University of Glasgow

Department of Computing Science
Lilybank Gardens
Glasgow G12 8QQ

University of St. Andrews

Department of Computational Science

North Haugh
St Andrews KY16 8SX

Using a Persistent Environment
to Maintain a Bibliographic
Reference Database

Persistent Programming
Research Report 24

Using A Persistent Environment To Maintain A
Bibliographic Reference Database

Cooper, R.L., Atkinson, M.P. and Blott, S.M.

Abstract

We claim that a persistent store is ideally suited to the development of software
which supports the production of all kinds and sizes of document. The storage within
the same space of the text and diagrams of papers, a body of references and all the
software to maintain them provides an extremely powerful environment for developing
both the system and the documents. We envisage such a system could encompass,
among other functions, word-processing, diagram manipulation, automatic
bibliography construction, the production of indexes, page make-up and the

- maintenance of mailing lists. A persistent environment has the particular merit of
facilitating the replacement of code, so that improved versions of tools can be easily
inserted and more than one tool could be provided for any function. The user can pick
a favourite word processor or choose a simple one for a simple job, turning to a more
powerful one where necessary.

As a start to developing such a system, we have implemented a set of programs
which automatically build the bibliography at the end of a paper in a manner similar to
the Scribe system. A variety of procedures are available to produce the bibliography in
a number of different text processing languages. The database also holds the formats
required by a number of journals and there are facilities for maintaining this set of
formats. The method for incrementally adding compiled code, for generating different
formats and supporting a variety of hosted text processors, illustrates a significant
ability obtained by using first class procedures in a persistent store.

Introduction.
When producing software for document production, a number of problems arise:

the conflict between ease of use and fine control over the structure of the
document;

the past history of users of other products who want to be able to use all the
features to which they are accustomed;

the fact that the document's layout may need to be completely re-shaped,
while its contents remain the same;

the desirability of linking together the various components of a document,
systematically and flexibly.

A persistent environment assists in the solution of these problems. Versions of
software may be provided with equal availability so that the user can choose the most
appropriate or the most familiar. Software can be provided which presents a different
"view" of the same document to vary its presentation. it also becomes easier to provide
facilities for mixing classes of data in a system which allows any data structure to be
stored. For instance, it is simple to describe the insertion of a diagram into a piece of
text in a more meaningful way than the Maclntosh Clipboard [APPL84], for instance,
which merely copies the component and keeps no dependency record,

The development system we have chosen for our experiments in document
production is the PS-algol system developed at the Universities of Edinburgh, Glasgow
and St. Andrews [PPRR12, ATKI86a and ATKI86b]. PS-algol is a strongly-typed block
structured language, which supports persistence, has excellent graphics facilities
[MORRB86] and allows procedures to be first-class objects [ATKI85].

Data and programs are made to persist by putting them into structures called
"databases”. These are tables of key/result pairs, where the key can be any string and
the result can be a structure of any complexity, referenced through a universal pointer.
The result pointer may, for instance, point to another table or to all the information
about a reference or to a packaged procedure. Note that every object in the database
is fully typed so that data cannot be misused. Accesses to a pointer value constitutes
an implicit, statically determined projection from the universal union to a specific type,
akin to Cardelli's type dynamic [CARDB84]. The remainder of the program can be
entirely statically type checked. 1t is strongly typed throughout. Discussion of this form
of delayed checking and a comparison of alternatives may be found in [ATKI87 and
COOP87b 1.

The power of the mechanism lies in the fact that if an object is explicitly placed in
a database, then, at committal time, every other object that it refers to is dragged into
the database with it. For instance, a reference which is made up of an author field, a
date field, elc., is stored by entering a pointer to the reference into the database. and
this will automatically bring in all the fields of the reference. Thus the structure
imposed on the data to make it meaningful and manipulable by the program is also
used as the structure in which it is stored. Figure 1 illustrates the ability of the

The Bibliographic Reference Database -1 - April 10, 1987

Persistent Store to hold a variety of different objects. It shows a map of the objects
stored in the bibliographic database including: some utility procedures; help
information; procedures for producing output in various formats: structural information
about the references; and the references themselves.

The graphics facilities are also valuable in building a usable system. A good
human-computer interface is an essential component in any piece of modern software
and often this can only be achieved by glueing low-leve! routines into the program.
This leads to unnecessary complexity and to machine and device dependence.
PS-algol has two types specified for graphical work: the picture which is built out of
points in a real Cartesian space and lines joined recursively; and the image, which is
a rectangular array of pixels. Operations are available which scale, translate and
rotate pictures and do raster operations on images as well as operations to produce
images from pictures and strings. There is also a mechanism for creating pop-up
menus and an interface provided for a mouse.

In PS-algo!, procedures are first-class objects. This means that they can be
passed around as variables or parameters of procedures and they may be stored in
the persistent store in just the same way as any other object. Therefore it is a simple
matter to store a procedure to perform a given function and then later replace it by an
improved or different version. It is possible 1o store a parallel set of procedures and
then to provide a menu for selecting which is to be used at a given time. There is also
a version of the compiler which may be called during the execution of the program and
so it is possible to create appropriale procedures as they are needed and compile
them on the fly before storing them for later use.

This paper will describe how these facilities are used to build a system which
stores bibliographic references and uses them to build the bibliography at the end of a
paper, automatically. We will describe how all this information is stored in the
database, will then describe the software provided and finally give a description of how
the system is used.

System Overview.

The Bibiiographic Reference Database Program (BRDP) manipulates
references. A reference may be regarding as consisting of the following information:

» the type of reference it is - whether it is a book, a paper, etc.;
+ a citation key for insertion into the paper to be processed;
+ a set of fields and their values, such as "author", "title", etc.;
- a set of key-words;

- an abstract of the paper;

and - ultimately the text of the paper itself.

- The Bibliographic Reference Database -2 - April 10, 1987

Our present system only makes use of the first three of these. The set of available
Reference Types is derived from the Scribe Manual [SCRB84]. Associated with each
Reference Type is a set of fields which are essential to specify that kind of publication,
as well as a set of fields which may optionally be present. For instance a reference of
the "Article” Type must have a pages field, but one of the "Book” Type need not. The
way in which a reference will be layed out in the bibliography produced by the program
will vary from Type to Type and so each Type has two associated layout specifications.
One of these describes the way the citation keys will appear in the final text and the
other describes the way each reference in the bibliography will be layed out.

