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§1 Introduction

Why should an elegant and expressive algorithm so readily become obscure
and verbose when transcribed into a programming language? The responsibility
frequently lies with the expansion of code required for dealing with exceptions to
the algorithm. The resulting code is the aftermath of the conflict between the
programmer, and control constructs in the language. To write robust code the
programmer must consider all eventualities: the program becomes verbose. To
write code that is readable and amenable to maintenance, irrelevant verbosity must
be minimized: there is the temptation to sacrifice robustness. The role of the
language designer is as a facilitator between these apparently opposing interests.
The root of the problem is the need for a suitable control construct. The conflict is
resolved by filling the need for a language feature to support exception handling.
This report describes the exception handling mechanism that has recently been
integrated with the persistent programming language PS-algol.

We preceeded the design work on a PS-algol exception handling mechanism
by reviewing the exception handling facilities of existing languages. The purpose of
this exercise was to gain an insight into what facilities have been deemed desirable in
the past, to identify common themes, to observe how the exception component
related to the whole, to learn from their successes, and to anticipate pitfalls in our
own venture. The first part of this paper derives from this survey. The survey is
not intended to be exhaustive, rather to be illustrative of the influences on the
present design.

The design proceeded through a number of iterations, and an experimental
implementation. These have been described elsewhere. The initial designs were
strongly influenced by the ideas of procedural abstraction, characterized by CLU,
and by the simplicity of the Poly mechanism. These influences remain in varying
degrees. As the iterations converged it became clear that we were seeking to
introduce not one but two new ideas to PS-algol. These eventually materialized in
the notions of system events and of programmer exceptions. Events and exceptions
are not only orthogonal to the language as a whole, but also to one another. The
requirements placed on an exception mechanism for PS-algol, the considerations
that led to the present design, and a description of the model itself form the third
part of this document.

In §4 we describe our current implementation of exception and event
handling in PS-algol. Conclusions appear as §5.

The two appendices form supplements to the PS-algol Reference Manual.
Together they form a programmer's guide to the new exception handling features

- of PS-algol.




§2 Survey

Much of the seminal work on exception handling issues in programming
languages dates from the mid-seventies with the work of Goodenough [10] and
Levin [12]. Several languages had already made attempts to come to terms with
forced deviations from algorithins, notably perhaps PL/1 with its ON condition, and
Algol 68 to a certain extent with its event routines, invoked on the occurrence of
unusual transput events [22]. Goodenough drew together and rationalized the
prevailing ideas, and proposed a set of powerful language features. Subsequent
designs frequently refer back to aspects of Goodenough's work but in general they
do not consider the full range of his proposals to be necessary.

In this survey we restrict ourselves to describing exception handling as it has
manifested itself in eight successful incamnations: CLU, Poly, Standard ML and Pose
3 ML, Mesa, Ada, Modula-2+, and Yemini and Berry's replacement model. Be
aware that phrases, such as “raising an exception” frequently have a slightly
different colour to them depending on the language being discussed. We try to point
out these differences where they occur.

The survey revealed a number of terms that are prevalent in discussions on
exception handling. We will set these down before we set out.

A single-level model requires that exceptions raised by an invocation are
handled by the invoker. This contrasts with multi-level models, in which an
exception is free to propagate indefinitely back up the call chain. There are grey
areas between these two groups that are usually due to an interaction with the scope
rules of the language.

In resumption models the signaller (to use CLU terminology) of the
exception continues to exist while the handler is initiated, and can be resumed where
it left off when the handler completes. The idea here is that the handler can solve the
problem that the signaller encountered, but which it wasn't in a position to fix for
itself (perhaps because it required knowledge of some global data structure). It is
easiest to think of resumption (especially in the context of single-level models) in
terms of the handler being an implicit parameter of the signaller. It is clear that a
language with first-class procedures such as PS-algol already has resumption for
free. For PS-algol the issue is whether additional syntactic support should be
provided.

Resumption models are usually contrasted with termination models,
although models described as being resumptive typically support termination as
well (but not vice versa). Termination models disallow the possibility of resuming
from the point at which the exception was signalled.

A number of recurring issues were brought out by the survey process:
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* Is additional syntactic support necessary to build exceptions into the
procedural abstractions of the language?

= Can exceptions be parameterized?

* Is an exception an object in the language?

The question of flow of control is paramount:

* How much expressive power should be entrusted to the programmer
(where does control pass when an exception has been handled)?

* How does exception handling relate to existing control constructs (where
can exceptions be raised, where can handlers be placed)?

We tackle some of these issues in the context of PS-algol in the subsequent
section.

§2.1 CLU

CLU [13, 14] incorporates exceptions into the specification of its procedural
abstractions. There is the notion of exception names, and exceptions can be
parameterized. The exceptions that can be raised by a procedure invocation are
declared as part of the procedure heading:

Jetch=proc( n: int)
returns( string )
signals( fuss( string ) )

In effect CLU is able to specify a number of return paths. The normal route
is anonymous, whereas exceptional routes are named. To reflect this a CLU
procedure may terminate by a return statement or by a signal statement, for
example the following segment of code may occur in the body of the procedure
specified above:

if ok() then return( "normal termination" )
else signal fuss( "exceptional termination” )

CLU distinguishes between signalling exceptions and raising an exception.
An exception can be signalled anywhere in a program. The result of signalling an
exception is to terminate the current procedure activation and force an exceptional
return. The exception is then raised at the point of invocation, and can now be
picked up by a handler in the caller. Exceptions can only arise from invocations.
All operators in CLU are invocations.

CLU handlers are statically associated with invocations (and therefore with




particular exceptions). This gives the compiler the opportunity to generate more
efficient code. In addition, it is asseried, programs are more readable. It also has
the potential to eliminate the class of errors caused by the programmer forgetting
about the possibility of a particular exception, although CLU doesn't exploit this.

CLU restricts the association of handlers to statements only, they cannot be
associated with expressions. They assert that there is insufficient demand for
handlers on expressions to warrant the exira work required of the language.

Handlers are specified thus:

statement except handler_list end

where handler_list handles a subset of exceptions raised by invocations
textually contained in statement. Unhandled exceptions from statement or from
handler_list, are propagated beyond the except statement.

Each handler in the handler_list is introduced by the system word when or
others. A list of exception names can be supplied for each handler so long as their
arguments are the same type (or are to be ignored). The others handler can choose
to receive the exception name as a string. An example:

begin
é.l except when fuss: S2 end

end
except when fuss: §3
others: S4
end

Here fuss raised during the course of the statement S1 is handled by S2. Fuss
raised in S2 is handled by $3, any other exception raised in S1 or S2 is handled by
S4.

The signal statement terminates a procedure activation and the exception és
raised at the point of invocation. CLU provides a cousin to signal, the exit
statement, that can be used to raise an exception immediately, within the same
activation. Exits are only a local transfer of control. CLU requires that exits are
handled locally by the procedure.

CLU requires that exceptions raised by an invocation are handled by the
invoker. This is termed a single-level mechanism. CLU has the syntactic apparatus
for ensuring statically that a procedure handles all exceptions that could be raised by
it, yet it provides a hole through the single-level in the form of the fanguage-defined
exception named failure. Failure is implicit in every procedure heading. 1t can be

raised explicitly but is more usually raised automatically should an exception not be
caught during an activation, in which case the name of the offending exception name
is converted to a string and becomes the parameter to failure. It is interesting to
note that CLU deemed it necessary to allow exception names (albeit as strings) to
propagate freely up the call chain, despite the violation of procedural abstraction
that this might entail. Failure can propagate back freely and so is multi-level in
nature.

CL.U fits the termination model of exception handling.

§2.2 Poly

Poly [16] avoids introducing exception names and sidesteps the
single/multi-level issue. An exception in Poly is an exception condition together
with an identifying string. Exceptions arise implicitly, generated by the system, or
explicitly using the raise statement:

raise string_expression

Unlike the signal statement of CLU, there is no forced termination of the
procedure activation. The exception is raised immediately. It differs from CLU's
exit in that, if no local handler is found, the exception may propagate back up the
call chain.

A handler can be associated with any block. If an exception is raised during
the normal execution of the block, the handler is entered, and its result is substituted
for that of the block. The handler is a proc taking a string and yielding a value
whose type matches that of the block to which it is attached. As there is only one
{notional) exception, there can be only one handler; there is no special support for
discriminating on the basis of the excepted value. The syntax is therefore simple
and unencumbered. The handler appears at the tail end of the block, introduced by
the system word catch.

As an example, we could write a function that increments its integer
argument, up to some limit. If the limit is reached it instead raises an exception.
The example shows a handler attached to two invocations of this function:

let inc= proc( i: integer )integer
begin if { = limit then raise "limit" ; i + 1 end

let res= begin
fet tmp=inc( 1)
inc(2)
caich proc( name: string )

begin
print( "Caughta ")
print( name )
0

end
end




It is not clear what the type of the raise statement is. For example the
equivalent in ML of

if test() then 3 else raise "fuss”
is permitted because the raise statement is of arbitrary type.

Identifiers declared within the block to which the handler is attached (tmp in
the above example), aren't available to the handler as they are fiable to be
uninitialized. Exceptions raised by the handler propagate to the enclosing block.
Exceptions ruised but niot handled within a procedure terminate the activation and
appear at the point of invocation.

