University of Glasgow
Department of Computing Science

Lilybank Gardens 5\
Glasgow G12 8QQ % ;

University of St Andrews
Department of Computational Science

o]

North Haugh
St. Andrews KY16 8SX

A Domain Theoretic Approach to

Higher-Order Relations

Persistent Programming
Research Project 28

A Domain Theoretic Approach to Higher-Order Relations

Peter Bunemant

University of Pennsylvania
Philadelphia, PA 19104

Many database programming languages [Atki85] share with relational database the-
ory the constraint that relations (or whatever bulk data structures are used) should be
flat. This means that the values stored in a relation may only belong to the base types
of the language, integer, boolean, string etc. and may not be compound types such as
array, record etc. In relational database theory one usually makes the first normal form
assumption [Ullm82], which similarly demands that values stored in a a relation be atomic,
i.e. they cannot be decomposed by operators of the relational calculus or algebra.

The flatness constraint in database programming languages is rather annoying be-
cause, unlike array types and record types, relation types cannot be freely parameterized
by other types. This is extremely limiting in the case that relations are the only per-
sistent type allowed for one then has no method of storing arrays, for example, in the
database. The flatness constraint also limits the development of database adjuncts for
programming languages like Ada [Ichb79] and ML[Gord79] with generic or polymorphic
type systems because relations cannot be made “first class” types. In particular one cannot
write generic code for data types with this limitation. The first normal form assumption
for relational database theory is also restrictive in that it does not allow the relational
data model to be cleanly combined with other data models such as the functional data
model [Ship81, Bune82]. Moreover it has recently been argued [Banc85, Zani84] that this
constraint is incompatible with representation of databases in logic programming and with
the requirements of various kinds of application.

In this paper I want to show that by exploiting a form of inheritance on objects rather
than types, one can naturally provide a unifying framework for records, relations and other
data types that are common in databases and at the same time relax the constraint that
they are flat. Moreover, several of the basic ideas of relational database theory have a
remarkably simple characterization within this framework. The concept of inheritance has
been around for some time in programming languages [Gold80], databases [Smit77] and AL
[Brac85]. Only recently has it received a formal treatment in the context of type systems

t Much of this work was carried out while I was a visiting research fellow at the Univer-
sity of Glasgow. I am grateful to the British Science and Engineering Research Council,
The University of Pennsylvania and Dr. A.T.E. Matonis for financial support.

1

in functional programming [Card84, Card85] and in relationship to logic programming
A1tK84]. The ideas presented here are based on this work and are also closely related to
those described in [Banc85).

The structure of what follows is first to introduce the notion of inheritance informally,
the following section then provides a formal description of this in siraple domain-theoretic
terms and provides a generalized definition of relations. The final two sections show how
some of the basic ideas of database theory, such as functional dependencies fit with this
description.

Preliminaries

Our starting point is to describe partial functions that behave properly with respect
to inheritance. To give some motivation for this, let us introduce a provisional notation
for partial functions. The expression {'Susan’ => 3490; 'Peter’ => T7731; 'Karen' => 8535}
describes a small telephone directory, a partial function from character strings to integers.
We could use the same notation to describe records such as {Name = 'J. Doe’; Department
= 'Sales’; ShoeSize = 10}. Here the inputs are a set of labels (perhaps a subset of some
larger set) and the outputs are a set of heterogeneous values. Later in this exposition, we
shall want to describe partial functions whose output set consists of one understood value.
Let us use the notation {2 $; 5 7} to describe the partial function {2 = {};3 ={};5
={};7 ={}}, where {} is the single output value. There is an obvious, though somewhat
misleading as it turns out, correspondence between such single-valued partial functions
and sets.

There is a sense in which we can say one partial function is better defined than another.
For example {'Susan’ => 3490; 'Peter’ = T731; 'Karen’ => 8535} is better defined than
{’Susan’ => 3490; 'Karen' => 8535} because it is defined for more input values; moreover,
wherever the second partial function is defined, it agrees with the first. Another way in
which one partial function may be better defined than another is by being defined on the
same values and having better defined outputs. For example

{Name = 'John Doe’; Address =>{City => 'Philadelphia’; Zip => 19101}}
is better defined than
{Naeme = 'John Doe’;Address =>{City = 'Philadelphia’}}
because one of the outputs is better defined in the first expression than in the second. The

last two examples are “higher order” partial functions: the values are themselves partial
functions.

A problem arises when we use higher order partial functions. We have to ask whether
any partial function we write down in this notation makes sense. Compare the following
three examples

{{Emp# = 1234 } = {Name = 'J. Brown’; Office = 'Paris'}; ()
{Emp# => 1234; ShoeSize = 10} = {Name = 'K. Smith' 13}
{{Stud# = 3456 } = {Name = 'D. Dare’ };
{ Course# = 'CIS123'} => {CName => "Algebra’ };
{Stud# = 3456; Course# = 'CIS123'} = {Name = 'D. Dare’; (b)
CName = 'Algebra’;
Grade = 'A’ 1}
{{Emp# = 1234 } = {Name = 'J. Brown'; Office = 'London’};
{Emp# = 1234; ShoeSize = 10} = {Name = 'J. Brown’; Office = 'London’}; (c)
{Emp# = 1234 } = {Name = 'J. Brown' I3

Example (a) is badly behaved. In return for a better input it has produced a less in-
formative - and contradictory - output. Example (b) is the sort of behavior one might
expect from a database system. There is extra information to be gained by providing a
better specified input. Example (c) is redundant in that we can infer the second and third
input-output pairs from the first, but we can nevertheless consider these pairs as part of
the partial function. In order to exclude partial functions like (a) we need to impose the
condition that if a given input z produces an output y, then any input that is better defined
than z will produce an output that is at least as well-defined as y. Looking at example (c)
we see something that is not even a partial function; a given input { Emp# => 1234} has
produced two outputs. Given that there is an ordering on the input and output spaces,
we need to define formally what we mean by a partial function.

