork, and his type system for Amber with minor
modifications will support precisely the kinds of maps in whic we are interested. What
follows is a very brief account of the modifications to this system that will support map
types. The reader is referred to [Cardelli 84] for further details.

To start with, we remove record types from the domain of values, but extend the
domain to include maps and labels?; thus we express the domain of values as

2 variant records or sums are not considered here.

V=B+L+M+F+...
M=Ve-V
F=V -V

where B is a flat domain (or sum of flat domains) of basic values (such as integers, strings,
booleans), L is a flat domain of labels, M is the domain of finite maps, F is the domain of
functions etc.

Now there is a slight problem in doing this. In order to define an ordering on maps,
we needed (at some level) to have equality defined on the domain of values V, and equality
is not decidable when F contains elements corresponding to arbitrary expressions in the
A-calculus. However, higher-order languages (languages in which functions are values)
such as ML [Milner 83] and PS-algol [Atkinson et 2l 81] get round this problem either by
having equality that fails on functions, or by using some retricted notion of equality such
as textual equality or referential equality. We shall assume this has been done.

We now need to assign types to labels and maps. Since labels are values, we must
severely restrict the kinds of “run-time” computation we can do if we want to preserve the
kinds of type-checking common in languages with records. To do this we assign each label
its own type. Moreover, since context should make clear whether we are referring to values
or types, we shall use the same term to denote both the value and the type. Thus the type
of the label IdNo is IdNo. We now want to have rules that will type an expression such
as

{Idno = 12345; Name =" Jones'; BirthY ear = 1957}

{Idno = int; Name => string; BirthY ear = int}

We also want to allow other kinds of maps in which the domain and range are uniformly
types. To do this we add a type expression 7, +» 7o where r; and 73 are type expressions.
Thus the type of

{'Susan’ = 3490; Peter’ = 7731;' Karen' = 8535}

should be string — int.

To do this we use the following typing rules for maps by
1. ifey:7,eg:7,...,ep:7and ef : 7', ef 17’ ... el : 7/ then
{e1 = elsea = eh;...5ep = el } 17 > taw’

L.
n T

H ?
2. if 13,13,..."l, are labels and e} : 7{,e, : 7},. .. el : 7}

then {l; = ei;ls = eh;...;ln = en} : {h = 52 =7l = 1)

3. ife:ors7and f:o' — 7
then (eM f) : (cUa’) (1 7")
and (eU f): (eMo’) > (rU7)
provided all meets and joins are defined.

Of these rules (1) follows Cardelli’s type rules for records, (3) his rules for functions,
which behave very much like functions. Only (2} is at all new.

Some examples may clarify the use of these rules. In the first place, none of these

rules (and hopefully no others) will assign a type to expressions like
{Name = Jones’; 4 = ’emu’; 17 = Age}

Second, we can examine the type of natural join and other relational operations.

Consider the declarations
type Person = {IdNo = int; Name = String; DeptNo => int}
type Department = {DeptNo = int; DName => string};

val PersonRel : Person — {} =...;

val DepartmentRel : Department v {} = ...;

that describe the relations PersonRel and DepartmentRel.

The natural join PersonRelM DepartmentRel of these two relations has type, inferred
by rule 3, (Person U Department) — {} or

{IdNo = int; Name = string; DeptNo = int; Dname => string} — {}

which accords with our intuition for the type of a natural join. Note that since LI is not al-
ways defined, the inference rules may fail to find a type for the natural join. This would hap-
pen if, for example, we rewrote the type of Department as { DeptNo = string; DName =

string}.

Third the rules do assign a type to expressions such as
{EmpNo => IdNo; LastName = Name},

a map in which both the input and output are labels. Such maps are extremely useful
in database work for relabelling records. Relabelling of a record is nothing more than
composition of maps, thus

{EmpNo = IdNo; LastName => Name} o {IdNo => 12345; Name =>' Jones'}

evaluates to
{EmpNo = 12345; Last Name =’ Jones'}

and is again well-typed. Note that {EmpNo = IdNo; LastName => Name} denotes a
type as well as a value. A special case of relabelling is projection, which is extended to
relations in the relational algebra. For example

{IdNo = IdNo} o {IdNo = 12345; Name =' Jones'}

“projects” onto IdNo to produce {IdNo => 12345}.

