m——————

University of Glasgow
Department of Computing Science

Lilybank Gardens
Glasgow G12 8QQ

University ¢f St Andrews
Department of Comp.national Science

North Haugh
St. Andrews KY16 8SX

| Applications Programming In PS-aigok.

Richard Cocer

PR LS

MM’D@“’LQ'

Applications Programming In PS-algol.

Richard Cooper

Table Of Contents.

0/ Introduction.

1/ Building Complex Data Structures.

a) Introducing Structures and Pointers.
b) Modelling Complex Structures.

c) Partial Polymorphism via Pointers,
d) Difficulties with Pointers.

)

e) Difficulties with Vectors.

2/ Problems with i/o.

a) Keyboard input.
b) Combining keyboard and mouse input
c) File i/o.

3/ Creating User Interfaces Using the Graphics Facilities.

Images and Screen Manipulation.

A Simple Form System.

a
b
o
d) A Simple String Editor.

R EAG A Na

4/ The Persistence Mechanism and Database Organisation.

a) Tables.
b) What Persists.
¢) Modelling Transactions.

5/ Program Development and Organisation.

a) Modular Development.

b) Maintaining a Procedure Library
c)

d)

Organising the Database for a Program

Organising a Program.

6/ Using First Class Procedures.

) Procedure Variables.
) Modelling Actions.
)
)

a
b
¢) The Form of Light Buttons Revisited.
d

Constructing an Error Message Facility.

Representing Data by Abstract Data Types.

QN OTWN

10
10
1

13
14
15
16

17
20
21

23

28
28

30
32
33
34

7/ interactive Compilation.

a) Introduction.
b) Calling the Compiler.
¢) Producing Fully Polymorphic Procedures.
d) An Object Copy Procedure.
Appendices
A/ A Simple File Interface.
B/ A Simple String Editor.
C/ A Transaction Based Editor for a Table of Addresses.
D/ Procedure Library Maintainance Programs.
E/ A Snake Program.

G/ Some Utilities for Use with the Run-time Compiler.

I/ An Object Copy Procedure. ,
J/ The Object Copy Procedure In Action.

Figures.

An Entity-Relationship Data Model.

An Entity-Relationship Mode! of a Student Database
Base and Aliased Images.

A Simple String Editor.

The Bibliographic Database Layout.

The Contents of a Procedure Library.

. The Bibliographic Reference Menu Hierarchy.

. The Snake Display.

PNDO AN

F/ An Abstract Data Type Generator for a Form Interface.

H/ CheckRecord - a Procedure which checks a Structure.

43

46
47
50
52
54
56
57
60

0/ Introduction.

This document is intended to introduce the reader to some of the techniques found

useful for wriling programs in PS-algol, with particular emphasis on the following
features of the language: :

« the provision of a persistent étore;

- the graphics facilities;

« the availability of first-class procedures;

+ the existence of a universal pointer type;
and - run-time compilation

The persistent store simplifies data storage. The method of providing persistence
will be described in brief and a mechanism for structuring updates as atomic transactions
will be shown. As an aside, the method of access to the underlying file store will also be
discussed.

The graphics facilities of PS-algol not only allow graphical data to be stored in a
database with the same ease as text and numbers but also provide a set of operations
with which user interfaces can be constructed. The construction of an error message
facility, a forms interface and a simple string editor will be used to illustrate the way in
which these facilities can be used.

First-class procedures provide a method for making functional abstractions.

Procedures may be manipulated in the same way as other objects within the language
and so may be used to:

+ implement modules of the program which can be compiled separately and
linked together via the persistent store;

* model actions, which can then be stored in the same way as simple data
types, such as numbers and strings;

* hide the structural and representational details of an object model by
making creation procedures return data structures containing only
procedures. These will provide the operations available on the object,
thus giving the facilities of Abstract Data Types.

The use of the persistent store to maintain a procedures library systematically and the
method of developing a large program in a modular fashion will be described. Some
examples of using procedures to model actions will be given and the method of creating
objects as Abstract Data Types will be shown.

The pointer type of PS-algol permits the construction of object structures of arbitrary
complexity, which makes PS-algol a flexible tool for modelling objects. We will show
how, for instance, an Entity-Relationship data model can be modelled. We will also

Programming in PS-aigo! -1 - April 11, 1987

show how the type pntr allows the type checking of the binding of the program to its data
to be deferred until the last possible minute.

The availability of a version of the PS-algol compiler as a standard function of the
language allows a program to construct, compile and run procedures during its run. We
will show how this allows us to write truly polymorphic procedures within a strictly
type-checked environment. 1t also allows us to write programs which permit the binding
of an already writlen program to data of a newly introduced type. This mechanism is
more flexible than using the pointer type, since the programmer needs to know nothing
about the newly introduced type. It is also more efficient, since the resulting procedures
will access the data directly, instead of via a series of indirections.

The use of these facilities, and their interaction, is illustrated in the remainder of this
report by means of a series of examples which have been written in a programming style
found to be effective in PS-algol. PS-algol is a relatively new language and probably the
first which allows data structures to persist between program runs. Therefore the
programmer is not required to organise transfers between database and active heap
data, yet allows new programs 10 access pre-existing databases. The novelty of this
orthogonal persistence leads to new styles of programming. The appropriate style for
exploiting these opportunities is not yet known, that presented here being only a first
approximation to the optimal style. The reader is encouraged to carry the development
further.

The language is not defined in this document and the reader should refer to the
PS-algol reference manual (Third Edition) [PPRR12]. For an introduction to the
Janguage, the reader is referred to [PPRR31]. What are given here are expansions on
some of the more unusual features of the language, with new examples to illustrate
some of the less obvious problems. The various uses of first-class procedures were
described previously [ATKI85].

1/ Building Complex Data Structures.
a) Introducing Structures and Pointers.

An unusual and powerful feature of the PS-algol type-system is the pntr type. This
was introduced as a method of modelling a structure of arbitrary compiexity. A complex
object class is introduced with a structure statement. For instance, we could define a
structure to hold the elements of a list of strings by

structure SiringlListElement(string value; pnir next)
which means that any element of such a list has two fields, a string field containing the
value of the element and a pntr field pointing to the next element in the list. Note that the
structure name, StringListElement, and the field names,value and next, must be uniquely
used identifiers within the biock in which the structure is defined. Creating a complex
object is achieved by using the structure name as a class constructor, for instance:

StringListElement("A", AnotherElement

Programming in PS-algol -2 - April 14, 1987

crgates an glement containing the value "A" and a pointer to another object. This other
object can, in fact, be an instance of any class introduced by the structure command,

although in this case we would expect it to point to another StringlListElement or to the
pointer constant, nil, to indicate the end of the list.

Ag an example of how this is used, let us define a variable to hold our, initially
empty, list by the command

let Stringlist := nil

and then define a procedure which adds a new value, NewValue, onto the front of the
list, as follows:

let AddStringTolList = proc(string NewValue)
begin

StringlList .= StringListElement{ NewValue, Stringlist)
end

The first application of the procedure, for instance by the call:

AddStringToLis "first")

will construct an element with field values "first" and nil and put it into the list by making
S(r{ngList point to it. A second call will create a new element, pointing to the first, and set
StringList to point to it, thus putting the new element onto the front of the list. (Note that
PS-algot does not really require the begin...end of the procedure AddStringTolList to be

put into the program in the case where the procedure body consists of a single clause.
They have been included here only for clarity).

_ The fi.elds of a structure are dereferenced by giving the object name followed by the
field name in parentheses. Thus the first value on our string list is accessed by

StringlList{ value)

To illustrate, here is a procedure which scans and prints the values of the list:

let PrintStringList = proc()
begin
let P = Sfringlist
p while P ~=nil do { print P(value); P = P(next)}
en

The pointer vgriable, P, traverses the list, successively accessing the value field to print it
and the next field to move on 1o the next item of the list. Note that the curly brackets have
been used as synonyms for begin and end for brevity.

b) Modelling Complex Structures.
Sin_ce PS-algol i_s_ data type complete, the fields of the structures can be of any type
and so give us the ability to model complex data structures. For instance, we can model:

Programming in PS-algol -3 - April 14, 1987

« numeric and textual data in fields of types int, real and string;
+ graphical data with the types pic and #pixel;

- actions using procedures,;

and - more complex objects, such as the list we have just seen using pointers to
other objects.

We will later {sections 3¢, 6¢ and 6d) show how to construct a‘forms interfaoe', The
form has been modelled as a list, the basic element of which is the .!:ght button. Thisis a
rectangular area of the screen on which is displayeq a message in a bo>.< - When the
mouse is clicked over that area some associated action is performed. This is modelled

by the following structure:

struclure button{ string message; ! the displayed message

Int xo, yo, xh, yh; ! the position and dimensions of
! the screen area

#pixel save, I the conients of the area, before
! button was displayed

proc() action; t the associated action]

pntrnext) 1the next button in the list

For a further example, we take the Entity—F(eIations',hip—Attribute model sim'ivlar to th"e
one proposed by Chen [CHEN75]. In this mode!ﬁ. objects are moqelled‘as" emftues",
which have properties called "attributes” and are linked to qther ob]eqs via rela‘upns .
Figure 1 shows a general view of what such a mode.l m|ght'|ook Ilke.. The circles
represent three entity types, "A", "B" and "C". Ass'ocxated thh' each is a rectaqgie
showing the attributes defined on it, their names in italics and type in bold. The relations
are represented by lines connecting the circles.

inta b, stringc

rell rel2

intd string e intfg, pic h
B C

Figure 1. An Entity-Relationship Data Model

This may be modelled in PS-algol as follows:

structure A(int a,b; string c; pnir relt, rel2)
structure B(int d; string e)
structure C(int f,g; pic h)

il 11, 1987
Programming in PS-algol -4 - April 11,

with the entities being modelled by structures, the attributes being modelled by scalar

fields of the structures and the relationships being modelled by pointer fields linking the
structures.

A concrete example of this model in practice is the schema for a simple students
and courses database, shown in Figure 2.

addr
ADDRES PERSON

intage; string name

int house
stringstreet, cily, stydentP
county
STUDENT
intmatric intstaffno
iakes leaches
CLASS

stringclassname, venue, time

Figure 2. An Entity-Relationship Model of a Student Database

This might be modelled by:

structure PERSON(string name; Int age ; pntr addr)
structure ADDRESS(int house; string street, city, region)
structure STUDENT{ int matric; pntr studP; *pntr takes)
structure STAFF{ int staffno; pnlr stafiP; *pnir teaches)
structure CLASS(string className, venue, time)

Notice here that one-to-one relationships are modelled by fields of type pntr, while
one-to-many relationships are modelled by fields of type *pntr. Actual objects in the
system will be modelled by instances of the structure classes. For example, a student
will be modelled by a STUDENT structure, together with an associated PERSON
structure. The mode! therefore incorporates a notion of inheritance as all of the
information known about the student can derived either from the STUDENT structure or,
by following the pointer field studP, from the PERSON structure.

c) Partial Polymorphism via Pointers.
PS-algol is a strictly typed language. Any attempt to supply a value of one type

where another is expected will result in a compile-time error. In particular, it is necessary
to specify the types of the parameters of a procedure. It is not then allowed to supply

Programming in PS-algo! -5 - April 11, 1987

parameter values of another type, even when it is possible to specify a meaning for the
procedure with the second type. It is not permitted, for instance, to supply two real; to a
procedure which adds together two integers. This restriction results, for instance, in t'he
unsatisfactory state of having two sets of table manipulation procedures, one for string
keys (s.enter, etc) and one for integer keys (i.enter, etc).

However, one can achieve a restricted form of polymorphism through which
procedures receive their input values via pointers to packages containing them.. To
illustrate this technique, let us return to our list example and extend it to include objects
of a number of types. We now define our elements to be of the type:

structure AnylistElement(pntr value, next)

that is the value field is also a pointer field and also define some packaging structures:
structure StringPack{ string Svalue)
structure IntPack(int ivalue)

etc.

We will initialise the list with
Anylist = nil

and the insertion procedure becomes:
let AddAnyTolist = proc(pntr NewValue); AnyList .= AnyListElement(NewValue, AnyList)

(Note that the begin....end bracketing has been dropped as the procedure body
consists of a single clause). Our initial insert is now slightly more complex, as follows:

AddAnyToList{ StringPack{ “tirst") }

where an object of class, StringPack, containing "first", is created and then inserted into
the list. We could then follow this, by inserting the integer, 2, as the second element by:

AddAnyTolis IntPack{ 2))

Thus AddAnyTolist is a procedure which takes no account of the type of data
which it is handling. That information only becomes important when writing procedures
which scan the list and use the values. In writing such a procedure, it is necessary to
know what classes of objects are in the list. Thus we can re-write the printing procedure
to handle the case where only integers and strings have been stored as follows:

tet PrintAnylist = proc()

begin
let P = AnyList
while P ~= nil do
begin
let V= P(value)
1 V is StringPack do print V(Svalue)
If Vis IntPack do print V{ Ivaiue)
P = P{next)
end
end

Programming in PS-algo! -6 - April 11, 1987

Note that objects of any other classes will just be ignored and if other classes are added
to the system, more lines of the form "if V is ..." will have 1o be put into the procedure and
it will have to be recompiled. In order to write a truly polymorphic procedure, the
program must be organised to create print procedures for structure classes as it
encounters them and to compile them as the program runs. Section 7 goes into more
detail on how to go about this.

To sum up, the pntr type of PS-algol allows objects of different types to be stored in
a common way. The binding of the program to the values of the objects is deferred until
the values are dereferenced. However, the method we have been using forces the
programmer to determine which classes of object the program expects to encounter in
those modules which use the data.

d) Difficulties With Pointers.

Two main difficulties have to be overcome when handling the pointers and
structures of PS-algol. Sometimes the values of objects change when no change is
intended and sometimes an intended change does not occur.

The former case often occurs when making a copy of an object. Let us say an
address has been constructed as follows:

structure ADDRESS(Imt house; string street, city, region)
let CSglasgow:= ADDRESS(17, "Lilybank Gdns", "Glasgow", "Strathclyde”)

and we now do
let ITglasgow = CSglasgow

This makes ITglasgow point to the same object as CSglasgow. It does not make a new
object with the same values as CSglasgow. Therefore, if the values of the fields of
ITglasgow are now changed, then as CSglasgow points to the same object, the fields of
CSglasgow are changed as well. Thus

ITglasgow(city) = "Pisa”

makes CSglasgow be ADDRESS(17, "Lilybank Gdns", "Pisa”, "Strathclyde”), just the same as
ITglasgow. Note that the command:

ITglasgow = ADDRESS(17, "Lilybank Gdns", "Pisa", "Strathclyde")

does not have the same effect. This introduces a completely new referend for ITglasgow
and leaves CSglasgow pointing to its original value.

In general then, if you require CSglasgow and ITglasgow to refer to completely
different objects, you must construct a new object for ITglasgow to point to. The fields of
this new object will be copies of the fields of CSglasgow. Furthermore, it is not enough
to take copies only at the topmost level of the object. New objects must be introduced at
every level of the object hierarchy. Thus if we have

Programming in PS-algol -7 - April 11, 1987

structure PERSON(string name; pnir addr)
structure ADDRESS(int house; string street, city, region)
let RC:= PERSON ("Richard Cooper”,
ADDRESS(17, "Lilybank Gdns", "Glasgow", "Strathclyde"))
let XX := PERSON(RC{ hame), RC(addr)) ‘
The first fields of RC and XX have now been completely separated, but the 'secon‘d fields
both point to the same object and any changes on the sub-object of that field will affect

both, i.e.
XX(addr)(city) = "Pisa"
affects AC as well as XX. You must do, in this case,

let XX := PERSON{ RC(name),
ADDRESS(RC(addi{house), RC{ addr)(street) y)

to be sure that all sub-objects are distinct.

