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Introduction

The growth of computer systems has been marked by rapid developments in the field of hardware
technology and productivity, and relatively slow advances in the field of software technology and
productivity, particularly the latter. Two aspects of this phenomenon are relevant to this discussion.

One is the now almost universal use and acceptance of high level languages to improve programmer
preductivity and software performance. This has been in spite of arguments advanced against the use
of high level languages on the grounds of “inefficient use” of the underlying hardware. The dem -
onstrated improvements in software production and maintainence, and the improved manageability of
large software systems that arise from the use of high level languages have largely dispelled such
arguments. Indeed, it is now widely accepted that the way forward in software design is to decrease
the emphasis paid to the “efficiency” of software execution, and look more closely at the “efficiency”
of software construction.

The second aspect has been the thought that in order to reduce software complexity and inefficiency,
functional capability should be transferred from the software domain to the hardware domain. This
idea has prompted such significant architectural developments as virtual memory, asynchronous /O
processing, complex instruction sets, zero address architectures and machine support for block
structured addressing. A more recent commercial development has been the appearance of capability
machines, which, with their vast address spaces, support a longer term view of program execution
and data support.

One significant software development that is closely tied to the appearance of capability machines is
the concept of data persistence [AtkiM83]. This notion argues that the lifetime of data objects should
not be constrained by the lifetime of the program execution that creates them. Such a concept
climinates much of the programmer's task, as he does not now have to spend time and code convert -
ing dawa from internal to external storage representations. A large part of the I/O burden on programs
is removed, as a persistent data object maintains its representation outside of the program which
created it, and therefore can be easily retrieved and accessed by subsequent programs.

A consequence of persistent object management is that object-address bindings become far more
imporiant than in conventional systems. While it is possible to manage these bindings in a localized
systemn (because all bindings are known, or can be deduced from the structures themselves), once the
bindings become distributed, management is far more difficult.

For exarnple, suppose an object a has been created. It will be allocated some storage, and thus the
address y of this block of storage is bound to the object. If this address y is used to reference the
object g, we must ensure that y remains bound 10 a for the lifetime of references to a. Aliernatively, if
a is rebound (by, say, a compacting garbage collector), we must update all references to @ that use the
now out-of-date address y. While this is possible in a closed system, if ever y is exported from the
system, we are immediately constrained to preserved the binding y to @ for the lifetime of a, or altern -
atively that any reference to y is antomatically remapped to the new address of a. Indeed, we must
also ensure that if subsequent references to y cannot be excluded, an error mechanism is invoked if an
attempt to reference a through address y is made. This effectively rules out the re-use of y as an iden -
tifier for any other object, and is the primary motivation for capability style architectures, which can
guarantee the non-reuse of addresses.

Whilst the capability machine is an ideal vehicle upon which o implement persistent languages, its
large address space is also a disadvantage. It has been demonstrated in the constraction of large soft -
ware systems that complexity can only be conceptually handled when the system is broken into small -
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er, more manageable segments. It is argued that, while some of the management of the large address
space can be done automatically, a localization of address space, supported by the architecture, will
more closely model the structures required by the software designer, with attendant benefits of reduc -
ed system complexity.

The context sensitive architecture is a proposal to provide a localized addressing mechanism, so that
address space management may be decoupled from address space bindings. It is argued that the
addressing of objects is shown to be better served by the management of small, local address spaces,
which bind to a large persistent stable store mechanism [BrowA86]. The size and distribution of
these address spaces is entirely at the discretion of the programmer or compiler writer, who could
provide an address space for anything between a complete system and a Pascal record style data
structure. This can be provided for the same cost as existing (virtual) memory management schemes,
and provides a more congenial environment for the construction of persistent programming
environments.

Note that it is not the intention of this paper to reject previous addressing mechanisms. Rather, it
should be seen as an attempt to build upon the strengths of such designs, and to improve the ability of
an architecture to deliver the addressing resource in a form suitable for the application being
programmed. In particular, little or no new technology or hardware is involved: it is proposed to
implement a pilot scheme using existing commercial machines. What is involved is a recasting of the
distribution of address conceptualization, but not functionality, between the hardware and software
domains.

Objects

The objects that we wish to deal with in computing can be classified broadly into two groups. On the
one hand are the objects that can be represented with relatively few bits of information, and are fixed
in size. On the other hand are the objects whose representation is not known a priori, whose size is
more than a few bits, or whose length may change dynamically. Note that we may include in this
group objects traditionally regarded as primitive types, such as strings, because the requirement that a
string's size may change dynamically forces a memory management policy upon us.

