University of Glasgow
Department of Computing Science

Lilybank Gardens
Glasgow G12 8QQ

University of St Andrews
Department of Computationai Science

North Haugh
Si. Andrews KY16 8SX

Implementation Issues in

Persistent Graphics

Persistent Programming
Research Report 23

Preface

This report has been accepted for publication in University Computing during

Autumn 1986.

Implementation issues in Persistent Graphics
A.L. Brown and A. Dearle

Department of Computational Science
University of St Andrews
North Haugh

St Andrews KY16 9SX.

Introduction

Many of the present-day workstations feature high resolution raster displays and associated
pointing devices. These systems provide a suitable medium for the construction of a high quality user
interface. The graphics facilities of these systems are usually accessed at a low level. To be able to
effectively use these systems a convenient high level interface must be built. These high level
interfaces are usually only available as ad-hoc extensions to programming languages. This can present
problems in combining graphical objects with those supported by the programming language. The
problem is further aggravated when the long term storage of graphical objects is attempted. A
solution to these problems would be the complete integration of graphics facilities into a persistent
programming language. This paper describes the graphics facilities available in the persistent
programming language PS-algolll]. One implementation of the system on an ICL PERQ is also

described.

What is persistence?

The persistence of a data object is the length of time the data object exists [2] Previously,
programming languages have treated this property of data consistently within the context of a
program (either as values of local variables or as values on the heap) but have made radically
different arrangements for data of longer term persistence (such as those in files or in a database). In
PS-algol we view persistence as an orthogonal property of data and apply the Principle of Data Type
Completenesy 3], so that an object of any data type may have any persistence.

In a conventional system, a programmer has to visualise three mappings: from the real world to
program representation, from the real world to database representation and from database
Tepresentation to program representation. This greatly complicates the task and increases the potential
for error due to inconsistent treatment of the mappings. We contend that allowing long term data
storage without incurring such a multiplicity of representations and mappings is likely to have

bepefits in both software production and software maintenance. The immediate application of this

attribute of the language will be the construction of systems as a number of programs operating on a
common body of data, particularly where data structures specific to the application are useful. One
example of this is a suite of CAD programs.

The pictures provided as data types in the language are representations of annotated line
drawings or bitmap images. Operators are provided which make it easy to construct such drawings or
images. The communication with the user via modern terminals, which often have placement and
graphics capabilities occupies a major portion of present programming. Provision of language
constructs for this is intended to make the task less onerous, and the programs more portable. The
problem of how to achieve similar effects on different devices has to be solved only once by the
language implementor. We believe it is important to pursue further research into language constructs
for user communicatjon, s it is such & major part of programs and is poorly supported at present.

The introduction of functions as first class objects has a number of benefits{4]. The construction
of functions by other functions, which are then yielded as a result provides a simple mechanism to
hide information, restricting the operations on data and hence allowing the implementation of abstract
data types5]. Since we have arranged for long ferm persistent data, this means that hidden objects
may be required to persist between runs of programs. This is & very powerful and as yet little
explored feature of the language. It means for example that partial computations and the functions to
progress them may be passed to another program. Data held in the persistent store may be viewed,
protected and manipulated via functional abstractions. The storage of functions in the persistent store
provides the equivalent of program libraries and aliows for the separate compilation of program parts.
The inclusion of procedures in persistent store provides automatic incremental type checked program
linking.

The combination of persistence, graphics and first class functions in PS-algol result in a

programming language which supports a wide range of programming activities.

Graphics

The PS-algol graphics facilities provide an integrated method of manipulating line drawings and

images. Line drawings have the data type picture and bitmaps the type image. An image is a
rectangular grid of pixels of some ‘colour’. Images may be manipulated by the raster operations
provided by the language. These correspond to those generally available on systems with bitmap
displays.

The picture drawing facilities of PS-algol are a particular implementation of the Qutline
system[6] which in turn took many ideas from GPL/1[7L It allows the user to produce line drawings
in an infinite two dimensional real space. The relationships between different parts of a picture are
defined by mathematical transformations, therefore pictures are usually built up from a number of
sub pictures. Pictures may be mapped on to an image thus providing flexibility in the way that line
drawings may be manipulated.

Thus the system provides high level features for manipulating images in a finite two

dimensional integer space and line drawings in an infinite two dimensional real space.

Pixels

The pixel is a base data type in PS-algol and is used to construct images. Two pixel literals are
predefined in the language, these are on and off. These are said to have depth one, since they are only
one pixel plane deep. Thus

leta=on
creates a pixel a with a depth of 1. Pixels may be concatenated in order to create pixels with depth
greater than one, for example we may write,
let b = on & off & off & on
which creates a pixel b with a depth of 4. The expression on the right hand side of the above

declaration is called a pixel sequence or simply a pixel.

Images

We use pixels in order to construct images. Images are initialised with a pixel expression and

have the same depth as that expression. Images also have an X and Y dimension, for example,

let ¢ = image 5 by 10 of on
creates an image ¢ with 5 pixels in the X direction and 10 in the Y direction all initially on. The
origin of all images is in the lower left corner, which has address 0,0. In this case the depth is 1. Full
3 dimensional images may also be created , for example,
let d = image 64 by 32 of on & off & on & on
creates an image which has depth 4.