Problems of the second kind, not getting changes when they might be expected,
are encountered in the following type of situation. Let us assume that.you have a global
set of variables that you wish to share between program modules - for instance:

structure Globals(Int sum, product)

which is defined in two different modules, manipulated by them and stored in the
database. Thus

G := s.Jookup("theGlobals", db)
is used to get them out. Then you do
theSum = G(sunt)

and use theSum throughout to make the program more readable and efficient. This
makes an entirely new object and so if you don't rememember to do

G(sum) = theSum

before leaving the procedure, then all changes to the value will be lost. If in fact you
make only a little use of theSum, then it may be wiser to use G(sum) throughout anyway.

e) Difficulties with Vectors.

PS-algol vectors give rise to two sources of difficulty: the Afact ‘lhat' their size is not
dynamically variable; and the fact that the vector notation for introducing them causes
all elements of a vector to point to the same object.

Let us say that we have a vector containing a set of addresses. The most obvious
way of writing a procedure to insert an address into such a vector might be as fol!ovys:
let addressVector = vector 0 :: 0 of nil 1 standard method for overcoming

Programming in PS-algol -8 - April 11, 1987

let insertAddress := proc (pntr newAddress)
begin
let NumAddresses = upb{addressVector)
let tempVector= vector 1:: NumAddresses + 1 of nil
for i = 1to NumAddresses do tempVector (i) = addressVector (i)
tempVector (NumAddresses + 1) = newAddress
addressVector .= tempVector

I the lack of zero length vectors

end

This has little to recommend it as it is creating vectors of each size 1, 2, efc and so
making a lot of large objects. This is slow in itself, and will also cause the garbage
collector to be activated more often than necessary - a further slowing. One way round
the problem is to create a temporary vector large enough to hold the most entries that
can be conceived of is used and then strip this down to the right size at the end. If a
largest size cannot be guessed at, the size of the temporary vector could be increased by
a 100, say, when it becomes filled. An alternative method is to create the set of objects in
a more flexible structure, such as a list, and then copy the set into a vector at the end. In
any case, vectors to not lend themselves to data structures where element insertion and

deletion is frequent.
To introduce the second problem consider the following declaration:

let intVector = vector 1::10 of 0
All ten elements of the vector contain the value of the same expression, 0. This does not
cause any problem for one dimensional vectors, as each element may then be
re-assigned, without affecting the others. For instance:

intVector(3) =7
only changes the third element of the vector as expected. However, in the case of
vectors of higher dimensions - for instance

let doubleVector = vector 1 :: 10 of vector 1 = 5 of 0
we have here set up a vector whose 10 elements are all the value of the same
expression which is a vector of 5 zeroes. If we now re-assign the value of the element
with the largest indexes, for instance by:

let doubleVector{ 10,5} =7
then this changes the fifth element of the vector all ten elements of the top level vector
are pointing at. Therefore, the above command also changes to 7 the values of
doubleVector(1, 5), doubleVector(2, 5), ete. This thoroughly undesirable event can
only be circumvented by following the declaration line by the command:

fori= 110 10 do doubleVector{ i) := vector 1:5 of 0

which has the effect of creating a different sub-vector for each element of the top-level
vector. Note thal both the declaration and the assignment lines are necessary.

Programming in PS-aigot -9 - Aprit 11, 1987

2/ Problems With I/O.
a) Keyboard input.

As an aside at this point, it is useful to discuss the use of the keyboard input
functions in the PERQ implementation as these give rise to some complications. If you
just plunge in and use all the commands given in section 11.1 of the reference manual,
the input characters are echoed on the screen via standard output, in the same way that
write displays its output. In common with write, this will probably have the effect of
scrolling the screen and making a mess of your display. Another problem is that no input
characters will be passed to the program until the return key is pressed. Any control
characters will by then have been stripped off and perhaps acted upon by the system.
Essentially only read.a.line functions effectively. What is required is a method which
immediately passes the characters to the program, without waiting for "return” or echoing
them. This is achieved by placing the following command before using one of these
commands:

let sef = system("sity -echo cbreak raw")

This makes a call to PNX, which stops echoing and causes characters to be immediately
passed back to PS-algol from the keyboard, without waiting for the return character and
without filtering out control characters.

This call changes the screen handler for this window, which is part of the
underlying system and is not part of PS-algol. Therefore, when the program is quit the
effect of the line above will persist so that further commands to PNX are not echoed - you
can't delete characters before pressing return, etc. Therefore, before the program quits,
you must do:

fet reset = system("slty echo ~cbreak cooked")

to undo what you've done. It is a matter of style whether you just put one set at the top of
your program and a reset at the bottom or bracket each read with a pair of set and reset.
In any case, it is a good idea to have a reset file in your bin directory ready to reset a
window when the program crashes.

There are also some problems with the implementation of the various read
commands. It seems that the sequence:

x = read.int{)
y = read.a.line()

will always set y to the empty string, as the return character which terminates the
read.int is not cleared and so it also terminates the read.a.line.

b) Combining Keyboard and Mouse Input.

The system function, input.pending, returns a boolean whose value is true if a
keyboard key has been pressed. This can be used to mix the input of responses from

the mouse and the keyboard as follows:

Programming in PS-algol -10- April 11, 1987

let mixedinput = proc(-> string)

begin
let waiting := true
letc=0

fet maxwell .= nil
while waiting do

begin
It Input.pending() do { ¢ := read.byte(); waiting := false }
i waiting do
begin
maxwell := locator()
fori=1104do
it maxwell the.butions) (i) do { ¢:= -i; waliling = false }
end
end

c
end

This proce(_jure stays in its inner loop until the waiting flag is set and then returns a
result via the variable, ¢. The flagis set eitherif a key on the keyboard is struck (in which
case c is set to the ASCII value of the appropriate character) or if a mouse buiton is

pressed (in which case cis set to -1, -2, -3 or -4 dependin i
ishohosns pending upon which button was

c) File i/o.

F[Ies have been a Clgsely guarded secret within the PS-algol community. One of
the main goals pf the Persistent Programming Research Group is to eliminate the need
for files and file managers altogether. However, it is recognised that present

implementations sit within a file system and it is essential to have th ili
! . e ability to pa
information to and from that file system. v pass

Outputing to a file requires the commands create and output as follows:

let /= create("Afile", 511)

creates a fite in the current directory called Afile with UNIX file permissions 777 (octal) =
511 (decimal). The variable fis of type file and is then used, for instance, in:

output f,"a line of textn"

}/xlwcatreboutput behaves exaclly like write except that it also has an extra parameter - the
ile to be written to. Files are automatically closed at the end of a program. b
be closed during the run by Pros out may also

close(f)

A file is opened for input, by the command

let f= open("Alile”, 0)

Programming in PS-algol -11- April 11, 1987

where the second parameter specifies a mode, which is 0 for read access, 1 for write
access and 2 for both. Again fis of type file. All the usual input commands can then be
switched to a file, by putting the file descriptor as a parameter. Thus

let x = read.byte()
reads a byte from the keyboard, whereas
fet x = read.byte(f) '

reads it from the file.

We present a set of procedures which have been found useful for interfacing to the
file system as Appendix A. The output is spooled in a string vector by procedure putLine
and sent to the file at the end of the program by a call to putFile. Conversely, the input is
read into the input spool, thelfile, by the procedure getFile, at the start of the program and
then individual lines of text are read into the program by the procedure, getlLine. By
organising the i/o in this way, the program does not have to continually access the file
system. Clearly, if a large file is being output this may not be the best method as having
a large string vector may be too high a price to pay.

3/ Creating User Interfaces Using The Graphics Facilities.

a) Images and Screen Manipulation.

Objects of type #pixel are rectangular bitmaps and fall into two categories. Base
bitmaps are introduced by the image constructor, for instance:

let base/m = image 12 by 12 of off

while images introduced with the limit constructor are aliases of part of another image.
For instance, the command:

let quad = limit baselmio6by6at0,6
creates an object which is aliased to the top left-hand quadrant of base/m. Any changes

to the top left quadrant of an/mage will simultaneously be made in quad and vice-versa.
Figure 3 shows this diagrammatically.

Programming in PS-algo! -12- Aprii 11, 1987

(0, 1) (11,11)

N quad
(0, 8)

baselm
(0,0)" (11,0)

Figure 3. Base and Aliased Images

screen is the name of a base bitmap which is permanently mapped onto the
currently open screen window. Its dimensions are fixed at the time the program are
started and it a window manager function is used to change the size of the screen during
a program run, the program will abort with a run-time error. The screen is cleared with
the command

Xor screen onlo screen

This is a standard technique for setting all of the pixels of an image to off. They may
equally be set to on by the command:

Xxnor screen onto screen
which will make the screen completely black.

A rectangular area of the screen may be referenced using the limit function to
create an alias bitmap, e.g.

let area = limit screen to xsize by ysize at xorg, yorg
Now any bitmap operations on area show through onto that area of the screen and so
xnor arga onto area

blacks out that area of the screen. NB: the latter is always faster than

xnor timit screen to xsize by ysize at xorg, yorg
onto limit screen to xsize by ysize at xorg, yorg

as the latter has to construct the area image twice and, as we have seen for vectors, this

both takes more time to construct the image and causes the garbage collector to be
invoked more often than necessary.

Programming in PS-algol -13- April 11, 1987

b) Constructing An Error Message Facility.

The following is a procedure which draws a box in a given position of width two
pixels:
let box = proc(int xorg, yorg, xsize, ysize)

begin
let area = imit screen to xsize by ysize at xorg, yorg
tet inner = limit area to xsize-4, ysize-4 at 2,2
Xnor area onto area I make area black
xor inner onto inner I make inner white

end '

Two aliased images are defined which refer to the whole of the area of the box and the
area within the border. The outer area, area, is blacked out and then the inner area,
inner, is cleared to white. Note that inner is defined relative to area although it could
have been directly defined as

limit screen to xsize-4 by ysize-4 at xorg+2, yorg+2

Another useful procedure is the following, which waits until the top button of the
mouse is pressed and released, which events are recognised by calling focator and
checking if the first element of the the.buttons field is set first to true or false :

let PressRel = proc()
begin
let maxwell = locator({)
while ~maxwell the.butions)(1) do maxwell := focator() !wait on mouse bution
while maxwelil the.buttons }(1) do maxwell .= locator()
end

We can now build these into a procedure which shows an error message in a box
at a given point of the screen and waits for the mouse to be pressed and released before
restoring the original screen contents:

let ErrorMessage = proc(string message; int xorg, yorg)
begin
let Messagelmage = string.to.tile(message, "fix13")
let xsize = X.dim{ Messagelmage) + 10
let ysize = Y.dim{ Messagelmage) + 10
let area = limit screen to xsize by ysize at xorg, yorg
let save = image xsize by ysize of off
copy area onto save
let inner = timit area lo xsize-4, ysize-4 at 2, 2

xnor area onto area ! make area black
xor inner onto inner ! make inner white
copy Messagelmage onto limit area at 5,5 ! put the mesage into the box

PressRel(); copy save onto image
end

There are several points to note here. The area size is calculated from the size of the
image to be displayed (+ a border of 5 pixels). The image object save is used to store
the screen contents that will be overwritten when the message is displayed. Note that
save is not a part of the screen, so any operations on it will not be visible. After the box
has been constructed, the message is put into it. After PressRel finishes, the original
screen area is restored.

Programming in PS-algo! -14- April 11, 1987

¢) A Simple Form System.

Let us now try to develop a set of procedures which
; ‘ put up a set of rectangles on
th‘e screen any "of which may be pointed to by the mouse to initiate some operatic?n - we
will calll thesg light buttons”™. In this first attempt, we will just provide the ability to
determine which message has been pointed to, by returning the message itself.

We need to have a list of the buttons and an initiating procedure:

let ButtonList := nil
and let ClearButtonList = proc(); ButtonlL ist := nil

We then need a structure for our buttons and a facility for adding a new one:

structure button(string StMess; Int xo, Y0, xs, ys; #pixel SavedArea; pntr Nex{Button)
and let NewButton = proc(string message, int xorg, yorg)
begin

let Messagelmage = string.to.tile(message, "ix13")

... as for ErrorMessage procedure above

copy Messagelmage onto limit area at 5,5

4 ButtonList = button{ message, xorg, yorg, xsize, ysize, save, ButtonList)
en

Finally, we need a monitoring procedure to return the button pointed at:

let MonitorButton = proc(-> string)

begin
let return ="
while return = " do
begin
let maxwell := locator()
while ~maxwelll the.buttons)(1) do maxwell = locator()
while maxwell(the.buttons)(1) do maxwell = locator()
let X'= maxwell X.pos)
tet Y= maxwell Y.pos)
let P = ButtonList
while P ~= nil do
{ i P(xo) <= Xand X <= P(x0)+P(xs) and
P(yo) < Yand Y <= P(yo)+P(ys) do return = P(StMess)
P = P(NextBulton) }
end
return
end

The procedur_ev waits unti!.the mouse button is pressed and then scans through the list of
buttons, checking to see if the mouse is currently within the area of each. When it finds

suph a button, it stores the associated message in the variable, refurn, and the value of
this is returned by the procedures.

, We will return to this example in later sections to illustrate the way in which
first-class procedures enable us to make the form more efficient and powerful.

Programming in PS-algol ~-15- April 11, 1987

d) A Simple String Editor.

Our final example shows the code for a simple string editor. The procedurg jakcﬂes
in a title, an initial string value and the origin and dimensions of a box to do the editing in.
The box is drawn with the title at the top in a small font and the initial value inside the box
in a large font. Figure 4 shows the editor in action.

a title goes here

some text to be edited goes here

Figure 4. A Simple String Editor

The procedure responds to:
= the mouse to move the cursor about the string;
- the del key to delete the last character;
- the oops key to delete everything to the left of the cursor;
* return to quit the editor;
« all other conirol characters are ignored;
and - any printing character is added to the string at the current cursor position.

The procedure, which is given as Appendix B, starts by displaying two boxes and
putting the title in the upper box. The following are then created:

 an image constant which contains the cursor as a short vertical line;

« two string variables, leftText and rightText, which will contain those parts of
the string to the left and right of the cursor;

and - aninteger, cursorPosn, to contain the current cursor position as the number
of characters to the left of it.

Then follow two procedures:

«CursorDisplay, which returns the part of the screen where the cursor should
currently be;

Programming in PS-algol -16- Aprit 11, 1987

and - showText which will update CursorPosn, leftText and rightText, and then
display the new configuration.

The main part of the procedure starts by calling showText to initiate the display
with the cursor at the right hand end of the input text. The bulk of the procedure consists
of a loop controlled by the boolean, exit, which is set when the return key is pressed.
The loop uses a reduced version of the technique described in section 2b above to get
input either from the first mouse button or from the keyboard, whichever is given first.
The variable, ¢, is used to hold the resulting input. Its value is either -1 if the mouse
button is pressed or the ASCIi value of the character if a key on the keyboard is pressed.
A case statement then controls the action as follows:

» it the mouse button is pressed within the box, then the cursor is
re-positioned by a call to showText ;

+ if "oops” is pressed, the text to the left of the cursor is erased from the screen
and from leftText;

- if delete is pressed, the character to the left of the cursor is erased,;
+ if return is pressed, the exit condition is set;
* any other control character is ignored;

and - if a printing character is pressed, it is inserted into lefiText and the whole
string is re-displayed.

Finally the procedure restores the screen and returns the concatenation of leftText
and rightText as its result.

4/ The Persistence Mechanism and Database Organisation.

a) Tables.