Like Scribe, we support a number of "Reference Formats", which determine the
preferred layout styles for various publishing organisations, such as "I[EEE", "CACM"
and "SIAM". For each of these Reference Formats, the Reference Types available and
the required fields and layout specifications for those Types may vary. Each Reference
Format also contains a specification for the order in which the references will appear in
a bibliography - for instance alphabetically on author name or in the order in which
they are cited in the paper.

To support this taxonomy, the BRDP maintains the following structural data:
+ a set of all the field names known to the system;

+ a set of all the Reference Types known to the system, with default values
for the fields required for this type and a layout specification.

- a set of all the Reference Formats known to the system, each containing a
set of Reference Types and a sort order specification.

The references are divided into Topic areas for storage. The BRDP maintains a
set of such Topics, each of which contains a set of abbreviations, a set of references
and a set of all the authors in the set of references. The abbreviations consist of pairs
of strings containing the short and long forms of the abbreviated string. They are used
to shorten the amount of data which needs to be entered and stored in the table of
references. Within this table, the long form of any abbreviated string may be replaced
by "@value" followed by the short form. This data, together with the structural data and
the program modules are stored in a database in the manner shown in Figure 1. The
organisation of this database will be described in more detail below.

The BRDP supports the following functions:
- a facility to set up a fresh database;
- editors for each of the sets of structural data;

- an editor for the set of Topics, enabling Topics to be added and deleted;

+ an editor for the abbreviations in a Topic;

The Bibliographic Reference Database -3 - April 10, 1987

- bulk load and bulk dump facilities for a Topic;
. "Bib","ron"
* a facility lo browse the references by author name;
, ' —— "%$procedures” —pr————— procedure — siructures
» an editor for the set of references in a Topic; . names .. p
- i o containing
and - a facility for creating the bibliography for a paper. , — "%$modules” ———pr———— module —#
. names ___p procedures
The latter reads through the text of the paper replacing the following: N
. o , "%$help" ——pr———— —b
* @cite followed by a citation key in brackets is replaced the citation key in P ll:elp Fe‘tp
the layout required by the chosen Reference Format; eys exts
- @partbibliography is replaced by the list of references since the last L "% %media’ b media ——> structures
@partbibliography or the start of the text - the layout of the references containing
and the order in which they appear also depend on the Reference Format; output
——— names - > procedures
+ @bibliography is replaced by the list of all the references since the start o
of the texi. "% $fields” ; vector of valid field names
(saved in lower case)
When creating a bibliography, the user specifies the following: .
— "%$types” ~——®r—— Reference — structures containing
- the Reference Format to be used; - Type —_— citation key and reference
names layouts and a list of
and - the Output Medium to be used. required fields
The former determines the layout of the final document, by referring to three .
strings: "Y%Sformats"—r—— Reference—"> "sort order"—=#~ sort order string
_ , , Format Reference —# as forthe
* the sort order asssociated with the Reference Format. This consists of a nameas Type %$lypes table
series of lelters each specifying which field next to sort the references o — > names
on. Forinstance "AY" means sort first on author, then on year.
* the key layout associated with the Reference Type within this Format. : o o long
This is a set of strings concatenated with the following structure: | abbreviations versions
Y vy P : -) a structure of
@" followed by a field name means print the value of the field; topic —ge pointers to —#—— citation » database
. . . name —p entries
« "#" followed by a string means print that string; three tables keys nirie
| Y —4¢ author
< "n" and "t" mean newline and tab, respectively. f author fists
| more » T names
- the reference layout associated wilh the Reference Type within this topic
Formatis a string structured in the same way as the key layout. names
The Gutput Medium determines the way in which the output will be produced., . - .
whether to the screen or 1o a text file or to a file suitable for input in a text processor, Figure 1. The Bibliographic Database Layout.
like TEX [KNUT84], for instance.

The Bibliographic Reference Dalabase -4 - April 10, 1987 The Bibliographic Reference Dalabase -5 April 10, 1987

A Bibliographic Database.

The layout of the database used by the system is shown as Figure 1. The top
level table of the database contains the following:

* A table of utility procedures, keyed by "%$procedures”. Each utility is placed
into the table, keyed by its name. The table is organised in the systematic
way described in @cite{COOP87al.

* A table of the larger modules that are called from the initial menu, keyed by
"%$modules”. Each has structure, proc(), and is placed into the table,
keyed by its name.

* The help information, keyed by "%$help”. The text for each help screen is
stored with a siring key which the program uses to find it.

+ A table of post-processors, keyed by "%$media". Each one is keyed by a
recognisable name, like "TEX" say, and consists of a package of five
procedures which:

- initialise the scan of the paper;

* scan a single line of text;

- initialise the bibliography output;

« finish the bibliography output;
and -« finish the whole process.

* A vector of all the valid field names known to the system, keyed by "%$fields".

* A table of all the Reference Types known to the system, keyed by "%$types”.
Each entry in this table is keyed by a Type name, e.g. "book", and contains
default values for this Type of reference. The information stored is:

* a string which defines the citation key layout;
+ another defining the reference layout;
and - a vector of the names of the required fields. -

+ A table of all the Reference Formats known to the system, keyed by
"%$formats”. Each entry is keyed by a format name, e.g. "lEEE", and
points to a table, which contains the bibliography sort order, keyed by "sort
order”, and an entry for each Reference Type known to this format. These
entries have the same structure as those in the "%$iypes"” table. When
producing the citation keys and references in the bibliography, the builder
looks for its formatting information in the selected Reference Format table
and if the type is not there, looks for the default values in the "%$types”

table.

The Bibliographic Reference Database -6 - April 10, 1987

* The other entries in the top level table are keyed by Topic names and point to a
structure containing all the data about a given Topic. This structure consists
of pointers to three tables:

- a table of abbreviations which consists of entries keyed by
abbreviations pointing to full forms, e.g. "CJ" -> "Computer
Journal”,

- a table of authors which contains an entry for each author name in
the set of references of this topic - the entry points to a list of the
references of which he is an author (this is used by the browser);

and + a table of the references, which uses the citation key as a key for the
table. y

The Software Modules.
Our system has three main functions:

+ The creation and maintenance of the database, including its
super-structure and formatting information,

* The maintenance of the sets of references stored within the system.

* The process of building and outputting the bibliography io be attached to a
paper.

The system has been constructed as a set of modules as follows:
The database maintenance modules include:
+ A creator module which installs a skeletal database.

* Three format loaders, which pull in initial values for:
« the set of valid fields;
* the table of Reference Types;

and - the table of Reference Formats.