Poly is essentially multi-level in character, with a limited form of parameter
passing. It is another example of the termination model. The simplicity of the Poly
exception model has much to recommend it.

§2.3 Standard ML

In standard ML [17] exception conditions are bound statically to particular
‘exception identifiers. An exception is an object from which its associated exception
identifier can be extracted. An exception, together with its value (its excepted
value) is called an exception packet. Neither exceptions nor packets are themselves
values.

ML supplies a number of predeclared exceptions. New exceptions can be
declared by the programmer, using a syntax similar to that of other declarations in
the language, for example:

exception bucker: string ;
exceplion foot: int ;

Exceptions may be raised by the system, or expicitly:

raise bucket "water" ; ...
raise foor 9 ;

These may be caught by specifying a handler. This is a double filter,
discriminating first on the exception identifier and secondly on the excepted value:

handie bucket ( "water".doThis() | "mud”.doThis() ) ;
Or generally, handle exid match.

Both handler and raise phrases must be in the same scope as the exception

declaration. Failing this, the universal handler "?7" can be used, but as the type of the
parameters aren't determinable statically they are no longer available:

sig() 710 ; {Where stg() normally returns an int}

An exception that is not caught by a handler propagates dynamically back

towards the top level; ML exceptions are multi-level. Handlers can be placed on any
expression.

An example:

exception bucker: string ;

val fx=
fet exception bucket string
in raise bucket "water”
end;

(/0 handle bucker ( "water"."wet" ) ) 7 "dry";
{Prints ‘dry’ rather than 'wet' because the exception in the packet is bound
to the ‘bucket’ declaration local to f}

) Should no discrimination on the excepted value be necessary, there is a
derived form:

expression] trap excptmidntfr expression2

A derived form of the raise expression can be used for exceptions of type
unit:

exception rhubarb: unit ;
escape rhubarb ;

. This is again a termination model of exceptions. It is multi-level, and
incorporates full parameter passing.

§2.4 ML Pose 3

In the Pose 3 UNIX implementation of ML by Cardelli [7], exception packets
are in fact string values, called exception strings. Exceptions are raised thus:

escape "fuss” ; ...
escape stringexpression ;

There are three forms of handler (trap constructs):

expressionl 7 expression?, ;
{Like the universal handler in the standard)



expressionl 77 expression? expression3 ;
{expression2 yields a list of strings. expression3 is evaluated
if the exception string is found in the list}

expressioni ? 5 expression? ;
{ The exception string is available to expression2 as the siring "s")

The functionality of Pose 3 exceptions is close to that of Poly. There is again
effectively one anonymous exception, and this iakes a string parameter.

§2.5 Mesa

Mesa [18] goes beyond the termination model and attempts to incorporate
more of the flexibility requirements identified by authors such as Goodenough. In
particular, Mesa includes resumption and retry as part of its exception model.

Mesa has a type constructor, resembling that provided for procedures, which
is used for the declaration of exceptions. Like procedures, exceptions can be
parameterized and can return values:

bucker: SIGNAL s: STRING ] RETURNS( i: INTEGER ];
-- Declares a new exception variable called "bucket”, that
-~ takes a string and retumns an integer

Raising an exception can resemble a procedure call but is prefixed with the
system word SIGNAL or ERROR. The call can be used as an expression or as a
statement. ERROR can also be used by itself to raise a system-defined exception.
The exception is raised immediately and not simply signalled (in the CLU sense).
Raising the exception bucket:

puddle«— SIGNAL bucket] "water” J ;

An exception variable must be initialized with a unique value, generated by
CODE:

buckete—- CODE ;

Exceptions are caught and handled using constructs called catch phrases.

Catch phrases can be placed on procedure calls:

puddle« rainf 3 1 bucket =

BEGIN

WriteLinel 5 1;

RETRY

END};
--Which means, should the exception "bucket” be raised by the call of "rain",
--catch it, print the string "s” {the parameter associated with "bucket" in the
--declaration of "bucket”}, then execute the entire statement again
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Catch phrases can also be attached to compound statements:

rhubarb: SIGNAL= CODE ;

BEGIN ENABLE rhubarh =>CONTINUE ;

Elf “rhubarb” is raised inside this block, jump to the next statement following the block
ND;

A number of different exceptions and handlers can be specified in a catch
phrase, by separating them with semicolons (the lot must be bracketed by BEGIN
... END if the ENABLE form is used). Exceptions can share a handler by writing
a comma-separated list.

Exceptions are caught by comparing their signal code (generated by CODE)
with that of each signal value in the catch phrase. Uncaught exceptions propagate up
the call chain (multi-level). All exceptions are caught by the name ANY although
any parameters will not then be available.

After the handler has done its business, it needs to specify where execution is
to proceed. There are three options in Mesa: CONTINUE, RETRY and
RESUME. CONTINUE corresponds to the flow of control found in termination
models, that is it means "go to the statement following the one to which this catch
phrase belongs". RETRY means "go back to the beginning of the statement to
which this catch phrase belongs”. RESUME is analogous to RETURN in Mesa
procedures, and similarly can be used to return values. Its effect is to make the
point at which the exception was raised look like a procedure call.

Mesa incorporates a multi-level resumption model of exceptions together
with full parameter-passing. Mesa has exception variables. It appears to be a very
powerful model, but the semantics can be difficult to grasp.

§2.6 Ada

Ada [1] is another language content with the termination model. Its
exceptions are named and new ones can be declared by the programmer. Ada
exceptions cannot be parameterized.

An example segment of code is given below. Exceptions may be raised
explicitly with the raise statement. Handlers are associated with a block, rather as
in Poly. The system word exception is placed at the tail end of a block and is
followed by a number of handlers. If an exception is raised between the begin and
exception, a handler is sought between exception and end. Unhandled
exceptions, or exceptions raised by a handler, appear in the enclosing block:
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declare CUSTARD exception ; --Looks rather like any other declaration

begin
declare RHUBARB: exception ;
begin
raise RHUBARB ;
exception
when RHUBARB =
PUT{ "Rhubarb" ) ;
raise ; --Propagate "RHUBARB" to the enclosing block
when CUSTARD =
PUT("Will not happen" ) ;
end ; )
exceplion

when others =PUT( "Prunes” ) ; --"others" catches any exception
end ; --This prints: RhubarbPrunes

Exceptions may propagate out of scope, in which case only others will catch
it, as above. They can however find their way back into scope again.

Ada exceptions are static creatures; consider this recursive procedure:

procedure PUDDING(I: INTEGER ) is
CUSTARD: exception ;
bepin
if / = 0 then raise CUSTARD ;
else PUDDING{(f - 1)
end if ;
exceplion
when CUSTARD =
PUT ( "Prunes” } ;
raise ;
end PUDDING ;

Unlike local variables, a new instance of CUSTARD isn't created for each
activation, there is only one CUSTARD. Thus a call of PUDDING( 4 ) gives us five
Prunes. Compare this with the equivalent in ML:

val rec pudding i=

let exception custard
in (if i = 0 then escape custard
else pudding{i- 1))
trap
(
outpus( terminal,"Prune” ) ;
escape custard
end ;
pudding(4);

This will give us just one Prune and custard (deriving from the innermost
invocation) exploding at the top level.
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Ada's exceptions can propagate back up several levels of procedure calls
before they need to be handled; it is multi-level.

§2.7 Modula-2+

‘The Modula-2+ system [21] incorporates a multi-level termination model of
exceptions. Exception names and associated parameter type are declared. At most
one parameter is allowed and this must be of the same type as could be returned by a
function. Exception names obey the normal scope rules but, as in Ada, they are
treated as static constants. The TRYstatement is used to attach handlers to statement
sequences. A RAISE statement takes an exception name, and, if approgpriate, the
single argument.

Optional PASSING and RAISES clauses are available to assist in the
documentation of code.

An interesting feature of Modula-2+ is the introduction of the idea of
finalization. Programming style frequently {oliows the pattern:

Initialization

i Main bod Access data

Finalization Release lock

If the second phase terminates preinaturely, it is usual that the finalization
phase will still need to be done. There are already a number of implicit finalization
actions commonly performed, such as the restoration of context on return frem a
procedure. Modula-2+ goes further by introducing a FINALLY construct that
allows the programmer to specify finalization actions. The requirement for
language support in this area is obviously related to exception handling issues, and
this is the context in which Modula-2+ introduces finalization. It is less clear why
FINALLY actions should only be entered following an exception.

§2.8 Yemini and Berry's replacement model

Yemini and Berry [23] describe their replacement model of exception
handling, using Algol 68 as a vehicle. They continue the cmphasis on a modular
approach to exception handling as initiated by CLU. The replaccment model
purports to support a large range of handler responses within a simple framework,




and is expression-oriented. An axiomatic semantic definition of the model has been
constructed, thus making it amenable to formal proof techniques. (In this context,
Luckham and Polak [13], have been able to provide an axiomatic semantics for Ada
exceptions by extending Ada specifications with exception propagation
declarations.)

Yemini and Berry identify the five handler responses that appear commonly
in the literature on exception handling. These are: resumption, termination, retry,
propagation and transfer of control.

The language construct that characterizes the replacement model is the
replace completer. This enriches the range of possible handler responses to
encompass (with a little help from the host language) all the responses mentioned
above. A handler can either replace the signalling expression, or it can replace the
proc invocation (the signaller) in which the signal occurred. Therefore the
signaller can be resumed or terminated respectively. The replace completer is
used in the termination case.