The idea that labels are types in the sense described is somewhat contentious, but
may be needed if we are to write suitably generic functions for database work. Consider
the problem of writing a transitive closure function for a relation. There is no difficulty in
expresssing the transitive closure in Prolog or any other language that treats parameters
positionally, but what can we do using the relational operators of a database programming
language? Specifically, suppose we are given a relation of type {¢1 = int;c2 = int} — {}
and we want the output to be a relation of the same type. This means that we have to do
successive joins of a relation in which we identify the c1 label (column) of one relation with
the c2 field in the other. Thus the join is not a natural join. In most programming languages
that attempt to represent relations, this has to be done by unpacking the relations, forming
the identification among records, and reconstructing the result from tuples. Here is 2
function that performs the task using natural joins and relabelling.

val TC(R: {c1 = int; c2 = int} + {} = TC1(R,NUL, R)
where
val rec TC1(R,5,T : {c1 = int;c2 = int} — {}) =
if7TC S then S
else TC1(R, S UT,({cl = c1;1=> c2} o oR) M ({I{ = c1;¢2 = ¢2} 0 oR)

In order to perform the relabelling for the join, we have introduced a new label [. NUL
is the empty relation and oo is the extension of relabelling for a relation. The point of
introducing this example is that we would like to be able to write a generic transitive
closure function. To do this some form of label parameterization is essential.

5. Farther Research

We have shown that taking maps as data constructors and treating labels as a special
class of values provides a uniform treatment of data tyes for data base programming.
What we have yet to do is to present an adequate set of operators for maps. We have
seen that meet (1), join (U) and composition (o) are useful and allow us to produce most

of the operations of the relational algebra. The adequacy of these operations depens, of
course, on what is available in the rest of the language. Data base programming langugaes
usually allow some form of iteration over relations (or some similar data type) and one can
therefore implement any operation by decomposing and reconstructing relations a record
at a time. The question of what is adequate therefore is not one of computational power,
but what is most convenient. This is something that can only be answered by substantial

experiments with various combinations of operators.

Another omission is a discussion of implementation. If we use type constraints, as has
been suggested, to ensure that all maps are uniformly typed, then a B-tree or hash-table
mechanism is sufficicent. In fact it is interesting to note that PS-algol uses precisely the
same mechanism to resolve record labels at compile time as it does to implement run-time
tables. However, were we to extend our hypothetical language to deal with ragged relations
(relations with nulls), we would be faced with a more complicated indeing problem. In this
connection some of the techniques suggested for implementing universal relations might
be appropriate.

A more difficult problem though is to examine type parameterized programming.
Languages such as Russell [Demers and Donahue 80] and Poly allow types to be treated
as objects so that functions can be constructed that take types as parameters and produce
new types as results. We have suggested that labels are values with individual associated
types. Thus there is a special class of labet types and one might use this in a type- and
label-parameterised version of the transitive closure operation shown above. Perhaps the
most interesting prospect of treating labels as parameters is that data base schemas and
semantic networks are large labelled graphs. A data base management systems takes such
a graph, checks it for consistency, and produces what is in effect an abstract data type.
It may be that this approach to data types will allow us to treat data base systems as
large parameterized data types and remove once and for all the lacuna between data base
systems and programming languages.

6. REFERENCES

[Ait-Kaci 85] Afit-Kaci, H. A Model of Computation Based on Calculus of Type
Subsumption. PhD thesis, University of Pennsylvania, 1984.

[Albano, A. et al. 83] Albano. A., Cardelli, L. and Orsini, R. Galileo: A strongly
typed, Interactive Conceptual Language. Technical Report, Bell Laboratories, Bell Tele-
phone Laboratories, Internal Technical document Services, Murray Hill 1B-509, NJ, USA,
1983.

[Atkinson et al. 81] Atkinson, M. P., Chisholm, K. J. and Cockshott, W. P. PA-algol:
an Algol with a Persistent Heap. ACM SIGPLAN Notices 17 (7), July, 1981. Also available
as Technical Report CSR-94-81, Edinburgh University comuter Science Department.

