University of Glasgow
Department of Computing Science

~llybank Gardens
Glasgow G12 8QQ

University of St Andrews
Department of Compuiational Science

North Haugh
St. Andrews KY16 8SX

Inheritance and Persistence
in Database Programming

Languages

Persistent Programming
Research Report 22

Preface

This paper was prepared as an invited paper for the
ACM SIGMOD Conference 1986 to be held in Washington,
USA, May 1986 and references should cite the

proceedings of that conference.

Inheritance and Persistence in Database Programming Languages

Peter Buneman
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA

Malcolm Atkinson
Department of Computing Science
University of Glasgow
Glasgow G12 8QQ, Scotland

Abstract

In order to represent inheritance, several recent designs for database programming lan-

guages have made use of class construct, which can be thought of as a restricted data type
with an associated set of instances. Moreover, these classes are persistent: they survive
from one program invocation to another. This paper examines whether it is necessary
to tie together type, extent and persistence in order to model inheritance and suggests
that they may be separated to provide more general database programming languages. In
particular we shall see that it is possible to assign a generic data type to a function that
extracts all the objects of a given type in the database so that the class hierarchy can
be derived from the type hierarchy. We shall also examine object-level inheritance and
its relationship to data types for relational databases. A final section examines how the
various forms of persistence interact with inheritance at both object and type level.

Introduction

The concept of inheritance is now well established in databases [Smit77, Hamm81, Ship81],
artificial intelligence [Brac79] and programming languages [Gold80), and it is therefore not
surprising that several recent designs for database programming languages have incorpo-
rated some form of inheritance into their type system. At the same time, several “knowl-
edge base” extensions to existing languages have been developed to deal with inheritance,
though usually in a way that is less directly integrated with the data types of the lan-
guage. In a recent survey of database programming languages [Atki85a], the authors - as
a result of their own desire to construct a database programming language - attempted to
survey past and current implementations and designs in order to understand what open
problems remain. One of the most interesting aspects of recent designs is how the various

This work was partly supported by grants from the National Science Foundation (CER
MCS82-19196) and the British Science and Engineering Research Council (GRC 86280,
GRA 86541)

languages represent inheritance and how inheritance interacts with other components of
the language. The aim of this paper is to summarize some of the research problems in
this area and to indicate that it may be possible to combine relational and object-oriented
database programming within a uniform type system.

From the outset, even the terminology of inheritance is confusing. When we try
to relate concepts such as Person and Employee, we may use terms such as “subtype”,
“subclass”, “specialization”, “is-a” to imply that there is some ordering on these concepts.
However, there are at least three things that we may mean by this ordering:

a) that any operation we can perform on a value of type Person can also be performed
on a value of type Employee;

b) that the set of all Employee values in the database is constrained to be a subset of the
set of all Person values in the database; or

¢) that any Employee value can be created by adding information to some Person value.

Whether or not these definitions are all really distinct depends, of course, on a precise
definition of the terms “value”, “type”, “information” etc. However, we shall see that
various languages do distinguish between these notions; moreover, it is an interesting and
open question as to whether a programming language should attempt to tie them together.

Another notion that is going to figure in this discussion is persistence. Data base
programming - and presumably knowledge base programming, if there is a difference -
is distinguished by the requirement that data persist beyond the duration of a program.
In traditional programming languages, the only persistent structures are files, and the
management of these structures is left largely to the operating system. Some interactive
programming languages have a form of all-or-nothing persistence by which an interactive
session may be halted and resumed later, but between files and all-or-nothing persistence
only a rather small number of languages have attempted implement persistence for more
complex data structures. In fact, one way of distinguishing database programming lan-
guages from other languages is by the mechanisms that they use to support persistence.

In creating, say, an employee database in Pascal, our first step would surely be to
create an Employee data type. This alone will not suffice because Pascal has no direct
means of keeping track of the Employee records we have created during the execution
of a program. We therefore create some further data structure, perhaps a linked list to
maintain an extent for the type Employee which describes the set of all Employee records
that are currently in the database. Finally, we will want to ensure the persistence of the
database by mapping it to a suitably persistent data type, such as a file. Although the last
iwo steps may often be combined simply by using files directly, this is not always the case
and we should distinguish between a type, its extent, and its persistence. Now in [Atki85a]
the authors have argued that an ideal language would separate these three. In fact they
have claimed that persistence should be more properly associated with values rather than
types - something that we shall review in the last section.

To justify the claim that extent should be divorced from type, it is first of all obvious
that there are many types, such as Integer for which a unique extent is almost useless. We
might well want to create a set of integers, but this set would certainly not contain all the

2

integers that were created during execution of the program; moreover, we would very likely
want to have several such sets. Even when we deal with types such as Employee, there are
often cases for having multiple extents. One may want to experiment with hypothetical
states of the database, or, as a more practical example that we shall discuss later, one may
want to create a new, temporary extent in order to improve the efficiency of a program by
memoizing - storing intermediate results to avoid repeated computation.

The last example is also an example of an extent which is not required to persist,
and there are many more such examples especially in relational database programming,
where one creates an intermediate, transient relation in order to simplify or optimize some
larger computation. Other examples of the use of non-persistent extents arise from using
database-like data structures to do non database-like computations. Merrett [Merr84] gives
several examples of the use of relational algebra to solve a variety of problems drawn from
areas as diverse as computational geometry and text processing.

The first database programming languages made a clear separation between type,
extent, and persistence. In Pascal/R [Schmi77] one would construct an employee database
by first declaring an Employee record type. A declaration of the form

type EmpRel = relation ... of Employee;

then defines a relation type whose values provide extents. The persistence of a relation
is obtained by placing it in a database: |
var Emp_DB = database
Employees : EmpRel

end;

where the type database behaves like a record type, but has persistence controlled in the
same way that it is for files. In Pascal/R there is a restriction that only relation data types
can be placed in a database. PS-algol [Atki83] takes a more general approach to persistence
and allows arbitrary values to be placed in a database; it is also a straightforward matter
to construct a generic set type in PS-algol to define extents.

More recent database programming languages have not always maintained a clear
separation of type, extent, and persistence, and the reason is certainly that this is more
difficult to organize in the presence of inheritance. Turning back to our possible characteri-
zations of inheritance, in a normal database programming environment we would normally
want the hierarchy on types to define the inclusion hierarchy on extents. But if we do
this, we are implicitly assuming that each type has a unique associated extent. Does this
mean that we have to forgo our desire to separate type from extent, or can we find a more
general framework that allows us the best of both worlds? The answer to this, which is
not completely resolved, is discussed in the next section.

Inheritance, Data Types and Extents

A number of attempts have been made to design database programming languages that

3

exploit some form of inheritance; in particular there are object-oriented languages [Cope84]
that implement persistent objects. In the belief that, for databases, type-checking is one
of the best techniques for ensuring program correctness, our main concern will be with
languages whose type system is designed for predominantly static type-checking in the
tradition of Pascal [Wirt81]. However, in this context the types of Pascal are inadequate
not only because they do not represent inheritance, but also because of the more general
criticisin that they cannot represent generic code, code that can be applied to values of
more than one type. The second limitation has been taken care of in languages such as
Ada [Ichb79} and ML [Gord79] which form the basis for several of the languages we shall
discuss.