Maps, Records and Relations

The examples in the previous section were mostly composed of records, i.e. partial
functions from labels to values. In order to define formally what it means for a partial
function to be well behaved, we shall assume the input and output spaces are partially
ordered. Specifically, we shall assume that they are complete partial orders (c.p.o.s). IV
and W are the input and output c.p.o.s, we can define a partial function as a subset F of
V x W that is subject to the following restrictions.

(1) if (z,y)€Fz’Jz and yIy then (z,y)€F

3

(2) if (z,y1)€F and (z,y2) €F then (z,y1Uys) €F
3) (L, L) eF

The first of these says that if a given input-output pair belongs to F then any better defined
input and worse defined output will belong to F. The second says that F is functional, i.e.
there is a unique best output associated with a given input. (3) indicates that every input
in V has at last one associated output (namely 1,). Since a given input can have more
than one output, it is inappropriate to call F* a function (partial or total). Instead, we
shall refer to any subset of V' x W that satisfies these conditions as a map from V to W and
denote the set of such maps by V — W. Ii is interesting to note that the conditions for a
map are almost the same as those used by Scott [Scot82] for an approximable function in
his “Information Systems” approach to denotational semantics, and work in progress by
Ohori [Ohor86] promises to provide a proper denotational semantics for database theory.

Now it is readily seen that maps are ordered by (set) inclusion and that if F; and F
are in V - W then Fy N F; is also in F. We can therefore define

F1HF2=F1ﬂF2

FiUuF=n{FIFeV—W, F2F, FDF}

The join (L) is defined only if there is at least one map F such that F 2 Fy and F D Fj.
Thus maps themselves form a c.p.c. Moreover, if F € V1 — V3 and G € Vp — Vj their
composition, defined by Fy o Fy = {(z,2)|3y.(z,y) € F1, (y,2) € Fo}, is a map. For
maps in V — V the ordering that defines V (note that it is a map) is the identity for
composition.

A particularly simple map is that specified by a single pair of points (z,y), i.e.
{',¥'|z € V,y' € W,z' 3 z,y 0 y'}. Call such a map elementary and call a map £i-
nite if it is of the form E; LI By U. ..U E, where Ey, Eq,..., E, are elementary. If F; and
Fy are finite maps in V — W, then so are Fy M Fy and Fy Ll F3 (if it exists). If ai least one
of Fy and F; is finite, then so is Fy o F2.

We are now in a position to be more precise about the notation of the previous section.
The notation {z1 = y1;22 = Y2;...;Tn = Yn} defines the finite map which is the join
(1) of the n elementary maps generated by the pairs (z1,y1), (%2,¥2),.--,(Tn,¥n). Note
that this join is not always defined, which is demonstrated by example (a) of the previous
section.

All we have done so far is to re-hash some of the basic definitions of domain theory
[Stoy77] in a somewhat unusual manner. Let us try to see how this is connected to
databases by taking some examples.

1. Suppose V is a flat domain and TRIV is the trivial domain which contains one non-
bottom element {}. Now the elements of V +— TRIV correspond to the subsets of
elements of V (other than L). The U and N operations correspond to union and
intersection, and the ordering on V +~ TRIV corresponds to set inclusion.

2. Now suppose £ is a flat domain of Jabels and V is any domain. We can identify L — V
with the records over V. The ordering on L + V is the ordering we used informally
in the previous section. Call this domain R(V). U and M respectively define “unifiers”
and “generalizers” of two records. Note that for records r; and ry, r1 U7z is not
necessarily defined.

3. We can now consider the maps in R(V) — TRIV. These are the relations over V,
with M defining the natural join. Note that there is a difference between relations and
sets as defined in (1) above. The input domain R(V) is not, in general, flat.

This result that natural join is a “meet” operation () is not so surprising if one con-
siders two relations with the same columns. Here the natural join gives us the intersection
of the tuples in the two relations. What is more interesting is that this definition extends
to “non-first-normal-form” relations, where the components may themselves be structures
such as records or other relations. For example, the natural join of

{{Name = 'J. Doe’; Dept => ‘Sales’; Addr =-{City = 'Moose’ h
{Name = 'M. Dee’; Dept = 'Manuf’ }
{Name => 'N. Bug’; Addr ={ State = MT}}}

and
{{Dept = 'Sales’; Addr =>{ State = WY }};
{Dept = 'Admin’; Addr ={City = 'Billings’ 135
{Dept = 'Manuf’; Addr ={ State = MT }}}

is
{{Name = 'J. Doe'; Dept = 'Sales’; Addr ={City => 'Moose’; State = WY}};
{Name = 'M. Dee'; Dept = 'Manuf’; Addr ={ State = MT}};

{Name => 'N. Bug’; Dept = 'Manuf’; Addr ={ State = MT}};
{Naeme => 'N. Bug'; Dept = 'Admin’; Addr ={City = 'Billings’; State = MT}}}

We identified relations with maps from R(V') to a trivial domain because it corresponds
to our intuition that a relation is something like a set of records, and we would need to
keep this characterization if we wanted to assign data types to relations. However, in the
following discussion of functional dependencies, we do not need to be so restrictive. We
can identify relations with maps in V — TRIV for any domain V. We shall occasionally
use the ordering on records to provide some examples.