Yemini and Berry demonstrate the handler responses the replacement model
can achieve by using an example procedure called convert (reproduced in Figure
2.1). Convert takes a vector of integers that are assumed to be character codes, and
returns a string formed from them.

proc convert= (refl Jint code)string
signals(exc(int)(char,siring) badcode):

begin
string s:="";
for i from Iwb code to upb code do
int code i= codeli);
s:= 5+ if code i<char hi and code i2char lo then
repr code §
else
badcode( code i )
fi
od;
s
end

Figure 2.1

They provide an example to illustrate each of the five responses. The
examples for propagation and transfer of control are dependent on features of the
host language - Algol 68's skip and goto. The retry example supports just one
retry before giving up. The examples for resumption and termination show the
characteristic feature of the model from which the other responses are partly
derived. Consider:
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do
print( convert( nums ) );

od
on badcode=(int i )(char string):
non

no

The syntax shows that the exception is parameterized by an integer. The
badcode handler can either replace the signalling expression with a char, or the
signaller itself with a string. (The third possibility is that a transfer of control
occurs before the handler is completed, for example another exception, or a goto.)
By omitting the replace completer we are choosing to replace the signalling
expression with the character "7".

We can compare this with the termination example in which convert is
terminated and its invocation replaced with an empty string:

do
print(_ convert( nums ) );
od
on badcode=(int i )(char string):
" replace
no

Every closed construct from which an exception may arise - a procedure or a
block - has a signals clause atiached (Figure 2.1 again).

We could have rewritten these two examples without any exception handling
apparatus: the resumption by passing a handling procedure explicitly to convert and
the termination example by using existing conditional expressions i conjunction
with termination codes. The issue is whether the extra syntactic support is
warranted. It is not proven that resumption warrants it. It is likely that termination
has benefited. There may be a conceptual advantage in relating resumption and
termination by this provision of similar syntax.
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§2.9 In summary

We conclude this section with a table to summarize the characteristics of the
exception models discussed above (Figure 2.2).

Handler responses supported

Termination | Resumption |  Retry Exprossion- | ititevel | Parameters

Modula2+ |/ S N

Figure 2.2 Summary of exception models as they appear in & number of languages.

Note that the purpose of this table is to suggest the flavour of each model. In 2 number of
cases there is room for debate. For example CLU is essentially single-level yet it alfows
the system exception "failure” to be multi-level. Again, the "retry” response can be coded
in a number of these languages although no special language support is provided
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§3 Exception handling in PS-algol

In this section we present our model of exception handling in PS-algol. We
lead into this by discussing the pressures that helped to shape our design. The
PS-algol model is presented, together with some simple examples that illustrate
some of its features. (A programmer's guide to PS-algol's exceptions and events
appears as Appendices 1 and 2.) This is followed by a consideration of the
relationship between events and terminating exceptions. The section is concluded
with a discussion of exception handling issues that arise froin persistence.

§3.1 Influences on the design
§3.1.1 Requirements

The following requirements were placed on the prospective exception
handling mechanism for PS-algol:

» Termination should be the primary handler 1esponse.

* Some programiners identified a need for resumption.

» Handlers should be expression-oriented.

= Exceptions must be able to propagate.

* Exceptions should be parameterizable to provide context.

* The design should show an economy of concepts.

» Exception handling must be orthogonal to the rest of the language.
= Enhanced readability and maintainability.

* Provide encouragement to the construction of robust programs.

Other issues became apparent as the design proceeded: should exceptions be
objects in the language? Should handleis be objects in the language? What
consequences are there for persistence?

§3.1.2 Support for resumption

To what extent could the language already meet the exception handling
requirements placed upon it? We have already seen that resumption can most easily
be understood when it is thought of as implicitly passing a handler to an abstraction.
If the handler is a procedure, and procedures have fuli civil rights, as they do in
PS-algol, then we are already in a position to model resumption in our language. A
procedure may be passed tv an abstraction as a parameter, or by being placed in a
shared data structure. The issue here for PS-algol is whether additional syntactic
support is desirable. Yemini and Berry opted for the syntactic sugar, yet to
understand the behaviour of their resumption mechanism we find ourselves
translating it into terms of the passing of procedural parameters. Syntax should be
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driven by observed needs. Current patterns of use in PS-algol have not
demonstrated that a need exists. We allow the principle of economy to reject the
possibility of additional syntax.

§3.1.3 Matching exceptions with handlers

Exceptions must be matched with their handlers. In Mesa this is done by
declaring special exception objects and assigning a value to them. The match is
achieved by comparing the value of the exception raised with the values of the
exceptions specified in the catch phrase. Ada and ML also declare exceptions for the
same end, although in their case they are static constants. If we were to introduce
exceptions as a new type, we would open up an entire can of worms, bearing the
label "data type completeness”. Poly succeeds in avoiding the need to name
exceptions by having a single exception condition that is always associated with
some string value. The string is made available to the one possible handler. It is left
to the programmer to distinguish the nature of the exception using the normal string
comparison operations available in the language. This mechanism is simple and
appealing, but does not support parameterized exceptions - the programmer must
resort to a shared data structure. This obviates readability and leads to high
inter-module coupling.

In PS-algol there are the complementary notions of structures and the data
type pntr that can rove freely over the universe of possible structure instances.
Only when a structure field is dereferenced do we need to know the actual type of
the object we have in hand, to this end every pntr object carries with it its structure
class identifier. It is by this mechanism that PS-algol achieves dynamic binding. The
fields of a structure can be any combination of valid PS-algol types. By replacing
the excepted string value of Poly with a pntr value, we can effectively achieve
parameterization.

To discriminate between exceptions we can use the existing pntr comparison
operators of PS-algol. For the programmer to be able to do this the excepted value
needs to be made available to the handler. It is unsatisfactory that the programmer
should have all the responsibility for discrimination. It is easy to imagine extensive
case or if clauses littering the code. There is a clear need here for some syntactic
support for the discrimination process.

In Poly the handler is drawn from a subset of the possible procedure types
expressible in the language. Its return type must match that of the type of the
expression on which it is placed, and it must take a single string parameter; it is the
latter that makes the excepted value available to handler. A direct analogue in
PS-algol would require a single pmntr parameter. The idea of
handlers-as-procedures has a prima facie appeal, the big advantage is that we are
able to wrap handlers up concisely, pass them around and store them, without
having to introduce a new data type. It is not clear whether we would need this
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degree of functionality. The alternative is to allow the handler body to be an
appropriately typed clause and to provide a means of formally declaring the
variable to hold the excepted valie. There are circumstances in which the excepted
value is ignored, and so there is no wish to declare it formally: if this were to be
supported by the existing procedure heading syntax we would have to specify that
only two groups of procedure types - those taking just one pntr parameter and
those with no parameters - are valid in the handler context. There is benefit in
having syntax that constrains the parameter type of the procedure. The
programmer isn't misled into writing programs that won't compile.

§3.2 The PS-algol model

. Consideration of the requirements and points covered in the previous
section, led us to the syntax that is set out in Appendix 1.2.

There is no additional syntactic support for resumption, but we provide a
new statement to support termination, and a new handler construct, used to
determine the flow of control following termination.

To terminate a closed construct we have a terminating raise statement. An
exception always has an associated excepted value of type pntr. Thus:

raise foot( "big" ) !In the scope of the declaration: structure foot( cstring size )
IThe excepted value is an instance of foot

It is a statement rather than an expression because to make it of arbitrary
type (determined by context) would be alien to PS-algol.

Handlers are placed dynamically as the program proceeds. The runtime
system maintains a virtual stack of handlers.* The when statement pushes a handler
onto this stack. It is a property of the handler where control passes on its
completion. Upon exiting from a closed construct, all the handlers loaded from
within that construct are popped from the stack. An exception is fielded by popping
handlers from the handler stack until a match is found. Thus at any one time an
operation is surrounded by an onion skin of protective layers. So we might write:

write "This block completed ",

begin
when any do "with a terminating exception”
raise nil
"normally” INever reached

end,"n"

This illustrates a number of features. The handler construct is

*The stack model of exception handling is characterized more precisely by a stack of
handler stacks. A handler stack being associated with every closed construct.
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expression-oriented, with a void statement being a special case. The handler
replaces the unexecuted.remainder of the block. The keyword any is provided as a
wildcard to caich any exception (in fact this would be the only way of catching this
exception because the structure class of nil is not expressible in PS-algol). To field a
specific exception, or group of exceptions, a list of structure names would replace
the any. For example:

structure foor( cstring size )
when foor do ...

when foot, error.record do ...

If we wish to field the exception and to identify it ourselves, or if we wish to
otherwise interrogate the excepted value, we can declare a local constant to hold it:

structure foot( cstring size )
when foot, error.record as e do if e is foot then ...

when foot as ¢ do write "That was a ",e( size )," foot'n"

Each time we use the when statement we wrap a tighter protective layer
around the code that is subsequently to be executed:

let p = proc()  !raises foot(cstring) or error.record(cstring,estring cstring)

begin
end
when any do ... 1A
when foot, error.record as e do ... iB
when foot as e do

raise if e( size )="" then error.record( ... ) eise ¢ IC
O

If the call of p causes a foot to be raised, the handler at C is entered. If C
propagates foot (notice how we can explicitly propagate an exception) then the
handler at B is entered. If B propagates foot further (or B or C or p raises some
other exception, perhaps as a result of a system event), the catch-all handler at A
will pick it up. If p had raised error.record, the handler at C would have been
popped from the handler stack, but the handler at B is able to field it. Of course if p
completed without raising an exception, all three handlers would have been popped
at the end of the block.