‘In order to introduce the concept of images and the operations on them we will restrict ourselves
for the present to images with a pixel depth of 1 which is the case on the PERQ. Everything that we
say will be true for images of greater depth.

Images are first class data objects and may be assigned, passed as parameters or returned as
results. e.g

letdbi=a
will assign the image a to the new one 4. In order to map the operations usual on bitmapped screens,
the assignment does not make & new copy of a but merely copies the pointer to it. Thus the image
acts like a vector or pointer on assignment.

PS-algol supports eight raster operations these are, ror, rand, xor, copy, nand, nor, not and
Xnor

xor b onto a
performs a raster operation of b onto a using xor. Notice that a is altered ‘in sitw’. Both images have
origin 0,0 and automatic clipping at the extremities of the destination image is performed.

It is often desirable to set up windows in images. The PS-algol limit operation allows this. For
example,

let ¢ = limit a to 1 by 5at 3,2
sets ¢ to be that part of @ which starts at 3,2 and has size 1 by 5. ¢ has an origin of 0,0 in itself and is
therefore a window on a. Rastering sections of images onto sections of other images can be performed
by expressions like,
xor limit a to 1 by 4 at 6,5 onto

limit a to 3 by 4 at 9,10

Automatic clipping on the edges of the limited region is performed. If the starting point of the
limited region is omitted 0,0 is used and if the size of the region omitted then it is taken as the
maximum possible. That is from the starting point to the edges of the host jmage. Limited regions of
limited regions may also be defined.

The standard identifier screen is bound to an image representing the output screen. Performing
a raster operation onto the image screen alters what may be seen by the user. eg.

xor a onto limit screen to 4 by 5 at 4,7
will raster a onto the defined section of the screen. This will be visible to the user.

The standard identifier cursor is bound to an image representing the cursor. This allows the
cursor to be manipulated in the same manner as any other image in the system.

In systems that support multiple planes the standard identifiers screen and cursor will have a
depth greater than 1. All the operations that we have already seen on images (raster, limit and
assignment) work more generally with depth. Thus the raster operations perform the raster function
plane by plane in one to one correspondence between source and destination. Automatic depth
clipping at the destination is performed and if the source is too small to fill all the destination’s planes
then these planes will remain unaltered. The limit and assignment operations also work with the
depth of the image.

A window may be set up in the z-axis of an image using the depth selection operation. For
example

letb=a(113)
yields & which is an alias for three contiguous planes of a starting at plane 1. b has the same X and Y
dimensions as a.
Pixels may also be indexed. Thus
let a = on & off
gives a(0) as on and a(1) as off. This expression is an r-value only and may not be used on the left
hand side of an assignment.
It should be noted that a(1) above is of type pixel which is not the same as

image 1 by 1 of off

which is of type image.

The standard function Pixel will yield a pizel from an image. For example, if a is defined as
fotllows

let a = image 9 by 9 of on & off & on

Then Pixel(a,1,1) yields on & off & on.

There is a standard function that allows the programmer to gather information about the status
of the mouse. The function is called locator and has form,

locator(— pnitr)
which returns a pointer to a structure of the foilowing type,
structure mouse(cint X.pos,Y.pos ; *bool thebuttons)
The vector of booleans, thebuttons, indicate which of the buttons on the mouse are depressed.

X.pos and Y.pos indicate the position of the mouse relative to the image screen.

Pixels

Many colour graphics systems allow the programmer to alter the colour map of the output
device. That is, it is possible to alter the colour observed when a particular pixel is displayed.
Usually this colour map is in the form of avlookup table maintained by the system. This table maps
pixels onto integer encodings of the bits sent to the guns of the display device. The PS-algol provides
two functions for manipulating the colour map of the device. The first is,

colour.map(pixel p;inti)
This functions sets the integer produced by the colour map when pizel p is displayed to be i. The
second function allows the user to interrogate the colour.map and is,
colour o f(pixel p — int)

This function returns the integer corresponding to the pixel p in the colour map.

Picture description in PS-algol

In PS-algol the picture descriptions are represented by the data type picture. The simplest

picture is a point. For example,

let point =[0.1,2.0]
represents the point with x—coordinate 0.1 and y-coordinate 2.0 in two-space. All the operations
provided on pictures return a picture as their result, so arbitrarily complex pictures may be described
and operated on.

Points in pictures are implicitly ordered. The binary operators on pictures operate between the
last point of the first picture and the first point of the second picture. In the resulting picture the first
point is the first point of the first picture and the last point is the last point of the second picture.

There are two binary operators on pictures, join "’ and combine ‘&’. The effect of the join
operator is to produce a picture that is made up of its two operands with a line from the last point of
the first operand to the first point of the second operand. Combine operates in a similar way without
adding the joining line.

In addition to the binary operators pictures may also be transformed by shifting, rotating and
scaling. For example:

shift p by x.shift,y.shift
will produce a new picture by adding x.shift to every x-coordinate and y.shift to every y-coordinate
in the picture p.

rotate p by noof.degrees
will produce a new picture by rotating the picture p noo f.degrees degrees clockwise about the origin.

scale p by x.scaling,yscaling

will produce a new picture by multiplying the x and y-coordinates of every point in the picture p by
x.scaling and y.scaling respectively.

