University of Glasgow
Department of Computing Science

Lilybank Gardens
Glasgow G12 8QQ

University of St. Andrews
Department of Computational Science

North Haugh
St Andrews KY16 8SX

A Persistent Store Garbage
Collector with Statistical
Facilities

Persistent Programming
Research Report 29

Al -Dew\e.

A Persistent Store Garbage Collector
with Statistical Facilities

Jack Campin
Malcolm Atkinson

University of Glasgow
Department of Computing Science
Glasgow G12 8QQ
Scotland

ABSTRACT
This report describes a suite of programs for compacting disk space used by

the databases of the persistent programming language PS-algol,
and providing statistical information about the objects contained in them.

Persistent Programming Research Report 29

© J. Campin & M.P. Atkinson 1985

1. Preface

This report describes a secondary store garbage collector that compacts
databases used by the PS-algol persistent programming language, as implemented
on the ICL Perq computers running PNX. It also documents a family of programs that
create and manipuiate siatistical summaries of their contents.

Itis intended to:

give the reader a view of those aspecis of the PS-algol persistent store
technology that impinge on garbage collection,

* describe how 1o interpret the statistical information acquired during garbage
collection or by the special-purpose statistical tools,

* make the error messages produced by these programs comprehensible.
It presumes that the reader will be familiar with the following:

* the PS-algol language as described in Persistent Programming Research
Report 12, "PS-algoi Reference Manual” (second edition).

* the implementation of the PS-algol iype system as described in PPRR 11’,
"PS-algol Abstract Machine Manual”, section 3 (some familiarity with this is
needed to understand the statistical information these tools provide).

* the general concepts underlying the PS-algol persistent store, as described
in PPRA 13, "The CPOMS Persistent Object Management System”.

These utilities are distributed with Perq PS-algol; queries about them should be
directed to the PISA Project at the University of Glasgow.

Terminology

This will be consistent with that of the other Persistent Programming Research
Reports. In addition | use the phrase "persistent store directory” to mean the UNIX
directory holding the files manipulated by a PS-algol process; the phrase "database
directory” will always be used to mean the UNIX f{ile used by PS-aigol to hold
information about its databases (see section 2 of this report, and PPRR 13, for a
definition of database in the PS-aigoi context).

2. The CPOMS, the UNIX file system,
and persistent programming methodology

PS-algol runs under the UNIX operaling system and ils persistent store
(henceforth referred to as the CPOMS) is implemented on top ot the UNIX file system.
There may be a number of persistent stores, but a given PS-algo! process may only
use one at a time. These stores are a collection of UNIX iiles in a single directory
(specified by the shell variable $PSDIR in the process's environment or else a delault
hardwired into the interpreter). A store is partitioned into a number of zones, calied
databases, to make it possible to garbage-collect the secondary store piecemeal; in
general each database will be associated with a coherent set of PS-algol programs
that present an "abstract data type" interface to the data and code it contains. See
PPRR 12, "PS-algol Reference Manual", and PPRR 9, "Procedures as Persistent Data
Objects”, for a description at the source code level of how PS-algo! uses databases.

Some possible examples:

[1] a bibliographic database: this might be manipulated by a single large
PS-algol program providing a user interface (insertion, query, deletion, editing)
and would consist of a large number of small PS-algol objects (chiefly strings)
with long persistence (years) since items are unlikely to be deleted or edited
once they have been stored. A database like this does not need 1o be
garbage-collected at all.

[2] a text editor; one program, executed by a systems programmer, would add
new versions of the editor to the database, while other programs wrilten by
application programmers would read the current version of the editor out of the
database at their initialization and use the lalest version to edit text in protected
fields in the application's screens. The editors are likely to have a persisterice of
months, between successive releases; garbage collections need not be done
any more frequently than this.

[3] a bitmap graphics editing system: this would contain successive versions of
the editor and successive versions of the pictures. The imagos are likely be very
large with short persistence, of the order of days or ihours. Daily garbage
collection would probably be essential.

A PS-algol program may access a numbei of databases in a single invocation.
This may iead to systems like the following:

[4] editors for different classes of object (text, vector graphics, bitmap graphics,
musical scores) may exist in different databases and application programs may
store their own data objects in their own dedicated databases, using the editor
databases as read-only program libraries. The application databases will
probably accumulate garbage much faster than the editor databases.

[5] a font database, containing a large number of small objects (the bitmaps for
the characters), which is used by application programs to create messages
which will be stored as bitmap irnages in their own databases. The font database
will only contain garbage in the very exceptional situatiori of a font being

3

updated.

The flexible binding time provided by PS-algol's higher-order procedures permits
additional possibilities:

[6] a database like [4] where the text editors are structured as higher-order
procedures which, given a font read in from a font database, return an editor that
displays its text in that font. The application programmer will instantiate the
procedure and store its result in her own database for future use to provide faster
initialization of her programs than would be possible if the editor generator
procedure were applied every lime an editor was required. The font itself will not
be copied into the application program database; what will be stored is a pointer
in a procedure closure. This implies that cross-database references need to be
taken into account by a persistent store garbage collector; the font cannot be
deleted as long as the generated editor is accessible.

7] a system like [4], but where the application program is structured as a
higher-order procedure taking an editor as parameter and returning an end-user
application. An end-user application generated in this way is stored in the
database as a closure including a pointer to the version of the editor used at its
generation; that version must be preserved as long as the application.

The minimal set of files used in a CPOMS persistent store are as follows:
(a) Files global to all databases:

* DIRIN, the database directory file, containing, for each database:
- its name
- its owner
- its password
- read/write locks
- the root partition, a field used by the CPOMS address mapping
scheme
* DIROUT, a temporary copy of DIRIN, used during write operations
* DIRLOCK, a temporary link whose existence is used as an atomic lock
during write operations on DIRIN
* PARTSIN, a "partitions file", used to hold address mapping information
* PARTSOUT, a temporary copy of PARTSIN, used during write operations
" PARTSLOCK, a temporary link whose existence is used as an atomic lock
during write operations on PARTSIN
* LINKFILE, an empiy file the lock files are linked to

(b) Each database has two permanent files and a temporary file associated with
it. These share a 5-digit suffix (which is actually the ordinal position of ils entry
in the database directory converted into octal and written backwards). These
files are:

* DATAxxxxx, the data file, which contains the objects in the database,
written consecutively]
* INDXxxxxx, the index file, which contains offsets into the DATAxxxxx file;

4

the position of an object's INDXxxxxx entry is computed from

- its persistent identlifier (henceforth "pid"), a 32-bit pointer uniquely
identifying it in the persistent store, together with

- the database housekeeping information

BFRExxxxx, the before-look file, a temporary file used by the CPOMS

to allow crash recovery when writing to the database.

*

A PS-algol program calis the standard function commit() to write 1o the persistent
store. The effect of this is to append new objects to the DATAxxxxx file; once in the file
an object is never overwritten (except for the very first object in the file, which is used to
hold housekeeping information about the database and which is not directly
accessible to the PS-algol programmer). The effect of overwriting is achieved by
switching pointers in the INDXxxxxx file. The INDXxxxxx file is exiended when it is
necessary to acquire additional addresses for the database.

This implies that the primary target for a persistent store garbage collector is
the DATAxxxxx files. The INDX files cannot be contracted except at the end because of
the addressing architecture; and the entries at the end are those least likely to be
garbage, since their identifiers are the most recently generated. The index files contain
a free list indicating which persistent identifiers are no longer in use; by updating this, a
garbage collector can prevent them growing inordinately - the CPOMS will recycle the
positions on the free list. But they still grow monotonically as long as the database is in
existence.

Databases can be deleted. This is done by a PS-algol standard function
whose effect is to replace the database name field in the DIRIN file with the empty
string. The database's files are unaffected, as is required by situations like [5] above; a
database may have been deleted so that it is no longer directly accessible by name to
any PS-algol program, but old bindings to it may force some of its data to be retained.
However, PS-algol software systems are frequently structured so that referential
dependencies between databases form a directed acyclic graph; in particular, some
databases are not referred to by any others. If one of these is deleted, none of its
objects remain reachable, and so both its DATAxxxxx and its INDXxxxxx files can be
removed. The CPOMS can recognize that this has been done if the "root partition” field
in its DIRIN file entry is set to a special value (-1); it will reuse the entry, and so the
database number, when next asked to create a new database. So a secondary target
for a persistent store garbage collector is to identify databases whose entire content is
totally unreachable from anywhere in the persistent store, and to remove both their
DATAxxxxx and INDXxxxxx files.

application 1 data db 2 application 2 codo db 2

application 1 data db 1 application 2 dala db

\ —

application 1 codo db application 2 codo db 1

\ T,

foxt editor db graphics oditor db
/ NB: All databases contain
poiniers o the system
font db dalabase (for the table
handling routines). Most
of these links have not
systom database been shown.

Diagram 2.1: A typical set of referential dependencies among databases

The examples above show that a PS-algol database may be strongly
application-dependent, both in the kinds of object it holds and in the way its population
varies with time. Statistical information about the objects in a persistent store is useful
to the designer of future persistent stores; in future store designs such information will
also be needed as a day-to-day diagnostic tool for dynamically optimizing data
storage. Questions that might be asked include:

* how big are the objects?
how are the objects distributed among the data types?
how many pointers do objects have?
how common are cross-database references?