[Atkinson and Buneman 85] Atkinson, M. P. and Buneman O. P. Data Base Program-
ming Language Design. Technical Report, University of Glasgow Department of Computer
Science, Glasgow, Scotland, 1985.

[Attardi 81] Attardi, G. and Simi, M. Semantics of inheritance and ittributions in the
description system Omega Technical Report A. I. Memo 642, MIT, August, 81.

[Buneman 82] Buneman, P., Frankel, R. E. and Nikhil, R. An Implementation Tech-
nique for Database Query Languages. ACM Transactions on Database Management 7(2),
June, 1982,

[Cardelli 84] Cardelli, L. A semantics of Multiple Inheritance. In G. Kahn, D. B.
MacQueen, G. Plotkin (editors), Semantics of Data types. 1984 Springer LNCS 173.

[Codd 70] Codd, E. F. A Relational Model for Large Shared Databanks. Communi-
cations ACM 13(6):377-387, 1970.

[Computer Corporation of America 83] Smith,J. M., Fox,S., Landers, T., ADAPLEX:
Rationale and Reference Manual second edition, Computer Corporation of America, Four
Cambridge Center, Cambridge, Massachusetts 02142, 1983.

[Demers and Donahue 80] Demers, A. and Donahue, J. The Semantics of Russell:
An Excercise in Abstract Data Types. Technical Report, Computer Science Department,
Cornell University, 1980.

[Milner 83] Milner, R. A proposal for standard ML. Polymorphism 1 (3), December,
1983.

[Mylopoulos et al. 80] Mylopoulos, J., Bernstein, P. A. and Wong, H. K. T. A
Language Facility for Designing Database Intensive Applications. ACM Transactions on
Database Systems 5(2), June, 1980.

[Schmidt 77] Schmidt, J. W. Some High Level Language Constructs for Data of Type
Relation. ACM Transactions on Database Systems 2(38): 247-281, September, 1977.

[Scott 82] Scott, D. Domains for Denotational Semantics. In ICALP 1982, Aarhus,
Denmark. July, 1982.

[Shipman 81] Shipman, D. W. The Functional Data Model and the Data Language
DAPLEX. ACM Transactions on Database Systems 6(1):140-173, March, 1981.

[Smith 77] Smith, J. M. and Smith, D. C. P. Database Abstractions - Aggregation
and Generalisation. ACM Transactions on Database Systems 2(2), June, 1977.

{Ullman 82] Ullman, J. D. Principles of Database Systems. Pittman, 1982. Second
Edition.

[Xerox 81] The Xerox Learning Research Group. The Smalltalk-80 system. Byte
6:36-48, August, 1981.

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,

Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,

Glasgow G12 8QQ

Scotland.

Books

Davie, A.J.T. & Morrison, R.
"Recursive Descent Compiling”, Ellis-Horwood Press (1981).

Atkinson, M.P. {ed.)
"Databases”, Pergammon Infotech State of the Art Report, Series 9, No.8,
January 1982. (535 pages).

Cole, A.J. & Morrison, R.
"An introduction to programming with S-algol”, Cambridge University Press,
Cambridge, England, 1982,

Stocker, P.M., Atkinson, M.P. & Grey, P.M.D. (eds.)
"Databases - Role and Structure”, Cambridge University Press, Cambridge,
England, 1984.

Published Papers

Morrison, R.
"A method of implementing procedure entry and exit in block structured high level
languages". Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z. ,
"The Graffiti graphics system", Proc. of the DECUS conference, Bath (April 1978),

5-10.

Atkinson, M.P. . . .
“A note on the application of differential files to computer aided design", ACM

SIGDA newsletter Summer 1978.

i P. '
Atkmso?ﬁ’rr\ggramming Languages and Databases”, Proceedings of the 4th International
Conference on Very Large Data Bases, Berlin, (Ed. S.P. Y.ao), .IEEE, Sgpt. 78,
408-419. (A revised version of this is available from the University of Edinburgh
Department of Computer Science (EUCS) as CSR-26-78).

Atkinson, M.P. o
“Progress in documentation: Database management systems in library
automation and information retrieval”, Journal of Documentation Vol.35, No.1,
March 1979, 49-91. Available as EUCS departmental report CSR-43-79.