+ Editors for:
- the set of valid fields;
« the table of Reference Types;
- the table of Reference Formatls;
*a sort order;
+ the set of Topics;
and - a set of abbreviations.

The Bibliographic Reference Database -7 - April 10, 1987

The following modules are provided to maintain a set of references:

+ A set of bulk loaders, which take a file of references in some format
and insert them into the database. Thus the system can be
initialised without the need for explicit data entry of all the items
that the user has already. Bulk loaders for Scribe and Refer
formats have already been written.

+ An equivalent set of dump programs, so that databases can be
moved from machine to machine and so that a hard copy of the
complete library or the collection in a specific topic can be kept
at hand whilst papers are being written. There is one dumper
corresponding o each of the bulk loaders as well as one, "view",
which provides output for viewing or for hard copy. This latter has
access to the same Output Media as the bibliography builder.

- There is an reference editor. Its function is to insert and delete
references and edit the values of their fields.

« Finally, a browser has also been supplied. At the moment, it only
allows browsing by author name, although browsing by
key-word will be a future development. The browser uses the
table indexed on author name, described above.

The bibliography builder is in many ways the simplest part of the system. s
progress is through four stages:
« The paper is read in and all the "@cite"s are found and replaced by a
bibliography key which is determined by the key layout for a reference of
this Type.

= Alist of all the citations is arranged in the specified sort order.

When "@bibliography” or "@partbibliography” is encountered, the
bibliography is formatted as described by the reference layout.

+ The whole paper is finally translated to whichever output form is required,
be it in a document production language like Postscript or a word
processor like MacWrile, by being passed through one of the Output
Media packages.

Finally, there are a number of low-level modules.

+ A Helper handles the help information available;

+ A Chooser creales menus from the identifiers of sets of objects. This is
used to allow the seifection of one of the valid field names, for

instance. Quite often, these sets will be fairly large, so a combined

The Bibliographic Reference Database -8 - Aprit 10, 1987

mouse and keyboard input mechanism has been provided. Initially,
the program creates a menu with all of the item keys on it and shows
the user 10 of them. Any item visible on the menu may be selected
directly by clicking over the item with the mouse. If the required item is
not visible, the menu may be scrolled in either direction by boxes
which appear at the top and bottom of the menu. Alternatively, a
character may be typed on the keyboard and this reduces the menu to
those keys beginning with that character - subsequent key presses
resulting in further. reduction of the menu. Note that the menu is
maintained dynamically so that it always reflects the current membership
of the set of objects.

» A simple String Editor provides some basic facilities for the input and

editing of a single line of text. The editor supports a cursor position in
the string, scrolling to view parts of the string outside of the current
window. The user may add new characters at the cursor position,
delete the first character to the left of the cursor or delete all the
characters the left of the cursor. The String Editor is shown in action at
the bottom of Figures 4 and 8.

» A form interface allows forms to be presented on the screen consisting

of boxed text strings or icons, which function as "light buttons". That is,
when the mouse is used to select one of these buttons, an associated
procedure is called. For instance, if a light button contains some text -
the value of a field of a reference, say - selecting that button might call
a text editor which allows the user to change the value of the field.
This form interface, together with the PS-algol menu construct, has
been used to construct the program as a hierarchy of procedures,
simply chained together.

» A More facility displays textual information. The information is shown on

the screen in a box. The output is paged in the same way as the UNIX
"more" facility and the user clicks the mouse button to progress to the
next page.

- An error message facility displays the message in a box at the centre of

the screen, until the mouse button is pressed.

The Bibliographic Reference Database -9 - April 10, 1987

Field Editing Menu
Add S.edit
Delete 1choose
Edit Choose; S.edit
List More
TypeEditor Form
(e Type name)
Type Editing Menu he Type name S.edit
the fayout fines S.edit
Show | Choose —
Add S.edit; Choose the required fields
Delete | choose Add a req field Choose
Edit 1 Delete req field Select
. ist
Initial Menu More Insert a key line Select;
- Insert an oulput line S.edit
Initialise
Delete fine Select
Edit /
Fields
: Format Editing Menu Format Editor Forr
E)(/j;l)tes / Show | Choose the Format name){ S.ed!t
Add | sedit; Sord;
Ean Chobse the sort order/ Sord
d the types
Formats Delete | cnoose i
Edit — Add new type Choose
Edﬂ. List More Delete type Select
Topics N/
\
Scan
Abbreviation
Slear Editing Menu
P Topic Editor Form Add _ [S.edlt
o \ Delete [Choose
. - Topic name !
Topic Editing Menu p S-edit Edit |S.edit
Add S.edlt Edit p| List More
Delete Choose Abbrevs
Edit &1 Bulk S.edit;
List More Load Choose Heference Editing Menu
Choose Show Choose
Oump . |Add S.edil; Refer
Edit Refs "|Delete | Choose
Edit Choose; Refer
List More
Figure 2. The Menu Hierarchy.
The Bibliographic Reference Database - 10 - Aprii 10; 1987

Introduction to Using the System.

The modules of the system are controlled through an interface consisting of a
hierarchy of menus and forms, each of which contains options to obtain help and to
quit 1o the next highest level. The other options either generate a further sub-menu or
provide a dialogue which controls interaction with the user to achieve the operation
selected.

The structure of the menu hierarchy is shown in Figure 2. Menus are shown in
rectangular boxes and forms in rounded boxes. Moving down the hierarchy is
achieved by clicking over a light button on one of the forms or menus. At the end of a
chain of selections, the user interacts via a dialogue consisting of operations from the
following list:

S.edit - a string is edited via the simple String Editor

Choose - an object of the required kind is selected from a menu of the
identifiers of all the objects of that kind, via the Chooser module.

More - the requested text or list of object names is shown on the
screen via the More module.

Select - the user indicates which object is to be operated on by clicking
the mouse over the form element corresponding to that object.

Sord - call the Sort Order Editor (see Figure 6).

Refer - enter the Reference Editor (see Figure 8).

There are two important general points to be made about the way editing is
performed by the user. Firstly, editing the identifier of an object causes the creation of
a new object, with the old object being left unchanged. Secondly, each edit is
structured as one of a set of nested transactions.