The languages of interest to us also represent inheritance in some way. In Taxis
[Mylo80] for example, inheritance is fundamental, and programming constructs such as
type, transaction, procedure, exception, set and record all have analogs in Taxis as classes,
which are derived through some form of inheritance from a universal class. Taxis, in fact,
supports two forms of relationship among classes: instance and subclass. For example the
declaration

VARIABLE_CLASS EMPLOYEE isa PERSON with

characteristics
Emp_no: integer;

attribute_properties
Department: char.8;

end;

makes EMPLOYEE an instance of the meta-class VARIABLE.CLASS, whose instances
have the property that they have an associated extent defined by explicit insertion and
deletion. It also makes EMPLOYEE a subclass of PERSON thereby ensuring that every
instance of EMPLOYEE also has the attributes of an instance of PERSON. If PERSON
had also been defined as an instance of VARIABLE_CLASS, the declaration above would
ensure that every instance of EMPLOYEE will be in the extent of PERSON.

In the other database programming languages, only the subclass (or subtype) hierar-
chical relationship was supported with any generality. The distinction between the two
hierarchies is nevertheless important. Some of the semantic network models used in Ar-
tifical Intelligence, e.g. KL-One |Brac85], distinguish between “is-a” and “is-a-kind-of”
relationships, and in others they are confused. For much of this paper we shall think of
the instance (is-a-kind-of} hierarchy as having just two levels: type and value, or object
and class. However it is worth a brief digression to note that in database design we can
move up and down the instance hierarchy quite easily. This is illustrated by the following
two scenarios, which are both based upon actual design problems.

The only information maintained on cars in the University parking lot is the regis-
tration number (tag), and make-and-model. Information such as the length, which
is used to derive charges and the availability of space, is derived from the make-

and-model.

Depending on the database management system which was to be used, one would
probably employ a separate relation to hold information associated with make-and-model,
or one would make make-and-model a compound attribute of car; but both of these so-
lutions obscure the fact that a given car is an instance of a make-and-model type, and
fail to represent properly the instance hiererchy. In the second, and more mind-boggling
scenario, the level in the instance hierarchy depends upon an attribute:

Products in a certain manufacturing plant that are above a certain price are treated
as individuals and have attributes such as weight and completion date of construc-
tion. Below that price they are treated as classes and have weight and number in
stock as properties of the class.

Some formal work [Hull83] has suggested how these two hierarchies might be manipu-
lated, but in database programming languages only Taxis appears to deal with the instance
hierarchy and then only in a limited three-level framework. In general, if we are to think
of the value-type relationship in programming languages as an example of the instance
hierarchy, and if we want to treat this as more than a two-level hierarchy, we will have to
introduce the notion of meta-types, meta-meta-types, ..., something that is well beyond
our practical understanding of types. Let us therefore turn to the subtype or subclass
hierarchy and use the convention that by class we mean a type with an associated extent,
noting that this is not what is meant by a CLASS in Taxis.

There are several other (statically) typed database programming languages that sup-
port classes. In Taxis, as we have seen, a VARIABLE.CLASS defines both a type and
an extent. There is also an AGGREGATE.CLASS that is similar to VARIABLE_CLASS,
but does not have an associated extent. One can think of AGGREGA TE_CLASS as being
similar to a record type in other programming languages. Adaplex [Smit81] ties the notions
of type and class together in a single entity type. In Galileo |A1ba85], one defines first a
type and then uses the type to construct a class. This is less restrictive, but it does not
appear to be possible to construct two extents on the same type. What is most interesting
about Galileo is that the type upon which a class is based is not restricted; one may, for
example, construct a class of integers. In Adaplex and Taxis, the types associated with a
class are restricted to being something like record types (although they are limited in the
types that can be assigned to their components.)

Designers of programming languages tend to be parsimonious in the number of con-
structs they introduce. Among other things, a programming language with few constructs
is probably simpler to implement and programs in that language are probably easier to
reason about. We therefore ask whether the notion of class is fundamental or whether
it can be derived from more primitive constructs. In particular we want to ask whether
class is just a parameterized data type like array in Pascal. That is, should we be able
to write class of o in the same way that we can write array of « for any type a? To do
this we shall contrast the three languages we have just mentioned with the programming
language Amber [Card84] which supports inheritance on types and a very general form of
persistence but which has no built-in class construct. Amber is in fact partly based on
Galileo which in turn was derived partly from ML [Gord79].

5

To illustrate the distinction between Amber and the other languages, compare the
Adaplex declaration for a person-employee database,
type Person is entity
Name: String(1..32);
Address: ...

end entity;

type Employee is entity
Emp_no: Integer;
Department: String(1..8)

end entity
include Employee in Person

with the corresponding declaration in Amber,
type Person is
< Name: String, Address: ..., ...>
type Employee is Person with
< Emp_no: Int, Dept: String,...>

Although syntactically similar, these declarations perform very different functions. In
the first place, type declarations in Amber such as those for Person and Employee serve only
to create names for types. Thus the Amber declaration for Employee above is equivalent
to the declaration

type Employee is

< Name: String, Address: ..., ...,
Emp_no: Int, Dept: String,...>

and it would still be inferred, from the structure of the definition, that Employee is a
subtype of Person. In Adaplex, types with the same structure are not necessarily identical,
and the subtype hierarchy has to be explicitly defined by means of include directives.

In Adaplex, the inclusion relationships among the extents associated with entity types
follow directly from the explicit hierarchy of entity types. Thus creating an instance of
Employee will also create a new instance of Person. In contrast, Amber, has no associated
extents and it is not immediately obvious how to create a data structure that will provide
the desired extents. One way would be to represent the database as a list of values and
then write functions that would extract the values of a given type. This requires us to
maintain a list of heterogeneously typed values (the database) and to interrogate their types
in order, say, to extract all the values of type Employee. Although Amber is a strongly
typed language, the type-checking mechanism is not entirely static; there is a special type
Dynamic whose values carry around both a value and a type. Ordinary values, such as
integers can be made dynamic by a dynamic operator, and coerced back to ordinary
values with coerce. Thus in

let d = dynamic 3;

let i = coerce d to Int;
let 5 = coerce d to String;

d is made a dynamic type. dis not an integer, and any attempt to use an integer operation
such as addition on d is a (static) type error. The value in d can be “revealed” by using
coerce so that i, which is statically determined to be an integer, is bound to the value 3,
but the subsequent line will raise a run-time exception because the type associated with d
is not string. Dynamic types, as we shall see, give us one method of treating persistence
uniformly.