&
«

-

A persistent store garbage collector is in a good position to provide answers to
these questions, since it will probably be the only program in the system that can scan
every aobject in a database or every object in the persistent store.

Questions that cannot be answered with our present persistent store technology
include the following:

* How long do objects persist? {the CPOMS does not provide timestamps)

* How often are objects accessed? (the CPOMS does not keep use counts)

3. Overview of the garbage collection system

The PS-algol persistent store garbage collector presently consists of a suite of
programs written in C to perform the funclions described as desirable in the previous
section. They are:

garbo - the garbage collector, which also gathers statistics

metro - a statistics collector using most of the same code as garbo but which

leaves a database's DATAxxxxx and INDXxxxxx files unatlected

garbostat - prints the statistical information collected by garbo or metro in a

humanly legible form

precis - summarizes the statistics files from a number of databases, producing a

file displayable by garbostat

garbofixup - restores files in the event of a crash in garbo or metro

safecrack - unlocks databases after a crash in garbo or metro

Isdb - a new version of an existing utility to display the state of a persistent store,

modified for greater reliability and to provide additional information that
someone running garbo might need.

Using the garbage collector

The user may choose to garbage-collect randomly when space runs out, or
systematically by the UNIX af(1) command (say, in the middle of the night). In the
former case, she will probably have some idea which databases are in most need of
garbage collection and will specify them by name or number. in the latter case, the -a
flag is appropriate.

Garbo's running time is about 10-15 minutes per megabyte of data for the
compaction phase on a moderately loaded Perq 2; if inter-database references are
absent the cross-referencing phase is very short, otherwise it adds an overhead of
perhaps 50% 1o this. A message is displayed at the end of each compaction or deletion
showing what percentage of space has been reclaimed. Nothing is normally displayed
during the cross-referencing phase, but using the -f flag, to display which files are
currently being manipulated, will give the user some idea of what garbo is doing.

Metro is slightly faster because it does not need o write out a new data file.

Performing crash recovery

Only the PS-algol system administrator (who must have the username "ps” in the
present PS-algol system) can do this, because of concurrency problems (since starling
garbofixup while garbo is running could destroy database files). Recovery simply
involves invoking garbofixup; there are no parameters to the command. if this fails,
examining the persistent store directory by Isdb and "Is -I" should reveal what the
problem is.

Using the statistics collecting facilities

The statistics files produced by garbo and metro are intended to be used in
different ways. Garbo maintains a cumulative record of changes to each database in
the STATxxxxx file. This file is updated at each garbage collection. Unless it is explicitly
deleted by the PS-algol system administrator, it lasts as long as the database does. If
the database it describes becomes empty and has its files deleted, STATxxxxx will be

7

given a synthesized file name and retained in the persistent store's UNIX directory.
Metro, on the other hand, is intended to give a "snapshot” of the state of the database,
and its files cannot be updaied; if the user wants to preserve metro's SNAPxxxxx files,
she should move them to some other directory in the UNIX file system.

Garbostat is a program which displays the contents of a statistics file in a tabular
report which should be understandable to anyone familiar with the description of the
PS-algol type system in PPRR 11, "PS-algol Abstract Machine Manual", section 3. See
the appendices for an example of a report produced by garbostat.

The precis utility is intended to make it possible to describe the overall state of a
persistent store. It accumulates the information from a collection of STATxxxxx or
SNAPxxxxx files into a single file; this file can be displayed by "garbostat”. Usually
garbo or metro will have been invoked with the -a flag, since the user is more likely to
want to know about the entire persistent store than about a selection of databases from
it. The statistics files need no longer be associated with a persistent store; thus
snapshots of a persistent store can be kept outside it, and cumulative files from a
defunct persistent store can still be precis'd Since it is not clear what the result of
merging garbo's cumulative files with metro's snapshot files would mean, this
operation is not permitted. Neither is it permitted to use precis to further precis its own
output files.

All the statistical information generated by the programs described here is held in
a single file format; see the Appendices for a specification of the statistics file format as
a C ".h" file. The files contain flags that indicate which programs created them.

4. Design of the garbage collector

Garbo is a breadth-first copying garbage collector. The roots of garbage
collection are of two kinds: the root objects of the named (non-deleted) databases, and
inter-database references. A preliminary scan of the entire persistent store searches for
these cross-references, building up a queue of references into each database to be
garbage-collected. The second phase compacts the specified databases in sequence,
copying the reachable objects in each to a new version of the data file and creating a
new index file as it does so. There are two reasons for this design:

* garbage collection can be performed on individual databases rather than on the
entire persistent store; so the garbage collector can avoid wasted effort trying to
find garbage in databases that are known not to contain any, such as a typical
font database.

the databases can be garbage-collected in sequence, rather than by following
pointers across databases; this is advantageous because it avoids frequent
opening and closing of files, which is an expensive operation. (A depth-first
algorithm would require this since UNIX imposes a small upper limit on the
number of files that a process may have open at one time; the limit would easily
be reached by a garbage collector that required access to all the persistent
store's dala and index files simultaneously.)

There is a cost to this: garbo cannot reclaim circular list structures that span more
than one database, since the preliminary scan treats all cross-references as valid roots
of garbage collection, even if they emanate from garbage objects. In practice such
structures have not been used anywhere in the persistent stores we have examined.
Another implication is that garbage does not necessarily disappear immediately. If the
last reference to an object A is from a garbage object B in another database, then A
won't be garbage-collected until the next run of garbo affer the one that reclaims B.

The choice of a copying algorithm was motivated by considerations of error
recovery. It would have been possible to garbage-collect the data file in place, using a
before-look file to record the prior state of the data file as it was overwritten. This might
have used filestore more economically, but would have greatly complicated recovery
after a crash while the garbage collector was running. Since the garbage collector has
to be one of the most trusted programs in the system, anything that might compromise
its reliability has to be rejected. For similar reasons all the temporary files created by
garbo are kept in the persistent store directory and there is no facility for using a remote
machine's filestore for temporary storage. This would have been easy to implement
using the Perq Newcastle Connection distributed file system, but there was a a real
danger that a machine crash might produce an irreversible catastrophe, leaving
essential recovery information scattered in untraceable pieces across the network.
These design decisions conspire to force the PS-algol user to leave enough disk
space free for a complete copy of the largest database in the persistent store.

One feature of the CPOMS that has not been reflected in the garbage collector is
ownership of databases; this is recorded in a field of the database directory entry (as a
UNIX username). The garbage collector ignores this; any user can garbage-collect any
other user's databases. Further, the PS-algo! system administrator is no different in this

9

respect; system databases can be garbage-collecled in the same way as ordinary
users’. The system administrator, however, is the only person permitted to run the
crash recovery program, this is because concurrent attempts at garbage collection and
crash recovery could destroy data.

Initialization, persistent addressing, and the partition map

Pointers to objects in the persistent store are persistent identifiers, henceforth
referred 1o as pids. The format of a pid is:
bit 31 set, to distinguish pids from in-core pointers
bits 16 - 30 partition number 1 - 32767
bits 0 - 15 object number 0 - 65535 within a partition
Partitions are unils of persistent address space. A given partition may only be
allocated to one database; thus it is possible to deduce which database an object is in
from its partition number. The allocation of partitions to databases is stored in the
partitions file (PARTSIN).

The partition number of an object also leads to its entry in the index file. A list of
the partitions allocated to a database, in the order in which they have been allocated,
is held in a database's partitions vector. When a new partition is allocated to a
database, a new 64Kword block of the index file also starts. So the block of the index
file in which the object's entry is located is the index into the partitions vector that
indexes its partition number; the partitions vector is a 1/65536 scale replica of the index

file. The actual offset into the index file for an object is then found by adding its object
number to the offset of its partition biock. {This scheme obviously cannot find the
partitions vector itself; the root object of the database contains the offset of its partition
to make it possible to bootstrap the addressing mechanism.)

This address mapping information has to be represented efficiently in the
garbage collector. The solution is the simplest possible; a static array, indexed by
partition number, of pairs <database number, partition's block offset in index file>. This
array is called the partition map in what follows; it performs the same function as the
PTOD! (partition to database and index map) in the CPOMS (see PPRR 13, section
4.3). The first entry is filled in from the partitions file; the second is derived from the
partitions vectors of all the databases in the persistent store during the cross-reference
phase. A consistency check is performed at the same time; if the partitions file and a
partitions vector disagree, garbo aborts.

10

3t 30-16 15-0

PID: N partition number object number I

database number
{hence filename)}

PARTSIN file
-]
e first
4 pDol | ot
partitions

£\, vector
4

index offset
of parlitions
veclor's
partition

311} X6puUl Ul Jonibed 5,a1d J0 ssaippe weis P N\L/

iosA suciiued Jo 19SH0 Sy Biep

6|1y xapu} u1 Aue s,0id O 19sHo

........ objact that
PID refers to

data file offset of
object PID refers to

A 4

v -
g partitions
H vector
- :
_partiton__ | (offset within vector) x 65536 ¢
boundary Z
associalive
search
INDX file DATA file

Diagram 4.1: The CPOMS addressing architecture
11

The cross reference phase

Since garbo can be used to garbage-collect a single database, it is desirable to
avoid scanning the whole persistent store in this phase. This is possible since each
database maintains a list of databases it has references to in the linked databases
vector, a PS-algol vector of integers (database numbers) which is pointed to directly
from the database root object. This may be out of date, since the CPOMS commit may
remove cross-references between databases by updating objects but has no way of
deleting an entry in the vector - but a database will certainly have no references to
databases that do not appear in it. So garbo will only scan a database if its linked
databases vector has an entry for one of the databases to be compacted.