The major objects in the database have an identifying string associated with
them. Fields, Types, Formats and Topics have names and the references themselves
have a key. When the identifier of an object is changed by use of an editor, this
corresponds 1o creating a new object. I the editor is entered with an object identified
as "X", some changes are made to values within the object, then the identifier is
changed to "Y" and then more changes are made, a new object identified as "Y"
will be created. This will be a copy of "X" with all the modifications made, whether
before or after modifying the identifier. This edit will leave "X" totally unchanged.
Not even the changes made before the identifier will be made on "X". This method has
been chosen so that many objects of the same type and with largely the same values
can be created easily. .

The Bibliographic Reference Database - 11 - April 10, 1987

To illustrate the nested transaction mechanism, consider the process of « Edit topics - allows the set of Topics to be edited;
editing one of the default set of Reference Types. To do this the user must do the

following: « Scan - initiales the dialogue which leads to the building of a bibliography;
- Select the "Edit fypes” option in the top level menu. This initiates the « Clear Up - handles both the commital of data to the database and exit from
transaction, "Edit the set of Types". the program.

+ Select the "Edit" option of the Type Editing Menu to edit a particular Type.
This starts a sub-transaction, "Edit a Type".

+ Edit the Type as described below.
The Bibliographic Database System.
* Respond to the question "Do you want 1o preserve your changes?"'. If the
response is "y", the Type Editor returns a new Type object with the
modified values. Otherwise, the editor returns the original object.
Thus after the Type has been modified, the user can abandon the
modifications at the end of the "Edit Type" transaction if so desired. |f

TYPRT Load Load -
the modifications are kept, then they are held as part of the Initialise (Help) (Load all’) (fL,;?;i)(types)(formats)

modifications in the current "Edit the set of Types” transaction.

« Edit more Types and when no more changes to the set of Types are to be Edit - - -
made, respond to another "Do you want to preserve your changes?" (Help) (Add) (De‘e@ CEd't) CL’St) (Ou‘t)
question. This again gives the user the option ot abandoning all changes

Hone during the transaction by responding "n". 1f he responds "y" control
returns 1o the initial menu and afl the modifications are made to the Edit

database itsett. tvpes (Help) (Show) ((Add) ((Delete)) (Edit) CList) (Quit)

» To make the changes permanent, the user must select the Clear Up option
and then select the "Commit” option, if he wishes then to carry on, or Edit]

Help

X

the "Quit/Commit” option, if he wishes to finish.

(Help) (Show) ((Add) (Delete) @dnj (st) (Quit)

_..
o
g
3
Qo
=
»

Gelting Started. tfdiicls (Feip) (Add) (Deer) (Eat) (Tet) (@)

The initial display and the first level of menus is shown as Figure 3. The start up
screen consists of the heading and the vertical menu shown in bold on the left-hand Scan
side of the screen. The options of this menu have the following functions:

+ Help - displays a short description of the options of this menu at the centre
of the screen, until the mouse butlon is clicked - all "help" buttons function
in this way;

)
<
K‘/

, Quiv Quiv
(Help) (commit) Qon[i‘miD (Abalrjmldon)

+ Initialise - sets up part or all of the dalabase from scratch;) \ Figure 3. The Initial Screen and First Level Menus.

- Edit fields - allows the veclor of field names to be edited:;
- Edit types - allows the table of Reference Types to be edited;
« Edit formats - allows the tables of Reference Formalts to be edited;

The Bibliographic Reference Dalabase Si2 - April 10, 1987 The Bibliographic Reference Dalabase - 13 - April 10, 1987

'
'

Initialising The Database.

Choosing the Initialise option of the initial menu brings up a sub-menu, which
apart from the help and quit options common to all menus, has the following options:

Load fields - replace the valid field names vector with a list from the
system file %SETUP;

Load types - replace the table of default Reference Types with a set found
in %SETUP;

Load formats - replace the table of Reference Formats with those found in
Y%SETUP;

Load all - replace all three of these from %SETUP.

!

The Set Editors.

Four of the options of the initial menu lead to sub-menus which control the editing
of a sel of objects. These sub-menus have similar structures. They all contain the
options:

Add - add an item. Typically, this calls the String Editor to allow the user to
specify an identifier for the new item and then makes further calls to
the String Editor, to the Chooser or to the editor specific to an item of
this kind to generate the values of other attributes of the item.

Delete - delete an item. The item to be deleted is selected via the Chooser.

Edit - edit the value of the item. Again an item is selected via the Chooser
and then the current value is provided to the editor of the appropriate
kind, which will announce itself by creating a new window in the screen to
operate in. If the idenlifying information is edited (for instance, the
Reference Type name), a new object is created and the oid object is left
intact. If only a change to the identifier is required, then after the editing
has been done, the old object must be explicitly deleted.

List - provide a list of the identifiers of every item of this kind with the More
module.

Additionally the menu for editing the Formats and the Types includes:
Show - display one of the items of this kind. The item 1o be displayed is

selected by use of the Chooser. It remains on the screen until the mouse
button is clicked.

The Bibliographic Relerence Database - 14 - Aprit 10, 1987

Editing the Set of Known Field Names.

To edit the set of field names, choose the Edit fields option of the initial menu.
The sub-menu contains the options, Add, Delete, Edit and List, which operate as
just described. In particular:

+ adding a field name consists of typing a new name into the String
Editor;

+ editing consists of choosing a field name and then changing it with
the String Editor.

The Reference Type Editor

Current name

Key layout Required fields Output layout
#: authpr ‘n't@Author'n
@code pubhsher ‘1@litle

. title # published @year
year 't@publisher
n

Add a Delete Insert a Insert an Delete
Help| |reqfield |reqfield| [keyline| [outputline line Quit

Edit the name

bookl

Figure 4. The Reference Type Editor.

The Bibliographic Reference Dalabase -15 - April 10, 1987

Editing the Set of Default Reference Types.

Selecting the Edit types option of the initial menu summons the sub-menu, with
all of the usual options, including Show, with the following particular details:

+ Adding a new Type requires three calls to the String Editor to supply
the Type name, a citation key layout and a reference layout.
Then fields are added to the required fields list by menu
selection from the vector of valid field names.

> Editing a Type requires the Type to be edited to be selected with the
Chooser and then uses the Type Edilor (Figure 4). This announces
itself as a new window on the screen, within which the Type name is
displayed at the {op, under which is shown the information about the
Type in three columns: one each for'the key layout, output layout and
the list of required field names. Clicking on the Type name or on any
of the layout lines summons the String Editor to change them. The
editor also has a row of light butlons at the bottom of the display,
which include "help” and "quit" buttons and also:

Add required field: select a field to add via the Chooser;

Delete required field: click the mouse over the field to be
deleted;

Insert key layout line: click over the position at which the line
is 1o be inserted and then input it via the String Editor,;

Insert output layout line: as for inserting a key layout line;
Delete layout line: click the mouse over the line to delete.
- A Type is displayed by choosing the show option and then using the

Chooser to pick which one to disptay. The Type is then displayed in a
similar fashion to the layout of the editor.