We can therefore construct a database by creating a list of dynamic values, but we
still need to be able to enquire about the types of these dynamic values in order, say, to
extract all the Employee values in the database. To do this, Amber provides a special type
Type whose values describe types, and a special function typeOf that takes any dynamic
value and returns a description (another value) of its type.

Using these, it is possible to write functions of the form (this is not Amber syntax)

function getPersons(d: Database): PersonlList,
function getEmployees(d: Database):
EmployeeList;

where PersonList, EmployeeList and Database have been previously defined as lists contain-
ing values of respective type Person, Employee and Dynamic. These functions therefore
provide us with extents in the sense that getPersons will always return a larger list than
getEmployees, and those records obtained by “projecting” the Employee records returned
by getEmployees will always appear in the result of getEmployees

There are some drawbacks to this solution. In the first place, this “database” is
completely unconstrained: we can put any dynamic value in it. Secondly, this is not a
very efficient solution since we have to traverse the whole database in order to obtain a
small subset; we also have the overhead of having to check the structure of each value
we encounter. Another possibilility would be to keep a set of (statically) typed lists with
appropriate structure sharing, and further possibilities are discussed in [Chan82]. This
may solve some of the problems of efficiency, but it requires more elaborate functions and
control mechanisms for creating new values and inserting them in the database. But the
main difficulty with either of these methods is that we have to write both the code for
each get... function and declare the type of each result list for all types in the database.
Moreover the code to decompose the type of a dynamic value can be lengthy. Thus without
the ability to write generic code, this approach cannot be considered practicable.

What is required is a single generic Get function that would work for any type:
function Get[t)(d: Database): List[t |;

in which t is a type parameter that should be supplied in addition to the database param-
eter. Thus we would write Get{ Employee] to get a list of employees in the database of type
List| Employee]. Is there a type system powerful enough to allow us to write such generic
code? In a recent paper, Cardelli and Wegner [Card85a)] investigate the consequences of

7

combining inheritance with various forms of type parameterization. Although they do not
deal directly with the problems of persistence or dynamic types, their type system does
allow us to express the type of generic functions such as Get.

Consider an object-oriented language in which the result of Get[Employee](d) is a list
of objects in the database. Each object in this list necessarily has type Employee; but it
may also have a type that is a subtype of Employee, e.g. the object may also be of type
Student. How do we express the type of this object when we do not know exactly what it
is? In the Cardelli-Wegner system we say that such an object o has type Jt.t < Employee.
This reads “there exists a subtype ¢ of employee such that o has type t”. Note that what
we are doing is specifying an abstract type: we don’t know what the type or representation
of o is; all we know is that we can perform on o any operation associated with the type
Employee.

Just as we can use the metaphor of existential quantification to describe abstract
data types, we can also use universal quantification to describe polymorphism. Many
languages, Pascal for example, have built-in polymorphic types such as arrays. This means
that for any type a the type array...of o is a valid type, and operations of access and
update are defined for each type a. Only recently have languages that allow user-defined
polymorphic types been implemented. These include ML, Poly [Matt85], Argus [Lisk83]
and Ada {Ichb79] although in Ada one obtains the effect of a polymorphic type by use
of a (generic) package. In the Cardelli-Wegner system, the function Cons, which puts an
element on the front of a list is of type Vo.(o X List|a]) — Listje], which reads “Cons is
a fanction that, for any type a, takes a value of type « and a value of type List[a], and
returns a List[a]”. Note that our function Get is similarly polymorphic. It is defined for
any type ¢. In fact, using both universal and existential quantification, we can write down
the iype of Get as

Vt.Database — List[3t'.t' < t].

What we have done is to show that with a sufficiently powerful type system, it is
possible to write down the type of a function that extracts the objects of a given type
from the database. Moreover the use of this function can be type-checked statically, even
though a certain amount of dynamic type-checking may be needed in the implementation.
Thus there is no need for a distinguished family of types for which inheritance is defined,
nor is it necessary to have unique extents associated with these types.

In order to provide a type system powerful enough to assign a type to functions like
Get, a certain amount of computation has to take place at the level of types. The compiler
must be able to manipulate type expressions and decide if they are equivalent. Now the
Cardelli-Wegner type system, while providing this power has the property that equality
of type expressions is decideable, and there are no non-terminating computations at the
level of types. This is an obviously desirable property of type systems, but whether we
can maintain this position for database programming languages is an open question.

The problem arises with respect to data models. Our traditional approach to database
programming has been to combine an existing programming language with an existing data
model. Since the types of the language never match precisely the forms of data abstraction
assumed in the data model, special-purpose modifications need to be made to the types of

8

the language. Now we might ask if there is a sufficiently general notion of “type” in which
we could directly express an arbitrary data model. For example, we might ask for a type
system in which we could write down the Entity-Relationship model [Chen76] or even a
(simplified) Network data model as generic types. Database schemata described by these
models are represented as some form of labelled graph. If we are to represent these as
types, we require a type system that is powerful enough both to allow the representation
of labelled graphs (as types, not values) and to allow the checking of integrity constraints
such as acyclic conditions. Such type systems have not yet been properly developed, and
it is an open question whether they will be. One solution is to treat types as values; this
does not mean that one has to abandon type-checking, but does allow the possibility of
non-terminating computations on types. The question of whether types should be treated
as values, thereby sacrificing some of the theoretical properties of decideable type systems
is the subject of some recent debate [Burs84, Meye86] in programming language research.

Inheritance on Values

Suppose we create an object o of type Person in the database and at some later time
wish to extend this object so that it becomes an Employee object, o'. There is a sense
in which we have added information to o to create a more informative object o, and we
can write o . o’ to express the fact that o’ contains more information than o. Note that
we have chosen an ordering on objects (L2) that is the reverse of the ordering (<) that
we expect on their types: a more informative object appears to have a type that is lower
in the type hierarchy. The database programming languages Adaplex, Galileo, Taxis that
have built-in definitions of classes all have some method of extending an object so that
it belongs to a new sub-class. On the other hand in Amber two record values are never
comparable, and there is no method of extending a record to become a more informative
record. The only way to transform a Person record into an Employee record would be to
delete the less informative record and add a new one, and this may not be an equivalent
operation when there are references to or from that record. Again, special-purpose code
would be required for each such transformation.

Given two objects 0 and o' with o [o', there is an interesting question as to whether
both o and o’ should be allowed to exist simultaneously in the database. According to
the tenets of object-oriented programming [Cope84, Borg85], objects are not identified by
intrinsic properties, so there is no reason why we should not allow two comparable objects
to co-exist. For example, suppose that, in the University parking lot example cited in the
previous section, one did not keep registration (tag) information on cars. One could then
have two identical cars in the database, and to prevent the lot overfilling, one would want
to maintain separate records for each car. The problem of object identity is well-known
in philosophy and is related to the distinction between types, or classes, and values that
we have been discussing throughout this paper. In ordinary discourse we can very easily
switch levels in the instance hierarchy, e.g. “My car is a Chevvy Nova. The Chevvy
Nova weighs 3,000 pounds.”so presumably we should be able to switch with same ease in
databases. If the type/value relationship is part of the instance hierarchy, we do not yet
have the same flexibility of changing levels in programming languages.