Gunn, H.LE. & Morrison, R. A .
"On the implementation of constants”, information Processing Letters 9, 1 (July

1979), 1-4.

Atkinson, M.P. .
"Data management for interactive graphics”, Proceedings of the Infotech State of

the Art Conference, October 1979. Available as EUCS departmental report
CSR-51-80.

Atkinson, M.P. (ed.) '
"Data design", Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R. . .
"Low cost computer graphics for micro computers”, Software Practice and

Experience, 12, 1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P. .
"PS-algol: An Algol with a Persistent Heap", ACM SIGPLAN Notices Vol.17, No.
7, (July 1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P. o o
"Nepal - the New Edinburgh Persistent Algonthmxc Language", in Database,
Pergammon Infotech State of the Art Report, Series 9, No.8, 299-318 (January
1982) - also as EUCS Departmental Report CSR-90-81.

Morrison, R. .
"S-algol: a simple aigol”, Computer Bulletin 1/31 (March 1982).

Morrison, R.
"The string as a simple data type”, Sigplan Notices, Vol.17,3, 46-52, 1982,

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming”, presented at CREST course UEA,

September 1982, revised in "Databases - Role and Structure”, see PPRR-8-84.
Morrison, R.

"Towards simpler programming languages: S-algol", IlUCC Bulletin 4, 3 (October
1982), 130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Problems with persistent programming languages”, presented at the Workshop
on programming languages and database systems, University of Pennsylvania.

October 1982. Circulated (revised) in the Workshop proceedings 1983, see
PPRR-2-83.

Atkinson, M.P.

"Data management", in Encyclopedia of Computer Science and Engineering 2nd
Edition, Ralston & Meek (editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.

"Algorithms for a Persistent Heap", Software Practice and Experience, Vol.13,
No.3, 259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"CMS - A chunk management system", Software Practice and Experience,

Vol.13, No.3 (March 1983), 273-285. Also as EUCS Departmental Report
CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.

"Current progress with persistent programming", presented at the DEC workshop
on Programming Languages and Databases, Boston, April 1983.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.

"An approach to persistent programming”, The Computer Journal, 1983, Vol.26,
No.4, 360-365 - see PPRR-2-83.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming”, 10th Australian Computer
Conference, Melbourne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.

"High level language support for 3-dimension graphics”, Eurographics
Conference Zagreb, North Holand, 7-17, Sept. 1983. (ed. P.J.W. ten Hagen).

Cockshott, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Morrison, R.
"POMS : a persistent object management system”, Software Practice and
Exerience, Vol.14, No.1, 49-71, January 1984.

i, K.G. & Atkinson, M.P. o)
KUlkarn:"Experimen'(ing with the Functional Data Model , in Databas:s Role and
Structure, Cambridge University Press, Cambridge, England, 1984.

i M.P. & Morrison, R. . .
Atkmso?i':’ersistent First Class Procedures are Enoqgh, Foundations of Shofgva:
Technology and Theoretical Computer Sqence (ed. M Jci/se? 8 rliﬁ
Shyamasundar) Lecture Notes in Computer Science 181, Springer Veriag, oe
(1984).

iddi Flower, M., Gray, P.M.D.

i M.P., Bocea, J.B., Elsey, T.J., Fiddian, N.J., wer,
Atg?as)?r{/'V A., Hepp, P.E., Johnson, R.G., Milne, W., glorr;a, MP.Cl\./i %rr\w/ag:(uér ;
' Oxbor ' ith, A.M., Stocker, P.M. ,J.