Text can be included in pictures using the text statement. This takes a string of characters and
2 base line and constructs the picture of those characters along the base line.

let p = text "hello " from 1,1 to 2,1
The characters will always be drawn from the first to last point of the base line. As a consequence
text can be inverted by ending the base line on the left of its starting position.

Colour can also be specified in a picture but, unlike the other picture operations, the effect of this

will depend on the physical output device used.

Drawing a PS-algol picture

In order to view a picture it s necessary to map it onto an output device. The PS-algol standard
function draw is provided to map pictures onto images. For example,
draw(animage,a.pic,0,3,0,3)
will draw the section of the picture a.pic bounded by the box specified by the points (0.0,0.0) and (
3.0,3.0) on the image an.image.

Note that the image may be the screen in which case the picture will be visible to the user.

Implementation

Many host machines are unable to support the PS-algol picture and image operations
consequently system performance may be greatly impaired. For example, raster operations on most
mainframe computers are prohibitively expensive although alternative techniques have been found
[8,91 However graphics manipulation is not usually performed unless some suitable output device is
available. With this in mind the language implementor may choose to make the evaluation of the
grapllfcs operations lazy rather than strict. That is instead of performing an operation immediately a
data structure is built to represent the evaluation of the expression. When the objct is eventually
displayed the data structure may be evaluated in the context of the output device thereby ensuring
the maximum efficiency on the hardware available. Another advantage of this lazy evaluation is that
the data structure (unevaluated) may be used to represent the object in the persistent store.

The implementation of PS-algol on the ICL PERQ uses microcode assist for raster operations and
lazy evaluation for pictures. The data structure used for PS-algol pictures is a directed acyclic graph
(DAG). Itisa graph since there may be several paths to the same sub-structure, directed since the
ordering of the points uniquely defines a traversal and acyclic since recursive referencing is not
possible for pictures. A fuller description of how this may be done is given below. The

implementation issues for persistence are described elsewhere{10].

10

Implementation of the PS-algol pictures

The PS-algol picture facilities are purely applicative in nature. For this reason the
implementation technique chosen is also applicative. When a picture expression is parsed the PS-algol
compiler expands the picture expression to one that creates a set of predefined PS-algol structures.
Hence every PS-algol picture is represented by a tree of PS-algol structures. The structures and the
expanded expressions used to represent picture expressions are as follows:

a) structure pointnode(creal point.x,point.y)
[xy] compiles to pointnode(x,y)
b) structure operation.node(cpntr left.pic;right.pic ; cint operation)
pl & p2 compiles to operationnode(pl,p2,1)
pl” p2 compiles to operation.node(pl,p2,2)
¢) structure trans formnode(cint trans form ; cpntr trans form.pic ;

creal trans formx,trans form.y)

scale p by x,y compiles to trans formnode(1,p,x,y)
shift p by x,y compiles to trans formnode(2,p.x,y)
rotate p by degrees compiles to trans formnode(3,p,degrees,0)

d) structure text.node(cstring message ; creal xxl,yyl,xxr,yyr)
text astring from x1,y1 to x2,y2 compiles to text.node(astring,xl,yl,x2,y2)
e) structure colournode(cputr colour.pic ; cpixel shade)

colour p in a.pixel compiles to colour.node(p,a.pixel)

i1

letbox={011"[1,01" [-1,01"[0-1]1" [01]
let boxes = box ~ shift rotate box by 180 by 3,0
is represented by:

boxes‘ i I

‘operatinnvnodei l l 2 I

Itransform.nodel 2 ‘ f i 3.9 l O-QJ

box ljl:l ‘ transform.nodEl 3 | IIBGLG ! 9-9‘

Ivoperation.nodel 7 l [2 ‘
I

Ipoint.nodel @.Ol l.OI Igpgration,nodgl 3 I g l ZJ

2 1
[point.nodel 1-0i 9-9] loperation.nodel l l ZJ

! !
poin‘tanodeg—iuﬁl 0.0 loperation.nodel l p I ZJ
Ipoint.nodel @.@|~1.0| lpoint.node! G.Q‘Hr i.@i

draw(screenboxes,2-4,-2,2)

will produce:

Internal Outline representation
Figure 1.

12

Implementation of PS-algol picture drawing

To draw a PS-algol picture the tree representation must be traversed and the picture’s points
calculated A convenient way of programming this tree traversal is to use a recursive procedure. PS-
algol is a suitable tool for writing such recursive procedures. Hence it would be convenient to be able
to use it to write the draw standard function. However to allow this a mechanism must be
introduced to coerce the type of a picture expression from pic to pntr.

This is done using a special function called pic.pntr that takes a picture as a parameter and
returns a pointer to the picture’s description. All the PS-algol structures used to represent pictures
only contain constant fields. Therefore the type coercion does not allow a PS-algol program to modify
a picture’s description.

The draw standard function is composed of three sections. An initial transformation calculation,

a tree traversal procedure and a line drawing package.
The initial transformation calculation

The first step in drawing a picture is to calculate the transformation necessary to map the points
in the picture onto the output device. This calculation is done by mapping the picture window
supplied to draw onto the visible area of the output device. A recursive procedure can then be called

to apply this transformation to the picture description.
The tree traversal procedure

The purpose of the tree traversal procedure is to calculate the points and lines that compose the
picture. To do this it must be supplied with the transformation necessary to map the points it finds to
the output device. It must also know what colour the picture should be drawn in. Therefore the tree
traversal procedure is parameterised with a transformation, a colour value and a pointer to a picture
description. The initial call to the procedure is supplied with a default colour value.