Into the first group go the basic types: boolean, integer, real and pointer. In the second group goes
everything else: vectors, structures, procedures, and strings. These objects are included in this group
because they all involve some form of address or storage management. Such storage management
entails an explicit binding between the object itself, and the store address, in order to access the object
in question. Those objects whose representation or length may change dynamically clearly require
the ability to rebind the object identifier to the object representation, and hence store address. And
even where the size and representation of an object is known at compile time, it is more efficient to
store its representation in some fixed location, and pass its address around as a handle to the object,
than to pass the entire object around. It is just this phenomenon that leads to the use of descriptors
for structured objects in most high level language architectures and on machines like the B6700
[OrgaE73] and MUS [KilbT68]. Because of this representation, all these objects must be
manipulated by passing pointers to the object, and from this representation arises the main difficulty
in the persistent management of objects. A pointer cannot be a reference within an address space, if
the possibility of passing that pointer outside of the address space exists.

For this reason, we introduce a new object: the context. The context is a local address space, contain -
ing a collection of objects of interest. Note that we allow the possibility of recursive contexts, that s,
contexts may contain objects that are themselves contexts. Within the local address space defined by
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a context, objects are identified by an index into the space. This index is persistently bound to the
object, that is, it cannot be re-used for any other object within the context, for the lifetime of the
context. These indices are called object identifiers, to distinguish them from the addresses used at the
representational level. We shall call addresses store identifiers, to highlight this subile, but important
distinction. The thesis of this paper can then be simply stated:

objects should only be retrieved by object identifier, never by storage identifier.

Context Sensitive Computer Architecture

A computer architecture is itself a binding. It binds decisions made by the computer architect into
hardware, or at least microprogram code. Some of these binding decisions may be deferred, but in
general, most of them are static bindings in the sense that they are made when the architecture is
defined. For example, the size of an integer data type is usually fixed by the architecture; the
programmer may be free to choose from a limited range of integer types, but he is not free to choose
either the length or representation of an integer type.

The binding of store identifiers to objects is made at compile time, but in reality is forced by the early
binding of the addressing mechanisim in the design of an architecture. In particular, the provision of a
large, flat address space, and the lack of suitable address space structuring mechanisms, means that
the compiler writer has little choice but to bind his objects directly into the machine address space.
What is desirable is an architecture that allows bindings to be made at arbitrary stages of the program
and data structure creation process, depending upon the price or functionality required by the
programmer, or the application.

The B1700 architecture provides an environment where many binding decisions about architectures
may be deferred. Its philosophy is that

.. the effort needed to accomodate definability from instruction to instruction is less than
the effort wasted from instruction to instruction when one system design is used for all
applications. [WilnW72a]

It attempts to provide not a general purpose architecture, but a microprogrammable architecture
designed for the specific purpose of emulating special purpose architectures. All languages on the
B1700 are implemented by compiling then into a specially tailored intermediate code, which is then
interpreted by an interpreter written in this emulator specific microcode.

The B1700 is also a notable exception for another reason: it provides, in the hardware, the ability w0
change integer lengths and representations, dynamically. However, neither this type binding, nor the
binding of intermediate code architectures, is fully exploited: all interpreter systems for the B1700
bind both architecture and integer represeniation at interpreter construction time, which is not a great
deal later than in conventional architectures.

It was in attempting to defer this architectural binding that the Context Sensitive Architecture was first
proposed [HursA82]. The context sensitive architecture took as its design philosophy the theme that

The binding between architecture and language is too static and inflexible; a more
desirable system is one in which bindings between machine and language objects can be
made at any stage of the system process, even up to the instant of use of an object.

The binding between source and target language is normally made by a compiler. The target language
is in turn bound by the design of the target architecture. On the B1700, the target language is bound
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by the design of the compiler, not the architecture, and thus occurs at a later stage of the system
design. In a context sensitive architecture, the target architecture can be bound during execution of
the program, and thus occurs at the latest possible stage.