5

Functional Dependencies

Having found a simple characterization of the natural join, can we do the same for
other relational operations such as projection; and how do we characterize functional de-
pendencies and other concepts in relational database theory using this domain-theoretic
approach? Our observation that a relation is an element of V — TRIV is equivalent to
saying that relations are upward-closed subsets of V. (A subset S of V is upward-closed if
z€ S,2' €V and 2’ J z imply z’ € S). The natural join is the intersection of such sets,
which itself is upward closed. Now if we are dealing with finite maps we can characterize
such sets by their minimal elements. Suppose R and S are two such sets of minimal ele-
ments and R and S are their respective upward closures. The ordering on V — TRIV is
the containment ordering on upward closed subsets, and

RCS iff VseSIrreR,s1r
The natural join of two relations is given by the intersection, and
T=RUS iff T = minset{r U s|r € R,s € S}.

Where minset(S) is the set of minimal elements of a set 5. When we are talking about the
joins of relations defined by their minimal representatives, we shall use the notation R« §
i.e. Rpa S = minset(RUS). Note that these minimal elements are pairwise incomparable
(i.e. they form cochains). Also note that ATt-Kaci uses the ba operation (as defined here)
to provide semantics for his interpreter for Login.

Now in order to talk about functional dependencies and projections we need to place
a slightly stronger constraint on what constitutes these sets of minimal elements. We shall
require, for reasons that will shortly become apparent, that they be pairwise inconsistent.
David S. Warren also requires this condition for the data base component of his logic
programming system. We shall call a set of pairwise inconsistent elements independent;
and if V is a c.p.o. we shall use (V) to denote the set of independent sets in V.

Prop 1. If Vis a c.p.o. then I(V) is a c.p.o. under the ordering < defined by R <
S iff '§ C Rwith v« being the lub operation.

The proof that any two members I; and [; have a [ub is immediate. That they have
a glb follows by considering, for each v € I; U I, the lubs of the set

{wwCvand e I(V)ILI,I<I;and we I}

It is an immediate consequence of this result that Iy < I, is an independent set
whenever I; and I; are independent. It is also something of a relief that “natural joins”

6

are once again “joins” under the ordering < (they were “meets” under the ordering we
defined on V + TRIV.)

The usual way to think of a functional dependency is as a constraint on a relation.
We shall adopt a slightly different approach and think of a functional dependency as a
map induced by a relation. Of course, some such maps will be “accidental” and must later
be ruled out since they are not part of the intended structure of the relation. However,
this approach will allow us to characterize relationships among functional dependencies
in a particularly simple way. Suppose R is a member of I(V). Just as we defined & to
be the set of points in V above points in R, we can define B = {z|3r.r € R,r J z}, the
set of points below points in R. Roughly speaking, we can say that there is a functional
dependency from A to B if R induces a map from A to B, where A and B are in J (v).
But we usually think of functional dependencies as being defined on sets of column names.
What do these have to do with independent sets? Think of the set of all records whose
Name and Age fields are defined to the point that they are character strings and integers
respectively. Take the set of minimal members of this set. It is clearly a set of pairwise
inconsistent records, hence independent; and we may think of it as characterizing the data
type {Age: string; Name: int}. In fact we can define

{Name: siring; Age: int} = {{Name = s; Age = 1}|s € string,i € int}.

We shall occasionally refer to such sets as types although there is no formal distine-
tion between types and relations; they are both independent sets. No immediate con-
nection is intended with the definition of type given by programming language seman-
ticists in, for example, [MacQ82]. However in [Bune85] a simple type system for rela-
tions is described based upon this domain theoretic approach, which appears to combine
cleanly with Cardelli’s work on multiple inheritance [Card84]. Although our example of
{Name: string; Age: int} is an example of a flat “ record” type, there are more interesting
independent sets such as those defined by the set of records that have an Address whose
City is defined or the set of records whose Age and ShoeSize are defined and equal. Note
that the set of records for which either the Name or the Age is defined does not give
rise to an independent set. We must not therefore expect to be able to define functional
dependencies for such disjunctive types.