A.O., Oxborrow, E.A., Shave, M.J.R., Smith, , St . & Walkeh . nird British
"The Proteus distributed database system", proceeding _
Jati%nal Conference on Databases, {ed. J. Longstaff), BCS Workshop Series,
Cambridge University Press, Cambridge, England, (July 1984).

i M.P. & Morrison, R.
‘ AtkmsoTi’rocedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985)

- see PPRR-9-84.

i i M.P.
i _Bailey, P.J., Dearle, A, Brown, P. & Atkinson, '
Momso?_i_se, pergistent store as an enabling technology for mt.egra‘ted lsupp:i;
environments", 8th International Conference on Software Engineering, Impe
Coliege, London (August 1985), 166-172 - see PPRR-15-85.

i . orrison, R. ’ ' . .
Atkmso?"FM.ePs&bl:/r‘\dings and parameters in a persxsten'g environment”, proce;imgs ;;
De:\{tz 'Ilypes and Persistence Workshop, Appin, August 1985, 1- -8
PPRR-16-85.

pave: é‘C‘:Jc.)-lr-{ditional declarations and pattern matching”, proceedings ofRD1a(;(a8gypes and
Persistence Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

Krablln"‘CB;{J‘i_l.ding flexible multilevel transactions in a distributed persis{ent envirc?[n?g%r;t,
proceedings of Data Types and Persistence Workshop, Appin, Augus ,
86-117 - see PPRR-16-85.

Bunem%%a?épiypes for data base programming”, proceedings of Datg ;’sypes and
Persistence Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

P. . .
COCkSh?Xa\xessing mechanisms and persistent programming-, proceedéngzsof-Dsaéz
Types and Persistence Workshop, Appin, August 1985, 363-

PPRR-16-85.

Norrie, M.C.

"PS-algol: A user perspective”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.

"On the need for a Flexible Type System in Persistent Programming Languages”,

proceedings of Data Types and Persistence Workshop, Appin, August 1985,
423-438 - see PPRR-16-85.

Morrison, R., Brown, A L., Bailey, P.J., Davie, A.J.T. & Dearle, A.

"A persistent graphics facility for the ICL PERQ", Software Practice and
Experience, Vol.14, No.3, (1986) - see PPRR-10-84.

Atkinson, M.P. and Morrison R.

"Integrated Persistent Programming Systems", proceedings of the 19th Annual
Hawaii International Conference on System Sciences, January 7-10, 1986 (ed.
B. D. Shriver), vol llA, Software, 842-854, Western Periodicals Co., 1300 Rayman
St., North Hollywood, Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.

"A Persistent Information Space Architecture”, proceedings of the 9th Australian
Computing Science Conference, January, 1986 - see PPRR-21-85,

Internal Reports
Morrison, R.
"S-Algol language reference manual”, University of St Andrews C8-79-1, 1979.

Bailey, P.J., Maritz, P. & Morrison, R.
"The S-algol abstract machine”, University of St Andrews CS-80-2, 1980.

Atkinson, M.P., Hepp, P.E., lvanov, H., McDuff, A., Proctor, R. & Wilson, A.G.

"EDQUSE reference manual”, Department of Computer Science, University of
Edinburgh, September 1981.

Hepp, P.E. and Norrie, M.C.

"RAQUEL: User Manual", Department of Computer Science Report CSR-188-85,
University of Edinburgh.

Norrie, M.C.

"The Edinburgh Node of the Proteus Distributed Database System", Department
of Computer Science Report CSR-191-85, University of Edinburgh.

In Preparation

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model", to be published in The Computer
Journal.

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : A DBMS based on the functional data model", to be submitted.

Atkinson, M.P. & Buneman, O.P.
"Database programming languages design”, submitted to ACM Computing
Surveys - see PPRR-17-85.

Morrison, R., Dearle, A., Bailey, P., Brown, A. & Atkinson, M.P.
"An integrated graphics programming system”, to be presented at
EUROGRAPHICS UK, Glasgow University, March 1986 - see PPRR-14-86.

Theses

The following Ph.D. theses have been produced by member of the group
and are available from
The Secretary,
Persistent Programming Group,
University of Glasgow,
Department of Computing Science,
Glasgow G12 8QQ,
Scotland.

W.P. Cockshott
Orthogonal Persistent, University of Edinburgh, February 1983.

K.G. Kulkarni
Evaluation of Functional Data Models for Database Design and Use, University of
Edinburgh, 1983.

P.E. Hepp
A DBS Architecture Supporting Coexisting Query Languages and Data Models,
University of Edinburgh, 1983.

G.D.M. Ross
Virtual Files: A Framework for Experimental Design, University of Edinburgh,
1983.

G.0. Owoso
Data Description and Manipulation in Persistent Programming Languages,
University of Edinburgh, 1984.