The action taken for each possible type of node in a picture description will now be described.

There are 5 different types of node, a transformation node, an operation node, a colour node, a point

13

node and a text node.

a) A transformation node.

A transformation node in a picture description represents a sub picture and a
transformation that must be applied to every point in the sub picture, therefore when a
transformation node is encountered by the traversal procedure there will be two
transformations that must be applied to the node’s sub picture. The transformation
represented by the node and the transformation supplied to the traversal procedure.
However these two transformations occur after any found in the node’s sub picture. Also
the new transformation always occurs before the one passed as a parameter. Therefore
they can be composed to form a new transformation to be applied to the sub picture.

All transformations are represented by matrices [11] therefore the composition of
transformations can be performed using matrix multiplication. Once the composed
transformation matrix has been calculated it can be used as a parameter when the traversal

procedure is applied to the node’s sub picture.

"b) An operation node.

An operation npode represents two sub pictures together with an operator for
combining them. The two sub pictures are the left and right operands of a join or combine
operation. When an operation node is encountered the left sub picture is traversed. A
global flag is then set to indicate whether a join or combine operation is being performed.
Finally the right sub picture is traversed.

This order of traversal ensures that the first point traversed in a sub picture is the
first point of the sub picture. In the same way the last point traversed is the last point of
the sub picture. Also the global flag indicating the operation being performed will not be
reset until a point has been traversed. Therefore when a point node is found it can be
treated as the first point in a sub picture. Then if the operation being performed is a join, a

line can be drawn from it to the previous point to join their respective sub pictures.

¢) A colour node.

A colour node represents a request to draw all of a sub picture in a particular colour.

14

This request is enforced on all of the sub picture regardless of any colour nodes it may
contain. Therefore when a colour node is traversed a check is made on the colour
parameter. If it is not the default colour value then the colour node’s sub picture is
traversed using the colour parameter. However if the colour parameter is the default
colour, the colour node’s colour value will be used to traverse its sub picture.

d) A point node.

At the leaves of a picture description the tree traversal procedure always encounters
point nodes. When one is found the transformation parameter will be sufficient to map the
point onto the screen. In addition the colour of the point will also be known. A request
can then be made to draw the point in the appropriate colour. The global flag indicating
the type of combine operation being performed is then checked. If the operation is a join
operation then a line is drawn using the colour parameter from the point to the previous
point.

e) A text node.

A text node represents a piece of text and a line along which it should be drawn.
When a text node is found the tree traversal procedure constructs a picture description for
the characters making up the text. This new picture description is then traversed in place

of the text node.

The line drawing package

The draw standard function must be supplied with procedures to plot points and draw lines. It
is possible that some of the points and line segments to be drawn will not be visible on the output
device. ie. they were outside the original picture window and so were mapped to outside the visible
area of the output device. It is assumed that the drawing procedures will perform the necessary
clipping operations to remove these points and line segments.

The device dependent parts of the draw standard function are limited to the drawing procedures
and the assumed dimensions of the output device. Therefore any type of output device can be

supported simply by supplying draw with the appropriate drawing procedures and the dimensions of

15

the output device. The PS-algol line drawing graphics currently support PS-algol rasters, Tektronix

T4010 and T4107 terminals and PERQ/PNX windows{12].

Implementation of the PS-algol raster graphics

Pixels

Pixels are composed of a value on or off for each of the pixel’s planes. Pixels are implemented as
binary values encoded as bits in an integer. The least significant bit, represents plane 0, the next
represents plane 1 and so on. In order that the depth of a pixel may be found the most significant
byte of the integer is used to record the pixel's depth. The resulting format for a pixel is as follows,

note this diagram assumes an integer made up of 4, 8 bit bytes.

[depth | 1 bit per plane
byte 3 " bit 23 bit 0"

The format of a pixel.
Figure 2.

The abstract machine is augmented with two new instructions and one standard function to
manipulate pixels. The first of the instructions, subpixelop, takes an integer index and applies it to a
pixel to yield a new pixel. As part of this operation a check is made that the index is legal. The
second new instruction, formpixelop, takes a set of pixels and composes them to form a new pixel.
No special instruction was necessary for the literal pixel values on and off since the corresponding
integers could be constructed by the compiler. The standard function depth is provided to allow a

program to discover the depth of a pixel.

Images

The semantics of the data type image include the ability to alias sections of an image in one, two
or three dimensions. To support this an image object is made up of 3 separate sections. A set of two

dimensional bitmaps, a vector pointing to the bitmaps and an area descriptor.

[

16

Two dimensional bitmaps

Each plane of a PS-algol raster is represented by a PS-algol vector of integers. The vector
consists of the bitmap for the plane plus some house keeping information such as its size. The format

of one of these vectors is as follows:

X-dim | Y-dim | start | number of the bitmap with
offset | scan lines -~ space for an - =
on this page extra scan line

A two dimensional bitmap.
Figure 3.