9

In database programming languages that are based on the relational model, collections
of objects are sets and it is therefore assumed that two objects (tuples) in a relation can
only be distinguished by some intrinsic property. If we want to maintain the natural
identity of tuples we usually impose natural or artificial key attributes on suitably chosen
classes. Moreover the imposition of keys will also prevent comparable values (under C)
from coexisting in the same set. If, for example, we insist that Name is a key for Person,
we cannot now place two comparable objects whose type is a subtype of Person in the
database; for if they were comparable, they would necessarily have the same key.

The problem of object identity is one of the serious incompatibilities between object-
oriented database programming and relational database programming. There are at least
three important differences:

a) As we have seen, a relation is a set of tuples that are identified by intrinsic properties.
One cannot give a tuple in a relation an independent identity.

b) There is no representation of inheritance in the relational data model.

¢) Relations are flat. We cannot store complex structures such as arrays or other relations
as values a relation. This is the well-known first-normal-form condition on relational
" databases.

In fact these differences had appeared irreconcilable. The first suggestion that it was
appropriate to consider hierarchies in a relational setting was made by Zaniolo |Zani84a]
in a treatment of null values in a relation. More recently Ait-Kaci, gave a precise charac-
terization of inheritance and showed [ATtK84] how one could actually use inheritance to
provide a model of computation. {Although Ait-Kaci refers to this as type subsumption,
there is in his formalism no distinction between objects and types, and the operations on
types are equally applicable to values.) Zaniolo [Zani84b] has also suggested that “non-
flat” data models may be more appropriate to express the relationship between databases
and logic programming; and Bangilhon [Bang86] has shown how some of the relational
database concepts can be used in connection with “non flat” data models.

Whether it is possible effectively to combine object-oriented with relational database
programming is is not yet clear, but if we violate the flatness constraint of relational
databases (c above) and violate the principles of object-oriented programming by not
allowing comparable objects o and o' to exist simultaneously in a set {a above), we can
make some headway. Here is a brief informal sketch of how this may be done. We can
think of our objects as records such as

o1 = {Name = J.Doe;

Address = {City = 'Austin’}}

in which the components may themselves be records. We may create a better defined
record either by adding new fields or by better defining one of the existing fields, thus
oz = {Name ="J. Doe’;
Address = {City = 'Austin’};
Emp_no = 1234}
and
o3 = {Name = 'J. Doe';

10

Address = {City = 'Austin’; Zip = 78759}}

are both better defined than o;. This is what we mean by “adding information”, i.e.
01 C oy and oy C o3.

We mentioned above that one often wanted to add information to a record, e.g. one
might want to turn a Person into an Employee. To do this, there must be a join operator
U that effectively merges the information in two records, thus

{Name ='J. Doe'} i {Emp_no = 1234} =

{Name ="J. Doe'; Emp_no = 1234}.

As a more complicated example, the join of oz and o3, 0y U 03, above is
{Name ="J. Doe';

Address = { City = 'Austin’; Zip = T8759};

Emp_no = 1234}

however, we cannot always join two records together since they may disagree on a common
field. For example, we cannot join 0, with {Name = 'K. Smith'}, since there is no value
we can put in the Name field that is “better than” both 'J. Doe’ and ‘K. Smith'.

From the foregoing we have seen informally that objects form a partial order under
and that there is a join operation Li. More generally, it can be shown that this ordering
is a complete partial order. In fact, this class can be extended to contain more general
structures than records. For precise definitions of this ordering and further examples, see
[AitK84] or [Bang86], but the reader is warned that these authors use lattices rather than
complete partial orders.

The next step we take is to consider sets of such objects, and in keeping with our
earlier discussion, consider only sets of mutually incomparable objects. We shall call a
set of objects R a (generalized) relation if whenever 04,02 € R then neither o; T o, nor
02 C oy hold (sets with this property are called cochains in the jargon of lattice theory.)
What this means informally is that we will not admit an object o into a relation R if
there is already an object in R which contains as much information as o, and if it is more
informative than objects already in R, we will subsume those objects in R. We may now
ask how relations themselves may ordered. One way of defining an ordering on relations
is to say that

R T R'iff for every object o' in R’ there is an object 0 in R such that o C o'.

In other words, R = R’ if every object in R’ is more informative than some object in R.
Again, T is a partial order on relations and we may ask if there is a corresponding join
operation. There is, and it is a generalization of the “natural join” for INF relations.
Figure 1 shows an example of such a join.

In this figure the same notation {...} has been used for both sets and records. This is
because both structures can be derived from a more general structure, a partial function,
and the orderings defined both on sets and on records are naturally derived from from the
ordering on partial functions. Moreover from a slightly different ordering on relations a
a projection operator can be defined, and the interaction of these two orderings allows us
derive the basic results of the theory of functional dependencies [Bune86]. More interesting

11

{{Name = "J. Doe'; Dept = 'Sales'; Addr ={City = 'Moose' I35
{Name = 'M. Dee'; Dept = 'Manuf’ ;
{Name = 'N. Bug’; Addr ={ State = MT}}}

Ry
{{Dept = 'Sales’; Addr ={ State = WY }};
{Dept = 'Admin’; Addr ={City = 'Billings’ 1385
{Dept = 'Manuf’; Addr ={ State = MT }}}
Ry
{{Name ="J. Doe'; Dept = 'Sales’; Addr ={City = 'Moose'; ~ State = WY}};
{Name = 'M. Dee’; Dept = 'Manuf'; Addr ={ State = MT}};
{Name = 'N. Bug’; Dept = 'Manuf’; Addr ={ State = MT}};

{Name = 'N. Bug'; Dept = 'Admin’; Addr ={City = 'Billings’; State = MT}}}

Ry Ry
Figure 1. A join of generalized relations.

in this context is that the analysis makes no formal distinction between a type and a
relation; in fact the type {Name : String; Age Int} can be seen as a very large relation,

{{Name = s; Age =i} | s € String, Age € Int},

moreover it is meaningful to talk about the join of this relation with a relation R to
extract all the objects in R whose type is a sub-type of {Name : String; Age : Int}. This
is precisely the the operation of extracting sub-classes that we were attempting to define
in the previous section.

Whether what has been presented here is a forced marriage of relational and object
oriented programming languages, or is a natural extension of both remains to be seen.
There are certainly a number of open problems. We have not given an account of keys for
generalized relations, nor have we properly related object-level inheritance to inheritance
on types described in the previous section. A partial solution to the latter problem is
presented in [Bune85] where it is shown that a rather minor modification can be made to
the type system of Amber to allow for object-level inheritance and to use this to assign
a type to relational operators such as join. Given the apparent connection both with
relational database theory and with data types, this approach may bear fruit for database
programming languages.