For example, suppose a program is characterized by alternating bursts of 1/0 activity and compute-
bound activity. When executing the I/O phase, a context sensitive architecture can use an instruction
set tailored to I/O operations. When executing the compute phase, 1/O instructions are not needed,
and a different, arithmetic oriented architecture might be employed. Or the width of a data type (such
as integer) might be chosen interactively, as a program execution proceeds, or perhaps as further
accuracy is required. Of course, some discretion in the use of these mechanisms must be observed,
as the indiscrimant use of such dynamic bindings may entail a severe performance penalty.

One result demonstrated by such an approach is the reduction in static and dynarmic program size over
existing architectures, and indeed over sizes claimed for the B1700 itself [WiloW72b]. In particular,
the peak dynamic memory bandwidth required (a bottleneck in von Neumann style architectures)
could be reduced by up to 50% [LokaC84].

The context sensitive mechanism can be used to implement the Direct Execution architectures of
Flynn [FlynM83]. In a direct execution architecture, the architecture changes at procedure invocation
time. It is argued that such decisions should be decoupled from source level artefacts, and should
instead be bindings made quite independently of other structures, and orthogonal to other bindings.
In this way, the software system designer can choose bindings that reflect what he wants, rather than
what the computer architect thought he might want.

In principle, any binding made by an architecture can be deferred in a context sensitive architecture.
In this paper, we shall be looking at just one such binding: the object-address binding.

Addressing Paradigms
The flat address space.

A problem suffered by many architectures is that they provide an address space which is at the same
time too flat and too small. A flat address space suffers from the disadvantage that it does not model
the way in which programs are written. A compiler must often go to some effort to map object
references into this flat space, and sophisticated run time support systems are often required to
maintain an addressing environment.

A further constraint is the size of the address space. Many architectures have gone through some
revision process in order to extend the original address space, as software development outstrips the
resources that are supplied by the hardware. The development of the VAX-11 architecture from the
PDP-11 architecture is one such example.

Paged virtual memory is a technique that partly overcomes a limited address space. By providing an
extended address word, and a mapping mechanism between the CPU and real store, the programmer
sees a “virtual” space that can be much larger than the actual “real” space provided on the machine.
This mechanism is so powerful that it is now used on many modern computer architectures.

The most serious criticism of the flat address space is however, the problem of maintaining object-
address bindings, as outlined above. We shall return to this point.
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The capability address space.

Capability machines provide very large address spaces, much larger than could ever be realistically
used, and exploit this large address space 1o provide a further range of resources, such as protection
and secure typing of data. With such a large range of addresses, there is no longer any problem
about reusing addresses, and a new address may be assigned to every new object created during the
lifetime of the system. Allied to this is the need for some sort of hardware address mapping
mechanism, so that object identifiers (drawn from capability address space) can be dynamically
mapped onto store identifiers. However, the introduction of large address spaces requires a corre -
spondingly large address word (up to 128 bits), and does not entirely solve the problem of a flat
address space.

The segmented address space.

In order to provide an address space with more siructure, segmentation is used. This is implemented
by dividing the address word into two components, thus giving a two dimensional address space.
The distinction between paging and segmentation is often misused, or misunderstood. A paged
system does not provide a two dimensional address space. For example, addresses 1FFF and 2000
(hexadecimal) will always be contiguous in a paged system, but not necessarily so in a segmented
system, as they may reside in different segments. An object may reside across page boundaries, but
never across segment boundaries.

Segmentation is a powerful mechanism, and was used to significant advantage in the Multics
[CorbF65] system to provide both protection and dynamic binding mechanisms. It has also been
used as a means of realising virmual memory, such as in the B6700 and MUS designs. More recent
systems, such as MONADS-PC [AbraD85] and Poppy [CockW85] provide segmentation as a
component of capability-based designs. Our model of context addressing owes much to existing
segment designs.

The distributed address space.

The fundamental weakness with all these systems, however, is that they all place too much reliance
on a knowledge of the address space. In order to reference an object, its address must be known.
Within a local environment, this is not a particularly serious problem. Addresses can be made known
to the system for the purpose of storage management and garbage collection. If an object is moved
around in store, its address can be updated. The binding between object and address, usually
established at compile time, may be modified by the operating system, as long as the references to the
object (the uses of its address) are known to the operating systemn. Thus there is a system wide
management of addresses, and uniform treatment of address space.

The availability of cheap computing power has lead 10 a growth of interest in distributed systems,
where each site on a network may have its own addressing domain. Traditionally, such systems
make a distinction between local address space, and distributed address space. Accessing distributed
space may be more costly than accessing local space, either because of hardware constraints, or
because of programming constraints. Different address paths are required, and often these
differences are carried up into the software design.