On some computers the raster operations provided impose alignment constraints on bitmaps. This
in itself does not present a problem since space can always be allocated on the appropriate boundaries,
however the PS-algol system incorporates a compacting garbage collector based on an algorithm by
Lockwood Morris{13] Hence PS-algol bitmaps may require realignment after every garbage collection.
For this reason extra space in the heap object is allocated and the start of the bitmap within the object
recorded. A further constraint imposed by the raster operations on some computers is that they do not
operate over page boundaries. One way of overcoming this problem is to split the bitmap between
scan lines into two rectangular sections, one on either side of the page boundary. To allow for
realignment in this case the extra space needs to be a full scan lLine. In this way the bitmap can

always be moved so that no scan line ever crosses a page boundary.
A vector of bitmaps

Each of the bitmap vectors implements a single plane of a PS-algol raster. To represent the
ordering of planes in a raster, a PS-algol vector is used to point to each of the raster’s planes. The first

plane pointed to by the vector is plane 0, the second plape 1, and so on.

A two dimensional area description

The purpose of the final layer of a PS-algol raster is to specify the two dimensional area of
interest. This is done by recording the X and Y dimensions of the area together with the X and Y

offsets to the start of the area. The description of an area to which a raster applies is specified by a

'

17

pointer to a vector of bitmaps. However in some cases it may not be possible to represent a raster as a
vector of bitmaps. For example on a UNIX system the screen may be represented by a special file
type. To allow for this a file descriptor is held in addition to the vector of bitmaps. The format of an

area description is as follows:

PS-algol pointer to | PS-algol X offset | Y offset | X dimension
heap header | vector of | file descriptor
bitmaps

An area descriptor for a PS-algol raster.
Figure 4.

Raster operations.

The operations permitted on rasters can-be divided into three types, updates, area selections and
dimension inspection. Rasters may only be updated by the destructive combination of two rasters.
Such combinations overwrite a destination raster with the combination of a source raster and the
destination raster under a specified combination rule. The following combination rules are supported.
Each operation is described by the effect on two bits, D the destination and S the source. The bit
values representing on and off correspond to true and false respectively. The symbol < is the PS-
algol not operator.

a)copy -D =S

b)rand -D:=Sand D
coror-Di=SorD
d)xor-D:=(Sand "D)or(" Sand D)
ednot-D:="§

f)nand -D:="(Sand D)
gnor-D:="(SorD)

h) xnor -D:=(Sor "D)and ("SorD)

If the rasters have more than one plane the combination operation is repeated for each pair of
planes. ie. first between plane O of the source and plane O of the destination, then between plane 1 of

the source and plane 1 of the destination, and so on. If the number of planes in the source and

18

destination rasters are different the combination operation stops when all the planes in one of the
rasters have been used.

The selection operations are performed by copying the area descriptions and if necessary the
vector of bitmaps.

‘When a PS-algol raster has limit applied to it a copy is made of the area descriptor to hold the
new offset and dimension values. While the new values are being calculated a check is performed to
make sure they describe a two dimensional area within the raster. The pew area descriptor retains
the pointer to the vector of bitmaps and the file descriptor because it is defined over the same raster.

When plane selection is performed on a raster, a copy of the vector of bitmaps is made that only
contains entries for the selected planes. A copy of the area descriptor is then made to point to the
copied vector. An attempt to select all the planes of a raster is treated as a null operation because the
new vector of bitmaps and area descriptor would be identical to the originals.

The operations that inspect the dimensions of an image operate by indexing the objects that form

araster. They are all implemented via standard functions.

Implementation of the screen

The standard identifier sereen is implemented by creating a dummy raster object. On the ICL
PERQ this object is given a file descriptor for the special file representing the physical screen. The
vector of bitmaps consists of a one entry vector with a nuli pointer. Whenever a raster operation is
performed a check is made to see if the raster object contains a valid file descriptor. If it does the

raster operation is performed using the file descriptor in place of the vector of bitmaps.

Implementation of the cursor

The standard identifier cursor is also implemented by creating a dummy raster object. However
on the ICL PERQ the raster object has a valid vector of bitmaps but no file descriptor. The vector
consists of 1 entry to the single bitmap composing the cursor. This bitmap always holds a copy of the

cursor image displayed on the screen. By recording the pointer to this bitmap any updates to the

19

cursor image can be detected and propagated to the real cursor.

Implementation of the mouse

The locator standard function provides an interface to the mouse or tablet connected to a
workstation. On the ICL PERQ a tablet is provided with either a 3 or 4 button puck. To implement
this function a mouse structure is created on each call to locator. The cursor position is obtained from
the underlying operating system and entered into the structure. The number of buttons provided on
a puck or mouse can vary considerably. Therefore locator creates a vector of truth values with one
entry for each available button.

On most workstations it is possible to specify the mode in which the tablet or mouse operates.
For example on the ICL PERQ a read of the tablet can be delayed until some event occurs. Possible
events are time outs, button presses, puck movement and the presence of keyboard input. The mode
of operation selected for PS-algol was to delay the return of locator until the puck had moved at least
3 pixels or a button had been pressed or some keyboard input had become available. A more flexible

choice of mode is currently under investigation.