The main organising structure provided by PS-algo!l is the table. This is a
collection of key/value pairs, in which the value is an object of type pntr, that is an object
created by a class constructor. The key can be either a string or an integer, although we
will restrict our discussion here to string keys. We create a new empty table with the
table command, for instance:

let addressTable = table()
and insert new entries with the s.enter command:
s.enter("CS", addressTable , ADDRESS(17, “Lilybank Gdns",... 1)

A value is retrieved by the command:

Programming in PS-algol -17- April 10, 1987

let CS = s.jookup("CS", addressTable)

which returns a pointer to the value associated with the key, "CS" - in this case, the
ADDRESS structure above. If the key, "CS", is not found in the table, then the lookup
returns nil and for this reason entry deletion has been provided by, for instance:

s.enter("CS", addressTable , nil)

Another mechanism provided for use with tables is the s.scan command which
applies a procedure to every entry in a table. The strong type checking of PS-algol
restricts this procedure to be of type:

proc(string,pntr -> bool)

where the parameters make the keys and values available for manipulation within the
procedure. The result of the procedure should be true, unless the scan must be
terminated prematurely, in which case the value, false, should be returned. A sample
scan procedure is:

let Double = proc(string key; pnir address -> bool)
begin
address(house) := 2 * address(house)
true
end

would be applied to every address in the addressTable by the command:
let n = s.scan{ addressTable, Double)

which not only causes havoc in the table by doubling all the house numbers, but also
returns the number of addresses it has found to do this to.

Tables are important within PS-algol, because they are used as the topmost
structure of the "databases" within which objects are stored in order to make them
persist. The commands:

fet DB = create.database("addressDB", "friend")
and let DB = open.database(“addressDB", "friend", "write")

which respectively create and open the database whose name is "addressDB" and
whose password is "friend", return a table Abstract Data Type which is emply when the
database is created.

Usually the topmost table in a database will point to further tables. Figure 5 shows
the setup for the database of bibliographic references described in [PPRR24]. In this
diagram can be seen:

» the name and password of the database in a box at the top;

the top level table shown as a line down the left hand side with horizontal
lines pointing to the entries in the table;

Programming in PS-algol -18- Aprit 10, 1987

and - the entries pointing to further tables.

The'organisation of this database will be described in more detail in the following
sections.

"Bib","ron” l

l— "%$procedures” — g

L "%$modules” —

"%$help” ———

"%$media" —=m

topi a structure of
OpiIC —& pointers to —#

name three tables

procedure ——# structures

names . p

containing
module —

names ———+# procedures

help > help
keys —— fexis

- Slrucliures

media A
5 cont?mltng
outpu
names >
procedures

"ondfields” . vector of valid field names

(saved in lower case)

— "%S$types" ——Br— Reference ——® Structures containing
Type p Citation key and rgference
names layouts and a list of
» required fields

"Ylormats” Reference™ “sort order" —# sort order string
Format Reference —# a5 for the
____ names Type %$types table
names

abbreviations Ior)g
—p Versions
citation —%® database
keys —% entries

——— more —#%
topic
names—®

P author — agthor
lists

names

Figure 5. The Bibliographic Database Layout.

Programming in PS-algol

-19- April 10, 1987

b} What Persisis?

"Reachability” is the concept used by PS-algol to determine the persistence of a
piece a data. Within a program run, data persists as long as it is reaohab.!e from some
object still in scope at the current point of the program. Thus after the following:

structure intPack(Int value)

let x := nil
begin
lety:=0
fet z = 1
x = intPack(z)
end

the pointer variable x persists because it is still in scope. The other two variablles,‘y_and
z are now out of scope, but the value of z has been made to persist by storing it in a
structure which is pointed to by x, which is, as we have said, still in scope. The variable
y, on the other hand, has no reference to it and is out of scope and so has not persisted
and may be garbage collected.

The mechanism for persistence of data beyond the end of the curren.t program run
is the database, introduced in the previous section. Briefly, data will persist as long as
two conditions have been met:

- it has been made reachable from the top level table of a database
and - then a commit command has been given.
The rules for whether a data object is reachable are:

- if it is not of type pntr, it must have been entered into a structure which is
reachable

- a structure is reachable it it is part of a reachable super-structure
- the top-level table is reachable.

Thus in the following rather baroque structure, in which TopLevel.Tab/e isithe top
level table of some database the value of x will persist, via references in the objects y,
LowlevelTable and z:

structure infPack{ int value)
structure /ntermed(pntr ref , ...)
let x =1

let y = intPack(x)

let Lowl evelTable = table()
s.enter("x", LowLevelTable, y)

let z ;= intermed(LowlevelTable, ...))
s.enter("low", TopLevelTable , z)

The commit command can be performed at any time and it has the effect_ Qf
making permanent any changes made by the program to any of the databases. Thus itis

Applicalions Programming in PS-algol -20- April 11, 1987

impossible to selectively abort changes which have been made. The following section

deals with techniques for overcoming this by making changes as atomic transactions to
the database.

¢) Modelling Transactions.

Let us set up a database which will hold various collections of addresses. The
program to set up the database with one collection of addresses, "MyAddresses”, might
look like

let addressDB = create.database("Addresses”, "Postman”)

let MyAddresses = table()

s.enter(MyAddresses”, addressDB, MyAddresses)

It commit() = nil then write "Address Database Created o.k.'n"
else write "Address Database set up failed'n”

We now want to provide a facility for editing the database and do so as a set of
editors. In top-down order these are:

+ an editor for the whole database, this will operate on collections of
addresses, adding new ones, deleting them and editing them;

* an editor for a single collection, which will operate on addresses in a similar
manner, adding, deleting and modifying them;

* an editor for a single address, which will edit the fields of the address:

and - editors for each of the fields of an address (they call primitive editors, like the
one described for strings in section 3d).

Each of these editors will be designed to operate as an all or nothing editor,
returning either the old value or a new object as directed by the user. They will not make
their changes to the database until the whole database is to be changed. Let us see
how this can be done, by describing the superstructure of the editors from the bottom up.

The following editor edits the name of the address:

let EditStreet = proc(string OldStreet -> string)
begin
let NewStreet = StringEditor{ OldStreet)
print "Do you want to keep the edited name?"
ifread() ="y" then NewSlreet
else OldStreet
end

Itis to be noted that the editor makes a new object and then returns it if the user wants to
keep the changes. We have thus provided an atomic editor on the sireet field.

Programming in PS-algol -21- - April 10, 1987

Qur second editor, for a whole address, is as follows:

structure Address(int House; string Street, City)
let EdilAddress = proc(pntr OldAddress -> pntr)

begin .
..... ! This code will contain calls
let NewStreet = OldAddress(Streel) o the various field edilors
NewStreet = EditStreet { NewStreel) ! controlled by a form interface,

tforinstance
print "Do you want lo keep the edited address?"
if read() ="y" then Address (..., NewStreet,)
else OldAddress
end

Here the edit transaction has been made aiomic, the returned address object being
either the old object or a completely new one.

The editor for "my" collection of addresses can then be written as shown in
Appendix C. In this procedure, all changes are recorded in the table, ChangesTable, the
three operations on the table operating as follows:

"add": requests a name from the user, creates an empty address object and
then calls the address editor to fill in the values - the new name, value
pair are then inserted into the ChangesTable;

"del": this calls a procedure to get the name of the address to be deleted from
the user from a menu of all the names in the table. The name is then
associated with the constant delin ChangesTable. Note that, we may
not associate the name with nil as this will delete the eniry from
ChangesTable, not from the old table.

"edit": again the name of the address to be edited is requested by menu and
the entry corresponding to this is looked up, first in the ChangesTable
as this will hold the most recent value of the object, then in OidTable.
The value is then sent to the address editor.

The names presented by getname are initialised to be all of the keys of OldTable by a
standard procedure makeKeyMenu and is maintained by the two procedures
addKeyToMenu and removeKeyFromMenu. When all of the changes have been
specified, the user is asked if the changes are 1o be kept and if so a new table is built.
This consists first of the entries of OldTable and then of the changes in ChangesTable.
Otherwise, the old table is returned unchanged.

Finally, we could specify in the same way a procedure which operates on the top
level table. Perhaps though a better alternative is to extend our procedure
EditAddressTable to a more general version which edits tables whose elements are all
of the same (unspecified) class. The only change required to do this is to give the
procedure an extra parameter, which is a procedure which edits an element of the given
type and to replace the calls to EditAddress by calls to the parameter, EdiiElement. The
procedure declarations becomes:

let EditTable = proc(proc(pntr -> pntr) EditElement; pntr OldTable -> pntr)

Programming in PS-algo! -22- Aprit 10, 1987

Now we can edit my collection of addresses with:
MyAddresses = EditTable (EditAddress , MyAddresses)

Furthermore, we can specily a version of EditElement which operates on tables of tables,
as follows:

let EditTableAsElement = proc(pntr OldElement -> p;ﬁl’), nuliproc
EditTableAsElement = proc{ pntr OldElement -> pntr)
EditTable(EditTableAsElement, OldElement)

We would like to be able to apply it to the top level table, by doing:

AddressOB := EditTable(EditTableAsElement, AddressD8)

but this would stop AddressDB being a 'database’ (it would instead be an unattached
table). We need instead to write a version of EditTable, which merges the changes in
with the database. This is left as an exercise to the reader.

5/ Program Development and Organisation.

a) Modular Development.

Analysing a program into small manageable units is now accepted as the most
efficient way of carrying out large programming tasks. In algol-like languages, the
various functions of the program are carried out by procedures. In PS-algol, procedures
are first-class objects and so may be manipulated in the same way as other data types,
in particular they may be assigned to variables, passed as parameters to other
procedures and stored in the database. One immediate gain from this is that once the
program has been divided into procedures, each procedure can be put into a different
source file and be compiled separately, with consequent savings in debugging time.

Such a module usually consists of three parts :

« in the first part all of the data required is retrieved from the database along
with any procedures called by this one;

+ then follows the body of the procedure;

« finally the procedure is wrapped up in a structure and stored in the
database.

In practice, it may be better to code more than one procedure within a module,
where the procedures are small or where they share a lot of data. In this case, the
procedures may be packaged together into a single structure for storage in the database
or they may be packaged and entered separately. The decision on which procedures to
package together will be determined entirely by how meaningful such a grouping is to
the programmer.

Programming in PS-algol -23- Apiil 10, 1987

To illustrate the technigue, let us look at the list handling procedures given in part
1. The source required to put the three procedures, start, add and print, into the
database is as follows:

structure anylistElement(pntr value, next)
fet anyList = nil

let startAnylist = proc(); anyList := nil

let addAnylist = proc(pntr newValue)
anylist = anylistElement (newValue, anylist)

fet printAnyList = proc()
begin
let P = anylist
while P ~= nit do
begin
let V= P(value)
H V Is stringPack do print V(sValue)
I V Is intPack do print V(iValue)
P = P next)
end
end

structure listPackage(proc() StartAnyList,

proc(pnir) AddAnyList;

proc() PrintAnyList) .
let thelistPackage = listPackage{ startAnyList, addAnyList, printAnyList)
let procdb = open.database("Procedure Library”, "friend”, "write")
s.enter("List Package”, procdb, thelistPackage)
1f commil) = nil do write "List package entered successfully'n”

The final part of the program declares a packaging structure. Note that the field names
must be different from any other name in the scope - a consistent use of case is one
systematic way of getting round the inconvenience of this. Then the procedures are
packaged and entered into the database.

The retrieval of procedures is illustrated by the following, which retrieves the
startAnyList procedure:

structure listPackage(proc() StartAnylist,
proc(pntr) AddAnyList,
proc() PrintAnyList)
let procdb = open.database("Procedure Library”, "friend”, "read”)
let thelisiPackage = s.lookup{ "List Package", procdb)
let startAnyList = theListPackage(StartAnyList)

b) Maintaining A Procedure Library.

Given the ability to divide up the program source as described above, it becomes
an attractive option to create and maintain procedure libraries systematically. Firstly, this
gives us the possibility of storing support information about the procedures and,
secondly, it allows us to overcome the following problem:

Programming In Pé-algol -24- April 10, 1987

Suppose that we have entered what purports to be a minimum procedure into our
database by running the following program:

structure procpac1(proc(real, real -> real)'xproc1)
let min = proc{ real a, b-> real); if a<bthen belse a
s.enter("min", procdb, procpaci(min))

....... commit()......

and then we also add in a procedure which calculates the minimum of a vector:

structure procpaci{ proc{ real, real -> real) xproc1)
structure procpac2(proc(*real -> real) xproc2)
let min = s.lookup("min", procdb){ xproct)
let minvec = proc(‘real data -> real)
begin
let smallest := data(wb(dala))
for i=1wb(dala) to upb(dala) do smallest := min{ smalles!, data(i})
smallest
end
s.enter("minvec”, procdb, procpac2(minvec))
....... commit()......

Now we retrieve and use minvec and get surprisingly large numbers, due to the error in
min. 1f we now, edit, recompile and re-run the program with min in it, we would expect
the problem to go away, but it doesnt! This is because minvec is still pointing to the old
version of min. Itis essential to re-run (but not to re-compile) the module with minvec in it
- this will result in minvec correctly pointing to the updated form of min. This is a general
problem and it would be useful to have a mechanism whereby updating a procedure
would at least alert the programmer to the fact that the modules containing procedures
which call this one must be re-run. Note that this feature of the database system is not
undesirable, since it permits a given user to keep on using an old version of a library
procedure or to switch to a new version as required.

Let us therefore use the following standardised structure to hold the procedures:

structure jintermediate(

pntr procpaki; ! points to the procedure packaged as below
‘string depended; 1alist of the procedures which call this one
string datestamp; !the time at which the proc was put inlo the fibrary
string author,; i the author

string description) 1 a description of the procedure

The procpaki field points 1o a structure which is always called procpak and which always
has a single field, named xproc. This field is a procedure, the type of which varies from
procedure to procedure. Appendix D contains two programs written to maintain such a
library. The first program, procdbmaker, creates the database, while the second,
predblister, lists the contents of the database in a standard layout.

The main function of procdbmaker is to set up an empty database to hold the
procedures and to put in two procedures, one of which inserts procedures (prcput) and
one which retrieves them (prcget). The program starts by checking whether the
database already exists and if it does checking with the user that it is all right to delete

Programming in PS-algol -25- Aprit 10, 1987

the old one. Then the two procedures are defined and inserted into the database. The
method of inserting procedures is illustrated by the lines which insert preput -

{ structure procpak(proc(string,pnir,*string,string,string) xproc)
prepul(“preput”, procpak(preput), vector 0::0 of ™, "RC", "Put procedures inlo the database"))

The entry consists of a single block containing one command to specify the procedure's
type and another to call preput to insert itself. Note that the two lines have been put
between curly brackets, which are synonymous with begin .. end in PS-algol. This has
allowed us to use a uniform storage method for procedures of different types. Since all
identifiers have to be unique the following:

structure procpak({ proc(string) xproc)
prepul("proc1”, procpak(proct), ...)
structure procpak { proc{int) xproc)
preput("proc2”, procpak{ procZ), ... }

would be rejected by the compiler as the names procpak and xproc have been defined
twice within the same block. By putting in the brackets we have thrown away all the
packaging, which won't persist beyond the end of the block, and so avoided having to
think up and remember new packaging names for every procedure we encounter.

The preput procedure takes in five parameters:
the procedure name;
a pointer to the packaged procedure;
a vector of the names of procedures which this one calls;

a string containing the author's name;
and a description of the procedure.

It then proceeds as follows:
lt checks if the procedure is already in the library - if it isn't just load it.
If it already exists, but is of the same type also proceed with loading it,
but if it is of a different type, display a warning message and give the user a
chance to abort the foad.