The Bibliographic Reference Dalabase S16 - April 10, 1987

i IEEE AYR

The Reference Format Editor

E Current Name Sort Order

Reference Types

article

book
inprocedings
manual
unpublished

| Deletetype | | Add type | [Quit]

Figure 5. The Reference Format Editor

Editing the Reference Formats.

The Edit formats option of the initial menu brings up a sub-menu, which has the
full set of five options which operate as already described, with the following
particulars:

* Adding a new Reference Format consists of providing a new name via the
String Editor and a sort order via the Sort Order Editor, which is
described in the next section. Then the user loads in Reference Types
from the default Reference Type table, via the Chooser.

+ Editing a Reference Format, is done via the Reference Format Editor
shown as Figure 5, after selection of a Format to edit by use of the

Chooser. This displays the name and the sort order at the top of its
n window and the set of Reference Types vertically. Each of these may be
, clicked over to summon the String Editor, the Sort Order Editor or the
B Type Editor, respectively. There are further light buttons at the bottom of

the display, including "help™ and "quit" as usual, as well as buttons to
add a new Type (via the Chooser) and delete a Type (by clicking the
mouse over it).

- Displaying a Format requires selecting which one to show using the
Chooser. Itis then displayed in a layout similar to the editor's.

The Bibliographic Reference Database -17 - April 10, 1987

Sort Order Editor

Current Sort Order

LY |
Sort next On
Main Other | Citation
author Year authors key
Delete Restore
last initial Clear Help
Quit

Figure 6. The Sort Order Editor.

Editing a Sort Order.

The sort order for a Reference Format is changed by using the Sort Order Editor
shown in Figure 6. The current value of the sort order is displayed towards the 't'op of
the display, and under this there are nine light buttons, including the "Help" and "Quit
buttons. The buttons on the top line insert further sort key letters into the sort order
string, thus adding fields to break ties between references which can be distinguished
on the sort order so far. The other options gives the following operations:

» Delete last - remove the last sort key letter;

- Restore initial - return to the sort order string as it was on entry to
the editor;

» Clear - clear the string to nothing.

The Bibliographic Reference Database -18 - Aprit 10, 1987

The Topic Editor

Current name
{ PISA |

Edit the Bulk Dump

Abbrevs | Load Topic Browse

Help Quit

Help Show| | Add Delete Edit List Quit

Figure 7. The Topic Editor and Reference Editing Menu

Editing The Topics.

The set of Topics may be edited by selecting the Edit topics option of the initial
menu. The sub-menu which then appears doesn't include a "show" option, as there is
too much information stored for each Topic 1o fit on the screen. The Delete and List
options function as previously decribed, while:

Adding a new Topic requires a new name to be entered via the String Editor.
A new entry in the database is created pointing to three empty tables
which will hold the abbreviations, the author lists and the entries.

Selecting the edit option summons the Topic Editor which will is shown as
Figure 7. It displays the name of the Topic at the top and this may be
clicked on to call the String Editor to change it. Underneath this are a row
of light buttons, including "Quit", "Help" and the following:

Bulk Load - a filename is requested using the String Editor and the format of
the file is requested using the Chooser. All of the references and
abbreviations found in the file are loaded into appropriate slots in the
Topic's structure. At present, the file must be in Scribe format or Refer
format.

The Bibliographic Reference Database -19 - April 10, 1987

Dump Topic - the contents of the Topic are dumped in a formatl selected by
the Chooser from those available. If it is to be dumped in a reloadable
format (e.g. Scribe), then a filename is requested using the String
Editor. 1f, on the other hand, the dump is for viewing purposes, an
Output Medium is selected via the Chooser. For further description of
the Output Media, see the section on producing the bibliography.

Browse - the contents of the Topic are opened for browsing. The only
browsing mechanism implemented as yet consists of traversing lists of
papers with the same author. Therefore the browse option starts by
requesting an author name by menu and then traversing the list by a
menu of the following options:

List - display a list of all the keys;

Show - display details of the current paper;
Next - proceed to the next paper,;
and Find - supply a year and go to the first paper of that year.

Edit the Abbrevs - a sub-menu appears with the usual structure for menus
which contro! the editing of sets of objects. Delete, List and Show all
function in the usual way. The other options work as follows:

adding an abbreviation requires two strings - the abbreviation and
the full form - both of which are entered via the String Editor,

editing an abbreviation proceeds by selecting which to edit from a
menu of the short forms and then modifying the short and long
forms using the String Editor.

Edit the Refs - a sub-menu appears underneath the row of light buttons,
which include the same set of options that have been seen in the higher
level menus. The options Delete and List behave in the expected way,
while Show displays an entry in a form compatible with the Reference
Editor. The Add option requests a key via the String Editor and then calls
the Reference Editer to fill in the fields. The Edit option calls the Chooser
to select an entry to edit and then calls the Reference Editor.

The Reference Editor.

The Reference Editor is shown in Figure 8. At the top the following are displayed:
the key under which it has been stored in the database; the Type of reference it is; and
the list of authors. Underneath that field, are shown the required fields and under
these, the optional fields. Clicking on the key or any of the fields results in the String
Editor being called to modify these. Clicking on the Type allows it 1o be changed via
the Chooser. Towards the bottom, there are a row of light buttons, including "Quit",
"Help" and the following:

The Bibliographic Reference Database - 20 - April 10, 1987

Add field - a new field name is selected from the set of valid field names
and added to the list of optional fields. Then the String Editor is called to
enter a value for the field.

Delete field - the field to be deleted is clicked over. Only optional fields
can be deleted.

Abbrevs - clicking over this button throws a switch between displaying
abbreviated strings in their short form (e.g. "@value[PPRR]) or their
long form (e.g. "Persistent Programming Research Report").

The Reference Editor

The Key The Type The Authors
| COOP87b | [techreport | | Cooper / Blott/ Atkinson

The Required Fields
author Cooper, RL, Blott, SM and Atkinson, MP
title JsingeBiRersistant e EnVirgnomentat

organisation| The Persistent Programming Research Group
date February, 1987

The Optional Fields

number 24
address Dept. of Computing Science, University of Glasgow,
Glasgow, G12 8QQ

Help Add field Delete field Abbrevs Quit

Edit the title

ent Environe‘ment to Maintain a Bibliographic Reference

Figure 8. The Reference Editor.