Conclusions

The 'PS—algol system provides a persistent store facility with a small number of powerful
graphics constructs. Thus the programmer is presented with an easily understood, high level interface
to the facilities provided by today’s workstations. With such facilities interactive applications are
easier to write and maintain thus providing lower life cycle costs throughout the lifetime of the
program.

The graphics constructs described in this paper are independent of the persistence concept and so
may be integrated with any high level language. We have described one implementation of these

facilities and proposed other methods that may be used to support them.

20

Acknowledgements

This work is supported by SERC grants GRC 15907,GRC 4326.6 and a grant from ICL. We
acknowledge the assistence of the other members of the PISA project at St Andrews University
especially Ron Morrison and Peter Bailey who made many helpful comments during the preparation
of this paper. We also acknowledge the close collaboration with Malcolm Atkinson’s group at Glasgow
University in this work and other aspects of language design. Since this paper was written PS-algol
has been implementated on the Whitechapel MG1 by John Livingstone. We would like to thank him

for his cooperation and helpful comments during this work.

References

1. PS-algol reference manual. Universities of Glasgow and St Andrews PPR-12 (1985).

2. Atkinson, M.P., Bailey, P.J,, Cockshott, W.P, Chisholm, K.J. & Morrison, R. An approach to
persistent programming. Computer Journal 26, 4 (1983), 360-365.

3. Strachey, C. Fundamental concepts in ;;rogramming languages. Oxford University press (1967).

4. Atkinson, M.P. & Morrison, R. First Class Functions are Enough. Proc. 4th International
Conference on Software Technology and Theoretical Computer Science. Bangalore, India(1984).
In Lecture Notes in Computer Science, 181 (1984), 223-240. Springer-Verlag.

5. Liskov, B. & Zilles, SN. Programming with abstract data types. ACM Sigplan Notices 9, 4
(1974), 50-59.

6. Morrison, R. Low cost computer graphics for micro computers. Software, Practice & Experience
12, 8 (1982), 767-776.

7. Smith, D.N. GPL/1 - a PL/1 extension for computer graphics. AFIPS (1971) 511-528.

8. Pike et al. Hardware/Software trade-offs for bitmap graphics on the Blit. Software, Practice &
Experience 15, 2 (1985), 131-151.

9. Cole, AJ. Compaction techniques for raster scan graphics using space filling curves. Computer
Journal (accepted for publication October 1985).

10. Cockshott, W.P., Atkinson, M.P,, Bailey, P.J., Chisholm, K.J. & Morrison, R. The persistent object

21

management system. Software, Practice & Experience 14 (1984).
11. Newman, W. & Sproull, R. Principles of Interactive computer graphics. McGraw Hill (1981)
12.1.C.L, Introduction to PERQ. International Computers Ltd. RP10103. (1983).
13. Lockwood Morris, F. A Time and Space Efficient Garbage Compaction Algorithm. CACM 21,8

(1978), 662-665.

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,

Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,

Glasgow G12 8QQ

Scotland.

Books

Davie, A.J.T. & Morrison, R.
"Recursive Descent Compiling", Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.)
"Databases”, Pergammon Infotech State of the Art Report, Series 9, No.8,
January 1982. (535 pages).

Cole, AJ. & Morrison, R.
"An introduction to programming with S-algol", Cambridge Universily Press,
Cambridge, England, 1982.

Stocker, P.M., Atkinson, M.P. & Grey, P.M.D. (eds.)
"Databases - Role and Structure”, Cambridge University Press, Cambridge,
Engiand, 1984.

Published Papers

Morrison, R.
“A method of implementing procedure entry and exit in block structured high level
languages". Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z. -
"The Gratffiti graphics system"”, Proc. of the DECUS conference, Bath (April 1978),
5-10.

Atkinson, M.P.
"A note on the application of differential files to computer aided design”, ACM
SIGDA newsletter Summer 1978,

Atkinson, M.P.
"Programming Languages and Databases”, Proceedings of the 4th International
Conference on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78,
408-419. (A revised version of this is available from the University of Edinburgh
Department of Computer Science (EUCS) as CSR-26-78).

Atkinson, M.P.
"Progress in documentation: Database management systems in library
automation and information retrieval”, Journal of Documentation Vol.35, No.1,
March 1979, 49-91. Available as EUCS departmental report CSR-43-79.

Gunn, H.LE. & Morrison, R.
"On the implementation of constants”, Information Processing Letters 9, 1 (July
1979), 1-4.

Atkinson, M.P.
"Data management for interactive graphics”, Proceedings of the Infotech State of
the Art Conference, October 1979. Available as EUCS departmental report
CSR-51-80.

Atkinson, M.P. (ed.)
"Data design", Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R. .
"Low cost computer graphics for micro computers”, Software Practice and
Experience, 12, 1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"PS-algol: An Algol with a Persistent Heap”, ACM SIGPLAN Notices Vol.17, No.
7, {July 1981) 24-31. Also as EUCS Departmental Report CSR-94-81,

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Nepal - the New Edinburgh Persistent Algorithmic Language”, in Database,
Pergammon Infotech State of the Art Report, Series 9, No.8, 299-318 (January
1982) - also as EUCS Departmental Report CSR-90-81.

Morrison, R.
"S-algol: a simple algol", Computer Bulletin 11/31 (March 1982).