Persistence and Extents

In [Atki854) the authors advocated a more general view of persistence in which any value
should be capable of persisting. They argued that in most database systems only objects of

12

certain types were allowed to persist, and this inhibited the use of database management
in many applications such as the many branches of engineering in which special data
structures have been developed for various forms of design (e.g. CAD/CAM). The first
practical demonstration of a language in which any value could be made persistent was
PS-algol [Atki83]. Very few other database languages have adopted this principle; of those
we have discussed, only Galileo and Amber provide a uniform approach.

In order to use persistence in a strongly typed environment, the authors suggested two
principles that should govern the design of a database programming language:

(1) Persistence is a property of values and should be independent of type.
(2) While a value persists, so should its description (type).

The second condition guards against the possibility of writing out a data structure as
one type and reading it in as another, a common cause of error in manipulating files in
conventional programming languages.

If we are to adopt this view that persistence is independent of type, there are at least
three approaches we may take to defining persistence in programming languages. The
first, and simplest, is all-or-nothing persistence that is commonly used with interactive
programming languages. Some versions of Lisp and Prolog, for example, allow one to save
the state of an interactive session and resume it later on. This is usually achieved by copying
a complete core image (or possibly an image of all user-defined structures) to secondary
storage. While simple to implement, this approach does not provide adequate structure
for database work: it does not allow sharing of values among programs, moreover the user
cannot separate the relatively constant structures he has created (the database) from the
extremely volatile structures such as experimental programs. In this form of persistence the
survival of the database is highly dependent on the integrity of the programming system
as a whole.

The second form of persistence is controlled by having program instructions that move
structures in and out of secondary (persistent) storage. We shall call this replicating
persistence since structures are replicated in secondary storage. In a sense, languages
like Pascal offer some form of replicating persistence in file types. However, as we have
already seen, the structures that can be placed in files are limited, e.g. they cannot contain
pointers, and they do not carry their own types. Another example of replicating persistence
is to be found in APL [Falk73]. Here arbitrary values may persist and their type is carried
with them; however APL’s data structures are all flat, and their types relatively simple
(functions are stored as character arrays). Amber provides the most complete example of
replicating persistence through the use of dynamic types. For example, the code in Amber
to perform these operations is, approximately,

type database = ...

-- Type declaration for a database.
var d: database = ...
-- Code to initialize the database

extern('DBFile’, dynamic d);

and to access the database in a subsequent program,

13

type database = ...

- Type declaration for a database (as before)
var z = intern 'DBFile’;
var d = coerce z to database

-- Code to query or update the database

where the coerce operation would fail if the type associated with the dynamic value d were
not database. In Amber, when a dynamic value is externed, it carries with it everything
that is reachable from that value such as structures that are referenced by that value or,
in the case of function values, variables that are global to that function.

The name DBFile in this Amber example serves to maintain a name for a value across
program, boundaries; such names are called handles. However, in this case the handle refers
to a copy of the data in the program. To see what this means, in the program

var z = intern 'DBFile’;
-- Code that modifies z
z = intern 'DBFile’;

the modifications to z will not survive the second intern operation. Thus if any concurrency
is to be implemented through the use of replicating persistence, it must be done by ensuring
that the various eztern and intern operations for a given handle are properly synchronized.
Also, under this form of persistence, if values a and b both refer to a third value ¢ then
any change made to ¢ though a handle for a will not be visible from a handle for b, since
these two handles will refer to distinct copies of ¢. This may be the cause of both update
anomalies and wasted storage.

The third form of persistence is what we shall call intrinsic persistence. Here the idea
is that every value in a program is persistent, however there is no need physically to retain
storage for values for which all reference is lost. Imthis model of persistence there is no need
to replicate data or control its movement, nor is there any distinction in the programming
language between primary and secondary storage. The physical representation of a value
is determined entirely by the run-time support for the programming language: it could
be that all values are maintained in secondary storage even during program execution,
although this would not be an efficient way of implementing intrinsic persistence.

The entire purpose of handles for this form of persistence is to maintain reference to
values. To give an example of how this might work, consider the following hypothetical
program in “Persistent Pascal”.

program Test;

type DBType = .. ;

var DB: DBType handle DBHandle;

begin

The sole purpose of DBHandle is to provide a name for the value DB that is global to
the program Test. But for the fact that we might want to use different internal names in
different programs, there would be no harm in simply marking DB as the global name.

14

[

sy

Py

Creating this global name is all that is required to ensure persistence; there is no need for
any eztern or intern operations during the execution of the program.

What we have just given is an idealized description of intrinsic persistence. PS-algol
{Atki83] and Gemstone [Cope84] implement some form of intrinsic persistence, however
our description here ignores some important points. In the first place we have implicitly
assumed a single global namespace. Although it is global to the program, is it also global
to the user, the user community, ...? In practice one needs to operate with multiple
namespaces and control the sharing of structures among namespaces. As another practical
matter we need to protect ourselves against a program failing when the database is in an
undesirable state, therefore PS-algol provides an explicit commit instruction. Before this
instruction is called, the persistent value and the value being used by the program can
diverge.

In spite of the inadequacies of this description of persistence, let us look at some of
issues in type-checking. Assuming static type-checking, the first time the program Test is
compiled, the type DBType is associated with the handle DBHandle. Now suppose that
at a later time, we recompile a modified version of Test with a new definition DBType’ for
the type of DB. There is no reason why the compilation will fail if DBType is a subtype
of DBType’. In fact, by the definition of subtype, the program should work since all the
operations defined for DBType’ must be applicable to the value associated with the handle
DBHandle. This second compilation with DB Type’ is simply providing us with a view of
the data.

A more interesting possibility arises when DBType is not a subtype of DBType’, but
is consistent with it, i.e. there is a common subtype of both DBType and DBType’. As a
result of the second compilation, the handle now refers to a value with a richer structure.
Provided we never contradict any of our previous definitions, we can can continue to
enrich the type, or schema, of the database. We should note that intrinsic persistence
is appropriate to this form of typechecking, since the obvious interpretation of an eztern
operation for an object of type DBType’ is to replicate an object of that type rather than
a supertype, thereby losing structure from the database.

While it is desirable to have as much static type-checking as possible, Atkinson &
Morrison [Atki85b] argue that some dynamic type-checking in database programming lan-
guages is necessary, and a propose a mechanism that provides both. Another important
issue is whether persistence should be a property of what we normally consider modules
as opposed to values. In the Cardelli-Wegner type system this is not a problem since
one of the main contributions of this work is to demonstrate that the combination of in-
heritance and existential types allows us to treat modules as values. However there are
certain penalties that one pays for this. In particular the type associated with a module
is necessarily abstract; one cannot get at its implementation. Moreover there are certain
forms of module parameterization that appear to be desirable in database programming
but that cannot be represented in this type system. Some of these issues are discussed
in {Card85], but the general problem of what form of module or type parameterization is
appropriate for database programming, and how this interacts with persistence is still an
open question.