Resumption from exceptional conditions detected by user programs is
achieved through the use of first-class procedures. To be able to resume from
exceptional conditions detected by the PS-algol machine itself (it is convenient to
refer to them as system events to distinguish them from exceptions that invariably
cause a termination) we make a data structure visible in the standard environment.
We are then able to use first-class procedures ourselves to model resumption from
system events. The PS-algol standard constant events is a pointer to a structure
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containing a collection of event procedures. Event procedures "handle" events.
When the PS-algol machine detects an event (some hardware condition, or perhaps a
runtime error such as a failed dereference) a corresponding procedure from the
events structure is called. Letting the procedure return normally allows us to
resume from where we left off when the event was detected. By having event
procedures that return values we are able to provide replacement values for failed
operations. It should be noted that we consider the details of the event mechanism to
be experimental, and that we anticipate refining them when we have user
experience.

This model for resumption from system events is a generalization of an idea
present in Algol 68. Algol 68 had event routines defined in the standard
environment that responded to particular transput conditions. The programmer
could replace these event routines with procedures of their own.

Figure 3.1 is a simple example illustrating how an event procedure might be
used. The example is of a screen-saver that is toggled when a keyboard interrupt is
received. The first interrupt clears the screen and causes the time to be repeatedly
printed at random positions. A second interrupt restores the screen and returns us
to the main program.

events( Interrupt.event ):=
begin
let hiding := false
let save = image X.dim( screen ) by Y.dim( screen ) of off

proc() My interrupt routine
if hiding then hiding := false else
begin
let the.time= time()
copy screen onto save
x0r screen onde screen
hiding := true le- A
while hiding do
begin
let x = random() rem X .dim( screen )
let y = random() rem Y.dim( screen )
print the time at x,y IDisplay
fori=1te 100 do () Delay
print the time at x,y using xor {Erase
end
copy save onto screen
end
end

!Main program

Figure 3.1 A screen-saver toggled by keyboard interrupts

Figure 3.1 also serves to illustrate a problem associated with the use of
asynchronous events. Consider the effect of receiving the second interrupt
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immediately before hiding has been set true at A. The second activation of the
interrupt routine will erroneously conclude that it is the first. Havoc ensues. What
we have done is to introduce a form of concurrency. If we are to safely share data
structures in a concurrent system, we will need support from the language. Krablin
[11] has confronted concurrency issues in persistent programming languages, and
has devised the necessary constructs in a concurrent version of PS-algol. We can
safely handle asynchronous events by using the orthogonal atomic statement or its
equivalent.

Figure 3.2 shows how we might make use of a system exception raised by
one of the system event procedures. The system exception StructureAccess is raised
by the event procedure of similar name. The event is caused by dereferencing an
object of the wrong class. (See also Appendix 2.2.) We show how a routine might
be written that extracts a library procedure from a database. The routine assumes
that most people will have used the same convention in storing their libraroy
routines, that is they wrap it in an instance of a particular structure class. It is
nevertheless capable of coping with libraries that don't adhere to the convention.

let recover = proc( cpatr p ->proc() )

begin
1Generate a procedure to do the job
1Call the compiler
Dot

end

fet Iib = proc( cstring key,fab ->proc() )
begin when StructureAccess as e do recover( e )

structure proc.container( proc() the proc )
s.dookup( key,tab Y the proc)
end

Figure 3.2 A routine to extract procedures from libraries
This technique may be of particular value in a program development
environment. The developer may build an impenetrable fire-wall to protect
themself, by for example, replacing the default events( Uncaught.event ) (see

Appendix 2.2) with a procedure that calls a browser, or they may have an
arrangement as in Figure 3.3.

fet test.program = procf); ...

fet finished := false

repeat
be[g)',in whenanyasedo ... 1Lookup you favourite browser
tand browse the excepted value
test.program()
Sinished = true
end IThen try again ...

while ~finished

Figure 3.3 Protection from insecure code
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§3.3 The relationship between events and exceptions

In the PS-algol model we've been describing, an event causes an immediate
procedure call. An exception causes a termination and unwinding followed by what
can be thought of as a procedure call: a transfer of control followed by a procedure
call (or vice versa). In PS-algol the type of the exception handling procedure is
constrained by the syntax to fall within a subset of the normally expressible types. A
terminating raise is a selective procedure call returning to an enclosing context.
The call of the event procedure is a special case of the terminating raise (no net
transfer of control).

If this difference between events and exceptions were to be abstracted away,
there may be interesting implications for what a procedure call is. Does a
generalized procedure have greater flexibility in where it returns to? The
terminating raise syntax provides a means by which a procedure call can include a
recommendation of where the procedure is to return to.

§3.4 Issues arising from persistence

An exception in PS-algol is a transient condition. Excepted values may be
any pntr, and this is exploited in handler selection: handlers discriminate
dynamically between exceptions on the basis of excepted value. Inasmuch as
exceptions are transient conditions, and excepted values are normal PS-algol
objects, there are no new implications for persistence. Environments will be
retained, or recovered, as necessary. The POMS Persistent Object Management
System [6] ensures that any problems come out in the wash.

Can we abstract over the idea of exceptions? We have exceptions that occur
dynamically (related to the state of active data), could exceptions occur statically
(because of a value in a static data structure that is in persistent store) [4, 5]?
Dzmons inhabiting persistent store might detect exceptional conditions. We've
been placing handlers along the route taken by the program as its fate unfolds; wha
would placing handlers on static data look like? '

We have been thinking of exceptions as being deviations from an algorithm.,
Could we expand the idea to include deviations from a value, or range, or state?

Our approach in the present model has been to lay down finer and finer,
increasingly specific, handlers as we proceed dynamically. The handlers persist so
long as the dynamic history persists. This is necessarily transient. What if we were
to lay down layers of handlers around some static state - shells or skins of protective
handlers? Exceptional conditions might be detectable by some demon. The "test
and raise” would map onto one of these demons. The nature of the test (the
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constraints on some stored object) might be a property of a particular object, rather
than a general directive to a demon. The nature of the exception might also be left
as a property of the object. There are two extremes: we could have a multitude of
dzmons, one per object; or more sensibly, one kind of demon with a
constraint/exception pair associated with each object.

But stored data is by nature static (or is it, in a world full of demons that are
forever rearranging and improving things?). We have been implying that stored
data can exist that doesn't conform to its constraint criteria. These ideas are more
useful if it is possible to change the constraints on objects themselves. This is
meaningful if the constraint is placed on a class of objects. So we may store a
description of a class of objects, with this description including a specification of
constraints placed on instances of such objects, alongside real instances of that class.
Now the constraint is changed. The stored instances become invalid. Next time the
instance is accessed, or perhaps a constraini-checking demon finds it, an exception
is raised. The exception would have been specified as part of the class description.
There are two possibilities for placing the handler. In a system in which it is
demons that detect the constraint violation, the handier could either be specified as
part of the constraint, or as part of the definition of the demon. In a system in
which the violation is detected by a user program, the handler could again be
associated with the constraint, or as part of the program. There is no real difference
here between demons and user programs. The demon could just be an ordinary
program that browses over the whole store {or at least over some well defined
region of the store - the store may be infinitely large, and there are rules of access to
be considered). A default handler could be provided for the case when no
appropriate handler has been supplied. This would catch any constraint violation.
Similarly, a constraint violation with no specifically provided exception could raise
the general exception ConstraintViolation.

These considerations of exceptions in an essentially static context naturally

extend back into the dynamic context of the present work. Many of these issues have
already been explored by Owoso [19].
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§4 Implementation

In this section we give an overview of the implementation of programmer
exceptions and of system events. For background material and for an explanation of
terminology, we refer the reader to the PS-algol Abstract Machine Manual [3]. We
include also some thoughts on efficiency.

§4.1 The exception mechanism

Our implementation of the exception handling mechanism involved
modifications to the compiler and to the runtime system. The only change to the
PS-algol abstract machine is the introduction of two new exception processing
opcodes: RAISE and LOAD_HANDLER. There are no new types of heap object,
and no modifications to the structure of the existing object types; in particular,
frames remain unaltered. '

§4.1.1 Compiler

We assume here some familiarity with the structure of the present PS-algol
compiler. For an exposition of single-pass recursive descent compiling, on which it
is based, we refer the reader to Davie & Morrison [9].

The table of reserved words in the lexical analyzer has been expanded. Two
new recognizer procedures (when.decl and raise.clause) go into the syntax analyzer,
and two new opcode-generating procedures into the code generator (raise.op and
load hndlr.op).

There are minor additions to proc.decl and to the other block-recognizing
procedures, in support of handler type-checking, and to manage the transfer of
control following the completion of a handler.

The compiler always arranges for space on top of the pointer stack to
accommodate the excepted value. Handlers themselves are compiled as procedures
that take a single pntr parameter. This will be the excepted value. When an
exception is raised at runtime, handlers are popped from a virtual handler stack that
reflects the dynamic history of the program. Each popped handler is given the
opportunity to field the exception. The list of structure names given in the handler
is expanded into a series of tests. These tests form a guard. Each test is on the class
identifier of the excepted value: is it the same as the class identifier from which the
structure name was taken? The compiler does this by planting code at the start of
the handler's code vector. This code is composed of jump instructions and the
structure-comparing IS opcodes already present in the abstract machine. A RAISE
is generated for the case when a match fails. If the guard is passed, then the match
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has succeeded, and the handler-proper is entered. If the match fails, encountering
the RAISE opcode propagates the exception back to the next handler.