Persistent Programming Research Reports

This series was started in May 1983. The following list gives those
produced and those planned plus their status at 17th March 1986.

Copies of documents in this list may be obtained by writing to
The Secretary,
The Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,
Glasgow G12 8QQ.

PPRR-1-83 The Persistent Object Management System - Atkinson,
M.P., Chisholm, K.J. and Cockshott, W.P. [Printed] £1.00

PPRR-2-83 PS-algol Papers: a collection of related papers on
PS-algol - Atkinson, M.P., Bailey, P., Cockshott,
W.P., Chisholm, K.J. and Morrison, R. [Printed] £2.00

PPRR-3-83 The PS-algol implementor's guide [Withdrawn]}

PPRR-4-83 The PS-algol reference manual - Atkinson, M.P.,
Bailey, P., Cockshott, W.P., Chisholm, K.J.
and Morrison, R. [Printed] £2.00

PPRR-5-83 Experimenting with the Functional Data
Model - Atkinson, M.P. and Kulkarni, K.G. [Printed] £1.00

PPRR-6-83 A DBS Architecture supporting coexisting user
interfaces: Description and Examples -
Hepp, P.E. [Printed] £1.00

PPRR-7-83 EFDM - User Manual - K.G.Kulkarni [Printed] £1.00

PPRR-8-84 Progress with Persistent Programming - Atkinson,
M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. [Printed] £2.00

PPRR-8-84 Procedures as Persistent Data Objects - Atkinson,
M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. [Printed] £1.00

PPRR-10-84 A Persistent Graphics Facility for the ICL PERQ -
Morrison, R., Brown, A.L., Bailey, P.J., Davie,
A.J.T. and Dearle, A. {Printed] £1.00

PPRR-11-85
PPRR-12-85

PPRR-13-85

PPRR-14-80

PPRR-15-85

PPRR-16-85

PPRR-17-85

PPRR-18-85

PPRR-19-85

PPRR-20-85

PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PPRR-25-86

PS-algol Abstract Machine Manual [Printed] £1.00

pS-algol Reference Manual - second edition [Printed] £2.00
CPOMS - A Revised Version of The Persistent Object
Management System in C - Brown, A.L.and
Cockshott, W.P. [Printed] £2.00
An Integrated Graphics Programming Environment -
second edition - Morrison, R., Brown, AL,
Dearle, A. and Atkinson, M.P. [Printed] £1.00
The Persistent Store as an Enabling Technology
for Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, A.L.
and Atkinson, M.P. [Printed] £1.00
Proceedings of the Persistence and Data Types
Workshop, Appin, August 1985 - ed. Atkinson,
M.P., Buneman, O.P. and Morrison, R. [Printed] £15.00
Database Programming Language Design -
Atkinson, M.P. and Buneman, O.P. [Printed] £3.00

The Persistent Store Machine - Cockshott, W.P. [Printed] £2.00
Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R. [Printed] £1.00
Building a Microcomputer with Associative
Virtual Memory - Cockshott, W.P. [Printed] £1.00
A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D. [Printed] £1.00
Some Applications Programmed in a Persistent
Language - Cooper, R.L., Cranston, R.D.,
Dearle, A. and MacFarlane, D.K. {in Preparation]
PS-algo! Applications Programming - Cooper, R.L,
Dearle, A., MacFarlane, D.K. and Philbrow, P. [In Preparation]
A Compilation Technique for a Block Retention
Language - Cockshott, W.P.and Davie, AJ.T. {in Preparation]

Thoughts on Concurrency - Wai, F. [In Preparation]

PPRR-26-86 An Exception Handling Model in a Persistent
Programming Language - Philbrow, P. {In Preparation]
PPRR-27-86 Concurrency in Persistent Programming
Languages - Krablin, G.K. {In Preparation]
PPRR-28-86 A Domaip Theoretic Approach to Higher-Order
Relations - Buneman, O.P. [Printed] £1.00
PPRR-29-86 Extrgtcting Garbag; and Statistics from a Persistent
ore - Campin, J. [in Preparation}]

PPRR-30-86 Data Types for Data Base Programming -

Bu
neman, O.P. [Printed] £1.00