The Bibliographic Reference Database -21 - April 10, 1987

Producing A Bibliography.

Havving set up the database with all of the required information, using it to
produce a bibliography proceeds as follows:

Create a text file containing the paper with all citations entered in the form
"@cite[ckey]", where ckey is the citation key for the reference. The position of
the bibliography should be indicated by a line containing just
"@bibliography”, to get all of the citations from the start to the current point, or
"@partbibliography” to get all the citations from the last bibliography to the
current point.

Enter the Bibliographic Database System and select "Scan” from the initial menu.
Supply, via the String Editor, a file name for the paper.
Choose a Reference Format from the menu provided.

Finally, supply an Output Medium, also by menu. This will be one of the
following:

Screen - this optlion displays the output on the screen via More, that is
paged with mouse button clicks to "turn” the page;

File - this sends the output to an ASCH file, the name of which is
requested via the String Editor;

TEX - this sends the output to a file which formatted for input to a TgX
processor.

Finishing Off.

The final option of the initial menu is labelled "Clear Up" and provides facilities for
making the changes to the dalabase permanent and for leaving the program.
Selecting the option leads to a sub-menu, which includes a "Help” option as well as:

Commit - make any changes 1o the database permanent and continue within
the system;

Quit/Commit - commit the changes and quit the system;

and Quit/Abandon - quit the system losing all the changes since the last
commit.

Conclusions.

A system for the automatic creation of bibliographies has been described. All of
the software was developed in a matter of four man-months. The speed of

The Bibliographic Reference Database - 22 - April 10, 1987

development was due to programming within a persistent environment. The system
was developed in an incremental fashion, using fairly small, easily debugged moduies.
The modules were themselves stored in the same space as the data in the form of data
structures containing properly bound first-class procedures. Therefore, it was easy to
re-use sections of code to perform similar tasks. It was also easy to replace partially
working modules with better ones.

However, the main benefit was the ability to store new parallel modules
alongside old ones and then to generate menus to decide which module to use. For
instance, initially the only bulk loader we had was for Scribe files. As soon as a Refer
format file was encountered, we wrote a Refer format loader, plugged it in and allowed
the Chooser to permit the selection dynamically via a menu.

All of the complex information required by the system is stored in a simple format.
No recourse to file handlers or other complex schemes was required, other than to
access the paper to be scanned and to produce the result. We think that the system
would be more satisfactory if there were an option for the papers themselves to be
stored in the persistent store. There is no technical reason why they should not be, but
until word processing power has been added to the system, the disadvantages of
having two copies of the paper probably outweigh the advantages.

Providing a page make-up system using the persistent store would give
processing economy. Most runs of such a system are of iterations of the document, in
which the document is only slightly perturbed. Retaining the data structures describing
the layout of the generated pages would yield economies or an accelerated WYSIWYG
response.

The use of the persistent store will continue to be exploited. We hope to have a
group of from 10 to 30 people all accumulating their citation data in the one database,
so that we economise on the effort of preparing this data. If possible, we will obtain
and load more substantial reference information bodies. When these have been
loaded, we can examine the performance and efficiency issues raised and utilise this
as a demonstrator of persistence.

The larger accumulations of data will warrant better retrieval tools than our
browser. We hope to build some on the basis of current information processing
techniques, including some browsing on key words. The ability given by persistence to

bind new code to existing, highly structured data, held in a strongly typed form should
prove particularly helpful when adding such computationally sophisticated modules.

Bibliography.

APPL84 "The Macintosh Manual”, Apple Computers Inc., 1984,

ATKI85 Atkinson MP and Morrison R, "Procedures as Firsi-class Objects", ACM
TOPLAS 7, 4, 539-559 (Oct 1985).

The Bibliographic Relerence Dalabase -23 - Aprit 10, 1987

ATKI86a

ATKI86b

ATKI87

CARDS84

COQP87a

COOP87b

KNUT84

MORR86

PPRR12

SCRB84

Atkinson MP and Morrison R, "Integrated Persistent Programming
Systems”, proc 19th Annual Hawaii International Conference on
Systems Sciences, Jan 7-10, 1986 {ed BD Shriver), vol 1A, Software,
842-854.

Atkinson MP, Morrison R and Pratten GD, "Designing A Persistent
Information Space Architecture”, Proc Information Processing 1986,
North Holland Press (Sept 1986) 115 - 119.

Atkinson MP and Morrison R, "Binding and Type Checking in Database
Programming Languages”, in Persistent Programming Research Report
34, Universily of Glasgow, 1987.

Cardelli L, "Amber", Technical Report, AT & T Bell Labs, Murray Hill, NJ,
- USA, 1984,

Cooper RL, "Applications Programming in PS-algol", Persistent
Programming Research Report 25, University of Glasgow, 1987.

Cooper RL, Atkinson MP and Abderrahmane D, "Constructing Database

Systems in a Persistent Environment”, in Persistent Programming
Research Report 34, University of Glasgow, 1987.

Knuth DE, "The TgX book", Addison-Wesley Publishing Company, 1984.

Morrison R, Dearle A, Brown AL and Atkinson MP, "An Integrated
Graphics Programming Environment", Computer Graphics Forum, Vol
5, No 2, June 1986, 147-157.

"The Ps-algo! Reference Manual - Third Edition", Persistent Programming
Research Report 12, University of Glasgow, 1987.

"The SCRIBE Document Production User Manual", UNILOGIC Ltd, 1984

The Bibliographic Reference Database - 24 - Aprit 10, 1987

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,

Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,

Glasgow G12 8QQ

Scotland.

Books

Davie, A.J.T. & Morrison, R.
"Recursive Descent Compiling”, Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.)

"Databases”, Pergammon Infotech State of the Art Report, Series 9, No.8,
January 1982. (535 pages).

Cole, A.J. & Morrison, R.

"An introduction to programming with S-algol”, Cambridge University Press,
Cambridge, England, 1982.

Stocker, P.M., Atkinson, M.P. & Grey, P.M.D. (eds.)

"Databases - Role and Structure”, Cambridge University Press, Cambridge,
England, 1984,

Published Papers

Morrison, R.
"A method of implementing procedure entry and exit in block structured high level
languages”. Software, Practice and Experience 7, 5 (July 1977}, 535-537.