The scan traverses the whole index file; entries in this are 4-byte integers which,
if positive, are offsets inlo the data file to the start of an abject. The header of the object
is read in; this indicates whether the object contains pointers or not. if it does, all the
pointers in the object are examined and those that are external references to one of
the command-line databases are put into a cross-reference table for it. (Internal
pointers are disregarded.) These tables are sorted arrays with a fixed size of 10K
entries; this is considerably more than the number of cross-references so far met with.
Lookup is done by bisection search. The tables are allocated on demand since most
databases will not be referred to by others (like those at the top of the graph in diagram
2.1).

The compaction phase

Two things may happen to a database in the second phase of the garbage
collection. If (a) it has been deleted, (b) there are no pointers to it from other databases,
and (c) no other database has it as an entry in its linked databases vector, then its files
will be deleted, its directory file entry marked for reallocation, and ils pariitions
deallocated (this is done by creating a new version of the pariitions file in which the
entries previously holding the number of the recycled database are sei to -1).
Otherwise "garbo” will attempt to compact it.

The qualification (c) about linked database vector references is not a requirement
of the CPOMS addressing archiiecture but a quirk of its implementation; on
initialization it "eagerly” opens all the databases it may need, consulling the linked
databases vector, and so will fail if a database pointed to by the vector has been
recycled.

This leads to the disconcerting situation that a database may be contracted down
to just its root object and pariitions vector, the minimum necessary for CPOMS
initialization, but will not be recycled until some other database gets its linked
databases vector contracted by a garbage collection.

Belore doing the compaction, garbo checks to see if there is enough space for its
temporary files (mainly the copies of the data and index files) and its statistics file.
Since garbo has no way of knowing how much of a database is garbage before
attempting to compact i, it makes the pessimistic assumption that it will not recover any
space and leaves room for a complete copy of the database. If there is insufficient

12

space, garbo will abandon the compaction and continue with the next database. It may
happen that a second run will succeed because space has been freed by the
compaction of smaller databases; however, garbo does not retry automatically. (Perq
PNX does not maintain a tally of free space in the superblock, so the Perq
implementation does the space check by forking to df(7). This is an expensive
operation and prone to failure, but essential since PNX behaves unpredictably when
disk space runs out.)

The compaction is a straightforward breadth-first scan. A queue is initialized with
the pids found in the cross-reference phase. As an object is removed from the queue, it
is copied to the new data file, its new data offset is written to the new index file,
statistics are taken on it, and any pointer it may contain is put on the queue if it has not
already been processed (which will be true if and only if it has an entry in the new
index file). This continues until the queue is empty. If garbo finds a pointer to another
database, the statistics functions note the fact and a bitmap of all databases used for
updating the linked databases vector is marked; the pointer is not put on the queue.

There is one deviation from the breadth-first order which is required for statistics
collection. In the PS-algol abstract machine, bitmap images are implemented as
structures (of fixed size) containing size information and a pointer to a vector of
bitplanes. The bitplanes vector is an ordinary vector of pointers (to bitmaps for each
plane) and is not given a special type. Neither are the bitmaps themselves; they are
just integer vectors. There is no way to identify a bitmap as such in the persistent store
without knowing what points to it. Since bitmaps may take up substantial space in a
Perg PS-algol database, users will want to know just how much. So when an image
object is encountered, the algorithm switches to depth-first for the two levels that
comprise its components; the bitplanes vector and the bitmaps never get on the queue.
This has the additional advantage of putting the image descriptor, bitplane vector, and
bitmaps together on the disk; they will usually be accessed together.

Finalization

Some essential housekeeping tasks remain to be performed after the
compaction.

(1) The linked databases vector needs to be updated. The information needed
for this is collected during the compaction phase; a new vector is constructed and
appended to the new data file.

{2) The CPOMS can reuse pids that have become garbage if their index file
positions are put on a free list; entries on this are negated. So the garbage collector
scans the new index file and threads together a free list of the entries that have not
been written with a positive offset into the new data file. For each such entry, it also
consults the old files to take statistics on the corresponding object; since such objects
are garbage, they will not have been encountered during the compaction phase.

(3) The first object in the data file has a field for the size of the data file and for the
start of the free list in the index file; these are updated.

13

Virtual memory

PS-algol objects can be extremely large - bitmaps are typically the biggest, and
can be an enlire Perq screen. So they have to be paged in some way. Since the
implementation began on versions of PNX that did not have virtual memory, a simple
virtual memory system was constructed. Each data and index file (old or new) is given
a set of pages threaded into a doubly linked list; this is looked up by linear search with
the most recenlly accessed page being moved to the front. This subsystem accounts
for most of the cpu time, but still performs fairly well; in conltrast, an early version of
garbo loaded entire index files into memory and used a large buffer for objects - this
was considerably slower, probably because of the amount of swapping it forced the
Perq to do.

The virtual memory provided by PNX 5 has not been used; its performance for
very large processes is unpredictable. The simple scheme chosen keeps the garbage
collector core image fairly small; it is easily possible to run the garbage collector as a
background process and still have enough processing power left for tasks involving
user interaction.

The statistics collector

Metro, the statistics collector, differs from garbo in two ways: it does not change
any files used by the CPOMS, and the statistics files it produces are not cumulative;
they give a "snapshot” of the state of a database. The algorithm used is identical 1o
garbo's, but a new data file is not generated. A new index file js; entries for accessible
objects are putinto it as a way of identifying garbage objects by comparison with the
old file. The new index file is discarded when statistics collection on a database
finishes. Metro does not need to create beforelook files and requires simpler recovery
mechanisms.

14

5. Errorrecovery and locking

The error recovery mechanisms used by garbo are designed for intelligibility
rather than minimality; a profusion of links is used. These are of two types. Diagnostic
links are used to indicate the state garbo is currently in; if the machine crashes, their
presence or absence will indicate the correct recovery action to the recovery programs
or the PS-algo! system administrator. These are all links to the empty file LINKFILE.
Nonempty links are used to hold temporary files such as beforelooks or new versions
under construction. All links manipulated by garbo are in the persistent store directory
($3PSDIR or the default).

Similar error recovery mechanisms are used by the garbofixup recovery program
and by garbo itself (both for actual error conditions and to abandon garbage collection
in response to a user interrupt).

Garbo's first action is to create a link called GARBORUNNING, which it will only
remove just before it exits. This is of no significance to the CPOMS or the error
recovery routines; its purpose is (1) to tell a user why the entire persistent store is
locked, (2) to tell the PS-algol system administrator why the store is in the state it's in if
a crash occurs, (3) 1o stop garbo from being retried after an unrepaired crash.

Garbo must not run concurrently with any PS-algol program (hence its name - "l
want to be alone"). To prevent this, it uses the same locking protocol as the CPOMS
(sees PPRR 13, section 3.6 and PPRR 13, appendix 1). It first locks the database
directory (by the creation of a link called "DIRLOCK"); it will stay locked as long as the
persistent store may be in an anomalous state. Garbo then write locks all databases
before attempting to open any of their files. If any database already has a read or write
lock, garbo will abort. This write locking provides no extra security beyond that given by
locking the directory - simply checking whether any database was already locked
would do - but it gives users a way of figuring out what might be happening (the
persistent store directory is not publicly readable, but the /sdb (1) utility would show
that all the databases in the system were write locked). The locking is done the same
way as in the CPOMS; the directory file is not written to but a new version, with the
locks set, is created and the old one unlinked.

It would be disastrous to garbage-collect a database that was in an inconsistent
state after a crash during the CPOMS commit() routine. While a commit is in progress,
a number of files (actually links to the same file) with the prefix "BFRE" are in existence.
Garbo searches the persistent store directory for any such file, and aborts if one exists.
(It does the same for its own BEF backup files, but is unlikely to get 1o this point without
deliberate meddling by the PS-algol administrator since the "GARBORUNNING" link
will cause it to fail first.)

No additional error recovery is required during the cross-reference phase, since
no files are modified during it; recovery at this point consists of (1) unlocking the
databases, (2) removing the DIRLOCK file, (3) removing GARBORUNNING.

During the compaction/deletion phase, only one database at a time can be in an
inconsistent state. A link is created to indicate which database this is; this uses the
same naming scheme as the CPOMS. If the database is to be compacted, the link is

15

called DOINGxxxxx, where xxxxx is the database number in reverse octal. If the
dalabase is to be deleted, the link is called DELETINGxxxxx. Recovery from a crash
during compaction is by rollback; if a crash occurs during deletion, recovery is by
roll-forward.

Three things have {o be done during recovery from a crash during deletion: any
remaining database files have to be removed {and statistics files renamed - seg later) ,
the DIRIN file entry for the database has to be marked for recycling, and the pariitions
file has to be updaied so that the database’s partitions can be reallocated. Then the
DELETING link can be removed and (1), (2), and (3) above can be done.