Each when statement results in the generation of a LOAD_HANDLER
opcode. This new opcoede expects two values in the byte stream. The first is a
procedure number, identifying the whereabouts of the handler closure in the vector
of closures associated with the current code vector. This procedure number is
immediately available to the compiler as it has been maintaining a count.

The second value is a little trickier to obtain. It is needed by the interpreter
to calculate the return address from the handler. This must correspond to the block
exit of the enclosing block. Recursive descent compiling frequently requires code
to be generated before all the facts have been gathered. There is the apparent
paradox that we need to have completed compilation of the biock, and so have
determined where it ends, before we can compile this component of the block. The
compiler gets round this kind of problem by buffering the code vectors. Holes can
be left in the byte stream that can be filled in as knowledge is acquired. This is
typically required for forward jumps. We make use of existing tools in the
compiler to back-fill the return address offsets: A hole is left in the code vector
following each LOAD_HANDLER. In any given block there may be a number of
LOAD_HANDLER opcodes (each corresponding to a when statement). The retum
address holes are chained together. On reaching the end of the block we can follow
the chain back to the first hole, filling in the return address offsets as we go. See
Figure 4.1.

(begin N blk.enter blk.enter

when any do... load hndIr load hndir

when any do... whichOne whichOne

‘when any do... =] ) )
S y load hndlr load.hndlr

(C whichOne whichOne

Figure 4.1 The use of the —_
compiler procedure setlab. The
return address from each handler
in a block is the same, the blk.exit load.hndlr load.hndir
opcode, whose whereabouts whichOne whichOne
isn't known until the end is
reached. A hole is left in the §— —
code vector at each load hndlr. -
The holes are chained together. T e
When the blk.exit address is bik.exit blk.exit G
discovered, we chain back,
filling in the offset as we go.
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In summary: Handlers are compiled as though they were ordinary
procedures with a single pointer parameter. The compiler plants guard code at the
beginning of the handler code vector that will result in the excepted value being
raised again unless it satisfies the match criteria. The effect of the raise opcode is to
scan down the pointer stack of each frame in the dynamic history, searching
backwards through time. The scan terminates as soon as a handler is found. It is the
responsibility of the compiler to plant discriminatory guard code in each handler.

§4.1.2 Interpreter

The changes in the interpreter to support programmer exceptions are limited
to the main fetch loop. There are two new opcodes: RAISE and
LOAD_HANDLER. We describe here the actions taken by these when they are
encountered at runtime.

LOAD_HANDLER takes two values from the code stream: an identifying
procedure number, and an offset to the exit instruction of the enclosing block.

LOAD_HANDLER creates a PS-algol structure class instance - the handler
structure. The handler structure is given a recognizable class identifier that cannot
be confused with any a user program could create: we use the string "H" from the
single character table. Using the procedure number, a reference to the handler's
code vector is taken from the vector of closures and placed in this structure, Its
static link is made to the current frame. The final field of the handler structure is
calculated by converting the end-of-block offset to an offset from the beginning of
the current code vector - it is then in the same form as the RA field of frames.
Finally the handler structure is loaded onto the pointer stack. Figure 4.2 shows a
representation of a handler structure.

STR H Figure 4.2 Handlers are reached
ING from the pointer stack. Each is
wrapped in an easily recognized
structure to distinguish them from
other objects. This structure also
STR | class | proc | stat |return supplies the handler with its return
UCT | ident | addr | link | addr address.
COD
VEC || guafd...

RAISE pops the excepted value from the top of the pointer stack. The
dynamic chain of frames is scanned until a handler (any handler) is found. Frames
are tidied up and discarded as we go. For each frame, we scan down the pointer
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stack in search of an object with the class identifier of "H" - that is, we are looking
for a handler structure. If we unwind to the global frame (recognized by having a
dynamic link of zero) the system event Uncaught.event is flagged. If a handler
structure is found, we extract the closure and apply it, passing the excepted value as
the parameter and supplying the previously calculated (by LOAD_HANDLER)
return address as the RA in the new frame. The pointer to the handler structure on
the stack is zeroed out, to make sure it is never found again (see later). Be careful
that the popped excepted value isn't cleared away by the garbage collector before it
finds its way into the new frame.

§4.1.3 The dynamics of raising and handling exceptions

This section draws together the previous two by considering the dynamics of
raising an exception.

A pointer expression has been evaluated and the result, the excepted value, is
left at the top of the current pointer stack. RAISE pops this value and searches back
through the dynamic history for a handler. It begins with the current frame, by
scanning down through the pointer stack for a handier structure. If no handler
structure is found, the frame is tidied and discarded, the dynamic link is followed,
and the pointer stack of this new frame becomes the subject of the scan.

When a handler structure is found, the handler's closure is extracted and is
applied. The return address is supplied from the handler structure.

The compiler has planted a guard at the beginning of the handler code vector
to test whether the handler is able to field the exception. Failure to pass the guard
initiates a RAISE which propagates the excepted value to an older handler. Note
that the first frame to be inspected following the failure to pass the guard will be the
frame in which the unsuitable handler had itself been found. The pointer stack of
this frame was not retracted in case garbage collection strikes. To avoid cyclic
attempts at entering the unsuccessful handler, the handler structure pointer on the
stack is set to nil immediately before entering a handier. The cycle of "raise »
handler entry » test » raise” repeats until the test in the guard code of the handler
succeeds, and the code of the handler-proper is executed. The handler terminates
normally when a conventional return opcode is performed.

The following sequence of panels illustrate the implementation of

exceptions. Consider the segment of PS-algol source code shown in Figure 4.3.
The segment includes a block within which two handlers are set up, before
encountering a raise statement. (StringToolong is an exception raised by the
system if an attempt is made to construct a string whose length exceeds the limit
imposed by the implementation.) In the example, the exception will not be fielded
by the second handler (the one placed to catch StringToolLong), but will be caught
by the first (any matches all possible exceptions). The code of the first handler will

28

be substituted for the code that would have completed the block.

4 R
i;(.egin
.w"hen any do ...
when StringTooLong  do ...
raise ril

end

e

\_ J Figure 4.3

Figure 4.4 shows the three code vectors that the compiler generates for this
segment. The longest corresponds to the main segment. The two shorter ones are
the handlers. Opcodes are indicated with characters in the outlined font style. The
outlined ellipses indicate opcodes that don't directly concern us here. Code vectors
(CODVEQ), frames (FRA) and structures (STRUCT) are all self-describing objects
found in a PS-algol heap. The procedure numbers in the first vector identify the
two handlers. The return offsets give the distance in bytes to the block exit
instruction (this offset is shown with bracketing horizontal lines).

BLK LoA return LOA| proc | return RAI BLK
1 ENT HAN offset HAN| no |offset EBXI

In Figure 4.5 we see the principal code vector in the process of being
executed. Associated with the activation of this code is a frame object. Every block
or procedure call has a frame. Frames hold the two local stacks associated with each
block - a pointer stack and a main (non-pointer) stack - where local variables are
kept. Frames are linked together in a chain that forms the dynamic history of the
program. The PS-machine has a number of registers that contain active pointers,
In the diagrams these are shown as triangles. The code pointer in Figure 4.5 is
shown just beyond the two in-line values that have been supplied to the
LOAD_HANDLER of the first handler. Other registers mark the bases and the tops
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of the current stacks (msb, psb, msp and psp). A frame that has been put to rest for a failed to pass the guard and the exception was raised again. No handler had been
while has the height of its stacks encoded within it in order to free the fast registers.
The diagrams show the stack top pointers of quiescent frames as empty triangles. In
the figure, block entry has already been performed and a new frame created. We

can see that it is the currently active frame because the pointer registers are RA m lml

referring to it. We have joined the diagram following the loading of the first — ATAN ¥ fink 1add 1
handler. A pointer at the top of the active pointer stack is pointing at a handler ,»~ D (BLK| |LOA| proc |reun| |LOA] proc |retun| Ag BLK
structure. In turn, the handler structure leads to the code vector of the handier. C || ENT|"™"| HAN| no |offset|"'| HAN| no |offset A EXI

By the time we reach Figure 4.6 a handler structure for the StringTooLong
handler has been loaded onto the stack. In fact we have proceeded to the stage at
which an excepted value has been lefi on the top of the stack, and the RAISE
instruction is about to take place.

In Figure 4.7 the RAISE has been performed. The second handler, the last

handler 1o be pushed onto the virtual handler stack, has been located from the frame i
that had been active. The position of its top-of-stack marker shows the excepted
value 1o have been popped from the pointer stack. The pointer to the handler has ]
been removed (set to nil) from the stack. Control has passed to the code vector of
the handler, as shown by the position of the code pointer, cp. We are in fact in the
process of executing the guard. The current frame is now that of the handler, and it
is to here that the excepted value has been copied. Note how the frames are chained
together by their dynamic link.