Once the system becomes distributed, the management of object-address bindings becemes
exceedingly difficult. An address passed out of a local environment must either be preserved so that
the binding between object and address is maintained, or it must be remapped when re-presented to
the environment.
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Note that by “distributed”, we do not mean just a distribution in space. Distribution in time of object-
address bindings will also lead to similar problems of address preservation. Recent work in
persistent programming [AtkiM84] has shown that a “stable store”, in which the binding between
objects and addresses is preserved over different executions of the same (or different) programs, is
desirable.

A related problem to the preservation of object-address bindings arises in connection with the
modularity of large software systems. In order to avoid re-compiling such large systems every time a
change is made to some (potendally small) component of the system, the system is sub-divided into
modules of manageable size and complexity. When an individual module has been changed and re-
compiled, it is linked into the rest of the system by adjusting all external references to point to the new
location of existing objects.

This problem is just one of extended identifier-object bindings, where identifiers are bound to objects
at object creation time, and the identifiers must be rebound to the new addresses assigned to the
objects as they are re-linked together. In other words, a system that provides a persistent name space
can also be used to provide re-linking and modular construction mechanisms. Such a result has
indeed been demonstrated by Atkinson and Morrison [AtkiM85].

Contextual Addressing

We may paraphase the problem of object addressing as the problem of identifying objects within
some domain. Let © denote an object within some such domain. Then we can denote the object
domain by {81}, the set of such objects. A particular object © can be identified by attaching (binding)
an identifier 6 to it. We shall represent this binding by the notation

0=8
read as “0 binds ©”. From the identifier § we can retrieve or reference the object © (but not necess -
arily vice versa). The identifer 0 is called an objecr identifier. If {8} denotes the set of such
identifiers, then provided that the identifiers are mutnally distinct:
Vij i#j=0;=9
we can use the set of identifers as unique references to the objects, and write this labelling as a
mapping
(8} — {©}

read as “the identifier set © maps to the object domain set €. We shall define a domain of objects
identified in this way as a confext. A context may be considered as a convenient grouping of objects,

related by some theme. That theme may have some higher level meaning, or it may be just that the
objects have a common identifer domain.

The actual form of © has not been specified: any symbolic convention can be used. In programming

use it is normally a character string. However, any mutually distinct symbols (according to some
grammar) may be used, and in particular, since the objects @ are unordered, we may impose an

ordering

i=6
upon them, and use the cardinal number i as an identifer for object ®. The identifer i we shall call a
local identifier, as it can only be distinct within a particular domain, or local context.

The actual process of addressing an object, given an identifier #, requires the extraction of the object
@ from the object domain {©}] so that i = @ is satisfied. For non-ordered domains of i, this requires
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a search of the identifier space, but for ordered domains this search is acceptably fast. In particular,
for ordered, contignous domains, the search time is of order unity. This form of addressing is
known as random access.

When the objects are words in store, then the local identifiers are addresses, and we obtain the
conventional model of addressing a computer store. But not all computing objects are words. We
wish to impose some higher level structure upon this memory organization, so that it models more
closely the structure of arbitrary computing objects. Usually, this task is performed by a compiler: it
translates the local identifiers of the source program into the local identifiers of the target memory.
Source identifiers are represented as character sirings, memory identifiers as addresses. The compiler
chooses representations for the objects (based upon some translation rules according to the primitive
structuring), and selects local identifiers from the store context. There are therefore three levels of
addressing:

1 The source domain. Local identifiers are the source identifiers. Let {S} be the set
of source identifiers. The programmer determines {S} — {©}.

2 The object domain. Local identifiers are objecr identifiers. These are not
contiguous, but are selected store context identifiers. Let {O} be the set of object
identifiers. The compiler determines {O} — {8}

3 The store domain. Local identifiers are store identifiers, or addresses. Let {A} be
the set of store identifiers. The compiler writer determines {A} — {®]}. Note that
{A} D {O}and {0} — {A}.

Two distinct domains, object and store, share 2 common identifier domain. This causes problems
whenever a reference to an object must be passed out of the local context to some other context.
Normally, such object reference passing is done by passing a store address (store local identifier).
But if the representation of objects is to be changed for any reason, such as for garbage collection,
program swapping, or virtual memory management, we must be careful to remap the store local
identifier. This is realized by a variety of mechanisms, depending upon the application.