Morrison, R. :
"The string as a simple data type", Sigplan Notices, Vol.17,3, 46-52, 1982.

Atkinson, M.P_, Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming”, presented at CREST course UEA,
September 1982, revised in "Databases - Role and Structure”, see PPRR-8-84.
Morrison, R.
"Towards simpler programming languages: S-algol", IUCC Bulletin 4, 3 (October
1982), 130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Problems with persistent programming languages”, presented at the Workshop
on programming languages and database systems, University of Pennsylvania.
October 1982. Circulated (revised) in the Workshop proceedings 1983, see
PPRR-2-83.

Atkinson, M.P.
"Data management", in Encyclopedia of Computer Science and Engineering 2nd
Edition, Ralston & Meek (editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Algorithms for a Persistent Heap”, Software Practice and Experience, Vo!.13,
No.3, 2569-272 (March 1983). Aiso as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"CMS - A chunk management system”, Software. Practice and Experience,
Vol.13, No.3 (March 1983), 273-285. Also as EUCS Departmental Report
CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chishoim, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming”, presented at the DEC workshop
on Programming Languages and Databases, Boston, April 1983.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"An approach to persistent programming", The Computer Journal, 1983, Vol.26,
No.4, 360-365 - see PPRR-2-83.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming”, 10th Australian Computer
Conference, Melbourne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.
"High level language support for 3-dimension graphics”, Eurographics
Conference Zagreb, North Holand, 7-17, Sept. 1983. (ed. P.J.W. ten Hagen).

Cockshott, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Morrison, R.
"POMS : a persistent object management system”, Software Practice and
Exerience, Vol.14, No.1, 49-71, January 1984.

Kulkarni, K.G. & Atkinson, M:P.
"Experimenting with the Functional Data Model", in Databases - Role and
St.ructure, Cambridge University Press, Cambridge, England, 1984.

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough”, Foundations of Software
Technology and Thearetical Computer Science (ed. M. Joseph & R.
Shyamasundar) Lecture Notes in Computer Science 181, Springer Verlag, Berlin
(1984).

Atkinson, M.P., Bocea, J.B., Elsey, T.J., Fiddian, N.J., Flower, M., Gray, P.M.D.
Gray, W.A., Hepp, P.E., Johnson, R.G., Milne, W., Norrie, M.C., Omololy,
A.O., Oxborrow, E.A_, Shave, M.J.R., Smith, A.M., Stocker, P.M. & Walker, J.
"The Proteus distributed database system”, proceedings of the third British
National Conference on Databases, (ed. J. Longstaff), BCS Workshop Series,
Cambridge University Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R.
"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985)
- see PPRR-9-84.

Morrison, R.,Bailey, P.J., Dearle, A., Brown, P. & Atkinson, M.P.
"The persistent store as an enabling technology for integrated support
environments”, 8th International Conference on Software Engineering, Imperial
College, London (August 1985), 166-172 - see PPRR-15-85.

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment", proceedings of
Data Types and Persistence Workshop, Appin, August 1985, 1-24 - see
PPRR-16-85.

Davie, A.J.T.
"Conditional declarations and pattern matching”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

Krablin, G.L.
"Building flexible multilevel transactions in a distributed persistent environment,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
86-117 - see PPRR-16-85.

Buneman, O.P.
"Data types for data base programming®, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

. Cockshott, W.P.

"Addressing mechanisms and persistent programming", proceedings of Data
Types and Persistence Workshop, Appin, August 1985, 363-383 - see
PPRR-16-85.

Norrie, M.C. :
"PS-algol: A user perspective”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.
"On the need for a Flexible Type System in Persistent Programming Languages”,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
423-438 - see PPRR-16-85.

Morrison, R., Brown, A.L., Bailey, P.J_, Davie, A.J.T. & Dearle, A.
"A persistent graphics facility for the ICL PERQ", Software Practice and
Experience, Vol.14, No.3, (1986) - see PPRR-10-84.

Atkinson, M.P. and Morrison R.
“Integrated Persistent Programming Systems", proceedings of the 19th Annual
Hawaii International Conference on System Sciences, January 7-10, 1986 (ed.
B. D. Shriver), vol lIA, Software, 842-854, Western Periodicals Co., 1300 Rayman
St., North Hollywood, Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.
"A Persistent Information Space Architecture”, proceedings of the 9th Australian
Computing Science Conference, January, 1986 - see PPRR-21-85.

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.1,
(1986) 38-45.

Internal Reports

Morrison, R.
"S-Algol language reference manual”, University of St Andrews CS-79-1, 1979,

Bailey, P.J., Maritz, P. & Morrison, R.
"The S-algol abstract machine", University of St Andrews CS-80-2, 1980.

Atkinson, M.P., Hepp, P.E., lvanov, H., McDuff, A_, Proctor, R. & Wilson, A.G.
"EDQUSE reference manual", Depariment of Computer Science, University of
Edinburgh, September 1981.

Hepp, P.E. and Norrie, M.C.
"RAQUEL: User Manual", Department of Computer Science Report CSR-188-85,

University of Edinburgh.

Norrie, M.C.
"The Edinburgh Node of the Proteus Distributed Database System”, Department
of Computer Science Report CSR-191-85, University of Edinburgh.

In Preparation

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : A DBMS based on the functional data model", to be submitted.