To be precise about how relations generate functional dependencies, suppose A, B, R
are sets in I (V) with A < R. Counsider the set of pairs

{(a,B))e€A,beB,Ire Rrdalblu{{z, L)jzeV}. (A)

If this is a map, we shall say that (4,B) € R* or, in database parlance, R satisfies a
functional dependency from A to B. What this means is that if the pairs of points in 4 and

7

B that are bounded above by some point in E form a map, then R “generates” a function
from A to B, i.e. R satisfies the functional dependency (4, B). The term {(z, L)|z € V}
is added to take care of the constraint that any map must contain (L, L1). To give an
example to justify the claim that this is a functional dependency, let A be the set of points
with a defined Name (e.g. {Name: string}, and B the set of points with a defined Age
(e.g. {Age: ini}). The relation

{{Name ='J.Doe’; Dept ='Sales’; Age =21}
{Name ='M.Mack'; Dept =>'Manuf’ h
{Name =’N.Bug’; - Age =21}}

will induce a map (according to the above definition) from {Name: string} to {Age: int},
namely {{Name = 'J. Doe'} = {Age =>21}; {Name = 'N. Bug'} = {Age =21}}, but the

relation
{{Name ='J.Doe’; Dept =>'Sales’; Age =>21};

{Name =-'M.Mack'; Dept ='Manuf’ %
{Name =>'J. Doe’; Age =22}}

will not.

Another way of thinking about functional dependencies is that R satisfies a depen-
dency from 4 to B if B gives us no more information about R than 4, i.e. that members of
R that are not discriminated by A will not be discriminated by B. Stated mathematically,

Prop 2. (A,B)e R iffforanyri,712 € R,a € A, b€ B, ifriCaraCaandr b
then ry T b.

In the case that A < R and B < R, this means that for (4, B) € Rt the partition of
R induced by B must be coarser than the partition of R induced by A. There is obviously
a relationship here with the partition semantics for relations described in [Cosm85]; this
characterization of functional dependencies is also the basis for a form of denotational
semantics for relational databases being developed by Ohori [Ohor88].

Now there are various ways of characterizing the structure of R+, First, Rt is a
subset of (V) x I(V) and is a map with some additional properties, which are given in
the following result.

Prop 8. If R € I(V) then R is a map (ie. RT € I(v) = I(v)). Moreover, for all
A,B,C e I(V),

if A> B then (A,B) € R*, and
if (4, B) € R* and (B,C) € R* then (4,C) € R*.

8

Not surprisingly, these conditions are direct generalizations of Armstrong’s axioms for
functional dependencies, where we generalize the subset ordering on column names to the
ordering < in independent sets. The following result, which applies to any c.p.o. V', states
this formally.

Prop 4. Forany F eV xV and A,B,C,W € V the following two sets of conditions are
equivalent:

a1 F is a map

by if AJ B then (A,B)e F

1 if (A,B) € F and (B,C) € F then (A,C) € F

as if AJ B then (A,B) e F

by if (A,B) € F and (B,C) € F then (4,C) € F

e ifW €V and (4,B) € F then (AUW,BUW) € F

It is an immediate consequence of this result that R™ satisfies Armstrong’s axioms as
defined in (ag), (b2) and (cz) above.

It was noted earlier that our definitions concerning maps were simply re-statements
of some standard results in lattice theory. To be specific, for any F in V — W we can
associate a momnotone function from ¥V to W by defining, for any z € V, the function
F(z) = Wy € Wl(z,y) € F}. We shall briefly use this overloaded notation to describe
both the map F and the function F.

Prop 8. F satisfles Armstrong’s axioms iff the associated function from V to V is a
closure. That is, forallz in V

F(z) A z, and

Now a closure is uniquely characterized its set of fixed points, i.e. those values z €V
for which F(z) = z. Moreover, the set of such points must be a meet-closed subset of V, i.e.
if z1 and =z, are fixed-points of ' then so is ;1 Mz2. Let us redirect our attention to I(V).
We have seen that any relation (independent set) in V' generates a map B+ in I(V) = I(V)
which satisfies a generalized form of Armstrong’s axioms. However, Armstrong’s axioms
are intended to describe constraints on a relation, not the relation itself. What this means

9

is that given a map Q in J(V) — I (V) which satisfies Armstrong’s axioms or, equivalently,
given a closure on I(V), a relation R satisfies Q iff BT 3 Q, where we take the ordering
on maps to be that defined earlier.

There are some consequences of this connection with database theory that are quite
straightforward. For example, if R satisfies Q then so does any relation that is above R in
the ordering on I (V). In particular, if R satisfies then so does K < 5. Also, restricting
our attention to first-normal-form relations, if we are given a set @ of pairs of subsets of
column-names that satisfy Armstrong’s axioms, we can characterize @ by the fixed points
of the associated closure. These are the sets of column names that are not expanded by
any pair in @, i.e. a set C of column names is is a fixed-point of @ iff for no C' > C is
(C,C") in Q. To take a standard example [Ullm82] of the relation scheme C(ity), S(treet),
Z(ip), with functional dependencies generated by Z — C and {C, S} — Z, the fixed points
are {C, 8,2}, {C}, {S}.

The observation that maps satisfying Armstrong’s Axioms correspond to closures has
been made by [Simo85]. The results above show how they generalize to non first-normal-
form relations. The completeness and consistency of Armstrong’s axioms in this more
general case is immediate.

Projections

Unlike the natural join, which gives rise to “higher” relations in the lattice I(V) of
independent sets, we would expect the projection operator to loose information and to
produce results that are “lower” in I(V). Suppose A is what we have been informally
calling a type, e.g. {Name: siring; Age: ini} and R is a relation such that B J A. We
could very simply define the projection A’ of R onto A as the set of points in A below some
point in R, i.e. A’ = {a € A]3r € R.a T r}. By this definition A’ € I(V) and A’ < R.
However, this definition is not very satisfactory because of the constraint that B must be
above 4. If, for example, R were to have some null values for Age this would not be the
case.