Print a list of the procedures which call it and then clear the list.

Scan the list of procedures which it calls and put an entry in each of
their lists of dependent procedures.

Finally commit the database entry.
prcget is much simpler, consisting just of a lookup followed by a dereference of the
procedure pointer field. Note that prcget is not packaged in the intermediate structure,

since it contains the code which unpackages such structures. Therefore it could not be
retrieved from the database until it had already been retrieved.

Programming in PS-algol : -26- Aprit 10, 1987

predblister prints a table of the information about the procedures in the library in the
form shown in Figure 6. It starts by pulling some utilities out of the library in order to use
them itself. The technique for getting procedures out of the library is analagous to the
technique for putting them in. The packaging information is thrown away immediately it
has been used by surrounding the retrieval in curly brackets. The procedures retrieved
are:
fillstring - which fills out a string with spaces to be of a specified length
columnator - which puts a vector of strings into columns
and putFile and putline which were defined above.

The program then uses the s.scan command of PS-algol to apply the procedure
pdbscan to every entry in the library. This procedure displays the procedure name, its
type and some of the support information on one or more lines of the table. The only
point of interest is that it makes use of the standard function, class.identifier. This
returns the type of an object given a pointer to it. The class identifier of one of the
procedures in the library looks like:

procpak(
proc(string,int) xproc)

This is passed to the procedure, someof, to reduce this to
(string, int)

the form in which it is printed.

prcget (string -> pntr)
prcput {string, pntr, *string, string) Nov 6/86 14:52 Put procedures into the database }
columnator {(*string, *int, *int, *int Dec 3/86 17:59 Prepare columns of text for display |
-> string}
tillstring(string,int -> string) Dec 3/86 17:59 Fill out a string with spaces i
nothing() Dec 3/86 17:59 Do nothing at all H
getfile(string) Dec 3/86 17:51 Make input spool from the keys or file |
getline(-> string} Dec 3/86 17:51 Get a string from the output spool i
putfile(string) Dec 3/86 17:50 Send output spool to the screen or file |
putline({string) Dec 3/86 17:51 Send a string to the output spool |
error.message (string, int, int) Nov24/86 11:07 Display a message in a screen window i
leditor(string, int,int,int,int, int Nov17/86 17:09 Integer editting in a screen window |
-> int) !
max {int,int -> int} Novl7/86 17:09 Returns larger of two integers t
min(int,int -> int) Novil/86 17:09 Returns smaller of two integers |
seditor(string, string,int,int,int, Nov17/86 17:09 Text editting in a screen window !
int -> string) i
help(cstring,pntr) Nov 6/86 15:24 Helper {
form.generate (-> pntr} Dec 1/86 12:33 Generate a form ADT
_____________________________)
16 procedures in the database !
Figure 6. The Contents of the Procedure Library.

Programming in PS-algol -27- April 10, 1987

¢) Organising The Database For A Program. Field Editing Men
iting u
The information kept in the persistent store by a large application may be Add | S.edit
partitioned between programs and data as follows: gg‘ete Choose
: it Choose; S.edit
= programs: - procedures representing large program modules; : List More
+ application-specific utility procedures; ! ‘)
- utilities of general applicability, which may be re-usable; TypeEditor Form
(the Type name \ S.edi
. Type Editing Menu -edit
+ data: . mheta—data' J - Siow Ten the layout lines S.edit
. " " oose
the "actual” data entered by the user. v o choose the required fields
A useful organisation of the database which incorporated all of these would to be: De]ete Choose Add a req field Choose
Editt 1 Delete req field Select
* one database devoted to general utilities, with a standard password, like it is More -
. } L ! .) . nitial Menu Insert a key | .
"friend” - it would be maintained by the mechanisms described in 5b, noert a key fine : Se'es"‘vd'
above; initialise Insert an output line .edit
Delete line Select
- everything else to be stored in a database specific to the application; Edit /.
, . - e e . Fields
- one table of this database to include the application-specific utilities - this Format Editing Menu Format Editor Fon
would also be maintained by the method outlined in 5b, above; Edit
Types Show | Choose the Format name/, S.edit
- one table of the main program modules, so that these can be accessed Add Sgﬂgiosi‘"d? the sort order/ Sord
separately; Eg:tm t " | Delete Choose the types ’
ats -
- one table each for the various types of metadata held in the system. - E,d'[— Add new lype | Choose
Edit ist More Delele type Select
- one structure held at the top-most level of the database which contains the Topics
current values of all the global variables in the system;
Scan
« other data to be entered in whichever structure seems most appropriate. Abbreviation
.) o Clear Editing Menu
The database for the Bibliographic Reference Database Program, shown in Figure Up Tovic Editor F Add1S.edit
5, is organised in this way. The top two entries in the table show the utilities and KOM orm Deleia lonoose
modules of the program. Then follows the meta-data, including help information and a Topic Editing Menu Topic name | 5. edit Edi S.edit
description of the types of reference which the program knows about. Finally, at the AT S edit Edit »| List More
bottom of the diagram, appear the user-entered data, which is grouped into "topics". Delote C'hoose Abbrevs '
. Edit #! Bulk S.edit;
H M ey
d) Organising A Program. List ore Load Choose Aelerence Editing Menu
Dump Choose Show Cho?se
The organisation of the program for a given application will be largely determined — pAdd S-edit; Refer
by analysis into manageable units. The low-level utilities should be stored in a De'lete Choose
database as described above so that they can be retrieved and used from any higher | Edit Choose; Refer
level module. The larger modules call themselves in an order determined by which List More
operation has to occur at each stage. They can be linked together either sequentially if a
sequential dialogue with the user seems to suit the application. Alternatively, they can Figure 7. The Biblioar : .
- . aphic .
be linked together via the PS-algol menu construct or by a form interface such as the one g grap Reference Menu Hierarchy

which is described in section 3¢, above, and 6¢ and 6d, below.

Programming in PS-algo! -28- Aprit 10, 1987 Programming in PS-algol -29- April 10, 1987

Figure 7 shows the menu hierarchy within the Bibliographic Reference Database
Program. Flow of control passes from left to right in the diagram via menus, shown as
rectangular boxes, and forms, shown as rounded boxes. At the leaves of the hierarchy
" appear dialogues of user interaction. For instance, a bulk load is achieved by selecting
the sequence "Edit Topics", "Edit" and "Bulk Load" and then entering into a dialogue
using the String Editor, to enter the file name, and the Chooser to determine the format
that the file isin.

The Chooser mentioned here is a utility which provides a method of selecting
between a set of objects by menu. It is an example of the kind of flexibility that can be
offered by PS-algol. in the database, there is a table of "bulk loaders", one for each
format that the program knows about. When the Bulk Load option is chosen, the bulk
loading module examines that table and presents the user with a choice of the loading
methods available. This means that if, at some future time, a new file format is required,
it is only necessary to write a procedure which loads a file of that format and enter it into
the table of bulk loaders. The next run of the main program will then automatically
include that option in the menu.

6/ Using First Class Procedures.

a) Procedure Variables,
Procedures are first-class objects in PS-algol. The first implication of this is that
there can be variables whose type is proc. The type matching rules also take account of
the parameter types of the procedure. Thus the two procedures:
tet nothing = proc(); {}

and let loseA = proc(string a); {}

will not match types. Note, however, that the parameter names are ignored. Therefore,
let JoseB = proc(string b); {}

will match loseA as both are of type, proc(string).

In all the examples of procedures so far, the procedures have been assigned to
constants - as they have indeed for the three procedures just given. In order to define a
variable to hold a procedure, give a declaration with a colon, as usual, eg:

let variableNothing = proc(); {}

which could at a later stage, be re-assigned o another (parameterless) procedure as
required.

The use of procedure variables is mandatory in the case of recursive procedures.
Thus factorial may not be defined:

Programming in PS-algol -30- April 10, i987

let faclorial = proc(Int n -> Int)
it n=1 then1
else n* factoria n- 1)

as thi; will not compile, since factorial is not yet defined when it is called within itself
There is no object called factorial until the procedure body is finished. To fix this put

let factorial := proc(Int n-> Int); nullproc
factorial := proc(int n-> Int)
If n=1 1then{elsen* factorial n-1)

where nullproc is a null procedure body. Application of a nullproc gives rise to a
PS-algol event.

There are three substantial benefits that are derived from having first-class
procedures within the language:

+ the ability to develop a program incrementally;
« the ability to model actions;

and - the ability through procedure generating procedures to represent data
by Abstract Data Types.

The former was discussed in section 4a above. We now continue by showing how

actions can be modelled and how to provide ADT's.

w Cw

w w

w w

w w 0 - snake
w w

w w x - food
w w

w X w w - walls
w w

w w

w w

w o w

w 000 w

w ° w

w o w

w) w

w o w

w w

Figure 8. The Snake Display
Programming in PS-algol -31- April 10, 1987

b) Modeliing Actions.

Consider a program for displaying the Snake game commonly found on micros. In
this game, there is a snake, initially of length /, which travels either horizontally or
vertically at constant speed about the screen. On the screen there are walls in the form
of lines and food in the form of dots. The walls must be avoided - running into one loses
a life. The food must be picked up to score points and make the snake grow. At any
time, the direction of the snake may be changed by 90 degrees, by pressing one of the
mouse buttons. TInitially the snake is travelling upwards and so only the left and right
buttons have any effect - the up and down buttons do nothing at all. Similarly when the
snake is travelling left or right, only the up and down buttons will change the direction of
movement. The program display is shown in Figure 8,

Perhaps the obvious outline for this program might be:

let direclion := "U"; let crashed = {alse; let maxwell := locator()
let show = proc() ! a procedure which moves the snake one screen unit and
....... ! checks whether it has hit a wall or come across food
while ~crashed do
begin
It maxwell the.buttons }(1) and (direction = "L" or direction = "R") do direction = "U"
ditto for the other three directions
case direction of
Ut { Y=Y +1; show))
.. entries for other three directions
end

This procedure, while being small and neat, is inefficient in that it includes a great many
logical expressions, which need to be evaluated. Replacing the string variable,
direction, with a set of boolean flags does not help a great deal. A better implementation
has the following outline:

let crashed = false; let maxwell = locator()
let show = proc() ! a procedure which moves the snake one screen unit and
....... ! checks whether it has hit a wall or come across food
let nothing = proc{); {}
let move := nothing
let pressUp := nothing
. dilto to declare pressDown, presslLeft and pressRight
let moveUp = proc();{ Y =Y +1; show()}
. ditto to declare moveDown, movelelt and moveRight
tet changelp = proc()

begin
move = movelp
pressUp = nothing; pressDown = nothing
pressLeft .= changel eft, pressRight := changeRight
end

ditto to declare changeDown, changeLeft and changeRight
while ~crashed do
begin
H maxwell the.buttons)(1) do pressUp({)
.... for the other directions
move()
end

Programming in PS-algol -32- April 10, 1987

The main loop of the program simply circles round checking the buttons, calling the
corresponding variable procedures pressUp, etc, when one of them is pressed. The
loop ends by calling the variable procedure, move, which moves the head of the snake
one square. The press procedures either do nothing, by being set to procedure, nothing,
or call one of the change procedures. The change procedures simply set move to the
appropriale direction and also set the values of the press procedures to respond
appropriately to the buttons. The move procedures change the current position and call
procedure, show. By simplifying the boolean expressions, the program runs faster. The
use of variable procedures also seem to provide a model which is a good metaphor for
what is happening on the screen. The whole program is listed as Appendix E.

c) The Form of Light Butions Revisited.

In section 3¢, we constructed a light button system, which contained a procedure
for displaying boxed text and another for checking which box had been pointed at by the
mouse. The monitoring procedure returned the text from the box and from this it would
be possible to write programs which react to the pressing of different buttons.

We now propose to modify the system to make use of first-class procedures, so that
we can (a) make the monitoring procedure activate an associated procedure when the
button is pressed; and (b) give the calling procedure the ability 1o erase buttons from the
screen if required. Let us start by extending our button structure:

structure button(string strip; Int xo, yo, xs, ys; #pixel savedArea;
proc() action; potr nextBution)

and then extend the NewButton procedure to take in an action procedure and to return a
procedure which erases the button, viz.

let NewButton = proc(string message; Int xorg, yorg; proc() inAction -> proc())
begin
.... as for original NewButton until
ButtonList := button (message, xorg, yorg, xsize, ysize,
save, inAction, Buttonlist)
proc(); copy save onto box
end

The procedure now returns a procedure to the calling program, which it can store and
use at any time to erase the button from the screen. The MonitorButton now becomes:

let MonitorBulton = proc()
begin

let maxwell := locator()

let found = false

let P := ButtonList

while ~found do

begin

while ~maxwell the.buttons }
while maxwell(the.buttons){ 1
let X'= maxwell X.pos)
let Y= maxwelf Y.pos)
P = ButtonList

1) do maxwell = locator()
) do maxwell = locator()

Programming in PS-algol -33- April 10, 1987

while ~found and P ~= nil do
{1t P(x0) <= Xand X <= P(x0)+P(xs) and
P(yo} < Yand Y <= P(yo)+P(ys) do found := true
P = P nextButton) }
end
let areaBox = iimit screen to P(xs) byP(ys) at P(xo), P(yo)
not areaBox onto areaBox linvert the light button during the
P(action) () ! procedure
not areaBox onto areaBox
end

The inner loop of the procedure cycles round until the mouse has been clicked over one
of the light buttons of the form - variable P points to this button. As soon as a button is
clicked over, its screen area is inverled and the procedure associated with it is applied.

d) Representing Data By Abstract Data Types.

The use of Abstract Data Types (ADTs) to represent data brings two main benefits
through the separation of the user from the data representation. Firstly, the user need
not be concerned by the representation and can concentrate on its functionality.
Secondly, the data is protected from misuse. To illustrate the way in which ADTs are
programmed in PS-algol, we return again to our light button example.

In essence, we have already managed to separate the data representation from the
calling program, as the only interface the program has consists of the three procedures,
start, add and monitor. However, we have ignored the following problem. Suppose we
put up a light button form, in which one of the associated actions wants to set up its own
form. So the action procedure calls add a few more times and then monitor. Now the
program is manitoring both sets of light buttons, when we only want it to see the second
set. What we actually want is a separate list for each form and this may be done by
providing a form generator, which returns a new form as a set of procedures. This will
set up "form" as an ADT, with two operations: add a new button and monitor the form.
The code for this is:

structure butlon(string strip; int xo, yo, xs, ys; #pixel savedArea;
proc() action; pntr nextButton)
tet FormGenerate = proc(-> pntr)
begin
let ButtonList:= nll
tet NewBulton = proc(string message; Int xorg, yorg; proc() inAction -> proc() }
begin
.... as for NewButton in section 6¢
end
let MonitorButton = proc()
begin
....as for MoniforBution in seclion 6¢
end

structure FormPack (proc(string, int, int, proc{} -> proc() } newbutton;
proc() monitorbutton)
FormPack { NewButton, MonitorBulton)
end

Programming in PS-algol -34- April 10, 1987

Now, every time FormGenerate is called, a new ButtonlList is created, associated with its
own instantiation of the two procedures. Thus the monitor procedure will only monitor
those buttons put up by the associated NewButton procedure. We can then lay out a
program with two levels of form as follows:

structure FormPack (proc(string, int, int, proc() -> proc{}) newbutton;
proc(} monitorbutton)
let aButtonProc = proc()
begin

let secondForm = FormGenerate()
let secondNew := secondForm(newbuiton)
let secondMonitor = secondForm(monitorbution)
let secondEraser = secondNew(.......) ! various buttons added

secondMonitor()
secondEraser() I remove light bullons before quitling

end
let firsiForm = FormGenerate()
tet firstNew := first.form(newbutton)
let firstMonitor = firstForm(monitorbutton)
let firstEraser = firstNew("Call second form", 100, 100, aButionProc)
firstMonitor()
firstErasen()

In this program, the first form is put up and when the light button, which lis abelled "Call
second form" is clicked over, the procedure, aButtonFProc, is called. This puts up the
second form and calls secondMonitor. At this point, only the light buttons of the second
form are responsive. When secondMonitor is finished, then the light button is cleared
away. '

That was our last look at the interactive form program. As outlined here, only two
operations have been provided. Appendix F shows a generator for a fuller ADT for
forms. This includes the following operations: ’

FormShow: redisplays a light button given a pointer to it.