15

A final and rather simple observation concerns the relationship of object-level inheri-
tance and persistence. It is that adding transient information to a persistent structure can
be quite useful. One of the examples used in |Atki85a] is a bill-of-materials computation.
This is a text-book excercise but proved rather awkward in some of the languages that
were examined. It is required simultaneously to compute the cost of manufacturing and
total mass of a manufactured part. We shall examine the simpler problem of computing
just the total cost of manufacturing a part. A standard recursive program to do this is, in
outline,

function TotalCost(p: Part);

if p.IsBase then p.PurchasePrice
else p.ManufacturingCost -+
sum{ TotalCost{q.SubPart)* q.Qty|
g on p.Components};

where the Components of a part p is a list of records that describing the part and quantity
for each subpart used in the manufacture of p. The only difficulty with this is that when
a given subpart is used in more than one way in the manufacture of a larger part, the
total cost will be needlessly recomputed for that subpart. This will happen when the parts
explosion diagram is not a tree but a directed acyclic graph.

The way out of this is to memoize intermediate results. In order to do this we need
to attach further fields to the Part type in which to store these results; we also need to
modify the function TotalCost(p) so that it first checks these fields to see if it has already
done the computation for the part p. Now these additional fields are not required to be
accessible outside the the computation of TotalCost. Even though the Part values in which
we are interested are presumably persistent, there is no need for the additional information
to persist.

Conclusions

When the authors first undertook a survey of database programming languages, they had

a general impression that most of the problems in producing a uniform persistent language
with a type system appropriate to databases were related to implementation rather than
design. It now appears that many of the issues brought out by language design, especially
in the areas of inheritance, types and persistence, are central to programming language
research as a whole. The purpose of this paper has been to convey some of the open
research areas in the hope of stimulating the database community to think about them.

Acknowledgements

The authors are greatly indebted to David Maier for his careful and constructive criticisms
of a draft of this paper. Alex Borgida and Ron Morrison also made numerous helpful
comments.

16

References

[ATtK84]

[Alba85]

[AtkiB3]

[Atkig5a]

[Atki85b]

[Bang86]

[Brac79]

|Brac85]

[Burs84)

[Borgss]

[Bune8s)

[Buness]

[Card84]
|Card85a]

Ajt-Kaci, H. “A Lattice Theoretic Approach to Computation based on a
Calculus of Partially Ordered Type Structures”, PhD. Dissertation, De-
partment of Computer and Information Science, Moore School/D2, Uni-
versity of Pennsylvania, Philadelphia, PA 19104. (1984)

Albano, A., Cardelli, L. and Orsini, R., “Galileo: A Strongly Typed Inter-
active Conceptual Language”, ACM Transactions on Database Systems,
10, 2, March 1985.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. and Morri-
son, R., “An Approach to Persistent Programming”, Computer Journal,
26, 4, November 1983.

Atkinson, M.P. and Buneman, O.P. “Database Programming Language
Design”, Technical Report 10-85, University of Pennsylvania.

Atkinson, M.P. and Morrison, R., “Types, Bindings and Parameters in a
Persistent Environment”, Proceedings of the Appin Conference on Data
Types and Persistence, Technical Report, Department of Computing,
Glasgow University, September 1985.

Bangilthon, F. and Khoshafian, S., “A Calculus for Complex Objects”,
ACM Conference on Principles of Database Systems, May 1986.

Brachman, R.J. “On the Epistemological Status of Semantic Networks”,
Associative Networks - The Representation of Knowledge in Computers,
N.V. Findler, ed., Academic Press, New York, 1979.

Brachman, R.J. and Schmolze, J.G., “ An Overview of the KL-One Knowl-
edge Representation System”, Cognitive Science, 9,2, April 1985.

Burstall, R. and Lampson, B., “A kernel language for abstract data types
and modules”, Proceedings of the international symposium on semantics
of data types, Sophia-Antipolis, France, June 1984.

Borgida, A’ “Features of Languages for the Development of Information
Systems at the Conceptual Level”, IEEE Software, 2, 1, January 1985.

Buneman, O.P., “Data Types for Data Base Programming”, Proceedings
of the Appin Conference on Data Types and Persistence, Technical Re-
port, Department of Computing, Glasgow University, September 1985.

Buneman, O.P., “A Domain Theoretic Approach to Relational Databases”, ;
Technical Report, University of Pennsylvania Department of Computer
and Information Science, January 1986.

Cardelli, L., “Amber”, AT&T Bell Labs Technical Report, 1984.

Cardelli, L. and Wegner, P., “On Understanding Types, Data Abstraction,
and Polymorphism”, Technical Report, Brown University, Aug 1985.

17

[Card85b] Cardelli, L. and MacQueen, D.M., “Persistence and Type Abstraction”,
Proceedings of the Appin Conference on Data Types and Persistence,

Technical Report, Department of Computing, Glasgow University, Septem- :

ber 1985.

[Chan82] Chan,A., et al., “Storage and Access Structures to Support a Semantic
Data Model” Proceedings VLDB, Mexico City, 1982.

[Chen76] Chen,P.P.S., “The Entity-Relationship Model: Towards a Unified View of
Data”, ACM Transactions on Database Systems, 11, 1, March 1976.

Copeland, G. and Maier, D., “Making Smalltalk a Database System”,
Proceedings ACM Sigmod, Boston, June 1984.

[Falk73] Falkoff, A.D. and Iverson, K.E., “The design of APL”, IBM Journal of
Research and Development, 10, July 1973.

[Gold80] Goldstein, I. P. and Bobrow, D. G., “Extending object oriented program-
ming in Smalltalk”, Proceedings of the 1980 Lisp Conference, August,
1980.

[Gord79] Gordon, M.J., Milner, A.J.R.G., and Wadsworth, C.P., Edinburgh LCF,
Springer-Verlag, Lecture Notes in Computer Science, 1979.

[Hamm81] Hammer, M. and McLeod, D., “Database Description with SDM: A Se-
mantic Database Model”, ACM Transactions on Database Systems, 6, 3,
Sept 1981.

[Hull83] Hull, R. and Yap, C.K., “The Format Model: A theory of Database organ-
isation”, 1** ACM symposium on Principles of Database Systems, 1982,

[Cope84

{Ichb79] Ichbiah et al., “Rationale of the Design of the Programming Language
Ada”, ACM Sigplan Notices, 14, 6, 1979.

[Lisk83] Liskov, B., Herlihy, M., Johnson, P., Leavens, G., Scheifler, R. and Weihl
W., “Preliminary ARGUS reference manual”, MIT LCS Memo 39, Octo-
ber 1983.

[Matt85] Matthews, C.J., “Poly Manual”, University of Cambridge, Computer Lab-
oratory, Technical Report 63, February 1985.

[Merr84] Merrett, T.H.,Relational Information Systems, Reston Publishing Co.,
1984

[Meye86] Meyer, A.R., and Reinhold, M.B, “Type’ is not a Type: Preliminary
Report”, Proceedings 1986 ACM Conf. on Principles of Programming
Languages, February 1986.