Morrison, R. & Podolski, Z.

"The Grafliti graphics system", Proc. of the DECUS conference, Bath (April 1978),
5-10.

Atkinson, M.P.
“A note on the application of ditferential files to computer aided design”, ACM
SIGDA newsletter Summer 1978.

Atkinson, M.P.
"Programming Languages and Databases", Proceedings of the 4th International
Conference on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78,
408-419. (A revised version of this is available from the University of Edinburgh
Department of Computer Science (EUCS) as CSR-26-78).

Atkinson, M.P.
"Progress in documentation: Database management systems in library
automation and information retrieval”, Journal of Documentation Vol.35, No.1,
March 1979, 49-91. Available as EUCS departmental report CSR-43-79.

Gunn, H.LE. & Morrison, R.
"On the implementation of constants”, Information Processing Letters 9, 1 (July
1979), 1-4.

Atkinson, M.P.
"Data management for interactive graphics”, Proceedings of the Infotech State of
the Art Conference, October 1979. Available as EUCS departmental report
CSR-51-80.

Atkinson, M.P. (ed.)
"Data design”, Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R.
"Low cost computer graphics for micro computers”, Software Practice and
Experience, 12, 1981, 767-776.

Atkinson, M.P_, Chisholm, K.J. & Cockshott, W.P.
"PS-algol: An Algol with a Persistent Heap", ACM SIGPLAN Notices Vol.17, No.
7, (July 1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Nepal - the New Edinburgh Persistent Algorithmic Language", in Database,
Pergammon Infotech State of the Art Report, Series 9, No.8, 299-318 (January
1982) - also as EUCS Departmental Report CSR-90-81.

Morrison, R.
"S-algol: a simple algol”, Computer Bulletin /31 (March 1982).

Morrison, R.
"The string as a simple data type", Sigplan Notices, Vol. 17,3, 46-52, 1982.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming”, presented at CREST course UEA,
September 1982, revised in "Databases - Role and Structure”, see PPRR-8-84.

Morrison, R.

"Towards simpler programming fanguages: S-algol”, IUCC Bulletin 4, 3 (October
1982), 130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Problems with persistent programming languages”, presented at the Workshop
on programming languages and database systems, University of Pennsylvania.
October 1982, Circulaled {revised) in the Workshop proceedings 1983, see
PPRR-2-83.

Atkinson, M.P.
"Data management”, in Encyclopedia of Computer Science and Engineering 2nd
Edition, Ralston & Meek (editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Algorithms for a Persistent Heap”, Software Practice and Experience, Vol.13,
No.3, 2569-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"CMS - A chunk management system”, Software Practice and Experience,
Vol.13, No.3 (March 1983), 273-285. Also as EUCS Departmental Report
CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming”, presented at the DEC workshop
on Programming Languages and Databases, Boston, April 1983.

Atkinson, M.P_, Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"An approach to persistent programming", The Computer Journal, 1983, Vol.26,
No.4, 360-365 - see PPRR-2-83.

Atkinson, M.P_, Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming”, 10th Australian Computer
Conference, Melbourne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.
"High level language support for 3-dimension graphics”, Eurographics
Conference Zagreb, North Holand, 7-17, Sept. 1983. (ed. P.J.W. ten Hagen)

Cockshott, W.P_, Atkinson, M.P., Chishoim, K.J., Bailey, P.J. & Morrison, R.
"POMS : a persistent object management syslem”, Software Practice and
Exerience, Vol.14, No.1, 49-71, January 1984.

Kulkarni, K.G. & Atkinson, M.P.
"Experimenting with the Functional Data Model", in Databases - Role and
Structure, Cambridge University Press, Cambridge, England, 1984.

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough”, Foundations of Software
Technology and Theoretical Computer Science (ed. M. Joseph & R.
Shyamasundar) Lecture Notes in Computer Science.181, Springer Verlag, Berlin
(1984).

Atkinson, M.P., Bocca, J.B., Elsey, T.J., Fiddian, N.J., Flower, M., Gray, P.M.D.
Gray, W.A_, Hepp, P.E_, Johnson, R.G., Milne, W., Norrie, M.C., Omololu,
A.Q., Oxborrow, E.A., Shave, M.J.R., Smith, A.M., Stocker, P.M. & Walker, J.
"The Proteus distributed database system”, proceedings of the third British
National Conference on Databases, (ed. J. Longstaff), BCS Workshop Series,
Cambridge University Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R.
"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985)
- see PPRR-9-84.

Morrison, R.,Bailey, P.J., Dearle, A., Brown, P. & Atkinson, M.P.
"The persistent store as an enabling technology for integrated support
environments”, 8th International Conference on Software Engineering, Imperial
College, London (August 1985), 166-172 - see PPRR-15-85.

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment”, proceedings of
Data Types and Persistence Workshop, Appin, August 1985, 1-24 - see
PPRR-16-85.

Davie, AJ.T.
"Conditional declarations and pattern matching”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

Krablin, G.L.
"Building flexible multilevel transactions in a distributed persistent environment,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
86-117 - see PPRR-16-85.

Buneman, O.P.
"Data types for data base programming”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.
"Addressing mechanisms and persistent programming”, proceedings of Data
Types and Persistence Workshop, Appin, August 1985, 363-383 - see
PPRR-16-85.

Norrie, M.C.
"PS-algol: A user perspective”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.
"On the need for a Flexible Type System in Persistent Programming Languages”,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
423-438 - see PPRR-16-85.

‘ Morrison, R, Brown, A.L., Bailey, P.J., Davie, A.J.T. & Dearle, A.

"A persistent graphics facility for the ICL PERQ", Soltware Practice and
Experience, Vol.14, No.3, {(1986) - see PPRR-10-84.

Atkinson, M.P. and Morrison R.
"Integrated Persistent Programming Systems"”, proceedings of the 19th Annual
Hawaii International Conference on System Sciences, January 7-10, 1986 (ed.
B. D. Shriver), vol A, Software, 842-854, Western Periodicals Co., 1300 Rayman
St., North Hollywood, Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.
"A Persistent Information Space Architecture”, proceedings of the 9th Australian
Computing Science Conference, January, 1986 - see PPRR-21-85.

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.1,
(1986) 38-45.

Buneman, O.P. & Atkinson, M.P.
"Inheritance and Persistence in Database Programming Languages";
proceedings ACM SIGMOD Conference 1986, Washington, USA May 1986 - see
PPRR-22-86.