FormAdd: takes in a string to be displayed, box position and dimensions and
an action procedure and returns a pointer to the list element.

FormClear: clear the form from the screen.
FormHAemove: remove a button from the form.
FormUpdate: update the text seen in a light button.

FormMouse: return a pointer to the button clicked over.

Programming in PS-algol -35- Aprit 10, 1987

FormMonitor: keep monitoring the form, applying the action procedures of
any light buttons clicked over, until the light button associated with
the provided fender procedure is selected.

fender: this is not an operation of the ADT, but an action procedure provided
as part of the package. One of the calls to FormAdd must

associate a light button (presumably marked "quit") with the
procedure so that FormMonitor may terminate.

7/ Interactive Compilation.

a) Introduction.

PS-algol programs are strictly type checked and this makes the writing of
polymorphic procedures impassible by normal programming methods. However, there
are two standard procedures provided which allow the programmer to get round this:

class.identifier which takes in a pointer, P, and returns a string which
contains the structure class name and a list of the names and types of
the fields of the structure of P;
and compiler which takes the name of a file containing the source code of a
procedure and a pointer to a packaging structure for the compiled
procedure and procedure compiled and packaged.

Using these two procedures, it is possible to create effectively polymorphic
procedures, which are given their input in the form of a pointer to a structure of an
unknown type and then proceed as follows:

Get the class identifier.

Build a procedure in a string variable from information found in the class
identifier, which will handle objects of this structure.

Output this procedure to a file.
Call the compiler to compile this.

Run it against the input object.

b) Calling The Compiler.

The compiter procedure has the following form:

compiler = proc(clile sourceFile; cpntr holder -> pnir)

Programming in PS-algol -36- April 10, 1987

where sourceFile is the name of a file containing the source of a PS-algol procedure and
holder is a pointer to a structure which will hold the compiled form. The procedure
returns a pointer to this structure with the compiled form inserted.

For example, if the file named exampleProc contains a proc whose declaration is:
proc(string inString -> Int)
the compiled form would be generated by:

structure procHolder (proc(string -> int) theProc)

let Package = procHolder{ proc(string inString -> int); nutlproc)
tet compiledPack = compiler(exampleFroc, Package)

et compiledProc = compiledPack (theProc)

In this code, Package is the empty structure sent to the compiler (it needs this as it cannot
create a structure to return the procedure in, only fill an empty one); compiledPack is the
procedure compiled, still within its packaging, and compiledProc is the unpackaged
procedure which may be applied, as in:

compifedProc("ABG")
or stored or used in the same way any other procedure might be used.

It is unfortunate that the chosen interface for the compiler is the file, but Appendix G
gives a set of procedures, which are useful interfaces to the run-time compiler and to the
class.identifier function. The first procedure is:

compile = proc(cstring source; cpntr holder -> pnir)

which replaces the file parameter with a string parameter. compile operates by creating
a temporary file in /tmp and submitting it to compiler.

Five other procedures are given in Appendix G. These are a procedure,
reporiErrors, which unpacks and displays error messages produced by the compiler and
four string handiing procedures which take in the class identifier and produce the
following: .

CltoStruct - produces, as a string, a PS-algol structure declaration.
CltoFields - produces, as a vector of strings, the set of field names.
CltoSname - produces, as a string, the structure name.

CltoTypes - produces a parsing of the field types as a vector of linked lists of

the following class of objects:

structure fypelisi{ string S, A, pntr N)
where "c"s and "*"s are separated from the rest of the type
information, so that for instance “cint is represented as

(", "eint”,)-> ("¢”, "int,)-> ("int", ™", nil)
that is the fields are current String, Rest of string and Next
element.

Programming in PS-algo! -37- April 10, 1987

¢) Producing Fully Polymorphic Procedures.

One reason for compiling procedures during the run of a program is to provide
procedures which will deal with the structures which have yet to be specified. Given
such a structure, it is possible to discover the structure name and the names and the
types of the fields by use of class.identifier. 1t is not, however, possible to access the
values of the fields directly - there is no way of writing the value of a field whose name |
don’t know when I'm writing the program. Our first example shows how essential this
information is.

We require a procedure which given an arbitrary record will report whether or not a
particular string is present as the value of one of the string fields. We will assume that
the record has a flat structure. That is we will not chase down any pointer fields to look at
sub-structures - to do so would require a procedure which recursively recompiles a
sub-procedure each time it goes down a level.

Our procedure, checkRecord, makes use of the persistent store to avoid
unnecessary recompilation (the database browser uses the same idea). A table, called
ourTable, is set up to contain all the sub-procedures that have so far been encountered.
There will be one such sub-procedure for each structure class that is passed to
checkRecord and each new one is placed into ourTable keyed by the class identifier.
When it is called, checkRecord first consults this table to see if the structure has already
been encountered. It it has, the sub-procedure is merely unpacked from the table and
used. Otherwise, a new sub-procedure must be constructed, compiled and stored in the
table, before it is used.

With these introductions aside, the procedure is presented as Appendix H. The
code has been annotated with the following code letters:

A - the table look up section described above

B - a preliminary check is made to see if there are any string fields and if not,
a standard procedure which reporis the fact is created. Note that this
does not need to be compiled dynamically as it is completely known
when the program was written.

C - the sub-procedure is built up in the string, source, by calls to the
procedure, outline, entirely from string constants and the class
identifier. For the structure:

aRecord. Sruc(string A; bool B; cstring C; pntr D)

the following would be built:

proc(pntr RR; string SIN -> bool)

begin
structure aRecord.Sruc(string A; bool B; cstring C; pntr D)
let result = false

it RR(A) = SIN do result = true
it BR(C) = SIN do result = true
result

end

Programming in PS-algo! -38- April 10, 1987

In this, the parts of the procedure which are built from the class identifier
are emboldened - the rest is statically determinable. Note thal in the
listing of the program, the statically determinable part of the constructed
procedure are printed in a different font.

D - the sub-procedure is compiled. If there are any errors, the procedure,
reportErrors is called to print them out.

E - finally the compiled procedure is run using the input parameters of
checkRecord as its arguments and returning its output as the result of
checkRecord.

d) An Object Copy Procedure.

Note: this section should carry a Government Heallh Warning. It includes the
technique of compiling and executing procedures which produce strings from which a
larger procedure is constructed, compiled and executed. This is clearly a complex
process and its description is necessarily complex to match. The example is included to
round off this tutorial in a way which illustrates the power of the language.

In an earlier section, the problem of making a new copy of a complex object was
mentioned. It will be recalled that the assignment of a pointer type variable:

A=8

merely makes A point to the same object as B, so that changing a field of A also changes
B. To actually make A be a new object it is necessary to do the following in the case
where B has the structure:

copiee(slring a; int b; real ¢)

we require:;
A = copiee(B(a), B(b), B(c}).

To devise a general procedure which will allow us to write -
A = objectCopy(B)

is & non-trivial problem. Were we only dealing with flat objects, our job would he
comparable with the checkAecord example just discussed, but in dealing with any object
the procedure must recursively recompile code as it goes down pointer and vector
levels. One solution to the problem is given as Appendix |,

The outline of the procedure is much the same as for checkRecord. The technique
of storing procedures as new structures are encountered has been omitted for brevity. A
sub-procedure is built into the string, source, by calls to the procedure, outlLine. The
sub-procedure is then compiled before being run with the same parameters as
objectCopy itself. The lines commented with an "A" are the ones which accomplish this.
However, the building of the sub-procedure is a far more complex task.

Programmirig in PS-algol -39- April 10, 1087

The procedure declaration is put into source at the top of objectCopy and the rest of
the code is built as begin - end blocks by recursive calls of makeCode. The kind of

block constructed by makeCode is illustrated by the following which would be generated
by structure, copiee, above:

begin
structure copjee(string a; int b; real ¢)
let X1 = Afa)
let X2 = A(b)
let X3 = A(c)

copiee(X1, X2, X3)
end

The blocks are built up in the string variable, tSource, by a set of procedures like
tLine, which attempt to make the block indent nicely. This is accomplished in the lines
commented with "B". makeCode takes as parameters a pointer to the object for which a
block must be built and a string which will be its name within the sub-procedure being
built. For the top level object this will be "A". If the object had a pointer field named P,
then when that field was processed, it would have the name "A(P)". The block begins
with the begin and the structure declaration and then puts in one assignment for each
field of the structure. The right hand sides of these assignments are built up by the parse
procedure, whose body consists solely of a case statement which makes use of the
typelist structure described above to determine the nature of the expression, as follows:

If the first part of the type is a scalar, the expression is simply a dereference of
the field. The expression to do this is held in the variable, FnameF. It consists of
the name of the object as seen from the top level object followed by the field name
in brackets. Continuing our example, if A(P) has integer field /, put in "A(P)(1)".

' the first part is a "c" for constant, ignore it and recall parse on the rest of the
type information.

When the field is a pointer field, deal with it by building another procedure in
pSource, which recursively calls makeCode on the sub-object. Note that it won't
do to just call makeCode recursively as it is not possible to name the sub-object
statically. Therefore a little procedure must be built which takes in the whole object
being processed and an incarnation of makeCode and produces as its result the
block which creates the copy of this field. For the top-level structure,

copy2(string z, pntr r)
such a procedure to build the block for field, r, would be:
proc(proc(string, pntr -> string) MAKECODE; pntr PP -> string)
begin
structure copy2(string z, pntrr)

MAKECODE("A(r)", PP(r))
end

The result of such a procedure, which will be a block, can then be embedded into
tSource in exactly the same way that the field identifier was for scalars.

Programming in PS-aigol -40- April 10, 1987

The procedure for dealing with vectors is similar if a little more complicated.
so we will deal with it in more detail.

Let us consider an example of a structure with two vector fields:

copy3(*epntr vi; *tint v2)

The first decision to be taken is which of the two PS-algol constructors of vectors will be
used for the vector expression. At first sight, we might choose the "vector" constructor
since it can be generated statically - and this remains true even for multi-dimensional
arrays. However we will choose the "@" notation because the vector notation will not
do for vectors of constants. If an attempt is made to insert :

begin
let X = vector lwb(A(v1)) :-upb (A(vp7) of nil
for i= lwb(A(v1)) to upb { A(v1}) do X(i) := A(vi)(i)
X

end
into the v field then a type mismatch will occur, since Xis of type *pntr.

Having decided upon the @-notation, it is necessary to write a procedure to parse
a vector object and produce something of the form:

@ wb(A(v)) of cpntr{ ...]

This is the procedure vParse. 1t calls itself recursively to deal with vectors of vectors
and it calls makeCode to deal with vectors of pointers. It builds its output in three pars:
vStart which contains the "@ Iwb(X) of cpntr [" part; vEnd which consists of just the " |
and vBody, which contains the element list. vStart and vEnd can be constructed
statically, but vBody can only be generated by compiling a procedure and running it as
there is no way of knowing how many elements there are in the fist. The string, vStartis
constructed from the two input parameters of vParse - VS, which contains the name of
the vector as seen from the topmost object, and VT, which points to a typelist structure
for the vector. The argument of lwb is VS while the type declaration is T(R) - this is the
reason for the existence of the A field of typelist.

The rest of vParse is concerned with the construction, compilation and execution of
a procedure of the form:

proc(pntr VP, VTT; string VF; proc(string, pntr -> string)
MAKECODE, VPARSE -> string)
begin
structure copy3(*cpnir v1; **int vvi)
fet vOut .= "
for i=lwh{ VP(v1)) toupb(VP(v1))do
vOut := vOUl ++ MAKECODE(VF ++"()", VP v1)(i)) ++ "'n"
vOul{ 1 | length(vOut) - 2)
end

in the string variable, vSource. When this procedure is called, it produces the list of
elements, separated by commas - in this instance, these will consist of the code for the

Programming in PS-algol -41. Aprit 10, 1987

it object, constructed with the appropriate name, supplied as the VFparameter indexed
by "(i)". The object itself is obtained from the input parameter, VP, indexed by the field
name and by i. The makeCode procedure is passed in in exactly the same way as for
the procedures constructed by makeCode, itself. Similarly if this were a vector of vectors,
the line which specifies an element of the list would contain a call to vParse via the input
parameter, VPARSE.

The procedure, makeUnit, places the code to produce one element into this
procedure. This varies depending upon the type of the vector, as follows:

if itis a vector of scalars, just put in VF ++ “(i)",

i it is a vector of constants, recall makeUnit with the next part of the type
information as the input parameter

it itis a vector of vectors, put in VPARSE(VF++ "())" VTT) ++"'n"
it itis a vector of pointers put in MAKECODE(VF ++ “(i})", VP(.....) (i) ++"'n"

When the vSource string is complete, it is compiled and run, producing a string
which is embedded into tSource as the right-hand side of one of the " let Xi = .. " lines.

Eventually, the call of makeCode on the top level object finishes and the block
constructed in tSource is returned. This is put into source and then source is compiled
and run against the input object. The result of the procedure in source is the result of
objectCopy itself. For further details of the operation of this procedure, a sample
application of the procedure to copy the object, OBJECT, given by:

structure Main(string Mstring; int Mint; *int Mvint, pntr Mpntr)
structure Subsid(string Sstring; *bool Svbool)
let OBJECT = Main{ "Main", 1, @ 1 ofInt{1,2,3),

Subsid("Subsid”, @ 1 of bool [true, false }))

is given as Appendix J.