To produce a more satisfactory definition of projection, one approach is to go back to
our definition of B* (equation A of the previous section) and note that for any 4 € I(V),
the pair (R, A) is always in A*. Stated informally, no independent set A can give us more
information about R than R itself. We may therefore ask for the image of R under the map
induced from E to A, and call this the projection of R onto A. one way of characterizing
this set is to introduce a new ordering, < defined by

R<S iff VveRJdseSrCS.
There is an obvious symmetry between < and <,and R < S iff R C S. The projection

of A on R is characterized by the following result:

10

Prop 8. A’ is the image of R under the map induced by (A, R) iff A’ = mazset(4A U R).

mazset is defined analogously to minset in the previous section. In fact, the projection
of R on A is nothing more than the glb of R and A under the ordering =<, and projection
is a symmetrical operation on R and A. Unfortunately, this still does not give us exactly
what we want, because this g/b may not be an independent set. This is readily seen by
trying to project

{{Name = 'J. Doe’; Dept = 'Sales’; Age = 21};
{Name = 'M. Mack'; Dept => 'Manuf’ h
{Name => 'N. Bug; Age = 22}}

onto {it Dept: string; Age:int}.
At this point we have two options. We could either decide that projection is not

always defined, or we could take the greatest independent set that is less than (under the
ordering <) the set we have just defined. Doing this in the example above yeilds

{{Dept = 'Sales’; Age = 21};
{Manuf = 'Sales’; Age = 22}}

Which option we adopt depends, of course, on a better understanding of the semantics of
relations which would of necessity give a precise account of null values. However, if only
for the sake of providing some mathematical conclusion to the study of projections, let us
adopt the second option. Stating this formally:

Prop 7. Forany A,B € I(V) there is a unique maximal (under <) independent set AX B
such that AXB<Aand AXB < B.

Under this definition of projection X is a commutative, associative operator that also
associates with bq, Le. (AXB) < C = AX (B > C). We might also ask under what
conditions X “distributes” over pa. The following result gives us a sufficient condition.

Prop 8. For any A,B,R € I(V), if there exists W € I(V) such that W < A, W < B
and (W, A) € R* then (RX A) > (RXB) = RX (A B).

This is a generalization of the lossless join condition for relational instances [Ullm82].
In order to obtain the lossless join condition for relational schemata one needs to be
assured that there are some points above A and B, i.e. that the “types” A and B have
some instances. The representation of relational schemata is a problem that is left for
further investigation.

11

Conclusions

1 have tried to show that the notion of inheritance leads to a natural representation of
the operators of the relational algebra and that some of the basic properties of relational
database theory, such as Armstrong’s axioms, can be derived from some very simple domain
theoretic relationships. If these ideas have any value one would expect to be able to
represent other notions in database theory, such as multi-valued dependencies and the
universal relation assumption within the same framework. However, given the apparent
connection with Scott’s “Information Systems”, a more pressing need is to work out a
proper denotational semantics for relational databases.

In the longer term I hope that it will be possible to use an approach such as this to
produce better type systems for database programming languages.

Acknowledgements

The ideas presented here were largely stimulated by Alt-Kaci’s notation and semantics
for type subsumption and Cardelli’s work on multiple inheritance. Malcolm Atkinson’s
proposals for a relational data type for PS-Algol were also useful in thinking about the
connection between relations and maps. I am extremely grateful to David MacQueen and
Gopalan Nadathur for correcting my imperfect knowledge of lattice theory and to Atsushi
Ohori, who was largely responsible for the “informational” characterization of functional
dependencies.

12

e

s

References

[ATtK84)

[Atkigs]
[Banc8s]
[Brac85]

{Bune8?2]

[Bune8s]

[Card84

[Card8s)
[Cosm85]

[Gold8o]

[GordT9)

[Smit77]

[Ichb79]

[MacQ82]

Ait-Kaci, H. “A Lattice Theoretic Approach to Computation based on a
Calculus of Partially Ordered Type Structures”, PhD. Dissertation, De-
partment of Computer and Information Science, Moore School/D2, Uni-
versity of Pennsylvania, Philadelphia, PA 19104. (1984)

Atkinson, M.P. and Buneman, O.P. “Database Programming Language
Design”, Technical Report 10-85, University of Pennsylvania.

Bancilhon, F. and Khoshafian, 8., “A Calculus for Complex Objects”,
Technical Report, MCC, Austin Texas, October 1985.

Brachman, R.J. and Schmolze, J.G., “ An Overview of the KL-One Knowl-
edge Representation System”, Cognitive Science, 9,2, April 1985.
Buneman, P., Frankel, R.E. and Nikhil, R., An Implementation Technique
for Database Query Languages, ACM Transactions on Database Manage-
ment, 7, 2, June 1982

Buneman, O.P., “Data Types for Data Base Programming”, Proceedings
of the Appin Conference on Data Types and Persistence, Technical Re-
port, Department of Computing, Glasgow University, September, 1985.
Cardelli, L., “A semantics of Multiple Inheritance”, Semantics of Data-
Types Kahn, G., MacQueen, D.B. and Plotkin, G. (eds), Springer-Verlag,
Berlin, June 1984

Cardelli, L. and Wegner, P., “On Understanding Types, Data Abstraction,
and Polymorphism”, Technical Report, Brown University, Aug 1985.
Cosmadakis, S.8., Kanellakis, P.C., Spyratos, N. “Partition Semantics for
Relations”, Technical Report, Brown University, December 1985.
Goldstein, I. P. and Bobrow, D. G., “Extending object oriented program-
ming in Smalltalk”, Proceedings of the 1980 Lisp Conference, August,
1980.