Figure 4.8 tells us that the first handler to be tried was unsatisfactory - we
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found on the frame of the handler and so the previous frame had been tried again.
The first handler to be loaded was found successfully. Both handlers have now been
removed from the virtual handler stack. The current frame is that of the new
handler. The diagram shows that the guard has been passed and the handler-proper
is being executed. When the handler completes, its return address will set the cp to
the block exit of the principal code vector.

Finally, Figure 4.9 shows that block exit successfully completed. The active
frame has been reset to that of the main segment and we are executing the final
ellipsis from the panel of Figure 4.3.
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§4.2 System events

This section divides roughly into two: compiler-related aspects of the
implementation of events, and the runtime mechanism for dealing with events.

§4.2.1 Compiler-related aspects

To support event handling we have made visible a global data structure
accessible through the standard pntr constant events. Events has been placed in one
of the free slots on the standard frame - it is declared in the standard declarations
file read by the compiler. Events is a pointer to an instance of the class identifier
whose name is events.strc (see Appendix 2). Events.strc has been put into the
PS-algol prelude. It is a structure whose fields are procedures. There is an event
procedure corresponding to each possible system event. On detection of an event,
its event procedure is called. A structure is the most straightforward way in
PS-algol of grouping together procedures of mixed type.

All but two of the event procedures are written in PS-algol. The runtime
error interface to the user has hitherto been through the interpreter functions
error() and ferror(). This interface has been retained for some particularly
obnoxious system events which pre-empt the application of a PS-algol procedure -
for example heap overflow - and for the multitude of "impossible" errors that might
be caused through a bug in the implementation. So there are two fields of the system
events structure that correspond to these functions. They are there to provide a
consistent inferface.

A significant proportion of the PS-algol runtime system is itself written in
PS-algol, for example the real i/o, the outline line-drawing package and some of the
image functions. These detect error conditions and report them. We have modified
the real i/o and raster graphics packages (in fables.S and raster.S respectively) to
invoke an appropriate event procedure instead. The default actions mimic the
original.

Of those procedures written in PS-algol itself, most make use of the new
exception mechanism, and simply raise an appropriate exception. The class
identifiers used by these exceptions are also declared in the prelude (see Appendix
2). The program events.S wraps all these event procedures up in an instance of
events.strc, and commits this to the system database.

At runtime the POMS code picks these procedures up and initializes events,

with the procedures placed in a new instance of events.sirc. This has the advantage
that every program could rely on picking up the same event-handling objects.
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§4.2.2 Duplicating the events.strc, a standard frame problem

It would have been good to have taken the same structure instance from
persistent store as well, so that programs would always have identical components to
their standard frames. The problem was in the requirement to make some of the
fields writeable. It would not be a good idea to allow programs to make changes to
the system that would show up in other people’s programs. To achieve identity of
cevents the program finalization routines would need to discard changes made to the
standard environment. This might be reasonable, it already happens with screen
and the printing field width variables. Conceptually though it would be better to
move screen, events and any other object that might be modified by user programs
into a frame that is local to the user's program (like the current global frame), and
which it is understood is initialized afresh by the system for each interpreter
incarnation. The present arrangement is rather ad hoc. Although in name we have
a standard frame, it is only safe if the programmer assumes that their standard
environment may have changed since the last time a program was run. We could
otherwise write programs that showed up a conceptual inconsistency. Two
different "standard" objects can be taken by a user program, packaged in a
structure, and stored in a database. A subsequent program can extract these objects
and compare them for equality with their analogues in todays standard frame. If we
are comparing standard procedures that are built into the interpreter, because of the
way the POMS works they will certainly satisfy the equality test; if they are standard
procedures implemented in PS-algol they might be the same; but if they are one of
the standard images, or in our case, the events structure, they will certainly be
different. Yet it is thought of as a "standard" environment. It would be useful to
have these issues clarified.

§4.2.3 Runtime aspecs

There are problems in the provision of diagnostics following an uncaught
exception. We are unable to provide a trace back of line numbers, or procedures
invoked, because of the tidying up of frames performed during the search for a
handler - the dynamic history is necessarily thrown away so that it is not retained
unnecessarily over garbage collection, or by the POMS. Our working solution for
this was to provide a new private standard procedure, called post.mortem, that
yields the line number at which the last event (other than Uncaught.event) occurred.
This is used by the default handler provided for the Uncaught.event event.

There are a number of better and more comprehensive solutions available,
although they tend to be expensive. A record of the dynamic history could be
frozen at the time of the event: expensive of processor and requiring a quantity of
store to be allocated that could not be determined statically. We could delay the loss
of dynamic history until after the exception has been fielded - but this would require
two traversals of the path. Less ambitiously, we could clear the history but retain
for a while a pointer to the signallers frame. In the same vein, we could have a
special pointer in each frame that is filled in with a link to the child frame as the
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exception unwinds, and that might be ignored by the POMS. All of the last three
solutions could provide the wherewithall to support interactive post mortem
diagnostic aids (a browser), either for PS-algol programmers, or for PS-algol
implementers. A doubly-linked structure for browsing could be built by retaining
the dynamic growth, along with the unwinding path. The post.mortem PS-algol
procedure could be enhanced by causing it to initiate such a debugger.

Events that are detected by those parts of the PS-algol system that are written
in PS-algol, can call the appropriate event procedure direct; no further support is
needed. Unfortunately there are two other classes of events: those detected by the
PS-algol machine itself (that is, within an opcode), and those that are reported by the
machine that is host to the PS-machine. The latter are essentially asynchrorous and
are the least tractable.

The problem with these two classes is that of making sure the PS-machine is
in a consistent state before invoking the event procedure - that the machine's
registers are correctly set (stacks the right size, the code pointer pointing at a real
opcode). Because of the structure of the interpreter - the fetch loop is one large
switch statement with most of the opcodes written as in-line code - it would, in a
large number of cases, be possible to tidy up from the current opcode, set up the
frame for the event procedure by performing an APPLY operation, and then to
jump to the top of the fetch loop. But as the interpreter has grown it has become
more structured, and parts of opcodes now involve function calls to quite
sophisticated routines: this means that a simple jump to the top of the fetch loop is no
longer feasible. This problem has been solved during the implementation of the
edgeViolation mechanism in the print statement, by making a nested call of the
execute_code() function whose body is the fetch loop [2]. However, we are obliged
to provide a means by which the asynchronous host system events can be supported.
Having provided that support there is nothing to be gained from using a separate
mechanism for the events detected by the PS-machine.

Both these two classes of events initiate an event handler through the same
basic mechanism. We introduce two interpreter functions: sys_error() and
sys_event(). Sys_error() is called, when an event is detected, to set the flag sepend
to a non-zero value, that identifies the event. Sys_error() is called on receipt of a
signal from the underlying host machine, or directly by the PS-machine.* At the
same time, any parameters that are to be passed to the event procedure are placed in
a dummy PS-algol frame, accessed through the PS-machine pointer separams. The
frame is a proper PS-algol object, made accessible to the garbage collector. It is
created, with a fixed size, at interpreter initialization, by the PS-machine function

*The version 4.0 implementation of the PS-algol interpreter doesn't call
sys_error() when the PS-machine detecis an event, in the way described here.
Rather, there is an immedijate call to sys_evens(), thus setting up the new frame
and code pointer value before completion of the offending opcode. This requires
great circumspection to be sure that the completing opcode doesn't damage the
registers.
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init_events(). It is made accessible to the garbage collector by placing it in the
dummy PS-algol vector of pointers, called save_vec in the PS-machine, which the
garbage collector always checks.

At the earliest opportunity following detection, we return to the top of the
fetch loop. At the top of the fetch loop we always need to check the state of the
events-pending flag. There is no safe way of coding round this problem. if we are
to support asynchronous hardware events. A performance degradation of up to 5%
has been measured, because of the frequency of the test, but this is tolerable. Having
been caught by the flag, the flag is cleared, and the interpreter function sys_event()
is called. '

The event's identification is passed to sys_event(). This identification is used
by sys_event() to index into a static table called se_map. Each entry in se_map
describes an event procedure. Two fields of the entry describe how to restore the
local stacks to a consistent state. A third supplies an offset in the PS-algol events
structure, to the event procedure needed. Note that there isn't a one-to-one
correspondence between events and event procedures - several events map onto the
same procedure. The final two fields describe the number of main and pointer stack
parameters that are to be copied from separams to the frame being created for the
event procedure.

Sys_event() is like a modified APPLY opcode. It differs in that the closure is
extracted from the PS-algol events structure, and that the parameters are taken from
separams rather than from the local stacks. In addition, if the event is identified as
being due to an uncaught exception, the return address from the event handler is set
to be the FINISH opcode of the main program. Where it is feasible, the mechanism
described allows control to resume, when the event procedure returns, where it left
off - at the opcode following the event. In those circumstances where this is not
possible, we enforce termination by orthogonal use of the new exception raising
mechanism in the default procedure, and by making the event procedure field a
constant.

In summary: from the implementation point of view there are three classes
of events:

» those detected by the parts of the PS-algol runtime system that are
implemented in PS-algol itself,

« those detected directly by the PS-machine, and

= asynchronous events detected by hardware.

In the first class, the appropriate event procedure is called directly, having
first been found through the events structure, now located in the standard
environment. The remaining two share the same mechanism: a flag is set with some
identifying value, and the opcode continues to completion or, at least, resets the
PS-machine to a consistent state. The next fetch cycle detects that an event has been
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flagged, and an application of the appropriate event procedure is initiated.