Programming in PS-algo! -42- April 10, 1987

Appendices.
Appendix A. A Simple File l/o Interface.
i) Output.

let theOfile := vector 0 :: 0 of ™
let numQlines = 0

let putStart := proc() tinitiate file output
{ theOfile := vector 0 :: 0 of ™; numOlines:=0)

let putLine = proc(string inline)
begin
numOlines = numOlines + 1
it numOQlines > upb(theOiile } do
{ let tfile=vector 1 :: upb(theOfile) + 500

for i=1to upb(theOfile) do tfile(i) := theOfile (i}
theOfile := tfile }

theOfile { numOlines) = inline

I send a string to the output

end

let putFile := proc(string fname)
begin
let fd = create(fname, 511)
for i=11to numOlines do output fd, theOfile (i)
close(fd)
end

I terminate file output

ii} Input.

let thelfile .= vector 0 :: 0 of ™
let numllines = 0
et iPlr =0

let getFile = proc(string fname)
begin
let fd = open(fname, 0)
whiie ~ eol(fd) do
begin
let numliines = numllines + 1
It no.ilines > upb(thelfile) do
{ let tfile = vector 1 :: upb(thelfile) + 500
for i= 110 upb(thelfile) do tfile{ i} = thelfile { i)
thelfile := tfile
thelfile (numllines) := read.a.line(fd)
end
iPtr:=0

! start file input

end

let gelline = proc(-> string)
{ iPtr=iPtr+ 1;
it iPtr > numilines then ™ else thelfile (iPtr) }

! get a line of input

Programming in PS-algol -43-

April 3, 1987

Appendix B: A Simple String Editor.

let StringEditor = proe(string title, tex; Int xo, yo, xh, yh-> string)
begin
let editBox = limlt screen to xh by yhat xo, yo
iet editSave = Image xh by yh of off
let editinner = imit editBox to xh-4 by yh-15at 2, 2
copy edilBox anto editSave
xnor editBox onto editBox
let titleBox = imit editBox to xh-4 by 10 at 2,yh- 12
xor titleBox onto titleBox
print title at xo + 5, yo + yh - 11

let feftText .= ™, let rightText = ™
let Cursorlmage = image 2 by 10 of on; let CursorPosn =0

let CursorDisplay = proc(-> #pixel)
limit editBox at 5 + chWidth* CursorPosn, 15

let showText = proc(Int newCP; string newlLT, newRT)

begln
CursorPosn = newCP
leftText = newl.T; rightText := newRT

xor editinner onto editinner

print leftText ++ RightTextat xo + 5, yo + 5

copy Cursorlmage onto CursorDisplay ()
end

showText(length(tex), tex,™) | show cursor at right of text
let exif := false
while ~exit do
begin
let waiting := true; letc:=0; let maxwell := tocator()
while waiting do
{ it input.pending() do { ¢ == read.byte(); waiting := false }
It waitingdo { maxwell = locator()
it maxwelk the.buttons) (1) do { c:= -1; waiting = false } 1}

let mx == maxwelf X pos); let my = maxwelf Y.pos)
case cof
-1:1 x0 <= mxand mx <= xo+xh and yo <= my and my <= yo+yh do
begin

let pos = (mx - xo) div chWidth
W pos > length(theText) do pos := length(theText)
It CursorPosn ~= pos do
{ xor Cursorlmage onto CursorDisplay ()
let wholeText = leftText++rightText
let Leng = length(wholeText)
showTex!(pos,
i pos = 0 then ™ else wholeText (1] pos),
It pos = Leng then ™ else wholeText (pos- 1| Leng-pos)) }

end
10: exit = true return pressed
21:showText{ 0, ™, rightText) I oops pressed

127: ¥ CursorPosn > 0 do

Programming in PS-algot -44- April 3, 1987

showText{ CursorPosn -1,
it CursorPosn = 1 then ™ else theText (1 | CursorPosn- 1),
rightText)

1,2,3,4,5,6,7,8,9, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24,
25, 26,27, 28, 29, 30, 31: {} | controls chars - do nothing

default: showText{ CursorPosn +1, leftText ++ code{ ¢), rightText)
end
copy editSave onto editBox

leftText ++ rightText
end

Programming in PS-algol -45- April 3, 1987

Appendix C. A Transaction Based Editor for a Table of Addresses.

lel EditAddressTable = proc{ pntr OldTable -> pntr)
begin

structure StringPack(string Svalue)

let del = StringPack({ "deleted")

let ChangesTable = table()

let getname = makeKeyMenu(OldTable)

let Operation .= ™

fet NewName :=""; let NewValue = nli

repeat Operalion = getop()

while Operation ~= "finished" do

begin
case Operation of
"add": { NewName := StringEditor{ ™)

addToKeyMenu(NewName)
NewValue = Address(0, ™, ™)
NewValue = EditAddress(NewValue) }

1 get operation from user

"del": { NewName = getname()
removeFromKeyMenu(NewName)
NewValue = del }

Ifrom a menu of the keys of the table

"edit”: { NewName = getname()
NewValue = s.lookup(NewName, ChangesTable)
if NewValue = nll do
NewValue := s.lookup(NewName, OldTable)
NewValue = EditAddress{ NewValue) }

default: { }

s.enter(NewName, ChangesTable, NewValue)
end

print "Do you want to keep the changes in the table?"
If code(read.byte()) (1] 1) ~="y"then OldTable else
begin
let NewTable = table()
let ChangeScan = proc(string name; pntr value -> bool)
begin
It value=del then s.enter(name, NewTable, nil)
else s.enter(name, NewTable, value)
true
end
let 0 = s.scan{ OldTable, ChangeScan)
let n=s.scan(ChangesTable, ChangeScan)
print n, "changes made to the table'n”
NewTable
end

end

Programming in PS-algol -46- April 3, 1987

Appendix D. Procedure Library Maintainance Programs.

i) A Procedure Library Creator.

let procsdb:=open.database("utilities”,"friend","write")

If procsdb Isnt error.record do { write "The dalabase already exisls'n"; abort}
procsdb::create.dalabase("uti!ilies",,"friend")

structure intermed(pnir procpaki, *string depended; string datestamp, descriptor)

I add astring o a vector
let addsvec=proc(*string oldvec;string newelt -> *string)
begin
let ne=upb(oldvec)
let newvec:=vector 1::ne+1 of ™
it ne>0 do for i=1 to ne do newvec(i+1):=oldvec(i)
newvec(1):=newelt
newvec
end

I the put procedure
let preput=proc(string procname; pntr procpnir, *string dependson; string author, desc)
begin
let initdeps:=vector 0::0 of ™
it procname="prcput" do initdeps:=vector 1::1 of "everything”
let okmess:=""
let isithere=s.lookup(procname, procsdb)
it isithere=nli then | new procedure - just enter it
begin
s.enter(procname, procsdb, intermed(procpnir, initdeps,date(), author, desc))
okmess:=" created"

end
else told proc - check type and dependents
begin
It class.Identifier{isithere(procpaki) }~= class.identifier(procpntr) do
begin I new proc is of changed type

write "warning - type mismatch on changing ",procname,™n"
write "do you want to do it? (y/n): "
i read.a.Hne()(1|1)~="y" do {write "ok - finishing'n"; abort}
end
let thedeps=isithere{ depended)
s.enter(procname, procsdb, intermed(procpntr, thedeps,date(), author, desc))
okmess = " updated”
it upb(thedeps)>0 do for i=1 to upb(thedeps) do
write "now update ", thedeps(), " as well 50 that it uses this version'n”

end
if upb(dependson)>0 do for i=1 to upb{ dependson) do
begin I mark procs this one depends on

let depper = s.lookup(dependson(f), procsdb) (
If depper~=nil do
begin
let already=false
let theothers=depper(depended)
If upb(theothers)>0 do for j=1 to upb(theothers) do
i procname=theothers(j) do already := true
It ~already do depper(depended):=addsvec{ theothers, procname)
end
end

Programming in PS-algol -47- April 3, 1987

H commit()=nll then write prochame,okmess," o.k.'n"
else { write "commit failed'n"; abort }
end

! The get procedure.
let preget=proc(string procname -> pntr)
begin
let got=s.lookup(procname, procsdb)
If got=nit do {write "procedure ", procname,” not found in the database'n"; abort}
gol{ procpaki)
end

! Store put and get and commit.
{ structure procpak(proc(string -> pntr) xproc)
s.enter("preget”, procsdb, procpak(prcget)) }
{ structure procpak(proc(string,pntr,*string,string,string) xproc)
prepul("prepul”,procpak(preput), vector 0:0 of ™, "RC”, "Put procedures into the database™)}

i commit()=nll then write "new database created'n”
else {write “creation fails - aborted'n”; abort)

Programming in PS-algol -48- April 3, 1987

ii) Procedure Library Lister.

let procsdb:=open.database("rulifities”,"friend","read")
1 procsdb Is error.record do {wrlte "No utilities database - do pdbmaker firstn"; abort}
let prcget=
begln
structure procpak(proc(string -> pntr) xproc)
s.lookup("preget”,procsdb)(xproc)
end
structure intermed(pntr procpaki; *string depended; string datestamp, descriptor)

let filistring=(structure procpak(proc(string,int -> string) xproc); preget(“fifistring™)(xproc)}

let columnator={ structure procpak(proc(*string,*Int,*Int,*Int -> string) xproc)
preget(“columnator”)(xproc)}

let pulfile={ structure procpak(proc(string) xproc); pregel(“putfile”)(xproc)}

let putline={ structure procpak(proc(string) xproc); preget("putline”}(xproc)}

I transform the class identifier
let someof=proc(string inp -> string)
begin
let out:="()"
it tength(inp)> 23 do out="(" ++ inp(15 | length(inp)-24) ++)"
out
end

I transform the date
let dsomeof = proc(string inp -> string); inp(5/3) ++inp(912) ++inp(232) ++ inp(11 16)

I display delalls of a single procedure
let pdbscan=proc(string procname; pntr interproc -> bool)
begin
let C/=class.Identifler(interproc (procpaki})
it procname = "prcget” then
putline(fillstring{ "preget(string -> pntr)", 99) ++ "I'n")
else
putline(columnator{ @ 1 of string [procname ++ someof(CI),
dsomeof(interproc{ datestamp)),
interproc(descriplor), interproc{ author) |,
@ 1ofiInt]35 14,10,321,
@1ofint[12,5,6,6},
@1oitInt]3,3,2,21))

true
end

putline(fillstring("Procedure”, 40) ++ fillstring("Date", 20 } ++ "Description'n”)
putline(")
let n:=s.scan(procsdb, pdbscan)

putling(fillstring("-------eaeuzncmmerenee ",99) ++"n")
putline(fillstring(format(n) ++ " procedures in the database”, 99) ++ "'n")
putline(™ : W)
putfile("Amp/proclist™)
putfile("screen”)
?
Programming in PS-algol -49- April 3, 1987

Appendix £. A Snake Program.

let cPosX = 0; let cPosY =0 t the current position

let headX= 50; let headY= 20 ! the initial head position

let startX=50; let startY=10 t the initial tail position

let failX= 0, let tailY:= 0 1 the current 1ail position

fet trailHead = (; tet trailTail .= Q ! the index of the head and tail positions
let Xmax = 100; let Ymax = 100 1 the dimensions of the grid

let growth = 0 1 the growth variable

let screen = vector 1::1100 of vector 1::100 of 0
for i= 110 100 do screen(i) .= vector 1::100 of 0
letwalls=@ 1 of *pntr [@ 1 of pnir [point.stre(..), ... 1....]

let pressUP := proc(); nullproc ! also declare press.down, press.left and press.right
let changeUP = proc(); nullproc ! also declare change.down, change.left and change.right
let move := proc(); nullproc

let makeFood = procy)

beglin

repeat

{ seed:=random{ seed); foodX:= seed rem 100 + 1
seed = random(seed); foodY := seed rem 100 + 1)

while the screen{ foodX, foodY ') ~= 0

print "x" at 5* cPosY, 5* foodY In smaiiFont using xor | display food
end

tet show = proc()
begin
crashed = theScreen{ cPosX, cPosY) ~=
I ~crashed do
begin
trailHlead = trailHead + 1; If trailHead = 1001 do trailHead = 1
theScreen(cPosX, cPosY') = trailHead
print “o" at 5°cPosX, 5* cPosY In smallFont using xor 1 display new head
i growth > 0 then growth = growth -1
eise begin
print "o" at 5*failX, 5*taily In smallFont using xor | erase tail
theScreen (tailX, taily') == 0
trailTait= trailTail + 1; W trailTail = 1001 do trailTail= 1
i theScreerf tailX + 1, tailY'} = trailTail do tailX = tailX + 1
... ditto for tailX -1, tailY; tailX, tailXy+1; tailX, taily -1.
end
it cPosX = foodX and cPosY = foodY do
begin
theScore = theScore + 1
print theScore at statScore, statY In largeFont
print “x" at 5* foodX, 5* foodY in smallFont using xor !erase food
makeFood()
growth .= 10 t grow the snake length by 10.
end
end
end

Programming in PS-algol -50- April 3, 1987

! dont erase tail in growth period

! the procedures which actually move the snake
! change the current position and call the display procedure
let moveUP = procy()
begin
cPosY = cPosY + 1
show()
end
....ditlo for moveDOWN, movel EFT and moveRIGHT

! the procedures called when a butlon is pressed

! make the movement upward and the button responses set so that up and down are not responded
110, while left and right are.

let changeUP = proc()

begin
move = moveUP
pressUP = nothing, pressDOWN = nothing
pressLEFT .= changeLEFT; pressRIGHT := changeRIGHT
end

.....ditto for changeDOWN, changelL EFT and changeRIGHT

1 The Main Program.

move = movelUP

pressUP:= nothing, pressDOWN := nothing
pressLEFT = changelEFT; pressRIGHT = changeRIGHT

let inner = limit screen to X.dim(screen - 4) by Y.dim(screen) -4 at 2,2
XNor screen onto screen
Xor inner onto inner
for x =110 X.max do for y = 1 to Y.max do theScreen = (
for w= 110 upb(walls) do for i= 1 to upb(w) do
begln
cPosX .= walls{ w)(i)(x.pos)
cPosY = walls{ w){ i}{(y.pos)
print "w" at 5" cPosX, 5" cPosY In smallFONT
theScreen (cPosX, cPosY) := -1
end

cPosX = headX; cPosY = headY
tailX = startX; taily = starty; trailHead = 0
for y = startY to headY do
{ trailHead:= trailHead + 1

theScreen { cPosX, y) = trailHead

print "o" at 5* cPosX, 5"y In smallFONT i
makefood)
theScore =0

crashed = false
let maxweli := locator()
while ~crashed do
begin IMAIN LOOP
maxwell = locator()
I maxwell the.buttons)(1) do pressUP)
It maxwell(the.buttons }(2) do pressLEFT{()
It maxwell the.buttons){ 3) do pressRIGHT{)
if maxwell the.buttons)(4) do pressDOWN)
move()
end

Programming in PS-algol -51- April 3, 1987

Appendix F. An Abstract Data Type Generator for a Forms
Interface.

structure button(string strip; Int xo, yo, xh, yh; #plxel savedArea; proc() action; pntr nextButton)
let formGenerate = proc(-> pntr)
begin
let buttonList ;= nii !'the actual data structure used by this instance of the ADT, “form".

let formShow = proc(pntr but) !display a light button

begin
let box = Hmit screen to buf (xh) by buf {yh) at but (xo), but (yo)
let save = Image but (xh) by but({ yh) of off
copy box onto save
W X.dim(bu savedArea))} =1 do bul{ savedArea) = save
let inner = imit box to but (xh) -2 by but (yh) -2 at 1,1
xnor box onto box
Xor inner omo inner
print buf(strip) at buf{ xo0) + 5, bul{ yo) +5

end

1 add a light button to a form
let formAdd = proc(string s; Int XO, YO, XH, YH, proc() anAction -> pntr)

begin

buttonList := button(s, XO, YO, XH, YH, image 1 by 1 of off, anAction, buttonList)

formShow(buttonList)

proc(); copy buttonlisl savedArea) onto

Iimit screen to buttonList (xh) by buttonlList (yh) at buttonList (xo), buftonList (yo)

end

let formRemove = proc{ pntr but) ! remove a light butlon from the form and the display
begin
Tet drop = buttonList;let lag = nit
while drop ~= but and drop ~= nit do { lag := drop; drop := drop{ nextButton) }
copy drop(savedArea) onto limit screen at drop(xo), drop(yo)
It lag = nil then buttonList = buttonList nextButlon)
else Jag(nextButton) = drop(nextBullon)
end

tet formClear = proc() tclear the form
begin
tet drop = buttonList
while drop ~= nil do
begin
copy drop(savedArea) onto limit screen at drop(xo), drop(yo)
drop = drop(nextBulton)
end
buttonlList := nil
end

let formUpdate = proc(string s; pntr but) ! change the message associated with a fight button
begin
bul{ strip) = s
formShow{ but)
end

Programming in PS-algol -52- Apri! 3, 1987

let formMouse = proc(-> pntr) I return the light button clicked over
" begin
let maxwell := locator()
fel found := false
let actor = nli
while ~found do
begin
while ~maxwell the.buttons) (1) do maxwell = locaior()
let check = buttonlist
while check ~= nil do
begin
If check { xo0) < maxwell X.pos) and
maxwell X.pos) < check (xo)+ check (xh) and
check { yo) <« maxwelf Y.pos) and
maxwelf Y.pos) < check (yo)+ check (yh} do
{ found = true; actor .= check }
check = check { nextBution)

end
maxwell = focator()
end
while maxwel the.butions) (1) do maxwell = locaior()
actor

end

iet ffinished = false
let fender = proc(); ffinished = true
iet formMonitor = proc() { monitor the form and do the action associated
begln I with the selected light buiton
finished = false
while ~{finished do
begin
let but = formMouse()
let buttonBox = Himit screen to buf (xh) by but (yh) at but (x0), but (yo)
not buttonBox onto bultonBox
but (action) ()
formShow(but)
end
end

structure formPackage(proc(pntr) FormShow;,
proc(string,Int, int,int,int,proc(),pntr -> pntr) FormAdd,
proc({ pntr) FormRenove,
proc(string, pntr } FormUpdate;,
proc{) FormClear,
proc(-> pntr) FormMouse,
proc() Fender,
proc() FormMonitor)
formPackage(formShow, formAdd, formRemove, formUpdate, formClear, formMouse,
fender, formMonitor)
end ! form.generate

Programming in PS-algol -53-

April 3, 1987

Appendix G. A Set of Interface Procedures

Compiler.