Gordon, M.J., Milner, A.J.R.G., and Wadsworth, C.P., Edinburgh LCF,
Springer-Verlag, Lecture Notes in Computer Science, 1979.

Smith, J.M. and Smith, D.C.P.; “Database Abstractions - Aggregation
and Generalization” ACM Transactions on Database Systems, 2, 2, June
1977.

Ichbiah et al., Rationale of the Design of the Programming Language Ada,
ACM Sigplan Notices, 14, 6, 1979 '

MacQueen, D.B. and Sethi, R., “A semantic model of types for applicative

13

languages”, Technical Report, Bell Laboratories, 1982.
[Ohor86] Ohori, A. Personal Communication, 1986,

[Scot82] Scott, D. “Domains for Denotational Semantics” ICALP ’82, Aarhus, Den-
- mark, 1982.

[Ship81] Shipman, D.W., The Functional Data Model and the Data Language
DAPLEX, ACM Transactions on Database Systems, 140-173, 6, 1, March
1981

[Simo85| Jurgensen, H and Simovici, D.A., “Towards an Abstract Theory of De-
pendency Constraints in Relational Databases”, Technical Report 1/85,
Department of Mathematics and Computer Science, University of Mas-
sachussetts, 1985.

[StoyT7] Stoy, J. Denotational Semantics: The Scott-Strachey approach to Pro-
gramming Language Theory. MIT Press, 1977

[Ullm82] Ullman, J.D., Principles of Database Systems (2nd ed.), Computer Science
Press, Rockville Md. (1982)

[Zani84| Zaniolo, C. “Prolog: A Database Query Language for All Seasons”™, Proc.
IEEE-ACM International Expert Database Systems Workshop, Kiawah
Island, October 1984.

14

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,

Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,

Glasgow G12 8QQ

Scotland.

Books

Davie, A.J.T. & Morrison, R.
"Recursive Descent Compiling", Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.)
"Databases", Pergammon Infotech State of the Art Report, Series 9, No.8,
January 1982. (535 pages).

Cole, A.J. & Morrison, R.
"An introduction to programming with S-algol", Cambridge University Press,
Cambridge, England, 1982.

Stocker, P.M., Atkinson, M.P. & Grey, P.M.D. (eds.)
"Databases - Role and Structure”, Cambridge University Press, Cambridge,
England, 1984.

Published Papers

4 Morrison, R.
"A method of implementing procedure entry and exit in block structured high level
languages”. Software, Practice and Experience 7, 5 (July 1977), 535-537.

Marrisan, R. & Podolski, Z. '
"The Graffiti graphics system”, Proc. of the DECUS conference, Bath (April 1978),

5-10.

Atkinson, M.P. _ ' o
"A note on the application of differential files to computer aided design”, ACM

SIGDA newsletter Summer 1978.

Atkinson, M.P. .
"Programming Languages and Databases”, Proceedings of the 4th International
Conference on Very Large Data Bases, Berlin, (Ed. S.P. Yao), .(EEE, Sept. 78,
408-419. (A revised version of this is available from the University of Edinburgh
Department of Computer Science (EUCS) as CSR-26-78).

Atkinson, M.P. o
"Progress in documentation: Database management systems in library
automation and information retrieval”, Journal of Documentation Vol.35, No.1,
March 1979, 49-91. Available as EUCS deparimental report CSR-43-79.

Gunn, H.LE. & Morrison, R. ‘ .
"On the implementation of constants”, Information Processing Letters 9, 1 (July

1979), 1-4.

Atkinson, M.P. _ '
"Data management for interactive graphics”, Proceedings of the Infotech State of

the Art Conference, October 1979. Available as EUCS departmental report
CSR-51-80.

Atkinson, M.P. (ed.) '
"Data design”, Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R. . . '
"Low cost computer graphics for micro computers”, Software Practice and

Experience, 12, 1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P. .
"PS-algol: An Algol with a Persistent Heap”, ACM SIGPLAN Notices Vol.17, No.
7, (July 1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chishoim, K.J. & Cockshott, W.P. _
"Nepal - the New Edinburgh Persistent Algorithmic Language”, in Database,
Pergammon Infotech State of the Art Report, Series 9, No.8, 299-318 (January
1982) - also as EUCS Departmental Report CSR-90-81.

Morrison, R. '
"S-algol: a simple algol", Computer Bulletin 11/31 (March 1982).

Morrison, R.
“The string as a simple data type", Sigplan Notices, Vol.17,3, 46-52, 1982,

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming", presented at CREST course UEA,
September 1982, revised in "Databases - Role and Structure”, see PPRR-8-84.
Morrison, R.