Rollback from a failed compaction is done by relinking files rather than by
reconstructing them. The DOING link is not created until backup links to the database
files have been made; for as long as the DOING link is in existence, these links are
guaranteed to represent the original state of the database. They are given the same
names as the database files, prefixed by "BEF". So the way to recover from this point
is: find the database with a DOINGxxxxx link, remove all files with an xxxxx suffix
except for the BEF files, then rename the BEF files, remove the DOINGxxxxx link, and
do (1), (2), and (3) above.

The compaction phase does not write files under the old filenames; instead it
writes to a new set, whose names are the old ones prefixed by "NEW", This creates
unnecessarily redundant links (the old DATAxxxxx, INDXxxxxx, and STATxxxxx are not
unlinked until the compaction has finished) but provides additional user information in
the event of a crash. NEW files can always be removed without losing any information;
so can BEF files with no corresponding DOING file {these will have been left by a crash
either before garbo started its compaction phase or after it got the database files back
into a consistent state). Garbofixup removes such files.

Garbo creates one further file, called df_output, which is used to hold the output

of a fork to df((1) (this inelegant way of finding out how much disk space is left is
required by a number of coliuding bugs in Perq PNX). This file can always be deleted.

16

6. Statistical information

Garbo and metro both create auxiliary files containing statistical information. This
was an early design decision and probably a mistake - if the statistics had been
recorded in a statistics database as ordinary PS-algol data, it would have been easier
to make changes in the statistics collected because of PS-algol's ability to handle
dynamically typed structures, and it would also have been easier to manipulate the
data with existing and future PS-algol software tools. As it is, the data is held in a fixed
format consisting of a single large nested C structure with vacant slots for a small
amount of future expansion. The versicn and release number of the program that
created the file is recorded at the start, so some upward compatibility is possible.

The file records which program created it - garbo, metro, or precis (and if the
latter, whether it is a precis of files created by garbo or by metro). The naming
conventions used for statistics files are as follows:

* the cumulative statistics maintained on a database by garbo are held in files
STATxxxxx, where xxxxx is the reverse-octal suffix used by the CPOMS for the other
files of the database. These files, like the CPOMS database files, are given protection
mode 0600 (owner read/write) so that only the PS-algol system administrator, or
programs impersonating her by the UNIX "setuid” mechanism, can touch them.

* the snapshot statistics acquired by metro are held in a SNAPxxxxx file, where
xxxxx is the reverse-octal suffix. The user is expected to move this file to her own
directory after creating it, or else delete it; if metro is invoked on a database that
already has a SNAP file, it will issue a warning and refuse to overwrite it. SNAP files
are created with protection mode 0666 (public read/write) to enable users other than
the PS-algol system administrator to remove them from the persistent store directory.
Users can find the suffix for a database from Isdb.

* when garbo recycles a database, any STAT or SNAP files it has will be
renamed with synthesized names "statyyyyyyyy" and "snapyyyyyyyy" respectively,
where yyyyyyyy is the date (in seconds since 1/1/1970) in hexadecimal. This is
necessary to avoid an old statistics file being associated with a new database when
the recycled entry is reused by the CPOMS.

* precis uses the names PRECSTAT or PRECSNAP for its output files,
depending on whether it has been asked to summarize cumulative or snapshot files.
The output files are created with public read/write protection mode.

All of these files have the same format and can be displayed by garbostat.

17

garbo
STAT10000

Diagram 6.1

The inf

E3

-

STAT00000

STAT20000
PRECSTAT =
garbostat & -
AN
PRECSNAP
SNAP0000O

SNAP31000

: Flow of statistical Information

ormation contained in these files is:

the number of garbage collections performed on the database to date

the maximum size reached by the queue during the compaction phase
the number of references to the database from other databases

the size of the data file at the end of the last garbage coliection

the current size of the data file (this may be different if the statistics file was
produced by "metro”)

the number of files summarized, if the file was produced by precis

for both accessible and garbage objects:

* the number of nil pids

the number of reserved pids

the number of pids poinling to other databases

the number of pids pointing into the database

the amount of space added to the data file between the last two
garbage collections

the total space found so far in all garbage collections to date

for each abstract machine type, a record of the objects of that type:

* how many of them there are

#
-
"

s

i8

their maximum size

the total of their sizes

the sum of the squares of their sizes (for computing the variance)
their maximum number of pointers

the total number of pointers in them

the sum of squares of the number of pointers in them.

Data on bitplane vectors and bitmaps is held in the same format as that for the
true abstract machine types; bitplane objects are also recorded as pointer vectors, and
bitmaps are also recorded as integer/boolean vectors. Garbostat includes figures for
these subtypes in its reports, with the type names in parentheses: (BITMAP) and
(BITPLANE). These figures are also inciuded in those for pointer vectors and
integer/boolean vectors.

19

Appendices

UNIX manual pages:

garbo
garbofixup
garbostat
Isdb

metro
precis
safecrack

Sample output from /sdb and garbostat

Statistics file format

20

GARBO(1) UNIX Programmer’s Manual GARBO(1)

NAME

garbo — persistent store garbage collector (version 2.0

SYNOPSIS

garbo [—f] —a | dbname1 dbname2 ... | —o dbnum1 dbnum?2 ...

DESCRIPTION

Garbo garbage collects PS—algol databases by recovering space in their DATA files. The data-
bases to be compacted may be specified in three ways

(1) by the —a flag (do all of them)

(2) by database names: dbnamel, dbname2, ..

(3) by the —o flag followed by a sequence of 5-digit reverse octal numbers: dbnuml, dbnum2,
.. which are the suffixes of the database’s files (these are displayed by Isdb {1)). This is useful
for garbage-collecting large deleted databases.

It searches for database files in the directory specified by the shell variable $PSDIR, or in
Jusr/lib/ ps/dbs if this is not set.

Garbo builds up statistics on the contents of the databases in a file called STATxxxxx, where
XxxxX is the reverse octal suffix of the database’s files. The information in this file is in a form
displayable by garbostat (1) or summarizable by precis (1). These statistics are cumulative.

The —f option makes the program announce file operations: create, open, close, link and
unlink. This is useful if you don’t know how long the garbage collection is likely to take and

want some feedback on what's happening.

FILES
DATAxxxxx data file to be compacted
INDXxxxx database index file
STATxxxxx cumulative statistics on the database
BEFDATAxxxxx backup link to original data file
BEFINDXxxxxx backup link to original index file
BEFSTATxxxxx backup link to original statistics file
NEWDATAxxxxx temporary version of data file
NEWINDXxxxxx temporary version of index file
NEWSTATxxxxx temporary version of statistics file
GARBORUNNING link set while garbo is in action;
does nothing, purely to tell inquisitive
minds why their programs aren’t working
DOINGxxxxx linked to LINKFILE for crash diagnostics
to indicate which db is being compacted
DELETINGxxxxx linked to LINKFILE for crash diagnostics
while files with suffix xxxxx are being
deleted
Statyyyyyyyyy copy of statistics file made to retain
statistics if the database is deleted
snapyyyyyyyy copy of metro (1) statistics file made
for the same reason
df_oputput scratch file of no significance for recovery
DIRIN db directory file (read only)
DIROUT db directory file (write only)
DIRLOCK link to LINKFILE for locking db directory
PARTSIN partitions file (read only)
PARTSOUT partitions file (write only)
PARTSLOCK link to LINKFILE for locking partitions file
LINKFILE empty file used for linking to
7th Edition PS—algol System

21

GARBO(1) UNIX Programmer’s Manual GARBO(1)

. SEE ALSO

Isdb (1), garbostat (1), precis (1), garbofixup (1), safecrack (1).

DIAGNOSTICS AND RECOVERY PROCEDURES

Garbo works in two phases; in the first it locks the database directory and all the databases. (413
a before-look (BFRExxxxx) or garbo backup (BEFsxxxxx) file is present, it will refuse to
proceed further.) It then constructs tables of cross-references between databases. If it crashes
in this phase, unlocking the directory and the databases will restore the status quo.

The second phase is the garbage collection proper; garbo creates the BEF backup files before
starting this potentially destructive operation. Immediately after this jt creates the
DOINGxxxxx link so that garbofixup or garbo's own recovery routines can find out whether a
database’s files may have been corrupted if garbo crashes. The DOING file is unlinked immedi-
ately after garbo has gotten the DATA, INDX and STAT files into a consistent state again.

If there is a DOING file, or any BEF or NEW files, present in the dbs directory after garbo has
failed, garbofixup can be used to restore the database files to their state before garbo was
applied. Garbofixup does not unlock the database affected; use restoredb to do that, or, if a
deleted database is locked, get the PS—algol system owner 'ps’ to run safecrack {1} which
will forcibly unlock all databases.

Because garbo creates new DATA and INDX files rather than compacting in place, it needs
space for the new versions. It will skip over any databases whose DATA, INDX and STAT
files are collectively too big to be copied. So - to garbage collect a big database, remove as many
other files as you can spare, and garbage collect smaller databases first.