For example, when garbage collecting, all object identifiers raust be marked or tagged as such, so that
they may be rebound to the new store identifiers after completion of the collection. Virtual memories
provide two address spaces, real and virmal, and hardware performs a mapping from virtual to real
so that any alteration in the use of real addresses as store identifiers is hidden from the use of virtual
addresses as object identifiers,

Such an organization is all very well if we are concerned with only one address space, or we can map
all objects into the one address space. However, when we wish to distribute our address spaces,
either in space, such as with a multiprocessor organization, or in time, such as with a persistent
organization, it is not convenient or realistic to flaten the combined object domains into one flat
address space. This is because each sub-address space has local management considerations that
should not impinge upon the management of other address spaces. What is required is some
mechanism for structuring the address domains so that local addressing does not affect external
addressing of the object.

Accordingly, we propose a model of addressing called the contexiual model. Each addressing sub-
domain is free to manage store identifiers in any way appropriate to its application. These addressing
domains are called contexss. Qutside a context, the only addressing information visible is object
identifiers. Store identifiers are specifically not exporied from 2 context. Of course, an object may
itself be structured, and have some nested addressing structure. Whether this internal structure is
revealed is a matter for local management.
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Fundamentally, this model is similar to the segmentation model of addressing. Like segmentation, it
requires a flat address space to identify the contexts themselves. Like Maultics, it provides a dynamic
binding between object referents and the objects themselves. It differs primarily in its organization of
addresses, and in the way in which addresses are passed between contexts. Because we proscribe
the use of local addressing information, the only non-local addresses allowed within a context must
be contextual addresses.

The contextual addressing model is hierarchical, but addresses are not constrained to be tree
structured. Local identifiers may be created within a context for referencing arbitrary objects in
arbitrary contexts. However, since there is always a unique creator for any given object, each context
can be placed on a tree that represents the ancestral tree of creation. We can therefore identify a
distinguished path for an arbitrary structuring of contexts that represents the ancestral path of
creation. This path must be tree-structured.

A context contains a linear address space, of local identifiers i. Let us denote a particular context A as
the group of objects {@,} with local identifiers g, 0 < a <Al where Al is the number of objects in A.

Within this context can be objects that are themselves contexts. These objects are calied nested
contexts. Let B be a nested contextin A, B e {8©,) . Then

dag :a ~B
Now, if we wish to access an object &, with local identifier & within the context B , we can reference
it from within the context A by writing
alb

where the operator | is a qualified identifier operator, and serves to link object references through
nested contexts. A phrase such as a | b is called a qualified identifier.

Note that such addressing is entirely relative. The qualified identifier a | b will refer to object @, only

in the context A . Within context B , the local identifier @ may be bound to an entirely different object
from B . The correct reference from within context B is of course just b .

Where multiple address spaces exist in this way, we must be careful to distinguish exactly which
address space is meant. We shall use wirhin an address space or context to mean the address required
to distinguish between objects contained by a context, and owrwith an address space or context to
mean the address required to distinguish between objects of which the current context is a member.
In figure 2, local identifiers d and e are within context B, and identifiers a, b, ¢ are outwith context B.

Directed Graph Representation of Contexts

Contexts as we have just described form a directed graph. Objects are represented as nodes on this
graph, and local identifiers select edges from nodes that correspond to context objects. Two types of
edges are possible:

a) edges that select objects whose representation lies in the domain of the context
represented by the node from which the edge emanates.

b) edges that select objects whose representation lies in some other domain.

Edges of the first kind may represent local (nested) addressing information only, and thus an
addressing environment formed with edges of this kind is tree structured. Edges of the second kind
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must represent contextual addresses only, and an addressing environment formed with edges of
arbitrary kind is a directed graph. Leaf nodes are objects other than context objects.

Flat Addressing

Edges radiating from a node form an addressing domain, corresponding to the local identifiers that
they represent. Objects within this addressing domain can therefore reference each other directly, by
the direct use of the appropriate identifier. This is called flar addressing, as it occurs in a single,
linear, flattened address space. This is the form of addressing used in von Neumann style
architectures.

Figure 1: Flat Addressing

For example, in figure 1, R is a context containing objects A and B, with local identifiers ¢ and b
respectively. A can address B directly, and vice versa. If a third object C is introduced, it is
addressable directly from either A or B via identifier ¢.