[Mylo80] Mylopoulos, J., Bernstein, P.A. and Wong, H.K.T., “A Language Facility
for Designing Database Intensive Applications”, ACM Transactions on
Database Systems, 5, 2, June 1980

[Schm77] Schmidt, J.W., “Some High Level Language Constructs for Data of Type
Relation”, ACM Transactions on Database Systems, 2, 3, September 1977.

18

[Ship81] Shipman, D.W., “The Functional Data Model and the Data Language
DAPLEX”, ACM Transactions on Database Systems, 6, 1, March 1981.

[Smit77} Smith, J.M. and Smith, D.C.P., “Database Abstractions - Aggregation
and Generalization” ACM Transactions on Database Systems, 2, 2, June
1977.

[Smit81] Smith,J. M., Fox,S. and Landers,T., “Reference Manual for ADAPLEX”,
Computer Corporation of America, January 1981,

[Wirt81] Wirth, N., “The Programming Language PASCAL”, Acta Informatica, 1,
1971.

[Zanig4a] Zaniolo, C., “Database Relations with Null Values”, JCSS, 28 1, pp. 142-
166, February 1984.

[Zani84b] Zaniolo, C. “Prolog: A Database Query Language for All Seasons”, Proc.
IEEE-ACM International Expert Database Systems Workshop, Kiawah
Island, October 1984.

19

Bibliography

Capies of documents in this list may be obtained by writing 1o:

The Secretary,

Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,

Glasgow G12 8QQ

Scotland.

Books

Davie, A.J.T. & Morrison, R.
"Recursive Descent Compiling”, Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.) ,
"Databases”, Pergammon Infotech State of the Art Report, Series 9, No.8,
January 1982. (535 pages).

Cole, AJ. & Morrison, R.
"An introduction to programming with S-algol", Cambridge University Press,
Cambridge, England, 1982.

Stocker, P.M,, Atkinson, M.P. & Grey, P.M.D. {eds.)
"Databases - Role and Structure”, Cambridge University Press, Cambridge,
England, 1984.

Published Papers

Morrison, R.
"A method of implementing procedure entry and exit in block structured high level
languages". Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z. -
"The Graffiti graphics system”, Proc. of the DECUS conference, Bath (April 1978),
5-10.

Atkinson, M.P.
"A note on the application of differential files to computer aided design”, ACM
SIGDA newsletter Summer 1978.

Atkinson, M.P.
"Programming Languages and Databases”, Proceedings of the 4th International
Conference on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78,
408-419. (A revised version of this is available from the University of Edinburgh
Department of Computer Science (EUCS) as CSR-26-78).

Atkinson, M.P.
"Progress in documentation: Database management systems in library
automation and information retrieval”, Journal of Documentation Vol.35, No.1,
March 1979, 49-91. Available as EUCS departmental report CSR-43-79.

Gunn, H.L.E. & Morrison, R.
"On the implementation of constants”, Information Processing Letters 9, 1 (July
1979), 1-4.

Atkinson, M.P.
"Data management for interactive graphics”, Proceedings of the Infotech State of
the Art Conference, October 1979. Available as EUCS departmental report
CSR-51-80.

Atkinson, M.P. (ed.) !
"Data design", Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R.
"Low cost computer graphics for micro computers®, Software Practice and
Experience, 12, 1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"PS-algol: An Algol with a Persistent Heap”, ACM SIGPLAN Notices Vol.17, No.
7, (July 1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Nepal - the New Edinburgh Persistent Algorithmic Language”, in Database,
Pergammon Infotech State of the Art Report, Series 9, No.8, 299-318 (January
1982) - also as EUCS Departmental Report CSR-90-81.

Morrison, R.
"S-algol: a simple algol", Computer Bulletin 11/31 (March 1982).

Morrison, R. :
"The string as a simple data type", Sigplan Notices, Vol.17,3, 46-52, 1982.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming”, presented at CREST course UEA,
September 1982, revised in "Databases - Role and Structure”, see PPRR-8-84.
Morrison, R.
"Towards simpler programming languages: S-algol”, IUCC Bulletin 4, 3 (October
1982), 130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Problems with persistent programming languages”, presented at the Workshop
on programming languages and database systems, University of Pennsylvania.
October 1982. Circulated (revised) in the Workshop proceedings 1983, see
PPRR-2-83.

Atkinson, M.P.
"Data management”, in Encyclopedia of Computer Science and Engineering 2nd
Edition, Ralston & Meek {editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Algorithms for a Persistent Heap", Software Practice and Experience, Vol. 13,
No.3, 259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"CMS - A chunk management system", Software. Practice and Experience,
Vol.13, No.3 (March 1983), 273-285. Also as EUCS Departmental Report
CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming"”, presented at the DEC workshop
on Programming Languages and Databases, Boston, April 1983.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"An approach to persistent programming”, The Computer Journal, 1983, Vol.26,
No.4, 360-365 - see PPRR-2-83.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming”, 10th Australian Computer
Conference, Melbourne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.
"High level language support for 3-dimension graphics", Eurographics
Conference Zagreb, North Holand, 7-17, Sept. 1983. (ed. P.J.W. ten Hagen).

Cockshott, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Morrison, R.
"POMS : a persistent object management system”, Software Practice and
Exerience, Vol.14, No.1, 49-71, January 1984.

Kulkarni, K.G. & Atkinson, M:P.
"Experimenting with the Functional Data Model", in Databases - Role and
Structure, Cambridge University Press, Cambridge, England, 1984.

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough”, Foundations of Software
Technology and Theoretical Computer Science (ed. M. Joseph & R.
Shyamasundar) Lecture Notes in Computer Science 181, Springer Verlag, Berlin
(1984).

Atkinson, M.P., Bocea, J.B., Elsey, T.J., Fiddian, N.J., Flower, M., Gray, P.M.D.
Gray, W.A., Hepp, P.E., Johnson, R.G., Milne, W., Norrie, M.C., Omololuy,
A.O., Oxborrow, E.A., Shave, M.J.R., Smith, A.M., Stocker, P.M. & Walker, J.
"The Proteus distributed database system, proceedings of the third British
National Conference on Databases, (ed. J. Longstaff), BCS Workshop Series,
Cambridge University Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R.
"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985)
- see PPRR-9-84.

Morrison, R.,Bailey, P.J., Dearle, A., Brown, P. & Atkinson, M.P.
"The persistent store as an enabling technology for integrated support
environments”, 8th International Conference on Software Engineering, Imperial
College, London (August 1985), 166-172 - see PPRR-15-85.

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment”, proceedings of
Data Types and Persistence \Workshop, Appin, August 1985, 1-24 - see
PPRR-16-85.

Davie, AJ.T.
"Conditional declarations and pattern matching”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

Krablin, G.L.
"Building flexible multilevel transactions in a distributed persistent environment,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
86-117 - see PPRR-16-85.

Buneman, O.P.
"Data types for data base programming”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.
"Addressing mechanisms and persistent programming", proceedings of Data
Types and Persistence Workshop, Appin, August 1985, 363-383 - see
PPRR-16-85.