If a database has no accessible data at all in it, its files will be deleted and its partitions
reclaimed. A DELETINGxxxxx file will be in existence while this is happening. After this,
Isdb (1) will not display the deleted database unless invoked with the —a flag. To retain any
statistical information that may have been collected on the database, if it has a non-empty
STATxxxxx or SNAPxxxxx file this will be moved to 'statyyyyyyyyy or ‘snapyyyyyyyyy
respectively, where 'yyyyyyyyy is the time of deletion since 1/1/1970 in hexadecimal.

As from version 1.3, the error/interrupt handling routines should restore the persistent store
to a usable state for any failure short of a kill or machine crash.

BUGS AND LIMITATIONS

Garbo does not recover empty partitions in the index file unless a database is deleted. (these
are in fact very unlikely to occur anyway).

This version is for the Perq only; databases cannot be locked by the Berkeley 4.2 file locking
mechanism.

Garbo can't handle databases that refer to more than 256 other ones.

WARNING

Databases that have been written to by early versions of the PS-—algol interpreter may give
meaningless figures for the amount of garbage present. To circumvent this, garbage-collect all
databases and remove all statistics files. Then start afresh, making sure that no version of the
interpreter earlier than 4.0 is still present on the system.

7th Edition PS—algol System 2

22

GARBOFIXUP(1) UNIX Programmer’s Manual GARBOFIXUP(1)

NAME
garbofixup (version 2.1) — restore database files after garbo (1) has crashed

i SYNOPSIS
garbofixup

| DESCRIPTION
Garbofixup searches for database files in the directory specified by the shell variable $PSDIR,
or in /usr/lib/ps/dbs if this is not set.

If garbo (1) has crashed while compacting a database it will leave a file named DOINGxxxxx
in the dbs directory, where xxxxx is the database number in backwards octal. Garbofixup
will look for this and restore the database files from the backups (BEFDATAxxxxx,
BEFINDXxxxxx, and BEFSTATxxxxx) made by garbo before starting the compaction.

Garbofixup will remove any of garbo's temporary files that it finds, also any STATxxxxx file
found to have length 0.

If garbo has started deleting a database’s files, there will be a DELETINGxxxxx file present;
garbo fixup will continue with the file deletion if such a file exists and will move any non-
empty STATxxxxx file found to statyyyyyyyyy and any non-empty SNAPxxxxx file to
Snapyyyyyyyyy, where yyyyyyyyy is the time since 1/1/1970 in hexadecimal (this is the
same convention used by garbo).

Garbo or metro will leave all databases locked after a crash and garbo fixup does not unlock
them; use restoredb (1) or safecrack (1) to do that.

WARNING :
Don’t run garbofixup concurrently with garbo or you could destroy any database gardo hap-
pens to be working on.

FILES
DOINGxxxxx identifies corrupt databases; removed
DATAxxxxx may be corrupt if DOINGxxxxx exists; removed
INDXxxxxX may be corrupt if DOINGxxxxx exists; removed
STATxxxxx may be corrupt if DOINGxxxxx exists; removed
BEFDATAxxxxx moved to DATAxxxxx if DOINGxxxxx exists
BEFINDX xxxxx moved to INDXxxxxx if DOINGxxxxx exists
BEFSTATxxxxx moved to STATxxxxx if DOINGxxxxx exists
NEWDATAxxxxx removed unconditionally
NEWINDXxxxxx removed unconditionally
NEWSTATxxxxx removed unconditionally
DELETINGxxxxx linked to LINKFILE for crash diagnostics
Statyyyyyyyyy copy of statistics file made to retain
statistics if the database is deleted

Snapyyyyyyyyy copy of metro (1) statistics file made

| for the same reason

| SEE ALSO

g garbo (1), garbostat (1)

l BUGS

' See WARNING.

7th Edition PS—algol System 1

23

GARBOSTAT(1)

NAME

UNIX Programmer’s Manual GARBOSTAT(1)

garbostat — PS—algol database statistics file displayer (version 2.1)

SYNOPSIS

garbostat —f filename | [—m] —o

DESCRIPTION

Garbostat prints a report on the cumulative statistics gathered by garbo (1) or the snapshot
statistics gathered by metro (1).

The statistics file to be displayed can be specified in one of three ways:
(1) by the name {dbname) of the database it relates to;

(2) with the —o flag, by its database’s 5-digit reverse cctal number dbnum (these numbers are
used as file suflixes by the CPOMS, and are the only way to refer to deleted databases);

(3) by filename, using the —f flag; this is used for displaying summary files produced by
precis (1). They need not retain the names precis gave them. The -m flag is required to display
a summary of SNAP files.

In (1) and (2) the program will search the directory $PSDIR if this shell variable is set, or
/usr/lib/ps/dbs otherwise. For these cases the —m flag can also be added; this will make
garbostat look for SNAPxxxxx files produced by metro (1) instead of STATxxxxx files. The
files are of identical format except for a field that identifies the program that made them.

The —f option is intended for examining statistics files that have been removed from the
database directory in which they were created, or for summary files produced by precis (1).

The report is 100 characters wide by 63 lines long (needs most of a landscai)e Perq screen to

GARBOSTAT(1)

UNIX Programmer’s Manual GARBOSTAT(1)
SNAPxxxxx snapshot statistics created by metro (1)
Satyyyyyyyyy copy of a STAT file from a db deleted by

garbo (1) - yyyyyyyyy is the date of

deletion in hexadecimal

statistics if the database is deleted
SNapyyyyyyyyy copy of a SNAP file from a db deleted by

garbo (1) - yyyyyyyyy is the date of

deletion in hexadecimal

SEE ALSO

PRECSTAT summary of a collection of STAT files
made by precis (1)

PRECSNAP summary of a collection of SNAP files
made by precis (1)

garbo (1)

metro (1)

precis (1)

Isdb (1)

WARNING

If the figures for the amount of garbage present are nonsensical (typically garbo will report
0% compaction but garbostat says there was some garbage in the database) you have allowed
an early version of the PS—algol interpreter to write to a database, The fix for this is to
garbage—collect all databases and start afresh, ensuring that only versions of the interpreter
from 4.0 onwards can still write to databases.

display it)

INTERPRETING THE STATISTICS
The types listed in the breakdown of objects by type are the types of the PS—algol abstract
machine, not those directly visible to a PS—algol programmer. See Persistent Programming
Research Report 11, "PS—algol Abstract Machine Manual”, for more details.

The type breakdown includes two "types”, (BITPLANE) and (BITMAP), that are actually sub-
types of others PNTR VEC and INT/B VEC respectively. They represent the objects reachable
from image descriptors; bitmap vectors may be a significant part of the total space taken up
by a database. The data for these is recorded twice, in the figures for the subtype and for the
parent type.

The numbers produced by garbo and metro have different semantics; garbo produces a cumu-
lative record of the space it has garbage-collected, whereas metro takes a "snapshot” of the
database at a single instant, though it will use some of the cumulative information provided
by garbo if there is any.

Garbo only counts accessible objects once; it does this by seeing whether an object’s DATA file
address is past the end of the file left by the last garbage collection - "commit()’ creates new
objects by appending them. An object can also only become garbage once. A consequence of
this is that the figure for "total accessible space scanned to date” may be misleading; some of it
may have been found to be accessible at some past garbage collection, but might have become
garbage since. There is no way to identify the class of very long-lived objects.

The statistics files record details of new objects (accessible or garbage) created since the last use
of garbo; this information is retrieved from the old STATxxxxx file before garbo or metro
create their new statistics files.

FILES
DIRIN database directory file
STATxxxxx cumulative statistics created by garbo (1)
7th Edition PS—algol System 1
24

7th Edition

PS—algol System

25

5 qarbastat -m actPATL
SNAPSUOT FILE FROM ‘metro’ v2.i DATABASTE NAME: “sctPRILY

AR A LA R AR R A A A b A AN A A ARA R AR A AR A A AR A AR AR A A AR AR AN A RA RS A AR AR AR A A ARSI R AN R A ARNRASAARRARAARARNARAAARAARAR

LSDB(1) UNIX Programmer’s Manual LSbB(1)
DATA FILE SIZE TN BYTES AFTER LAST ‘narbo': 0 DATA FILE SIZE IN DYTES AT LAST ‘'metro': 48388
MAXIMUM QUEUF S17 53 # OF INWARD REFERENCES: Q
P P PN NAME

Isdb ~— list PS—algol databases

-~ object count -- * ---- space occupled in byltens ~w-e * —eenn number of polnters —----- N
TYPE NUMBER * $TOTAL % MEAN STD.DEV MAXIMUM STOTAL * MEAN STD.DEV MAXIMUM YTOTAL SYNOPSIS
1sdb{ —a]
STRING 318 57.30% 13.23 129.69 1604 20.41% - - - -
i N . i N N N v - - - DESCRIPTION
STRUCTURE 44 7.93% 26.64 52.80 364 2.42% 4.57 13.14 90 13.87% Lsdb lists PS—algol databases, using information in the datahase directory file (DIRIN or
PNTR VEC 77 4.86% 61.33 77.93 256 3.42% 12.33 19.48 61 22.98% DIROUT) in the directory $PSDIR if this is set, or in the default directory /usr/lib/ps/dbs
PROC VEC 14 2.52% 90.86 109.2) 120 2.63% 19.71 27.31 102 19.05% f
otherwise.
INT/B VEC 3 0.54% 16.00 0.00 16 0.10% - - - -
REML VEC - - - - - - - - - - Lsdb displays the following:
FRAME 6 1.08% 386.67 293.11 996 4.79% 58.83 46.48 145 24.36% - the pathname of the directory file referred to;
1
CODE VEC 143 25.77% 197.01 719,29 6484 58.22% 2.00 0.00 2 19.74% X R s
A DESC - if the directory is locked, the lock file’s pathname;
W DESC - - - - - - - - - -
- the pathname of any GARBORUNNING or METRORUNNING file
(OVERALL) 555 100.00% B7.19 387.59 6484 100.00% 2.61 11.17 145 100.00% left by a crash in garbo or metro;
- for each database, its:
{BITPLANE)- - - - - - - - - - - % name
BITMAP - - - - - - - - - -
¢ ! # octal suflix
e POANLOTA ~ e e e # root partition number
NILS: 411 RESERVED: 45 TO THIS DB: 980 TO OTHER DBS: 13 TOTAL: 1449 2 IOCk state: O - unl()cked