Atkinson, M.P. & Buneman, O.P.
"Database programming languages design”, submitted to ACM Computing
Surveys - see PPRR-17-85.

Morrison, R., Dearle, A., Bailey, P., Brown, A. & Atkinson, M.P.
"An integrated graphics programming system”, presented at EUROGRAPHICS
UK, Glasgow University, March 1986, to be published in Computer Graphics
Forum - see PPRR-14-86.

Buneman, O.P. & Atkinson, M.P.
"Inheritance and Persistence in Database Programming Languages" - to be
presented at ACM SIGMOD Conference 1986, Washington, USA, May 1986 -
see PPRR-22-86.

Brown, A.L. and Dearle, A.
"Implementation Issues in Persistent Graphics” - to be published in University
Computing, Autumn 1986 - see PPRR-23-86.

Theses

The following Ph.D. theses have been produced by member of the group
and are available from
The Secretary,
Persistent Programming Group,
University of Glasgow,
Department of Computing Science,
Glasgow G12 8QQ,
Scotland.

W.P. Cockshott
Orthogonal Persistent, University of Edinburgh, February 1983.

K.G. Kulkarni
Evaluation of Functiona! Data Models for Database Design and Use, University of
Edinburgh, 1983.

P.E. Hepp
A DBS Architecture Supporting Coexisting Query Languages and Data Models,
University of Edinburgh, 1983.

G.D.M. Ross
Virtual Files: A Framework for Experimental Design, University of Edinburgh,
1983.

G.0O. Owoso
Data Description and Manipulation in Persistent Programming Languages,
University of Edinburgh, 1984.

Persistent Programming Research Reports

This series was started in May 1983. The following list gives those produced and
those planned plus their status at 1st June 1986.

Copies of documents in this fist may be obtained by writing to:

The Secretary,

The Persistent Programming Research Group,
Department of Computing Science,

University of Glasgow,

Glasgow G12 8QqQ.

PPRR-1-83 The Persistent Object Management System -
Atkinson,M.P., Chishoim, K.J. and Cockshott, W.P. £1.00

PPRR-2-83 PS-algol Papers: a collection of related papers on PS-algol -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

PPRR-4-83 The PS-algol reference manual -
Atkinson, M.P., Bailey, P., Cockshott, W.P. Ch;sholm
K.J. and Mornson R. £2.00

PPRR-5-83 Experimenting with the Functional Data Model -
Atkinson, M.P. and Kulkarni, K.G. £1.00

PPRR-6-83 A DBS Architecture supporting coexisting user interfaces:
Description and Examples -
Hepp, P.E. £1.00

PPRR-7-83 EFDM - User Manual -
K.G.Kulkarni £1.00

PPRR-8-84 Progress with Persistent Programming -
Atkinson,M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

PPRR-9-84 Procedures as Persistent Data Objects -
Atkinson, M.P.,Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £1.00

PPRR-10-84 A Persistent Graphics Facility for the ICL PERQ -
Morrison, R., Brown, A.L., Bailey, P.J., Davie, A.J.T.
and Dearle, A. £1.00

PPRR-11-85
PPRR-12-85

PPRR-13-85

PPRR-14-86

PPRR-15-85

PPRR-16-85

PPRR-17-85
PPRR-18-85
PPRR-19-85
PPRR-20-85
PPRR-21-85

PPRR-22-86

PPRR-23-86
PPRR-28-86

PPRR-30-86

PS-algol Abstract Machine Manual
PS-algol Reference Manual - second edition

CPOMS - A Revised Version of The Persistent Object
Management Systemin C -
Brown, A.L. and Cockshott, W.P.

An Integrated Graphics Programming Environment - second
edition -
Morrison, R., Brown, A.L,, Dearle, A. and Atkinson, M.P,

The Persistent Store as an Enabling Technology for
Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, A.L. and
Atkinson, M.P.

Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R.

Database Programming Language Design -
Atkinson, M.P. and Buneman, Q.P.

The Persistent Store Machine -
Cockshott, W.P.

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R.

Building a Microcomputer with Associative Virtual Memory -
Cockshott, W.P.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D.

Inheritance and Persistence in Database Programming
Languages -
Buneman, O.P. and Atkinson, M.P.

Implementation Issues in Persistent Graphics -
Brown, A.L. and Dearle, A.

A Domain Theoretic Approach to Higher-Order Relations -
Buneman, O.P.

Data Types for Data Base Programming -
Buneman, O.P.

£1.00

£2.00

£2.00

£1.00

£1.00

£15.00
£3.00
£2.00
£1.00
£1.00

£1.00

£1.00
£1.00
£1.00

£1.00

Persistent Programming Research Reports
In Preparation

Some Applications Programmed in a Persistent Language -
Cooper, R.L. (ed).

PS-algol Applications Programming -
Cooper, R.L., Dearle, A., MacFarlane, D.K. and Philbrow, P.

A Compilation Technique for a Block Retention Language -
Cockshott, W.P. and Davie, A.J.T.

Thoughts on Concurrency -
Wai, F.

An Exception Handling Model in a Persistent Programming Language -
Philbrow, P.

Concurrency in Persistent Programming Languages -
Krablin, G.K.

Extracting Garbage and Statistics from a Persistent Store -
Campin, J.