§4.3 Future optimizations

To a certain extent we sacrificed efficiency of operation to achieve
compatibility with the existing system. For example a previous incarnation
managed the handler stack in a new area of the frame; the present incarnation has a
virtual handler stack that is interweaved with the normal pointer stack, this has
increased the cost of searching for handlers but has kept the machine simple. The
current system always involves a dynamic search for a handler. We anticipate that
there will be frequent opportunity for an optimizing compiler to associate a
potentially raised exception statically with its handler, and to generate appropriate
in-line code. For example:

structure abandon( cstring problem )
when abandon as the do write the( problem )

if ... do raise abandon( "sinking ship" )

So long as there is no path through the code that could set up a relevant
intervening handler, the raise statement can be replaced by a direct call to the
handler, immediately followed by a jump instruction. In this case, the guard placed
in the handler would be redundant, and the handler call could be flattened out. If
this in line replacement is to be done safely in the context of asynchronous system
events, we need to be sure that no event procedure can raise abandon (in this
example). It is as though there is always the potential for a procedure call between
specifying a handler, and the end of the closed construct. In the context of first class
procedures this problem is non-trivial. .

There are two observations that can be made relating to optimizers that
flatten blocks. The first is to note the possibility of statically associating exceptions
and handlers, as touched on above. The second is to draw attention to the question
of how to achieve the appropriate dynamics: Consider removing the block entry and
exit from a block containing the handler A. The return address from A will need to
be set to a point in the middle of the resulting sequence, rather than to an exit
opcode. Recall that one of the effects of an exit opcode is to pop the handlers
introduced in that block, from the notional handler stack. This will need to be
mimicked in our new sequence, perhaps by setting the handler entry in the stack to
nil.

The use of formalizing techniques such as those used by Clenaghan (8] to

describe continuation semantics, may provide further clues to ways of approaching
optimization.
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§5 Conclusions

We have described an exception handling mechanism for the persistent
programming language PS-algol. By making the mechanism orthogonal to the rest
of the language we were able to integrate exceptions into the existing system without
disrupting the user community. This is especially significant in that the PS-algol
environment is heavily dependent on persistent objects, both data and procedures,
that have been accumulated across several versions of the language. PS-algol has
been able to evolve in a persistent environment.

We have introduced two new statements to support a multi-level,
expression-oriented, termination model of exceptions, based on the idea of handler
stacks. These are the raise and the when statements. The when statement is
desirable syntactic support to maintain local stacks of exception handlers. The
raise statement is necessary to escape from block constructs. By allowing the
exception condition to be associated with a pntr value, we achieve the semantics of
parameterized exceptions. The model supports the handler responses of
termination, resumption, retry and propagation.

We maintain that first-class procedures are sufficient to provide resumption
semantics, and that no further syntactic support is desirable, in PS-algol at least.

We have made visible a global PS-algol data structure containing procedures
that are invoked on the occurrence of specific system events. By combining existing
features of PS-algol with the new exception mechanism we are able to provide
familiar responses to system errors, yet allow the development of more
sophisticated responses. Where appropriate, resumption has become one such
possible response.

First-class procedures are sufficient to provide much of the behaviour

required of an exception mechanism. Provision of a terminating raise statement has
been the only significant development required of the language.
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Appendix 1
Addendum to the PS-algol Reference Manual

Al.l Introduction

An exception in PS-algol is an exception condition together with an
associated excepted value. The excepted value is always of type pntr.

The PS-algol exception mechanism is orthogonal to other aspects of the
language. In particular existing PS-algol sources need not be modified. Syntactic
support has been provided to support a termination model of exceptions. Persistent
first-class procedures are sufficient to achieve resumption semantics (via the
parameter-passing mechanism or by the use of global data structures).

Al.2 Syntax

The PS-algol syntax is extended as follows:

<void-sequence> ::= <handler>
<void-clause> ::= <raise.clause>

<handler> ::= when<structure-id.list>{ as<identifier> }do<clause>
<structure-id list> 1=

any |

<structure-identifier> { ,<structure-identifier>} *

<raise.clause> ::= raise<pntr-exp3>

A1.3 Raising exceptions

An exception can only arise by encountering a raise statement. The current
flow of control is abandoned. A handler is sought by tracing back the dynamic
history, this includes block entry and procedure invocation. The value yielded by
the handler replaces that of the block enclosing the handler.

Associated with the exception condition is an excepted value of type pntr.
The result of the pointer expression in the raise statement beconies the excepted
value. For example:

structure foot( cstring size )
raise foot( "big" )

The excepted value here is an instance of the structure class whose name is

foot. If the structure class of the excepted value has fields, then we have the
functionality of parameterized exceptions. This allows us to pass back diagnostics,
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or partially completed (perhaps expensive) results.

Al.4 Handling exceptions

Exception handlers are placed using the when statement. For example:

when foor do write "12 inches'n"

Here we have provided a handler for an exception whose excepted value is
foot. foot is a structure name that has previously been declared in this scope. The
effect of encountering the when statement is to push the handler onto a stack.
Should an exception subsequently be raised, the handler stack is repeatedly popped
until a handler is found that matches the structure class of the excepted value. All
handlers pushed onto that stack during a block are popped at the end of the block.

The excepted value can be made available to the handler by using the
as<identifier> phrase. Its type is cpntr.

A cutch-all handler is provided by using the keyword any in place of the list
of structure names.

We may specify a list of exceptions that can be fielded by the handler, for
example:

structure arm
when foot,arm do write "limb"

The handler <clause> serves as an alternative completer for the enclosing
block. The type of the <clause> must match that of the block.

For example:

fet len=

begin
structure foos( cint inches )
when any do 0
when foot as e do 12+e( inches )

raise foot( 3 )

12
end

Here, the normal-case value of the block is the integer 12. If however the

raise statement is executed, the result will be 15. If any other exception is raised,
the result will be 0.
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Al.5 System events and system exceptions

The PS-algol machine may detect a number of system events. These may
derive from receipt of hardware signals, for example keyboard interrupt, or from
run-time errors such as attempting to apply a nullproc. The action taken, on the
occurrence of each possible system event, is determined by a proc, called here an
event procedure. These event procedures have become visible to user programs by
wrapping them up in a globally accessible instance of a structure:

fet events= events.stre( ... )
The events.strc structure is declared in the standard prelude.

The default action of most event procedures is to raise a corresponding
system exception. The structure classes used as system exceptions are also declared
in the standard prelude. For example, if a program should attempt to read an
invalid integer, the system event procedure events( Readl.event ) is invoked. The
default value for events( Readl.event ) is a procedure whose declaration might look
like:

proc{ estring offender ->int )
begin
raise Readl( offender )
0

end

When an event occurs the system invokes the appropriate event procedure.
If there is a normal return from the event procedure, the program will resume from
the point at which the event occurred. Events( Readl.event ) is non-void. By
making this a variable field we have a device that allows the programmer to supply
an alternative value to the failed read operation. The defauit event procedure given
above will not of course resume, but initiaies a search for a handler. It is not
appropriate for the user to replace all event procedures; the restriction is enforced
by the existing constancy feature. Note that we are using a global data structure
here in the same way in which the user may thernselves program resumption.

If an exception is raised but is never handled by the user program, the event
procedure events( Uncaught.event ) is invoked. This procedure displays
meaningful diagnostics for all system exceptions, and makes an attempt at
user-defined exceptions. The full range of system events and system exceptions are
described in Appendix 2.
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Appendix 2
System events and system exceptions

This appendix describes the event procedures that are provided by the
PS-algol system, along with the system exceptions that they may raise. First we set
out the structure class declarations that have been added to the standard prelude to
support system events. The prelude can be used as a useful quick reference to the
range of events and exceptions that may occur and require a response. This is
followed by individual descriptions of the default system event procedures.

A2.1 Additions to the standard prelude

{The global pntr events refers to an instance of the following structure class:

structure events.sirc

(

cproe( cstring ) Error.event,
Ferror.event ;

proc( cpntr,cint ) Uncaught.event ;

proc() TooManyEvents.event,
Interrups.event,
WindowChange.event ;

cproe() Arithmetic.event ;

proc, estring -> int ) Readl.event ;

proc( cstring -> bool ) ReadB.event

proc( cstring -> string ) Reads event

proc( csiring -> real ) ReadR .event ;

proc( estring,cstring -> pntr ) OpenDatabase event ;

cproc() ApplyingNullproc.event ;

cproc( cpntr,cstring ) StructureAccess.event

cproc( cint,cint,cint ) VectorBounds.event ;

cproc( cint,cint ) HiffeBounds.event ;

proc( cpixel,cint -> pixel ) PixelBounds.event ;

proc( cipixel,cint,cint -> #pixel ) Sublmage.even,
Limitl event ;

proc( cipixel,cint,cint,cint,cint -> #pixel ) Limis2.event ;

proc( csiring,cint,cint -> string ) SubString.event ;

proc( cstring,cstring -> string ) StringTooLong event ;

proc( -> int ) Decode.event ;

proc( cpatr -> pntr ) CursorTip.event ;

cproc( cstring ) Menu.event,

, StringToTile.event

IThe following structure classes are used by event procedures to raise exceptions:

structure TooManyEvents

structure Interrupt

structure WindowChange

structure Arithmetic

structure Readl( cstring Readl.char )
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structure ReadB( cstring ReadB.char )

struciure ReadS( cstring ReadS.char )

structure ReadR( cstring ReadR .char ) N

structure OpenDatabase( cstring OpenDatabase .name,OpenDatabase explain )

structure ApplyingNullproc

struciure StructureAccess{ epntr StructureAccess pnir ; estring StructureAccess.class )
structure VectorBounds( cint VectorBounds.index,VectorBounds .iwb,VectorBouvinds.upb )
structure [liffeBounds( cint IliffeBounds.iwb IliffeBounds.upb )

structure PixelBounds( cpixel PixelBounds.pixel ; cint PixelBounds.index )

structure Sublmage( c#pixel Sublmage.image ; cint Sublmage.start,Sublmage length )
structure Limit] ( c#pixel Limitl .image ; cint Limit] Xoffset,Limitl Yoffset )

structure Limis2( citpixel Limit2.image ; cint Limit2 Xoffset, Limit2 Yoffset Limit2 Xdim Limi2.Ydim )
structure SubString( cstring SubString string ; cint SubString .start,SubString length )
structure StringTooLong( cstring StringTooLong lefi,StringTooLong.right )

structure Decode

structure CursorTip( cpatr CursorTip_point )

structure Menu( cstring Menu.reason )

structure StringToTile( cstring StringToTile.reason )