¥ OF ACCRSSIBLE DATA FILE SPACE TAKEN UP BY POINTERS: 11.98 -'1 - Write l()cked

-~ pointera per objoct (taken over just those objects that have them) . +n - read locked b'y n‘readers" R

e e O A # size of data file (bytes), or "DELETED" if absent

® size of index file (bytes), or "DELETED" if absent

& whether any STAT or SNAP files exist for it; this is
displayed in the S column:

RAAR GAThAGR OB JOCLE A% AR ARARCARA AR AR AARAARERRNARRRRANRARARARANR A AR RAAAARRRANRAAR K AAARRRARARNAARE N NS

X : wen " .
-- object count -~ * ---- apace occupied 1n bytes —w~== ¥ —-o——- numbor of pointers ~~---- - ff there {S an 'S“ 2 STAT file ex.xsts
YRR NUMIER 4 %TOTAL + MEAN STD.DEV MAXIMUM %TOTAL * MEAN STD.DEV MAXIMUM 8TOTAL - if there is an "s", a SNAP file exists
® owner

STRING 40 A7.06% 35.00 49.41 304 21.82% - - - - and, if "root’ or "ps’ is running the program,
FILE R - - - - R - - - - = password.
STROCTURE. 2 2.35% 30.00 14.00 a4 0.94% 2.50 0.50 3 1.99%
PNTR VEC 15 17.65% 25.07 17.80 88 5.86% 3.27 1.45 19 19.52% If a database has a root partition of -1, meaning that its database directory entry can be reused
PROC VEC 4 4.7 51.00 29.05 100 3.37% 10.50 1.26 22 16.73% and its files may be deleted, Isdb will not display it unless invoked with the —a flag.

T/B N - - - - - - - - - -
:{?’r\‘/x v:icc - - - - - - - - - - USING THE INFORMATION
FRAME H 2.35% 314.00 106.00 120 9.79% 55.50 26.50 82 44.27% The usual reasons for using this utility are:

CONE VEC 2? 25.88% 169.82 179.21% 412 58.23% 2.00 0.00 2 17.53% 5 . X

IMAGE DRSC - _ _ - _ _ _ - - - (a) Some of the databases are locked so that programs don’t run; this is due to a crash while
one of psr (1), garbo (1), or metro (1} was running. If the crash occurred while psr was doing a

(OVERATLL) a5 100.00% 75.48 121.48 812 100.00% 2.95 9.72 82 100.00% commit, there may be a before-look (BFRE) file present. Use restoredd (1), garbo fixup (1),

and/or safecrack (1) to get things back to normal.
{BITPLANE} - - - - - - - - - -

(RUTMAR) - - - - - - - - - - (b) Filestore space is running low; in this case, compact the data files of the databases with
garbo (1).

-- pointers

NI1S: 66 RESERVED: 32 10 THIS DR: 159 TO OTHER DBS: 0 TOFAL: 251 (c) The user wants to know what statistics files exist for a particular database.
¥ OF GARBAGE DATA FILE SPACE TAKEN UP BY POINTERS: 15.65 SEE ALSO
“= pointers per ohjoct (Laken over just Lhose objects Lhal Bave LROM) == eose—s e smo oo oo oo psr (1), garbo (1), metro (1), garbofixup (1), restoredb (1), safecrack (1), garbostat (1).
MEAN: 5.58 STH.NEV: 12,80
s
Sample oufput from "garbostat”
Tth Edition PS-—algol System 1

26 27

$ ladb -a
DB DIRECTORY FILF = /ps/src/garbo/testdbs/DIRIN
db directory locked: file /ps/src/garbo/testdbs/DIRLOCK exists

METRO(1) UNIX Programmer’s Manual METRO(1)
"metro" running or crashed: file /ps/src/garbo/testdbs/METRORUNNING exists
NAME PASSWORD SUFFIX ROOT LOCKS DATAsize INDXsize S OWNER
sys.database *fred*pete* 00000 1 -1 51200 3072 S- ps
FONTS friend 10000 2 ~1 65536 3584 S- ps NAME
testl gc 20000 3 -1 512 512 S- ps metro — persistent store statistics collector (version 2.1)
test2 gc 30000 4 -1 5120 2560 Ss ps .
test3 gc 40000 5 -1 512 512 S- ps SYNOPSIS
setPATL aleph 50000 & -1 48640 2560 -~ ps metro [—f] —a I dbnamel dbname2 ... | —o dbnum1 dbnum?2 ...
aleph 60000 7 -1 240128 20480 S- ps DESCRIPTION
friend 70000 -1 ~1 DELETED DELETED -~ ps Metro takes measurements on PS—algol databases. The databases to be examined may be
friend 01000 -1 -1 DELETED DELETED -- p3 specified in three ways:
friend 11000 -1 -1 DELETED DELETED -- ps (1) by the —a flag (do all of them)
friend 21000 ~1 -1 DELETED DELETED -~ ps (2) by database names: dbnamel, dbname2, ...
aleph 31000 -1 -1 DELETED DELETED -- ps (3) by the —o flag followed by a sequence of 5-digit reverse octal numbers: dbnumli, dbnum?2,
$ - which are the suffixes of the database’s files (these are displayed by Isdb (1)). This is useful
for be referred to by name.
It searches for database files in the directory specified by the shell variable $PSDIR, or in
/usr/lib/ ps/dbs if this is not set.
Sample output from "Isdb"” Metro produces statistics on the contents of the databases in files called SNAPxxxxx, where
xxXxx is the reverse octal suffix of a database’s files. The information in these files is display-
{executed by the PS-algol system owner, hence the displayed passwords) able by garbostat (1) or summarizable by precis (1).

This program is intended to provide a "snapshot” of the database, and the SNAPxxxxx files do
not form a cumulative record as the STATxxxxx files created by garbo do. If a SNAPxxxxx
file already exists for a database, metro will refuse to analyze it, so the SNAPxxxxx file cannot
be accidentally overwritten.

The —f option makes the program announce file operations: create, open, close, link and

unlink.
FILES
DATAxxxxx data file to be compacted
INDXxxxxx database index file
NEWINDXxxxxx temporary version of index file
SNAPxxxxx snapshot statistics file
METRORUNNING link set while metro is in action;
does nothing, purely to tell inquisitive
minds why their programs aren’t working
DOINGxxxxx linked to LINKFILE for crash diagnostics
DIRIN db directory file (read only)
DIROUT db directory file (write only)
DIRLOCK link to LINKFILE for locking db directory
LINKFILE empty file used for linking to

DIAGNOSTICS AND RECOVERY PROCEDURES -
Metro works in two phases; in the first it locks the database directory and all the databases. (I
a before-look (BFRExxxxx) file or a snapshot (SNAPxxxxx) file is present, it will refuse to
proceed further.) It then constructs tables of cross-references between databases. If it crashes
in this phase, unlocking the directory and the databases will restore the status quo.

The second phase is the statistics collection proper; metro creates the DOINGxxxxx link so that
garbo fixup or metro's own recovery routines can see whether there may be some temporary
files to remove if metro crashes. The DOING file is unlinked immediately after metro has
deleted them.

If there is a DOING file, or any NEWINDX files, present in the dbs directory after metro has
failed, Garbo fixup can be used to restore the database files to their state before metro was
applied. Garbo fixup does not unlock the database affected; use restoredd to do that, or, if a
deleted database is locked, get the PS—algol system owner ’ps’ to run safecrack (1) which

Tth Edition PS—algol System 1

o8 29

METRO(1) UNIX Programmer’s Manual

will forcibly unlock all databases.

METRO(1)

As from version 1.3, the error/interrupt handling routines should restore the persistent store

to a usable state for any failure short of a kill or machine crash.

SEE ALSCO
1sdb (1)
garbostat (1)
precis (1)
garbofixup (1)
safecrack (1)

7th Edition

PS—algol System

30

PRECIS(1) UNIX Programmer’s Manual PRECIS(1)

precis — compress statistics files from garbo (1} or metro (1) (version 2.1)

SYNOPSIS

precis [-m][-d directory] [-f filenamel

DESCRIPTION

Precis generates a file summarizing the information contained in a set of statistics files in the
format produced by garbo (1) or metro (1). These files are specified as follows:

If the -m flag is used, precis will look for STATxxxxx and statyyyyyyyyy cumulative statis-
tics files produced by garbo (1) and will produce a summary in a file called PRECSTAT. if
not, it will look for SNAPxxxxx and snapyyyyyyyyy statistics files produced by metro (1) and
will produce a summary in a file called PRECSNAP. The summary files retain a memory of
which program produced the original data they were made from; this affects garbostat {I)'s
display. It makes no sense to mix these two types, so precis won’t let you.