Context Addressing

Where objects are not in the sarne address space, contextual addressing must be used.

Figure 2 : Contexiual Addressing

In figure 2, R is a context containing objects A , B and €, with local identifiers 4 , b and ¢ as before.
Now however, B is a context containing objects D and £ , with local (with respect to B) identifiers d
and e. Within context R, objects 4 , B and C can be directly addressed, but objects D and E must be
addressed indirectly, as & | d and b | ¢ respectively. From any object @ in the system, addressable
objects are those objects whose nodes are reachable from the node containing the address of the ob -
ject @ . That is, they must lie in an address space outwith @, and formed by arbitrary concatenation
of qualified identifiers. Clearly, if we wish to address an object ©' not reachable from 8, we must
extend the mechanism in some way.

This is done by introducing the parent address operator, T. Successive applications of the parent
address operator serve to remove the addressing context one step closer to the root of the context tree
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(always following the context creator, not other potential context paths). For example, in Figure 2,
we could address C from D as Tc. The local identifier ¢ is interpreted in the context R, not B.
Strictly speaking, this is not an operator, but a local identifier, whose binding is always to the parent
context. However, it behaves rather like an operator, serving to recast the meaning of the folowing
identifier from the current context to the parent context. If used as an identifier, the above reference
to C would be written more correctly as Tdc.

Alias Addressing

Addressing as provided by the hierarchical scheme above is a powerful and conceptually simple
model. But it is restrictive. Non-local addresses can become unwieldy. If we must provide a long
chain of qualified identifiers for each access, the process of dereferencing an object could be expen -
sive. Sometimes this cost must be paid: if an object is not in the current addressing domain, there is
probably a good reason for this, such as it is only reachable over a transmission line, or there is a low
speed data path between the two contexts.

This is not always true. A context can be created to model some logical structure, rather than a phys -
ical structure, and it is important that the cost of accessing such logical structures be kept as low as
possible. Thus we relax the hierarchical constraint, and allow contexts to directly address other, non-
nested contexts. This corresponds to allowing non-tree edges in the directed graph.

Essentially, a local model of the non-local addressing domain is set up, and in this local context are
stored the links necessary to establish the non-local addressing domain. Local references to the non-
local object can now be represented as local references, and the cost of representing the complete
contextual address information is paid only once. Such an address is called an alias address. If the
aliased context is implemented in the same address space, an alias address is just a pointer into the
aliased context. Only where the aliased context is implemented in another address space is the
address path to reach that context required to be stored as the representation of the aliased address,
and the cost of indirect address have to be paid.

Figure 3 : Alias Addressing

For example, figure 3 shows two such aliases, b’ from context F, and r” within context E. Objects
within F may address B as b’, rather than as TTb, and objects in E may similarly refer to 7', rather
than TT. Unix afficionados will note that this mechanism is identical to the file link structure.

It is possible to establish multiple parents once we allow aliasing. For example, in figure 3 C may set
up an alias to context D. Then D will have the real parent B and alias parent C. Only the real parent
can be reached with the parent address operator.
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Examples of Context Addressing
Let us look at how context sensitive addressing can be used in practice.

First of all, note that block structured addressing is just a special case of context addressing, where
we are constrained to use a purely hierarchical tree of contexts. Each block is represented as a
context, and objects declared in that block will have a representation stored in the context's address
space, and will be identified from other objects in the block by a local identifier, corresponding
exactly to the ordinal posidon of the declaration within the block. A master context is used to hold all
currently addressable blocks, and the local identifier within this context exactly corresponds to the
lexical level, or static declaration depth, of the block to which it is bound. Above this, a further
context is used to hold all blocks currently in existence, and models the stack used to implement block
structured addressing. Figure 4 shows a conventional display and stack based addressing scheme,
with a set of display registers to indicate the current addressing environment. Frames are stored on a
stack, which is represented as a linear address space.

frames
—
[ 1
&
QQ\
D —

display

Figure 4 : Conventional block structure implementation.

Figure 5 shows how this addressing environment would be represented as a set of contexts.