A2.2 System event procedures

Many of the default event procedures have been placed in variable fields of
the events structure. This allows the programmer to replace a default procedure
with a custom one of their own. A number of the event procedures return values,
This feature allows the programmer to provide an alternative value for a failed
operation.

Note that although every program has a constant called events globally
available to it as standard, it should be thought of as being declared locally to that
program and will be initialized with a different instance of the events.strc structure,
It is guaranteed that the semantics of calling the default procedure in any one event
procedure field, will not vary between programs, but identity of closures is not
guaranteed.

events( Error.event }, events( Ferror.event )
These two procedures correspond to the old error reporting interface. They
print their string argument and abort the program. They cannot be replaced
by the programmer.

events( Uncaught.event )
If an exception is allowed to propagate all the way back to the top level of the
program, without being intercepted by a handler, this event procedure is
invoked. It is parameterized by the excepted value and the line number at which
the exception was raised. If the exception is recognized as a system exception,
the default procedure will print out the name of the exception and the values in
the fields of the excepted value; it will explain the significance of these values as
it does so. If the exception is not recognized as a system exception, it will print
the class identifier of the excepted value instead. The line number at which the
exception arose is printed. If the exception had been raised by an event
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procedure then the line number at which that event occurred is also given. To
return from this procedure following the Uncaught.event event, is to complete
the program.

events( TooManyEvents.event )
This is initiated should an event overflow occur, that is, a second event occurred
before the event procedure for the first had been called successfully. The
default action is to raise the system-defined exception TooManyEvents.

events( Interrupt.event )
Invoked on receipt of a keyboard interrupt (usually caused by typing
Control-C). To be compatible with previous versions of PS-algol, the default
action is to do nothing. Programs can still interrogate the standard boolean
interrupt procedure to determine whether an interrupt has occurred. By
replacing the default, a program could arrange to take some action, perhaps to
interact with a user, and then resume from where it left off,

events( WindowChange.event )
(A misnomer for a screen change event.) Called following an attempt by the
user to change the size of the screen to which the program is attached. By
default the exception WindowChange will be raised. (The screen will however
remain resolutely unchanged.)

events( Arithmetic.event )
All hardware-detected arithmetic errors such as floating-point or integer
overflow, divide by zero etc. map onto this event. The default procedure, which
cannot be overwritten, will terminate by raising the exception Arithmetic.

events( Readl .event ), events( ReadB.event ),

events( Reads.event ), events( ReadR .event )
Each of these correspond to failures in a standard read procedure. They can all
be replaced by the programmer with a more appropriate response. The defaults
will raise the corresponding system exception, and this will carry the offending
character along with it. The offending character (for example a letter where a
digit was expected) is made available to the event procedure as the string
parameter. If the event procedure is allowed to return normally, it will provide
a replacement value for the failed operation.

events( OpenDatabase.event )
If a call to open.database fails, it will return the pntr yielded by this event
procedure. By default, and to be compatible with previous versions of PS-algol,
the event procedure returns an error.record. A user program could use the
event procedure to return a more useful value and to take some meaningful
alternative action. This does away with the need to slavishly check the result of
an open.database. The string parameters are the name of the database, and an
explanation for the failure, respectively. A corresponding structure for use as
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an exception, is available from the standard environment. As a example of its
use consider:

events( OpenDatabase.event ):= proc( string nam, expl ->pnutr )
begin
raise OpenDatabase( nam,expl )
] Idummy
end

Iel thing= s.lookup( "thing" ,open.database( ... ) )

events( ApplyingNullproc.event )
Called when a program has attempted to apply a procedure whose body has not
been defined, for example:

proc(); nullproc()

The constant default action is to terminate by raising the exception
ApplyingNullproc.

events( StructureAccess.event )
Called by the runtime type checking system when a program acts on a false
assumption about the nature of a pnir object by attempting to dereference a
field. The event procedure is passed the actual pnir value together with the
expected class identifier of the object. The defauit action, which cannot be
changed, is to raise a StructureAccess exception.

events( VectorBounds.event }
This is another event procedure that cannot be replaced. It is due to an attempt
to read or write outside the bounds of a vecior. The offending index and the
actual lower and upper bounds are its parameters, and these appear with the
exception that the event procedure raises.

events( HliffeBounds.event )
HiffeBounds.event is called when a pair of incompatible lower and upper bounds
are supplied to a vector creation expression. For example:

feti=3 )
fet v = vector i :: i - 1 of "upb <lwb not possible”

This event procedure raises the exception /iffeBounds, which is provided with
the offending lower and upper bounds. It lives in a constant ficld.

events( PixelBounds.event ) .
This procedure can be replaced by a user program. it is called when a program
attempts to extract a non-existent plane from a pixel. For exampie:

let pix := off and on
pix = pix(3)
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The pixel itself, and the depth level that had been requested, is available as its
parameters. A programmer-supplied event procedure could provide an
altemnative value for the failed indexing operation; the default action is to raise
the PixelBounds exception.

events( Sublmage.event )
This event occurs when an attempt is made to alias a non-existent range of planes
in an image. For example:

let im := image 10 by 5 of on
im:=im( 112)

The offending starting plane, and the depth of the requested alias are the two
integer parameters. The image parameter is the image on which the operation
-was being attempted. An altemative result can be supplied to replace the failed
expression when the procedure is allowed to return normally. By default the
exception Sublmage is raised, but the procedure can be replaced by a user
program.

events( Limitl .event ), events( Limit2.event )
These are caused by failed attempts to alias images using the limit construct:

fet im := image 10 by 5 of on
im = limit im at 20,20 ILimitl.event
im = limit im to 100 by 100 at 1,1 ILimit2.event

Both are supplied with the image on which the limit was being attempted.
Limit] .event is provided with the offending x and y offsets. The x and y are also
the first two integer parameters of Limit2.event, in addition the requested
dimensions are made available. By default, the corresponding terminating
exceptions Limitl and Limir2 are raised, and these carry the procedure
arguments with them as part of the excepted value. A user program might
decide instead to resume processing by supplying an alternative image value as
the result of the failed expression.

events( SubString.event )
Caused by acting on the false assumption that a string is longer than it really is.
For example:

fet 5 := "too short"
5 :=5(5120)

The string being operated on, the start position in the original, and the length of
the requested string, are its parameters. The default, but replaceable, action is to
raise the system exception SubString. When the event procedure is allowed to
return, an alternative string, to replace the failed string expression, must be
provided.
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events( StringTooLong.event )
There is an implementation limit on the size of a string, if 5 is a string that is
close to this limit, and we attempt:

Si=s5++5

then this event procedure is activated. The participating strings are received as
parameters. These are propagated with the exception StringTooLong in the
default procedure. A user program might instead supply a procedure that
displays a waming before providing an altemative result to the concatenation.

events( Decode.event )
This procedure is activated following an attempt to decode the empty string:

let i = decode("")

By default the exception Decode is raised, thus terminating the procedure. If
allowed to resume, its integer value replaces the result of the failed decode
operation.

events( CursorTip.event )

There are two circumstances when a call of the standard graphics function
cursor.tip could initiate the CursorTip.event procedure. Cursor.tip expects a
pair of integers wrapped in a point.strc structure. CursorTip.event is called if a
pnir to a different structure had been supplied, or if the otherwise valid
coordinate pair is outside the dimensions of cursor. The parameter to the event
procedure is the pntr which had been passed to cursor.tip. A user program can
replace the default, which otherwise raises the exception CursorTip.

events( Menu.event )

This event procedure is in a constant field of the events structure and so cannot
be replaced. It is called following an unrecoverable error in the use of the menu
function: menu may have been called with the actions and events vectors having
mismatched bounds, or screen may be too small to accommodate the menu. The
event procedure terminates by raising the exception Menu. The string in the
excepted value structure (and argument to the event procedure itself) is a
description of the problem.

events( StringToTile.event )
There are three possible causes of the event that invokes this procedure: an
empty string passed to the string.to.tile function, a failure by string.to.tile to
open the font database, or failure to find the specified font. It is not permitted to
resume this event and so the default (and non-replaceable) event procedure
terminates with the exception StringToTile. The string associated with this
exception describes the reason for the failure.
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