If the -f or -d flags are not given, precis will look in the directory $PSDIR, or in
/usr/1ib/ps/dbs if this variable is not set, and create the summary file there.

If the -f flag is used, precis will take the remaining arguments as a list of filenames of statis-
tics files and create the summary file in the current directory.

If the -d flag is used, precis will treat all files in directory’ as potential statistics files and will
create the summary file in that directory.

The summary files can be displayed by garbostat (1).

WARNINGS

Precis will not permit its own output files to be further summarized.

Databases produced with early versions of the interpreter may give meaningless figures for
the amount of garbage present. See the manual entry for garbo (1),

SEE ALSO

garbo (1)
metro (1)
garbostat (1)

7th Edition PS—algol System 1

31

SAFECRACK (1)

SAFECRACK (1) UNIX Programmer’s Manual

NAME
safecrack — forcibly release locks on all databases (version 2.1)

SYNOPSIS
safecrack

DESCRIPTION
Safecrack releases all locks on any databases in the PS—algol system, whether or not they
have been deleted. Defore doing this it checks to see if there are any beforelook (BFRE) or
garbo backup (BEF) files present; it will refuse to continue if there are.

DIAGNOSTICS
A file called SAFECRACKING is created while the program is working on the database direc-
tory file. Safecrack will refuse to unlock databases while there are any before-look (BFRE)
or garbo backup (BEF) files present; this is to avoid catastrophic corruption of the correspoud_-
ing databases. In this situation, use restoredb (1) or garbo fixup {1) first, whichever is appropri-

ate.
SEE ALSO
restoredb (1)
garbofixup (1)
7th Edition PS—algol System 1
32

/* KHAKKRAXKAKA KT AR A KA RAAKRARARAAAKRARAKKARAA KA AR AAA K& &

/* STATISTICS DEFINITIONS MODULE - stat.h

/* KHAKRKKAKAIRKAKK A KK A AR A AR A AR RAARKAA XK KAARRAAAK AR AAAFAARA A KAAA R A KA K

/* last

/* This

edited: Tue Jun 24 16:13:28 GMT 1986

module defines the record types for a STAT file.

fdefine GARBO 1 /* bit 0 value for filetype field */
#define METRO 2 /* bit 1 " " " " */
#define PRECIS 4 /* bit 2 " " " " *x/
typedef struct ({

int tally; /* number of objects of this type

int maxsize; /* size of type's biggest object (bytes)

int size; /* total size of this type (bytes)

int size 2; /* sum of squares of sizes

int maxpntrs; /* largest number of pointers found

int pntrs; /* number of pointers in objects

int pntrs_2; /* sum of squares of number of pointers
} typestats;

typedef struct ({
int nils; /* nil pids
int reserved; /* reserved pids
int nonpids; /* with bit 31 unset
int outptrs; /* pids from other dbs

int ownrefs; /* pids from this db

int newspace; /* new objects since last garbo (bytes)
int sofar; /* total space found in all gcs (bytes)
int slotl; /* for afterthoughts

int slot2; /* ditto

typestats s; /* strings

typestats f; /* files

typestats p; /* structures

typestats vp; /* vectors of pointers

typestats vpr; /* vectors of procs

typestats vib; /* vectors of int/bools

typestats vr; /* vectors of reals

typestats fr; /* frames

typestats pr; /* code vectors

typestats im; /* images

typestats bm; /* bitmap vectors

typestats bp; /* bit plane info

typestats pro; /* Prolog cbjects from Aberdeen

typestats tl; /* for an additional type

typestats t2; /* for an additional type
} breakdown;

Statistics file format

33

AAkA R AAK A A A KK

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/

typedef struct ({

int
int
int
int
int
int
char

int
int
int

int

int

version;
release;
gc_tally;
maxqsize;
bodycount;
inrefs;
filetype;

dummyl;
dummy2;
sizeln;

sizeOQut;

filecount;

/*
/*
/x
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/k
/*
/*

breakdown saved; /*
breakdown trash; /*
} statistics;

Statistics file format

version number

release number

number of gc's done on db so far
maximum size reached by queue

dead pids found so far

references inward from other dbs

one of GARBO or METRO bits must be
set; the PRECIS bit is optional

for afterthoughts

for afterthoughts

size of DATA file in ints at the end
of a garbo - not including padding
to 512-byte blocks

size of DATA file in ints at the end
of a garbo, not including padding,
or else the amount of accessible
data found by metro

for precis - number of files used
info on accessible objects

info on garbage objects

34

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,

Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,

Glasgow G12 8QQ

Scotland.

Books

Davie, A.J.T. & Morrison, R.
"Recursive Descent Compiling”, Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.)
"Databases”, Pergammon Infotech State of the Art Report, Series 9, No.8,
January 1982. (535 pages).

Cole, A.J. & Morrison, R.
"An introduction to programming with S-algol”, Cambridge University Press,
Cambridge, England, 1982.

Stocker, P.M., Atkinson, M.P. & Grey, P.M.D. (eds.)
"Databases - Role and Structure”, Cambridge University Press, Cambridge,
England, 1984.

Published Papers

Morrison, R.
“A method of implementing procedure entry and exit in block structured high level
languages”. Software, Practice and Experience 7, 5 (July 1977), 635-537.

Morrison, R. & Podolski, Z.
"The Gralfiti graphics system”, Proc. of the DECUS conference, Bath (April 1978),
5-10.

Atkinson, M.P.
"A note on the application of differential files to computer aided design”, ACM
SIGDA newsletter Summer 1978.

Alkinson, M.P.
"Programming Languages and Databases”, Proceedings of the 4th International
Conference on Very Large Data Bases, Berlin, (Ed. S.P. Yao), |EEE, Sept. 78,
408-419. (A revised version of this is available from the University of Edinburgh
Department of Computer Science (EUCS) as CSR-26-78).

* Atkinson, M.P.
"Progress in documentation: Database management systems in library
automation and information retrieval”, Journal of Documentation Vol.35, No.1,
March 1979, 49-91. Available as EUCS departmental report CSR-43-79.

Gunn, H.I.LE. & Morrison, R.
"On the implementation of constants”, Information Processing Letters 9, 1 {July
1979), 1-4.

Atkinson, M.i>.
"Data management for interactive graphics”, Proceedings of the Infotech State of
the Art Conference, October 1979. Available as EUCS departmental report
CSR-51-80.

Atkinson, M.P. (ed.)
"Data design", Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R.
"Low cost computer graphics for micro computers”, Software Practice and
Experience, 12, 1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"PS-algol: An Algol with a Persistent Heap”, ACM SIGPLAN Notices Vol.17, No.
7, (July 1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P,
"Nepal - the New Edinburgh Persistent Algorithmic Language”, in Database,
Pergammon Infotech State of the Art Report, Series 9, No.8, 299-318 (January
1982) - also as EUCS Departmental Report CSR-90-81.

Morrison, R.
"S-algol: a simple algol", Computer Bulletin 1/31 (March 1982).

Morrison, R.
"The string as a simple data type”, Sigplan Notices, Vol.17,3, 46-52, 1982.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Marrison, R.
"Progress with Persistent Programming", presented at CREST course UEA,
September 1982, revised in "Databases - Role and Structure”, see PPRR-8-84.
Morrison, R.
"Towards simpler programming languages: S-algol”, IUCC Bulletin 4, 3 (October
1982), 130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Problems with persistent programming languages”, presented at the Workshop
on programming languages and database systems, University of Pennsylvania.
October 1982. Circulated (revised) in the Workshop proceedings 1983, see
PPRR-2-83.

Altkinson, M.P.
"Data management”, in Encyclopedia of Computer Science and Engineering 2nd
Edition, Ralston & Meek {editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Algorithms for a Persistent Heap”, Software Practice and Experience, Vol.13,
No.3, 259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"CMS - A chunk management system", Software Praclice and Experience,
Vol.13, No.3 (March 1983), 273-285. Also as EUCS Departmental Report
CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming”, presented at the DEC workshop
on Programming Languages and Databases, Boston, April 1983.

Atkinson, M.P_, Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"An approach to persistent programming”, The Computer Journal, 1983, Vol.26,
No.4, 360-365 - see PPRR-2-83.

Alkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming”, 10th Australian Computer
Conference, Melbourne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.
"High level language support for 3-dimension graphics”, Eurographics
Conference Zagreb, North Holand, 7-17, Sept. 1983. (ed. P.J.W. ten Hagen).

Cockshott, W.P., Atkinson, M.P_, Chisholm, K.J., Bailey, P.J. & Morrison, R.
"POMS : a persistent object management system”, Soflware Practice and
Exerience, Vol.14, No.1, 49-71, January 1984.