% stack

2
[8—

frames
\w /f

display

Figure 5 : Block Structured Addressing with Contexts
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One of the primary applications for contexts is in supporting persistent program representations. In
order to manage the large set of objects that may accumulate, some structure must be imposed upon
these objects. A hierarchical structure is too restrictive, and so the contextual model can be used to
advantage. For example, a suite of programs for some application area may be stored in the
persistent database. When a user opens this database, he may want some of the programs and not
others. Or he may want to replace some of the routines by his own versions. The context model
allows him to set up an environment containing just those objects relevant to the application.
Different environments can be explored by simply changing the bindings of objects within a context.

An analogy with real life may be helpful here. When asked by someone to supply some information,
we might answer “It is in the manual”. Which manual is implied from the context of the question. If
there is more than one manual in the context of the question, we might extend our “flat” address space
by further addressing information, such as “the User's Manual”, or “the Reference Manual”, etc. But
the questioner might not have these objects in his context, so we will have to provide him with
sufficient addressing information for him to find the right context. Hence we will build up some
contextual addressing information, as in “the User Manual in the library”, or “the User Manual in the
Computer Centre library”, or even “the User Manual in the University of Adelaide's Computer Centre
library”. Implicit in such a sequence of address widenings is that there is ultimately some common
address space for both questioner and answerer. The advantage of the contextual model is that the
wider addressing information can be factored out of each reference, and bound once, or as many
times as required, without changing the representation. In the above analogy, this corresponds to
binding the local reference “manual” to the complete address string, and then subsequently referring
to just “the manual”.

Such addressing patterns are not new in computing. File directory structures, as exemplified by the
Unix model, provide exactly such a hierarchical domain. Electronic mail addresses are more subtle,
yet include just such a model. What is new here is that we propose such an address model for object
addressing at the hardware level. Implicit in this model is the notion that all contextual addresses are
dynamic bindings of object identifiers to objects, just as virtual memory and capability systems are
dynamic bindings of logical addresses to physical addresses. Static bindings can only be made to
object identifiers, not to store addresses.

Implementation

A context is simply an abstraction of address spaces, and just as compilers can map object identifiers
into store identifiers, a context can be implemented as a mapping upon a conventional random address
space. Where a context is used to implement an abstract object, this is the implementation normally
used. Where the context is used to implement remote objects, the address used will reflect the
addressing information required to reach the remote object. At all tirnes the address of a context must
indicate a path to the addressed context from the addressing context.

There is nothing particularly difficult about implementing the context objects themselves. They are
represented as linearly indexed tables, where each entry in the table describes one object. These
entries are accordingly called object descriptors. For scalars, and objects of less than 64 bits in
length, the descriptor can contain the value of the object itself. For larger objects, the value of the
descriptor is a pointer (into a local address space) to the object's representation. Because the
representation is stored in a local space, and because the pointer to this space can never be visible
outside the context, this local space can be managed without reference to any external data structures.

For example, suppose A is a context containing B, a string, and C, a context representing a table of
strings. We could represent these objects graphically as shown in figure 6.
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Figure 6 : Context Implementation

A has a local address space in which is stored a descriptor for B and a descriptor for C. As well,
there are various address spaces used to store the representaiions of B and C. At this point, no
assumption has been made about how these address spaces are implemented. Now suppose further
that A and B are implemented in semiconductor store, and C is implemented as a disk store. All that
is required of our context implementation is that the pointer from the descriptor for C contains
addressing information for A to access the disk store, as well as the address of the representation of C
in disk space.

Note that this does not violate our requirement that local addressing information cannot be exported
from a context. The object C is in A's address space, which has been extended from the single
semiconductor store to include the two address spaces. Local addresses within the context C teside
within the representation of C, and are not accessible outwith C. Thus C may have a management
strategy associated with it, which may rebind objects within the disk space, as long as the descriptors
for these objects (wholly within C's representation) are properly updated. C itself cannot be altered
by this management strategy, as it lies in A's address space.

Name Spaces

The context addressing model is also iniended to provide a solution to the implementation of name
spaces. A name space is a collection of identifier - object bindings, and is best thought of as a run-
time representation of a symbol table. A symbol 1able is a structure used by 2 compiler to establish
and record source identifier - store identifier bindings, and it has two basic operations: insertion and
lookup. Insertion occurs upon declaring a new identifier in the current scope, and lookup occurs
whenever an identifier is referenced. Most implementations of compilers discard the symbol table
information once the source program has been compiled, but a few, notably those providing run-time
symbolic debugging or monitoring mechanisis, maintain the symbol table information in some form
or another. Where a compiled program may be linked with another, some of the symbol table
information may be preserved in order to resolve those linkage-time bindings. Name spaces are
simply an extension from the compile-time and linkage-time symbol tables into the run-time
environment. That is, the binding time of identifier - object pairs is (potentially) delayed to the latest
time possible.