"Towards simpler programming languages: S-algol”, IUCC Bulletin 4, 3 (October
1982), 130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Problems with persistent programming languages"”, presented at the Workshop
on programming languages and database systems, University of Pennsylvania.
October 1982. Circulated (revised) in the Workshop proceedings 1983, see
PPRR-2-83.

Atkinson, M.P.
"Data management”, in Encyclopedia of Computer Science and Engineering 2nd
Edition, Ralston & Meek (editors) January 1983. van Nostrand Reinhold,

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Algorithms for a Persistent Heap”, Software Practice and Experience, Vol.13,
No.3, 259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82,

Atkinson, M.P., Chishoim, K.J. & Cockshott, W.P.
"CMS - A chunk management system", Software Practice and Experience,
Vol.13, No.3 (March 1983), 273-285. Also as EUCS Departmental Report
CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming”, presented at the DEC workshop
on Programming Languages and Databases, Boston, April 1983.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.

"An approach to persistent programming”, The Computer Journal, 1983, Vol.28,
No.4, 360-365 - see PPRR-2-83.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming”, 10th Australian Computer
Conference, Melbourne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.
"High level language support for 3-dimension graphics”, Eurographics
Conference Zagreb, North Holand, 7-17, Sept. 1983. (ed. P.J.W. ten Hagen).

Cockshott, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Morrison, R.

"POMS : a persistent object management system”, Software Practice and
Exerience, Vol.14, No.1, 49-71, January 1984.

Kulkarni, K.G. & Atkinson, M.P.
"Experimenting with the Functional Data Model", in Databases - Role and
Structure, Cambridge University Press, Cambridge, England, 1984.

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough", Foundations of Software
Technology and Theoretical Computer Science (ed. M. Joseph & R.
Shyamasundar) Lecture Notes in Computer Science 181, Springer Verlag, Berlin
(1984).

Atkinson, M.P., Bocca, J.B., Elsey, T.J., Fiddian, N.J., Flower, M., Gray, P.M.D.
Gray, W.A., Hepp, P.E., Johnson, R.G., Milne, W., Norrie, M.C., Omololu,
A.O., Oxborrow, E.A., Shave, M.J.R., Smith, A.M., Stocker, P.M. & Walker, J.
"The Proteus distributed database system", proceedings of the third British
National Conference on Databases, (ed. J. Longstaff), BCS Workshop Series,
Cambridge University Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R.
"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985)
- see PPRR-9-84.

Morrison, R.,Bailey, P.J., Dearle, A, Brown, P. & Atkinson, M.P.
"The persistent store as an enabling technology for integrated support
environments", 8th International Conference on Software Engineering, Imperial
College, London (August 1985), 166-172 - see PPRR-15-85.

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment”, proceedings of
Data Types and Persistence Workshop, Appin, August 1985, 1-24 - see
PPRR-16-85.

Davie, A.J.T.
"Conditional declarations and pattern matching", proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

Krablin, G.L.
"Building flexible multilevel transactions in a distributed persistent environment,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
86-117 - see PPRR-16-85.

Buneman, O.P.
"Data types for data base programming”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.
"Addressing mechanisms and persistent programming”, proceedings of Data
Types and Persistence Workshop, Appin, August 1985, 363-383 - see
PPRR-16-85.

Norrie, M.C.

"PS-algol: A user perspective”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.

"On the need for a Flexible Type System in Persistent Programming Languages”,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
423-438 - see PPRR-16-85.

Morrison, R., Brown, A.L., Bailey, P.J., Davie, A.J.T. & Dearle, A.
"A persistent graphics facility for the ICL PERQ", Software Practice and
Experience, Vol.14, No.3, (1986) - see PPRR-10-84.

Atkinson, M.P. and Morrison R.
"Integrated Persistent Programming Systems”, proceedings of the 19th Annual
Hawaii International Conference on System Sciences, January 7-10, 1986 (ed.
B. D. Shriver), vol llA, Software, 842-854, Western Periodicals Co., 1300 Rayman
St., North Hollywood, Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.
"A Persistent Information Space Architecture”, proceedings of the 9th Australian
Computing Science Conference, January, 1986 - see PPRR-21-85.

Internal Reports

Morrison, R.
"S-Algol language reference manual®, University of St Andrews CS-79-1, 1979.

Bailey, P.J., Maritz, P. & Morrison, R.
"The S-algol abstract machine”, University of St Andrews CS-80-2, 1980.

Atkinson, M.P., Hepp, P.E., Ivanov, H., McDuff, A., Proctor, R. & Wilson, A.G.
"EDQUSE reference manual", Department of Computer Science, University of
Edinburgh, September 1981.

Hepp, P.E. and Norrie, M.C.
"RAQUEL: User Manual", Department of Computer Science Report CSR-188-85,
University of Edinburgh.

Norrie, M.C.
"The Edinburgh Node of the Proteus Distributed Database System”, Department
of Computer Science Report CSR-191-85, University of Edinburgh.

In Preparation

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model", to be published in The Computer
Journal.

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : A DBMS based on the functional data model”, to be submitted.

Atkinson, M.P. & Buneman, O.P.
"Database programming languages design”, submitted to ACM Computing
Surveys - see PPRR-17-85.