[¥] l ible intert. interagtiv
let compile = proc(estring source ‘epntr record -> pntr)
begin
let f= "Amp/COMPILE" +4. Hormat(time() rem 10000)
let t= Create(f432)
output {,source,”n"
close(1
compller({,record)
end

!ii} Report Compiler Errors
structure err.rec(cstring line.error, pntr next. error)
let reporiErrors = proc(pntr C)
begin
let errs = C

to the Run-time

while errs ~= nil do { write errs(line.error),"n"; errs = errs(next.error) }

abort
end

i) Mak; initi
let CltoStruc = proc(string theC! -> string)
begin
let outString = "™
for i=1 to length(theCl) dooutString = oulString ++
(M theCI(i{1)="n" then " elsetheCI(i[1))
outString := outString (1 | length(theCl) -2 JEE N
outString
end

liy iel
let CltoNames = proc(string theC/l -> *string)
begin
let tooStrings = vector 1::1100 of ™
let n:=0; letj=1; let over := false
while theCI (1) ~="(" doj=j+1
while theCl (j} 1) ~=")" do
begin
let k :=j; while theCl (k[1) ~="n"do k = k+ 1
ji=k while theCI(j[{1)~="" doji=j-1
n=n+1
tooStrings (n) = theCl(j + 1 fh-j-1)
J=k+t
end
let outStrings = vector 1::nof ™
fori=11to ndo outStrings (i) = tooStrings (i)
oulStrings
end

Programming in PS-algo! -54-

April 3, 1987

f it

let CltoSname = proc(string theCl -> string)

begin
letj =1
while theCl (j] 1) ~="(" doj=j+1
theCl{1{j-1)

end

structure typelisi(string S; string A; pnir N)
let CltoTypes = proc(string theC/-> *pntr)

begin
let tooStrings = vector 1:100 of ™
letn:=0
let over := false
let j:=1
while theCI(j{1) ~="("do = j+1
j=j+1
while theCl (j| 1) ~=")"do
begin
n=n+1
leth=j
while theCi (k[1) ~="n"do k= k + 1
let /= k
while theCI{/{1)~=""do /:=1-1
tooStrings () = theCl(j]1-})
J=ka+t
end
let outPoints = vector 1:nof nii
fori=1tondo
begin
let ss:= tooStrings (i)
let listMaker := proc(string inn -> pntr); nuilproc
listMaker = proc(string inn -> pntr)
begin
let rest = inn(2 | length(inn) - 1)
case inn{1|1) of
" typelisf ™", rest, listMaker (rest))
"c": fypeList("¢", rest, listMaker (rest))
default: If inn(113} = "pro"
then typelList { "proc”, ™, nll)
else typelist (inm, ™, nil)
end
outPoints (i) = listMaker tooStrings (1))
end
outPoints
end

Programming in PS-algol - 55-

April 3, 1987

Appendix H. CheckRecord - A procedure which checks if a

structure has a particular string value in its fields.

let source ="
let outlnit = proc(); source ="
let outline = proc(string s); source = source ++ s ++ "n"

structure compileRecord (proc(pntr, string -> boot) compiledForm)
let ourTable = table()

let checkRecord = proc(pntr R, string /N -> bool)
begin
let CI = class.ldentlfier(R)
let ourProc = s.lookup(CI, ourTable)
If ourProc = nll do
begin
let theName = CltoSname(Cl)
let theStructure= CltoStruc(CI)
let fieldNames = CltoNames(CI)
let fieldTypes = CltoTypes{ CI)

let noFields = true
for i =1 to upb(fieldNames) do
i fieldTypes ()(S) = "string"” do noFields = false
It noFields
then ourProc := compileRecord(proc(pntr RA; string SIN -> bool)
{ write "No string fields in this record"; false } }

else
begin
oultinit()
outline ("proc(pntr RR; string SIN -> bool)")
outline (" begin")
oulline (" structure " ++ theStructure)
outline (" let result := false")

for i =1 to upb(fieldNames) do
it fieldTypes ()(§) = "string” do

oulline (" if RR(" ++ fieldNames(i) ++") = SIN do result
outline (" result")
outline(" end")

let emptyPackage =
compileRecord(pro ¢(pntr AR; string SIN -> bool); nullproc)
ourProc := compile(source, emptyPackage)
W ourProc is err.rec do reportErrors(ourProc)
s.enter(Cl, ourTable, ourProc)
end
end
ourProc(compiledForm }(R, IN')
end

Programming in PS-aigol -56-

t= true")

'D
D
ID
TA

April 3, 1987

Appendix I. An Object Copy Procedure.

fet source =" let indent .= ™
let outlnit = proc(); source =™
let outLine = proc(string s); source = source ++ $ ++"n"

structure compileRecord { proc(pntr -> pntr) compiledForm)
let objectCopy = proc(pntr theObject -> pntr); nullproc
objectCopy = proc(pntr theObject -> pntr)
begin
oulinit () TA
outline { "proc(pntr A -> pntr)") I A - the main proc declaration

let makeCode := proc(string PS; pntr P -> string); nullproc
makeCode = proc(string PS; pntr P -> string)
It P = nlt then "nil" else
begin
let C/ = class.tdentifler(P)
let theName = CltoSname(CI)
let theStructure= CltoStruc{ CI)
let fieldNames = CltoNames(Cl)
let fieldTypes = CltoTypes({ Cl)

I B - build a block

let tSource == ™

let tinit = proc(); tSource ="
let (Start = proc(string s); { {Source := tSource ++indent ++ $)

let tPart = proc(string s); tSource = tSource ++ §

let tEnd = proc(string s); tSource := tSource ++ § ++ "n"

let tLine = proc(string s); { tSource = indent ++ tSource ++ indent ++ 5 ++ ™n")
Hnit ()

tLine(™)

indent = indent ++" "

tLine ("begin")

indent = indent ++" "

tLine ("structure " ++ theSiructure)

I B - block starts with begin
1B - and structure definition

for f= 1 to upb(fieldNames) do
begin
let FnameF = PS ++ " (" ++ fieldNames({ f) ++")"
tStarl{ "let X" ++iHormat(fh ++"=") I B - then start a line of the form
1B - let X(1) = expression
let parse = proe(pntr T); nullproc
parse = proc(pntr T)
case 7{ S)of
“int","bool","string","real","proc”,"pixel","#pixel","pic": tPar{ FnameF)
1 E - scalars return field value
| E - constancy is ignored

1 generate the expression

"¢ parse{ TTN}))

Programming in PS-aigol -57- April 3, 1987

[E - vectors build a proc to generate - patr™: ! E - pointers build a proc to generate
begin I E - ablock begin 1E- ablock
let vParse = proc(string VS; pntr V7 -> string); nulproc structure pRec(proc(proc(string pntr->string), pntr->string) pprog)
vParse:= proc(string VS; pntr VT > string) let pSource = e
It VI{ S) = "c" then vParse (VS, VII N)) else let pLine = proc(string s); pSource = pSource ++ § ++ "'n
begin pline ("proc (proc(string, pntr->string)MAKE.CODE;pntr PP->string)")
structure vRec(proc(pntr, pntr, string, proc(string, pntr -> PL/:”G(: begin") .
string), proc(string, pntr -> string) -> string) vProg) plLine { structure " 4+ theStruciure)) .
indent = indent ++ " " pline (" MAKE.CODE { '"" ++ Fnamef ++"'", pp (" ++ fieldNames(f) ++"))"’
let vStart="@ lwb("++ VS 44") of "++ VI{R) ++"n"++ indent ++" " pLine (" end")
let vEnd="1"
tet vSource =" let dumObj = pRec(proc(proc(string, pntr -> string) MAKECODE;
let viine = proc(string s); Vsource = Vsource ++ s ++™n") pntr PP -> string); nuliproc)
vline ("proc(pntr VP, VIT:; string VF; proc(string, pntr -> let POI_’I‘—' complle(pSource, dumObj)}
string) MAKE.CODE, V.PARSE -> string)") 1t pObjis err.rec do reportErrors(pOby)
vline (" begin") tE_nd() .
viine (* structure " ++ theStructure) tLine (pObj (pprog)(makeCode, P))
vline (" let vOut := '"rn") end
vLine (" for i = lwb(VP("++ fieldNames(f) ++ R
")) to upb(VP("4+ fieldNames(f) ++")) do") default: tEnd (™) ! E - unexpected!
let element="vF ++ ' ('" 4+ iformat (i) ++ '")'"" X .
let makeUnit := proc(pntr MUT -> string); nuliproc parse(fieldTypes(f)) 8 - call parse lo make expression
makeUnit := proc(pntr MUT -> string) tEnd(™) 1B -endlet X(1) = .. line

case MUT(5) of end |of “for " loop
"int","bool","string”,"real","proc”,"pixel","#pixel","pic":element ++ " ++ ™, ™

"¢": makeUnit (MUTU N
"e i TN) let final .= theName ++ " ("

pALr': MAKE . CODE { ++ element ++ ", VP (" ++ for f = 1 to upb(fieldNames) do final = final++ " X" ++ Hormat(y ++ "
fieldNames(f) ++7) (1)) ++ v, tnt” let fen=length(final)

S g’f,f”;*: o e o PARSEC T element ++ tLine { final (11 len-1)++")") I B - line of the form name(X1, ..)
d ce § indent = indent{ 1 | length(indent) - 4)
efault: . " .,

tLine { "end") IB-end
: “ " Y indent = indent(1 | length(indent) - 4

vLine (vout := vOut ++ " ++ makeUnif{ VITN))) tSource (1| tength()) 1B - retumn the whole block
vline (" vOout (1 | length(vOut) -~ 2)")

vline(" end") end !of makeCode

let vObj = complle(vSource,vRec(proc(pntr VP, VTT; string VF; prog(
string, pntr -> string) MAKECODE, VPARSE -> string); nullproc))
if vObj s err.rec do reportErrors(vOby)
let vBody = vObj(vProg)(P, VIT N}, VS, makeCode, vParse)
indent := indent(1 | length(indent) - 8)
vStart ++ vBody ++ vEnd
end
Part(vParse{ FnameF, T))
end

outline (makeCode("A", theObject)) I A - the body of the main proc

let ¢ = complle(source, compileRecord(proc{ pntr theObject -> pntr }; nuliproc))
If cis err.rec do reportErrors(c) A
o compiledForm)(theObject) TA

end

Programming in PS-algol -58- April 3, 1987 Programming in PS-algol -59- April 3, 1987

Appendix J. The Object Copy Procedure in Action.

As a test object for the procedure, we take the object, OBJECT, created by the
following:

structure Main(string Mstring; Int Mint; *Int Mvint; pntr Mpntr)
structure Subsid(string Sstring; *bool Svbool)
et OBJECT = Main("Main", 1, @ 1 of Int [1,2, 3],

Subsid("Subsid”, @ 1 of bool [true, false]))

We will follow this through in steps which are numbered with an extra digit for each
step which requires another level of procedure call.

1. source is initialised to the empty string.
2. The first line of the final procedure " proc(pntr A -> pntr) "lIs putinto source.
3. makeCode is called with input parameter values, "A" and OBJECT.

3.1 tSource is initialised to be properly indented.

3.2 tSource is started with the lines:

begin
structure MAIN({string Mstring; int Mint; *int Mvint; pntr Mpntr)

3.3 The variable, FnameF, is setto be "a{ Mstring)".
3.4 A new line in tSource is started with the string "1et x1 =".

3.5 parse is called with a pointer to the typelist associated with Mstring to put
the expression for that field into {Source.

3.5.1 parse puts the value of FnameF, viz: "a(mMstring)", into tSource to achieve
this.

3.6 FnameFis setto be "a(Mint)".
3.7 A new line in tSource is started with the string "1et x2 =".
3.8 parseis called as in 3.5. It puts " a(mint)" into tSource.
3.9 FnameFis setto be "a(Mvint)",

3.10 A new line in tSource is started with the string "1et x3 ="

3.11 parse is called with a pointer to a typelist which shows that this field is a
vector of integers.

3.11.1 vParse is called, with parameters, "a(Mvint)" and a pointer to the
typelist, to put the appropriate vector expression in tSource.

Programming in PS-aigol -60- April 3, 1987

3.11.1.1 vParse starts by setting vEnd to be "' and vStart 1o be
"@ lwb(A{ Mvint)) of int
"

3.11.1.2 vSource is initialised to the empty siring and then has the following
lines put in:
the procedure definition
begin
structure Main(...)
let wvout := "

for i = lwb(A(Mvint)) to upb(A(Mvint)) do

3.11.1.3 The variable, element, is set to the string
"VE ++ " ("++iformat (1) ++") "

3.11.1.4 vSource then has a line started with "vout:=vout++". This is
completed by a call to makeUnit, with the rest of the type information,
i.e "int" as its argument.

3.11.1.4.1 makelUnit puts the value of element, above and
" ++v, v "into vSource.

3.11.1.5 vSource is concluded with the lines
vOout(1 { length({ vOut) - 2)
end

3.11.1.6 vSource is compiled and run, with input parameters: OBJECT - the
input object; the "int" part of the type info; the string "a(mMvint)"; and
the procedures makeCode and vParse.

3.11.1.6.1 The procedure in vSource is run and produces the string
"A(Mvint) (1), A{Mvint) (2), A (Mvint) (3) " which is returned to vBody.

3.11.1.7 The contents of vStart, vBody and vEnd are returned as the result of
vParse.

3.11.2 parse puts this string into tSource.
3.12 FnamefF is set to be "a(Mpntr)"
3.13 A new line in 1Source is started with the string "1et x4 =".
3.14 parse is called with a pointer to the type info " pntr .
3.14.1 A procedure is built in pSource which consists of the following lines:
proc (proc (string, pntr~>string) MAKECODE; pntr PP ->string)’
begin
structure Main{ ..)
MAKECODE ("A(Mpntr)", PP (Mpntr))

end

Programming in PS-algol -61- April 3, 1987

3.14.2 The procedure is compiled and called with makeCode and OBJECT as its
arguments.

3.14.2.1 The procedure makes a call to makeCode with "a (Mpntr) "and
OBJECT{ Mpntr) as its arguments.

3.14.2.1.1 makeCode begins a new tSource with the lines:
begin
structure Subsid(...)