To build a name space using contexts, we provide a context for the objects themselves, called the
object context, and a separate context, called the name conrext, 1o hold the names. These could be
stored as strings. The mapping between the names and objects is defined by the local identifiers used
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in each context, so thatitis 1:1. Other schemes could also be used. To resolve a binding between
name and object, the name is searched in the name context, and the local identifier used in that context
will be the local identifier in the object context.

ObjeciContext

CurrersContext 11d

v
Contextld # BottleNumber
&
Nameld
e LA NameContext
o
Lid
_Botthumber G
Objectld ¥ EEERCITE e S 4 5

Figure 7 : Resolution of Name Space bindings.

For example, figure 7 shows how a reference might be resolved. Identifiers in ftalic represent local
identifiers, while identifiers in Courier represent strings. Let Nameld be a local identifier (in the
CurrentContext) bound to the object "Bott leNumber" (a string). Similarly, let Conrextld be a
local identifier bound to the context object ObjectContext. Finally, note that Objectid is a local
identifier whose value is to be set to the context address for the object BottleNumber in contex
ObjectContext.

In order to perform the binding, suppose there is an instruction "bind Object to Name in Context”,
which has the effect of binding a local identifier Object to the object in Context that has source
identifier Name. In the above example this would become "bingd Objectld to Nameld in Contextid",
which executes by searching the name context NameContext (associated with Contextld) for the
string Nameld, and on succesful match, replaces the value of Objeciid with the context address
<Contexild, LId>, where Lid is the local identifier found for the match. This object may be used
subsequently to retrieve and modify the object BortleNumber by dereferencing the context address. If
ne match is found, a run time error is signalled. The mechanism can be extended 1o allow arbitrary
context addressing.

For collections of persistent objects, called databases, resolution of references into the data base can
be done symbolically, either by the compiler, where the object name is known at compile time, or by
the system itself, at run time, if the name is only known dynamically. Note in particular that there is
little overhead involved, and a static binding, besides being only performed once, does not incur any
run-time penalty. In fact, once the binding is resolved, references to the object proceed just as
quickly, regardless of whether the binding was done statically or dynamically.
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Further Research

Details in a paper such as this are necessarily sketchy. In some circumstances, this lack of detail
corresponds to detail yet to be defined, and work is under way on describing a complete
implementation of a context sensitive architecture, employing the features described above.

Note that contexts avoid naming all objects in a single flat address space. However, it can be argued
that this does not really solve anything, as now the contexts must be named in an address space that is
itself flat as far as the contexts are concerned. That is, each context must agree on a common address
space in order to pass contexts around.

Tt is thought that this is true where efficient implementations of addljess spaces must be employed.
Two aspects of this phenomenon are relevent. Where contexts rjeside in a common system, they may
be realized as objects in an underlying flat space. However, it is not esg:ntial that. they are. On the
other hand, where objects must reside in separate address spaces, then it is essenm?l th_at they use a
common address space in refering to each other, so that subsequent references (in either time or
space) map consistently onto the same objects.

Figure 8 : Distribution in time

For example, in figure 8, A passes the address ¢ 1o B. If B subsequently uses address ¢ (in A's
sense), it must refer to C.

Figure 9 : Distribution in space

In figure 9, A passes the address ¢ to B. If B passes address ¢ (in A's sense) to object D, then D
must regard the local identifier ¢ as a reference to C. This implies that either the contexiual
information be extended as an object is passed around, or that contexts have a common address
domain. An implementation will demonstrate the relative merits of this.
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Conclusions

Delayed bindings provide a powerful mechanism for the implementation of many dynamic objects in
computing. However, implementers are often loath 1o use them, because of suspected inefficiencies
in their use. We argue that delayed bindings can be supported at the computer hardware level,
without a significant performance penalty.

A model of context sensitive addressing has been developed. This model is a powerful one, and sub -
sumes existing forms of addressing. It provides directly at the architectural level a closer repre sent -
ation of the mechanism of addressing computing objects, and a means for implementing the structure
of such objects. In particular, it is a convenient architecture for the exploration of appropriate struc -
tures for the support of persistent programming,
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