Morrison, R., Dearle, A., Bailey, P., Brown, A, & Atkinson, M.P.
"An integrated graphics programming system", to be presented at
EUROGRAPHICS UK, Glasgow University, March 1986 - see PPRR-14-86.

Theses

The following Ph.D. theses have been produced by member of the group
and are available from
The Secretary,
Persistent Programming Group,
University of Glasgow,
Department of Computing Science,
Glasgow G12 8QQ,
Scotland.

W.P. Cockshott
Orthogonal Persistent, University of Edinburgh, February 1983.

K.G. Kulkarni
Evaluation of Functional Data Models for Database Design and Use, University of
Edinburgh, 1983.

P.E. Hepp
A DBS Architecture Supporting Coexisting Query Languages and Data Models,
University of Edinburgh, 1983.

G.D.M. Ross
Virtual Files: A Framework for Experimental Design, University of Edinburgh,
1983.

G.0. Owoso
Data Description and Manipulation in Persistent Programming Languages,
University of Edinburgh, 1984.

PPRR-1-83 The Persistent Object Management System - Atkinson,

M.P., Chisholm, K.J. and Cockshott, W.P. [Printed]
PPRR-2-83 PS-aigol Papers: a collection of related papers on

PS-algol - Atkinson, M.P., Bailey, P., Cockshott,

W.P., Chisholm, K.J. and Morrison, R. [Printed]
PPRR-3-83 The PS-algol implementor's guide [Withdrawn]
PPRR-4-83 The PS-algol reference manual - Atkinson, M.P.,

Bailey, P., Cockshott, W.P., Chisholm, K.J.

and Morrison, R. [Printed]
PPRR-5-83 Experimenting with the Functional Data

Model - Atkinson, M.P. and Kulkarni, K.G. [Printed]
PPRR-6-83 A DBS Architecture supporting coexisting user

interfaces: Description and Examples -

Hepp, P.E. [Printed]
PPRR-7-83 EFDM - User Manual - K.G.Kulkarni [Printed]
PPRR-8-84 Progress with Persistent Programming - Atkinson,

M.P., Bailey, P., Cockshott, W.P., Chisholm,

K.J. and Morrison, R. [Printed]
PPRR-9-84 Procedures as Persistent Data Objects - Atkinson,

M.P., Bailey, P., Cockshott, W.P., Chisholm,

K.J. and Morrison, R. [Printed]
PPRR-10-84 A Persistent Graphics Facility for the ICL PERQ -

Morrison, R., Brown, A.L., Bailey, P.J., Davie,

A.J.T. and Dearle, A. [Printed]

Persistent Programming Research Reports

This series was started in May 1983. The following list gives those
produced and those planned plus their status at 17th March 1986.

Copies of documents in this list may be obtained by writing to
The Secretary,
The Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,
Glasgow G12 8QQ.

£1.00

£2.00

£2.00

£1.00

£1.00

£1.00

£2.00

£1.00

£1.00

PPRR-11-85
PPRR-12-85

PPRR-13-85

PPRR-14-86

PPRR-15-85

PPRR-16-85

PPRR-17-85

PPRR-18-85

PPRR-19-85

PPRR-20-85

PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PPRR-25-86

PS-algol Abstract Machine Manual {Printed] £1.00

PS-algol Reference Manual - second edition [Printed] £2.00
CPOMS - A Revised Version of The Persistent Object
Management System in G - Brown, A.L. and

Cockshott, W.P. [Printed] £2.00
An Integrated Graphics Programming Environment -
second edition - Morrison, R., Brown, A.L,,
Dearle, A. and Atkinson, M.P. [Printed] £1.00
The Persistent Store as an Enabling Technology
for Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, A.L.
and Atkinson, M.P. {Printed] £1.00
Proceedings of the Persistence and Data Types
Workshop, Appin, August 1985 - ed. Atkinson,
M.P., Buneman, O.P. and Morriscn, R. [Printed] £15.00
Database Programming Language Design -
Atkinson, M.P. and Buneman, O.P. [Printed] £3.00

The Persistent Store Machine - Cockshott, W.P. [Printed] £2.00
Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R. [Printed} £1.00
Building a Microcomputer with Associative
Virtual Memory - Cockshott, W.P. [Printed] £1.00
A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D. [Printed] £1.00
Some Applications Programmed in a Persistent
Language - Cooper, R.L., Cranston, R.D.,
Dearle, A. and MacFarlane, D.K. [In Preparation]
PS-algol Applications Programming - Cooper, R.L.,
Dearle, A., MacFarlane, D.K. and Philbrow, P. {In Preparation]
A Compilation Technique for a Block Retention
Language - Cockshott, W.P.and Davie, A.J.T. [In Preparation]

Thoughts on Concurrency - Wai, F. [In Preparation]

PPRR-26-86 An Exception Handling Model in a Persistent
Programming Language - Philbrow, P. [In Preparation]

PPRR-27-86 Concurrency in Persistent Programming
Languages - Krablin, G.K. [In Preparation]

PPRR-28-86 A Domain Theoretic Approach to Higher-Order
Relations - Buneman, O.P. [Printed] £1.00

PPRR-29-86 Extracting Garbage and Statistics from a Persistent
Store - Campin, J. [In Preparation]

PPRR-30-86 Data Types for Data Base Programming -
Buneman, O.P. [Printed] £1.00