Norrie, M.C.
"PS-aigol: A user perspective", proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.
"On the need for a Flexible Type System in Persistent Programming Languages”,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
423-438 - see PPRR-16-85.

Morrison, R., Brown, A L., Bailey, P.J., Davie, AJ.T. & Dearle, A.
"A persistent graphics facility for the ICL PERQ", Software Practice and
Experience, Vol.14, No.3, (1986) - see PPRR-10-84.

Atkinson, M.P. and Morrison R.
"Integrated Persistent Programming Systems", proceedings of the 19th Annual
Hawaii International Conference on System Sciences, January 7-10, 1986 (ed.
B. D. Shriver), vol llA, Software, 842-854, Western Periodicals Co., 1300 Rayman
St., North Hollywood, Calif. 91605, USA - see PPRR-19-85,

Atkinson, M.P., Morrison, R. and Pratten, G.D.
"A Persistent information Space Architecture", proceedings of the 9th Australian
Computing Science Conference, January, 1986 - see PPRR-21-85.

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.1,
(1986) 38-45,

Internal Reports

Morrison, R.
"S-Algol language reference manual”, University of St Andrews CS-79-1, 1979.

Bailey, P.J., Maritz, P. & Morrison, R.
"The S-algol abstract machine”, University of St Andrews CS-80-2, 1980.

Atkinson, M.P., Hepp, P.E., Ivanov, H., McDuff, A., Proctor, R. & Wilson, A.G.
"EDQUSE reference manual", Department of Computer Science, University of
Edinburgh, September 1981,

Hepp, P.E. and Norrie, M.C.
"RAQUEL: User Manual", Department of Computer Science Report CSR-188-85,
University of Edinburgh.

Norrie, M.C.
“The Edinburgh Node of the Proteus Distributed Database System", Department
of Computer Science Report CSR-191-85, University of Edinburgh.

In Preparation

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : A DBMS based on the functional data model", to be submitted.

Atkinson, M.P. & Buneman, O.P.

"Database programming languages design", submitted to ACM Computing
Surveys - see PPRR-17-85.

Morrison, R., Dearle, A., Bailey, P., Brown, A. & Atkinson, M.P.
"An integrated graphics programming system”, presented at EUROGRAPHICS
UK, Glasgow University, March 1986, to be published in Computer Graphics
Forum - see PPRR-14-86.

Buneman, O.P. & Atkinson, M.P.
“"Inheritance and Persistence in Database Programming Languages” - to be
presented at ACM SIGMOD Conference 1986, Washington, USA, May 1986 -
see PPRR-22-86.

Brown, A.L. and Dearle, A.
"Implementation Issues in Persistent Graphics" - to be published in University
Computing, Autumn 1986 - see PPRR-23-86.

Theses

The following Ph.D. theses have been produced by member of the group
and are available from
The Secretary,
Persistent Programming Group,
University of Glasgow,
Department of Computing Science,
Glasgow G12 8QQ,
Scotland.

W.P. Cockshott
Orthogonal Persistent, University of Edinburgh, February 1983.

K.G. Kulkarni
Evaluation of Functional Data Models for Database Design and Use, University of
Edinburgh, 1983,

P.E. Hepp
A DBS Architecture Supporting Coexisting Query Languages and Data Models,
University of Edinburgh, 1983.

G.D.M. Ross
Virtual Files: A Framework for Experimental Design, University of Edinburgh,
1983.

G.0. Owoso
Data Description and Manipulation in Persistent Programming Languages,
University of Edinburgh, 1984.

Persistent Programming Research Reports

This series was started in May 1983. The following list gives those produced and
those planned plus their status at 1st June 1986.

Copies of documents in this list may be obtained by writing to:

The Secretary,

The Persistent Programming Research Group,
Department of Computing Science,

University of Glasgow,

Glasgow G12 8QQ.

PPRR-1-83 The Persistent Object Management System -
Atkinson,M.P., Chisholm, K.J. and Cockshott, W.P. £1.00

PPRR-2-83 PS-algol Papers: a collection of related papers on PS-algol -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

PPRR-4-83 The PS-algol reference manual -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. - £2.00

PPRR-5-83 Experimenting with the Functional Data Mode! -
Atkinson, M.P. and Kulkarni, K.G. £1.00

PPRR-6-83 A DBS Architecture supporting coexisting user interfaces:
Description and Examples -
Hepp, P.E. £1.00

PPRR-7-83 EFDM - User Manual -
K.G.Kulkarni £1.00

PPRR-8-84 Progress with Persistent Programming -
Atkinson,M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

PPRR-9-84 Procedures as Persistent Data Objects -
Atkinson, M.P.,Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £1.00

PPRR-10-84 A Persistent Graphics Facility for the ICL PERQ -
Morrison, R., Brown, A.L., Bailey, P.J., Davie, AJ.T.
and Dearle, A. £1.00

PPRR-11-85
PPRR-12-85

PPRR-13-85

PPRR-14-86

PPRR-15-85

PPRR-16-85

PPRR-17-85

PPRR-18-85

PPRR-19-85

PPRR-20-85

PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-28-86

PPRR-30-86

PS-aigol Abstract Machine Manual
PS-algol Reference Manual - second edition
CPOMS - A Revised Version of The Persistent Object

Management System in C -
Brown, A.L. and Cockshott, W.P.

An Integrated Graphics Programming Environment - second

edition -
Morrison, R., Brown, A.L., Dearle, A. and Atkinson, M.P.

The Persistent Store as an Enabling Technology for
Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, A.L. and
Atkinson, M.P.

Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R.

Database PrOgramming Language Design -
Atkinson, M.P. and Bunemarn, O.P.

The Persistent Store Machine -
Cockshott, W.P.

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R.

Building a Microcomputer with Associative Virtual Memory -
Cockshott, W.P.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D.

Inheritance and Persistence in Database Programming
Languages -
Buneman, O.P. and Atkinson, M.P.

Implementation Issues in Persistent Graphics -
Brown, A.L. and Dearle, A.

A Domain Theoretic Approach to Higher-Order Relations -
Buneman, O.P.

Data Types for Data Base Programming -
Buneman, O.P.

£1.00

£2.00

£2.00

£1.00

£1.00

£15.00

£3.00

£2.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

Persistent Programming Research Reports
In Preparation

Some Applications Programmed in a Persistent Language -
Cooper, R.L. (ed).

PS-algol Applications Programming -
Cooper, R.L., Dearle, A, MacFarlane, D.K. and Philbrow, P.

A Compilation Technique for a Block Retention Language -
Cockshott, W.P. and Davie, A.J.T.

Thoughts on Concurrency -
Wai, F.

An Exception Handling Model in a Persistent Programming Language -
Philbrow, P.

Concurrency in Persistent Programming Languages -~
Krablin, G.K.

Extracting Garbage and Statistics from a Persistent Store -
Campin, J.