3.14.2.1.2 FnameF is set to " a(Mpntr) {Sstring)".
3.14.2.1.3 Aline in tSource is started "1et x1 ="

3.14.2.1.4 parse is called to finish this line with the string
" A(Mpntr) (Sstring)"

3.14.2.1.5 FnameF is sett0 " a (Mpntr) (Svbool)"

3.14.2.1.6 Aline in tSourceis started "1et x2 ="

3.14.2.1.7 parse is called to produce the vector expression.
3.14.2.1.7.1 vParse is called.

3.14.2.1.7.1.1 vParse builds the procedure:
proc{ pntr VP, VTT,.....)

begin
structure Subsid(...)
let v.out := "¢
for 1 = lwb(VP(Svbool)) to upb(VP(Svbool)) do
v.out = v.out++VP++" ("++iformat (L) ++7) "4+ U,
v.out{ 1 { length(vout) -2)

end

3.14.2.1.7.1.2 This procedure is compiled and run, producing as
output:

" a(Mpntr) (Svbool) (1), A{Mpntr) (Svbool) (2)"

3.14.2.1.7.1.3 vParse returns as its result:
@ 1wb(A{(Mpntr) (Svbool)) of bool [A{(Mpntr) (Svbool) (1), A(Mpntr) (Svbool) (2) 1

3.14.2.1.7.2 parse puts this string into the second tSource

3.14.2.1.8 makeCode now builds the following string in final:
Subsid(X1, X2

3.14.2.1.9 This string, finished off with a ")" is put into tSource.

3.14.2.1.10 The second tSource is completed with and "end" line.
3.14.2.1.11 This call of makeCode ends by returning the second tSource.

Programming in PS-algol -62- Aprit 3, 1987

6. This procedure is run and its output is returned as the output of ObjectCopy.

3.14.3 This string which is now:
begin
structure Subsid(....)
let X1 = A(Mpntr) (Sstring)
let X2 = @ 1lwb(A(Mpntr) (Svbool)) of

bool [A(Mpntr) (Svbool) (1), A(Mpntr) (Svbool) (2)]
Subsid(X1, X2)

end
is put into the first tSource as the end of the line which began (at 3.13) with
"let x4 =",

3.15 The string variable, final, is set up to contain " Main(x1, X2, X3, x4".
3.16 This together with a closing ")" are put into tSource.
3.17 tSource is completed with an "end" line.
3.18 makeCode quits returning the whole of tSource.
4. This string is then put into source which is now complete.

5. source is compiled. It now contains:
proc{ pntr A -> pntr)
begin
structure MAIN(string Mstring; int Mint; *int Mvint; patr Mpntr)
let X1 =A(Mstring)
let X2 =A(Mint)
let X3 =@ lwb(A(Mvint)) of int
[A(Mvint) (1) ,A(Mvint) (2),A(Mvint) (3)]

let X4 =
begin
structure Subsid(....)
let X1 = A(Mpntr) {Sstring)

let X2 = @ lwb(A(Mpntr) (Svbool)) of
bool [A(Mpntr) (Svbool) (1), A(Mpntr) (Svbool) (2)]
Subsid(X1, X2)
end
Main(X1, X2, X3, X4)
end

Programming in PS-algol -63- Aprit 3, 1987

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,

Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,

Glasgow G12 8QQ

Scotland.

Books

Davie, A.J.T. & Morrison, R.
"Recursive Descent Compiling”, Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.)
"Databases”, Pergammon Infotech State of the Art Report, Series 9, No.8,
January 1982. (535 pages).

Cole, A.J. & Morrison, R.
"An introduction to programming with S-algol”, Cambridge University Press,
Cambridge, England, 1982.

Stocker, P.M., Atkinson, M.P. & Grey, P.M.D. (eds.)
"Databases - Role and Structure”, Cambridge University Press, Cambridge,
England, 1984.

Published Papers

Morrison, R.
"A method of implementing procedure entry and exit in block structured high level
languages”. Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z.
"The Gralfiti graphics system”, Proc. of the DECUS conference, Bath (April 1978),

5-10

Atkinson, M.P.
"A note on the application of differential files to computer aided design”, ACM
SIGDA newsletter Summer 1978.

Atkinson, M.P.
"Programming Languages and Databases”, Proceedings of the 4th International
Conference on Very Large Data Bases, Berlin, (Ed. S.P. Yao), |EEE, Sept. 78,
408-419. (A revised version of this is available from the University of Edinburgh
Department of Computer Science (EUCS) as CSR-26-78).

Atkinson, M.P.
"Progress in documentation: Database management systems in library
automation and information retrieval”, Journal of Documentation Vol.35, No.1,
March 1979, 49-91. Available as EUCS departmental report CSR-43-79.

Gunn, H.LE. & Morrison, R.

"On the implementation of constants”, Information Processing Letters 9, 1 (July
1979), 1-4.

Atkinson, M.P.
"Data management for interactive graphics”, Proceedings of the Infotech State of
the Art Conference, October 1979. Available as EUCS departmental report
CSR-51-80.

Atkinson, M.P. (ed.)
"Data design”, Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R.
"Low cost computer graphics for micro computers”, Software Practice and
Experience, 12, 1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"PS-algol: An Algol with a Persistent Heap”, ACM SIGPLAN Notices Vol.17, No.
7, (July 1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Nepal - the New Edinburgh Persistent Algorithmic Language”, in Database,
Pergammon Infotech State of the Art Report, Series 9, No.8, 299-318 (January
1982) - also as EUCS Departmental Report CSR-90-81.

Morrison, R.
"S-algol: a simple algol”, Computer Bulletin 1/31 (March 1982).

Morrison, R.
"The string as a simple data type”, Sigplan Notices, Vol.17,3, 46-52, 1982.

Atkinson, M.P_, Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming”, presented at CREST course UEA,
September 1982, revised in "Databases - Role and Structure”, see PPRR-8-84.

Morrison, R.
"Towards simpler programming languages: S-algol”, IUCC Bulietin 4, 3 (October
1982), 130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Problems with persistent programming languages”, presented at the Workshop
on programming languages and database systems, University of Pennsylvania.
October 1982. Circulated (revised) in the Workshop proceedings 1983, see
PPRR-2-83.

Atkinson, M.P.
"Data management"”, in Encyclopedia of Computer Science and Engineering 2nd
Edition, Ralston & Meek (editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Algorithms for a Persistent Heap”, Software Practice and Experience, Vol.13,
No.3, 269-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"CMS - A chunk management system®, Software Practice and Experience,
Vol.13, No.3 (March 1983), 273-285. Also as EUCS Departmental Report
CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming”, presented at the DEC workshop
on Programming Languages and Databases, Boston, April 1983.

Atkinson, M.P_, Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"An approach to persistent programming”, The Computer Journal, 1983, Vol.26,
No.4, 360-365 - see PPRR-2-83.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming”, 10th Australian Computer
Conference, Melbourne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.
"High level language support for 3-dimension graphics”, Eurographics
Conference Zagreb, North Holand, 7-17, Sept. 1983. (ed. P.J.W. ten Hagen).

Cockshott, W.P_, Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Morrison, R.
"POMS : a persistent object management system", Software Practice and
Exerience, Vol.14, No.1, 49-71, January 1984.

Kulkarni, K.G. & Atkinson, M.P.
"Experimenting with the Funclional Data Model", in Databases - Role and
Structure, Cambridge University Press, Cambridge, England, 1984.

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough”, Foundations of Software
Technology and Theoretical Computer Science (ed. M. Joseph & R.
Shyamasundar) Lecture Notes in Computer Science 181, Springer Verlag, Berlin
(1984).

Atkinson, M.P_, Bocca, J.B., Elsey, T.J., Fiddian, N.J., Flower, M., Gray, P.M.D.
Gray, W.A_, Hepp, P.E., Johnson, R.G., Milne, W., Norrie, M.C., Omololu,
A.Q., Oxborrow, E.A., Shave, M.J.R., Smith, A.M., Stocker, P.M. & Walker, J.
"The Proteus distributed database system”, proceedings of the third British
National Conference on Databases, (ed. J. Longstaff), BCS Workshop Series,
Cambridge University Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R.
"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985)
- see PPRR-9-84.

Morrison, R.,Bailey, P.J., Dearle, A., Brown, P. & Atkinson, M.P.
"The persistent store as an enabling technology for integrated support
environments”, 8th International Conference on Software Engineering, Imperial
College, London (August 1985), 166-172 - see PPRR-15-85.

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment", proceedings of
Data Types and Persistence Workshop, Appin, August 1985, 1-24 - see
PPRR-16-85.

Davie, AJ.T.
"Conditional declarations and pattern matching", proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

Krablin, G.L.
"Building flexible multilevel transactions in a distributed persistent environment,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
86-117 - see PPRR-16-85.

Buneman, O.P.
"Data types for data base programming”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.
"Addressing mechanisms and persistent programming", proceedings of Data
Types and Persistence Workshop, Appin, August 1985, 363-383 - see
PPRR-16-85.

Norrie, M.C.
"PS-algol: A user perspective”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.
"On the need for a Flexible Type System in Persistent Programming Languages",
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
423-438 - see PPRR-16-85.

Morrison, R., Brown, A.L., Bailey, P.J., Davie, A.J.T. & Dearle, A.
"A persistent graphics facility for the ICL PERQ", Software Practice and
Experience, Vol.14, No.3, (1986) - see PPRR-10-84.

Atkinson, M.P. and Morrison R.
“Integrated Persistent Programming Systems", proceedings of the 19th Annual
Hawaii International Conference on System Sciences, January 7-10, 1986 (ed.
B. D. Shriver), vol lIA, Software, 842-854, Western Periodicals Co., 1300 Rayman
St., North Hollywood, Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.
"A Persistent Information Space Architecture”, proceedings of the 9th Australian
Computing Science Conference, January, 1986 - see PPRR-21-85.

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.1,
(1986) 38-45.

Buneman, O.P. & Atkinson, M.P.
"Inheritance and Persistence in Database Programming Languages”;
proceedings ACM SIGMOD Conference 1986, Washington, USA May 1986 - see
PPRR-22-86.

Morrison R., Dearle, A., Brown, A. & Atkinson M.P.; "An integrated graphics
programming environment”, Computer Graphics Forum, Vol. 5, No. 2, June 1986,
147-157 - see PPRR-14-86.

Atkinson, M.G., Morrison, R. & Pratten G.D.
"Designing a Persistent Informalion Space Architecture”, proceedings of
Information Processing 1986, Dublin, September 1986, (ed. H.J. Kugler),
115-119, North Holiand Press.

Brown, A.L. & Dearle, A.
"Implementation Issuses in Persistent Graphics"; The Association for Computing
Machinery, 11 West 42nd St., New York, NY 10036; University Computing, Vol.
8, NO. 2, (Summer 1986) - see PPRR-23-86.

Internal Reports

Morrison, R.
" "S-Algol language reference manual”, University of St Andrews CS-79-1, 1979.

Bailey, P.J., Maritz, P. & Morrison, R.
"The S-algol abstract machine”, University of St Andrews CS-80-2, 1980.

Atkinson, M.P., Hepp, P.E., Ivanov, H., McDuff, A., Proctor, R. & Wilson, A.G.
"EDQUSE reference manual", Department of Computer Science, University of
Edinburgh, September 1981.

Hepp, P.E. and Norrie, M.C.

"RAQUEL: User Manual’, Department of Computer Science Report CSR-188-85,
University of Edinburgh.

Norrie, M.C.
"The Edinburgh Node of the Proteus Distributed Database System", Department
of Computer Science Report CSR-191-85, University of Edinburgh.

In Preparation

Atkinson, M.P. & Buneman, O.P.

"Database programming languages design”, submitted to ACM Computing
Surveys - see PPRR-17-85.

Theses

The following Ph.D. theses have been produced by members of the group
and are available from the address already given,

W.P. Cockshott
Orthogonal Persistence, University of Edinburgh, February 1983.

K.G. Kulkarni ‘ .
Evaluation of Functional Data Models for Database Design and Use, University of
Edinburgh, 1983.

P.E. Hepp
A DBS Architecture Supporting Coexisting Query Languages and Data Models,
University of Edinburgh, 1983.

G.D.M. Ross , '
Virtual Files: A Framework for Experimental Design, University of Edinburgh,
1983.

G.O. Owoso
Data Description and Manipulation in Persistent Programming Languages,
University of Edinburgh, 1984.

This series was started in May 1983. The following list gives those produced and
those planned plus their status at 10th April 1987.

Persistent Programming Research Reports

Copies of documents in this

list may be obtained by writing to the address already given.

PPRR-1-83

PPRR-2-83

PPRR-4-83

PPRR-5-83

PPRR-6-83

PPRR-7-83

PPRR-8-84

PPRR-9-84

PPRR-10-84

PPRR-11-85

PPRR-12-86

PPRR-13-85

The Persistent Object Management System -
Altkinson, M.P., Chisholm, K.J. and Cockshott, W.P. £1.00

PS-algol Papers: a collection of related papers on PS-algol -
Atkinson, M.P_, Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

The PS-algol reference manual -
Atkinson, M.P_, Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R Presently no longer available

Experimenting with the Functional Data Model -
Atkinson, M.P. and Kulkarni, K.G. £1.00

A DBS Architecture supporting coexisting user interfaces:
Description and Examples -
Hepp, P.E. £1.00

EFDM - User Manual -
K.G.Kulkarni £1.00

Progress with Persistent Programming -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

Procedures as Persistent Data Objects -
Atkinson, M.P_,Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £1.00

A Persistent Graphics Facility for the ICL PERQ -

Morrison, R., Brown, A.L., Bailey, P.J., Davie, AJ.T.

and Dearle, A. £1.00
PS-algol Abstract Machine Manual £1.00
PS-algol Reference Manual - third edition £2.00

CPOMS - A Revised Version of The Persistent Object
Management System in C -
Brown, A.L. and Cockshott, W.P. £2.00

PPRR-14-86

PPRR-15-85

PPRR-16-85

PPRR-17-85

PPRR-18-85

PPRR-19-85

PPRR-20-85

PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-87

PPRR-25-87

PPRR-26-86

PPRR-27-86

An Integrated Graphics Programming Environment - second
edition -
Morrison, R., Brown, A.L., Dearle, A. and Atkinson, M.P.

The Persistent Store as an Enabling Technology for an
Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, A.L. and
Atkinson, M.P.

Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R.

Database Programming Language Design -
Atkinson, M.P. and Buneman, O.P.

The Persistent Store Machine -
Cockshott, W.P.

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R.

Building a Microcomputer with Associative Virtual Memory -
Cockshott, W.P.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D.

Inheritance and Persistence in Database Programming
Languages -
Buneman, O.P. and Atkinson, M.P.

Implementation Issues in Persistent Graphics -
Brown, A.L. and Dearle, A.

Using a Persistent Environment to Maintain a Bibliographic
Database -
Cooper, R.L,, Atkinson, M.P. & Blott, S.M.

Applications Programming in PS-algol - Cooper, R.L.

Exception Handling in a Persistent Programming Language -
Philbrow, P & Atkinson M.P.

A Context Sensitive Addressing Model -
Hurst, A.J.

PPRR-28-86b A Domain Theoretic Approach to Higher-Order Relations -

Buneman, O.P. & Ochari, A.

£1.00

£1.00

£15.00

£3.00

£2.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

PPRR-29-86

PPRR-30-86

PPRR-31-86

PPRR-34-87

A Persistent Store Garbage Collector with Statistical Fagilities -
Campin, J. & Atkinson, M.P.

Data Types for Data Base Programming -
Buneman, O.P.

An Introduction to PS-algol Programming -
Carrick, R., Cole, A.J. and Morrison, R.

Binding Issues in Database Programming -
Atkinson, M.P_, Morrison, R., Cooper, R.L. and
Abderrahmane, D.

£1.00

£1.00

£1.00

£1.00