Morrison R., Dearle, A., Brown, A. & Atkinson M.P.; "An integrated graphics
programming environment”, Computer Graphics Forum, Vol. 5, No. 2, June 1986,
147-157 - see PPRR-14-86.

Atkinson, M.G., Morrison, R. & Pratten G.D.
"Designing a Persistent Information Space Architecture”, proceedings of
Information Processing 1986, Dublin, September 1986, (ed. H.J. Kugler),
115-119, North Holland Press.

Brown, A.L. & Dearle, A.
"Implementation Issuses in Persistent Graphics"; The Association for Computing
Machinery, 11 West 42nd St., New York, NY 10036; University Computing, Vol.
8, NO. 2, (Summer 1986) - see PPRR-23-86.

Internal Reports

Morrison, R.
"S-Algol language reference manual”, University of St Andrews CS-79-1, 1979.

Bailey, P.J., Maritz, P. & Morrison, R.
"The S-algol abstract machine”, University of St Andrews CS-80-2, 1980.

Atkinson, M.P., Hepp, P.E., lvanov, H., McDuft, A, Proctor, R. & Wilson, A.G.
"EDQUSE reference manual”, Department of Computer Science, University of
Edinburgh, September 1981.

Hepp, P.E. and Norrie, M.C.
"RAQUEL: User Manual", Department of Computer Science Report CSR-188-85,
University of Edinburgh.

Noarrie, M.C.
"The Edinburgh Node of the Proteus Distributed Database System", Department
of Computer Science Report CSR-191-85, University of Edinburgh.

In Preparation

Atkinson, M.P. & Buneman, O.P.
"Database programming languages design”, submitted to ACM Computing
Surveys - see PPRR-17-85.

Theses

The following Ph.D. theses have been produced by members of the group
and are available from the address already given,

W.P. Cockshott
Orthogonal Persistence, University of Edinburgh, February 1983.

K.G. Kulkarni
Evaluation of Functional Data Models for Database Design and Use, University of
Edinburgh, 1983.

P.E. Hepp
A DBS Architecture Supporting Coexisting Query Languages and Data Models,
University of Edinburgh, 1983.

G.D.M. Ross)
Virtual Files: A Framework for Experimental Design, University of Edinburgh,
1983.

G.0O. Owoso
Data Description and Manipulation in Persistent Programming Languages,
University of Edinburgh, 1984.

. . PPRR-14-86 An Integrated Graphics Programming Environment - second
Persistent Programming Research Reports 9 P 9

edition -
Morrison, R., Brown, A.L., Dearle, A. and Atkinson, M.P. £1.00
This series was started in May 1983. The following !ist gives those prgduqed and PPRR-15-85 The Persistent Store as an Enabling Technology for an
those planned plus their status at 10th April 1987. Co‘ples of documents in this Integrated Project Support Environment -
list may be obtained by writing to the address already given. Morrison, R., Dearle, A, Bailey, P.J., Brown, A.L. and
Atkinson, M.P. £1.00
PPRR-1-83 The Persistent Object Management System - PPRR-16-85 Proceedings of the Persistence and Data Types Workshop,
Alkinson, M.P., Chisholm, K.J. and Cockshott, W.P. £1.00 Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R. £15.00

PPRR-2-83 PS-algo! Papers: a collection of related papers on PS-algol -

Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm, PPRR-17-85 Database Programming Language Design -
K.J. and Morrison, R. £2.00 Atkinson, M.P. and Buneman, O.P. £3.00
PPRR-4-83 The PS-algol reference manual - PPRR-18-85 The Persistent Store Machine -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm, Cockshott, W.P. £2 00
K.J. and Morrison, R Presently no longer available
PPRR-19-85 Integrated Persistent Programming Systems -
PPRR-5-83 Experimenting with the Functional Data Model - Atkinson, M.P. and Morrison, R, £1.00
- Atkinson, M.P. and Kulkarni, K.G. £1.00
PPRR-20-85 Building a Microcomputer with Associative Virtual Memory -
PPRR-6-83 A DBS Architecture supporling coexisting user interfaces: Cockshott, W.P. £1.00
Description and Examples -
Hepp, P.E. £1.00 PPRR-21-85 A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D. £1.00
PPRR-7-83 EFDM - User Manual -
K.G.Kulkarni : £1.00 PPRH-22-86 Inheritance and Persistence in Database Programming
Languages -
PPRR-8-84 Progress with Persistent Programming - Buneman, O.P. and Atkinson, M.P. £1.00
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00 PPRR-23-86 tmplementation Issues in Persistent Graphics -
Brown, A.L. and Dearle, A. £1.00
PPRR-9-84 Procedures as Persistent Data Objects -
Atkinson, M.P. Bailey, P., Cockshott, W.P., Chisholm, PPRR-24-87 Using a Persistent Environment to Maintain a Bibliographic
K.J. and Morrison, R. £1.00 Database -
Cooper, R.L., Atkinson, M.P. & Blott, S.M. £1.00
PPRR-10-84 A Persistent Graphics Facility for the ICL PERQ -
Morrison, R., Brown, A.L., Bailey, P.J., Davie, AJ.T. PPRR-25-87 Applications Programming in PS-algo! - Cooper, R.L. £1.00
and Dearle, A. £1.00
PPRR-26-86 Exception Handling in a Persistent Programming Language -
PPRR-11-85 PS-algol Abstract Machine Manual £1.00 Philbrow, P & Atkinson M.P. £1.00
PPRR-12-86 PS-algol Reference Manual - third edition £2.00 PPRR-27-86 A Context Sensilive Addressing Model -
Hurst, A.J. £1.00

PPRR-13-85 CPOMS - A Revised Version of The Persistent Object

Management Systemin C - PPRR-28-86b A Domain Theoretic Approach to Higher-Order Relations -
Brown, A.L. and Cockshott, W.P. £2.00 Buneman, O.P. & Ochari, A. £1.00

PPRR-29-86

PPRR-30-86

PPRR-31-86

-PPRR-34-87

A Persistent Store Garbage Collector with Statistical Facilities -
Campin, J. & Atkinson, M.P.

Data Types for Data Base Programming -
Buneman, O.P. }

An Introduction to PS-algol Programming -
Carrick, R., Cole, A.J. and Morrison, R.

Binding Issues in Database Programming -
Atkinson, M.P., Morrison, R., Cooper, R.L. and
Abderrahmane, D.