Kulkarni, K.G. & Atkinson, M.P.
"Experimenting with the Functional Data Model", in Databases - Role and
Structure, Cambridge University Press, Cambridge, England, 1984,

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough”, Foundations of Software
Technology and Theorsetical Computer Science (ed. M. Joseph & R.
Shyamasundar) Lecture Notes in Computer Science 181, Springer Verlag, Berlin
(1984).

Atkinson, M.P, Bocca, J.B., Eisey, T.J., Fiddian, N.J., Flower, M., Gray, P.M.D.
Gray, W.A., Hepp, P.E., Johnson, R.G., Milne, W._, Norrie, M.C., Omololu,
A.O., Oxborrow, E.A., Shave, M.J.R., Smith, A.M., Stocker, P.M. & Walker, J.
"The Proteus distributed database system”, proceedings of the third British
National Conference on Databases, (ed. J. Longstaif), BCS Workshop Series,
Cambridge University Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R.
"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985)
- see PPRA-9-84.

Morrison, R.,Bailey, P.J., Dearle, A., Brown, P. & Atkinson, M.P.
"The persistent store as an enabling technology for integrated suppon
environments®, 8th International Conference on Software Engineering, Imperial
College, London (August 1985), 166-172 - see PPRR-15-85.

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment”, proceedings of
Data Types and Persistence Workshop, Appin, August 1985, 1-24 - see
PPRR-16-85.

Davie, A.J.T.
"Conditional declarations and pattern matching”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

Krablin, G.L. .
"Building flexible multilevel transactions in a distributed persistent environment,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
86-117 - see PPRR-16-85.

Buneman, O.P.
"Data types for data base programming”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.
"Addressing mechanisms and persistent programming”, proceedings of Data
Types and Persistence Workshop, Appin, August 1985, 363-383 - see
PPRR-16-85.

Norrie, M.C.
"PS-algol: A user perspective”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.
"On the need for a Flexible Type System in Persistent Programming Languages”,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
423-438 - see PPRR-16-85.

Morrison, R., Brown, A.L., Bailey, P.J., Davie, A.J.T. & Dearlo, A.
"A persistent graphics facility for the ICL PERQ", Soltware Practice and
Experience, Vol.14, No.3, (1986) - see PPRR-10-84.

Atkinson, M.P. and Morrison R.
"Integrated Persistent Programming Systems", proceedings of the 19th Annual
Hawaii International Conference on System Sciences, January 7-10, 1986 (ed.
B. D. Shriver), vol lIA, Software, 842-854, Western Periodicals Co., 1300 Rayman
St., North Hollywood, Calil. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.
"A Persistent Information Space Architecture”, proceedings of the 9th Australian
Computing Science Conference, January, 1986 - see PPRR-21-85.

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model”, The Computer Journal, Vol.29, No.1,
(1986) 38-45.

Atkinson, M.G., Morrison, R. & Pratten G.D.
"Designing a Persistent Information Space Architecture”, proceedings of
Information Processing 1986, Dublin, September 1986, (ed. H.J. Kugler),
115-119, North Holland Press.

Morrison R., Dearle, A., Brown, A. & Atkinson M.P.; "An integrated graphics
programming environment”, Computer Graphics Forum, Vol. 5, No. 2, June 1986,
147-157 - see PPRR-14-86.

Buneman, O.P. & Atkinson, M.P.
"Inheritance and Persistence in Database Programming Languages”;
proceedings ACM SIGMOD Conference 1986, Washington, USA May 1986 - see
PPRR-22-86.

Brown, AL. & Dearle, A.
"Implementation Issuses in Persistent Graphics"; The Association for Computing
Machines, 11 West 42nd St., New York, NY 10036; University Computing, Vol. 8,
NO. 2, (Summer 1986) - see PPRR-23-86.

Internal Reports

Morrison, R.
"S-Algol language reference manual”, University of St Andrews CS-79-1, 1979.

Bailey, P.J., Maritz, P. & Morrison, R.
"The S-algol abstract machine”, University of St Andrews CS-80-2, 1980.

Atkinson, M.P., Hepp, P.E., ivanov, H., McDuff, A, Proctor, R. & Wilson, A.G.
"EDQUSE reference manual”, Department of Computer Science, University of
Edinburgh, September 1981.

Hepp, P.E. and Norrie, M.C.
"RAQUEL: User Manual", Department of Computer Science Report CSR-188-85,
University of Edinburgh.

Norrie, M.C.
"The Edinburgh Node of the Proteus Distributed Database System", Department
ot Computer Science Report CSR-191-85, University of Edinburgh.

In Preparation

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : A DBMS based on the functional data model", to be submitted.

Atkinson, M.P. & Buneman, O.P.
"Database programming languages design”, submitted to ACM Computing
Surveys - see PPRR-17-85.

Theses

The following Ph.D. theses have been produced by member of the group
and are available from:

The Secretary,

Persistent Programming Group,
University of Glasgow,

Department of Computing Science,
Glasgow G12 8QQ,

Scotland.

W.P. Cockshott :
Orthogonal Persistent, University of Edinburgh, February 1983.

K.G. Kulkarni .
Evaluation of Functional Data Models for Database Design and Use, University of

Edinburgh, 1983.

P.E. Hepp
A DBS Architecture Supporting Coexisting Query Languages and Data Models,
University of Edinburgh, 1983.

G.D.M. Ross
Virtual Files: A Framework for Experimental Design, University of Edinburgh,
1983.

G.0. Owoso
Data Description and Manipulation in Persistent Programming Languages,
University of Edinburgh, 1984.

This series was started in May 1983. The following list gives those produced and

Persistent Programming Research Reports

those planned plus their status at 28th Oclober 1986.

PPRR-1-83

PPRR-2-83

PPRR-4-83

PPRR-5-83

PPRR-6-83

PPRR-7-83

PPRR-8-84

PPRR-9-84

Copies of documents in this list may be obtained by writing to:

The Secretary,

The Persistent Programming Research Group,
Department of Computing Science,

University of Glasgow,

Glasgow G12 8QQ.

The Persistent Object Management System -
Atkinson,M.P., Chisholm, K.J. and Cockshott, W.P.

PS-algol Papers: a collection of related papers on PS-algoi -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R.

The PS-algol reference manual -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R.

Experimenting with the Functional Data Model -
Atkinson, M.P. and Kultkarni, K.G.

A DBS Architecture supporting cosexisting user interfaces:
Description and Examples -
Hepp, P.E.

EFDM - User Manuai -
K.G.Kulkarni

Progress with Persistent Programming -
Atkinson,M.P., Bailey, P., Cockshott, W.P., Chishoim,
K.J. and Morrison, R.

Procedures as Persistent Data Objects -
Atkinson, M.P.,Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R.

PPRR-10-84 A Persistent Graphics Facility for the ICL PERQ -

Morrison, R., Brown, A.L., Bailey, P.J., Davie, A.J.T.
and Dearle, A.

£1.00

£2.00

£2.00

£1.00

£1.00

£1.00

£2.00

£1.00

£1.00

PPRR-11-85
PPRR-12-86

PPRR-13-85

PPRR-14-86

PPRR-15-85

PPRR-16-85

PPRR-17-85

PPRR-18-85

PPRR-19-85

PPRR-20-85

PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PS-algol Abstract Machine Manual
PS-algol Reference Manual - third edition

CPOMS - A Revised Version of The Persistent Object
Management System in C -
Brown, A.L. and Cockshott, W.P.

An Integrated Graphics Programming Environment - second
edition -
Morrison, R., Brown, A.L., Dearle, A. and Atkinson, M.P.

The Persistent Store as an Enabling Technology for
Integrated Project Support Environment -
Morrison, R., Dearls, A, Bailey, P.J., Brown, AL. and
Atkinson, M.P.

Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R.

Database Programming Language Design -
Atkinson, M.P. and Buneman, O.P.

The Persistent Store Machine -
Cockshott, W.P.

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R.

Building a Microcomputer with Associative Virtual Memory -
Cockshott, W.P.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratter, G.D.

Inheritance and Persistence in Dalabase Programming
Languages -
Buneman, O.P. and Atkinson, M.P.

implementation Issues in Persistent Graphics -
Brown, A.L. and Dearle, A.

Using a Persistent Environment to Maintain a Bibliographic
Database -
Cooper, R.L., Atkinson, M.P. & Blott, S.M.

£2.00

£1.00

£1.00

£15.00

£3.00

£2.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

PPRR-26-86 Exceplion Handling in a Persistent Programming Language -
Philbrow, P & Atkinson M.P. £1.00

PPRR-28-86b A Domain Theoretic Approach to Higher-Order Relations -
Buneman, O.P. & Ochari, A. £1.00

PPRR-29-86 A Persistent Store Garbage Collector with Statistical Facilities -
Campin, J. & Atkinson, M.P £1.00

PPRR-30-86 Data Types for Data Base Programming -
Buneman, O.P. £1.00

In Preparation

Some Applications Programmed in a Persistent Language -
Cooper, R.L. (ed).

PS-algol Applications Programming -
Cooper, R.L.)

A Compilation Technique for a Block Retention Language -
Cockshott, W.P. and Davie, A.J.T.

Thoughts on Concurrency -
Wai, F.

Concurrency in Persistent Programming Languages -
Krablin, G.K.

Providing Database Interfaces Within A Persistent Environment -
Atkinson, M.P. & Cooper, R.L.

