University of Glasgow
Department of Computing Science

Lilybank Gardens
Glasgow G12 8QQ

University of St. Andrews
Department of Computational Science

North Haugh
St Andrews KY16 8SX

A Persistent Information
Space Architecture

Persistent Programming
Research Report 21

A((M/D@MLQ_

Preface

This report is a version of a paper which has been submitted to the
IFIP’86 Conference, Dublin, August, 1986.

A persistent information space architecture

Malcolm P. Atkinson, Ronald Morrison and Graham D. Pratten

University of Glasgow, Glasgow, Scotland G12 8QQ. Tel. 0413398855,
University of St Andrews, St Andrews, Scotland KY16 9SX. Tel. 033476161
and

International Computers Ltd,, Kidsgrove, England. ST7 1TL. Tel. 078229681.

Abstract
Present day computer systems depend on a plethora of mechanisms that by their lack of
coherence increase the cost of developing applications. By integrating these mechanisms we reduce the
complexity of the system and thereby achieve savings throughout product life cycles. We identify
five major areas of system design for modern systems: controlling complexity, orthogonal persistence,
controlled system evolution, protection of data and concurrent computation. We report on our

current research on programming languages and environments and propose a persistent information

space architecture (PISA) capable of integrating all these activities.

1. Introduction

If we examine existing computer systems we find many dichotomies and discontinuities in
their design and in the design of their user interfaces. Some of these were deliberately introduced
during the 1960’s and 1970’s to satisfy reasonable performance constraints. Others simply reflect the
order in which the basic design concepts of computer systems have emerged over a period of twenty
to thirty years. We contend that the present dependence on this plethora of mechanisms such as
command languages, editors, file systems, compilers and interpreters, linkage editors and binders,
debuggers, DBMS sublanguages, graphics libraries increases the cost of understanding and maintaining
software, and training programmers, for even the simplest of activities. It is important to remove this
incoherence now since it is placing a considerable overhead on the users and developers of computer
systems, hindering their full exploitation, and delaying the development of integrated projects support
environments (IPSEs) and intelligent knowledge based systems (IKBSs). The removal of this
incoherence is now possible because of the dramatic shift in the cost of hardware relative to software.
In this paper we report on our current research on programming languages and environments and
propose a persistent information space architecture (PISA) capable of integrating all programming
activities.

Inherent in our approach is that any program must be integrated with its environment. We
have identified the following problems faced by users of current systems which when negated become
requirements of modern systems in order to achieve simplicity and integration. We do not regard this
list as exhaustive. Indeed we would expect that having achieved these requirements new ones will

emerge in the pursuit of better programming systems. They are

a. Controlling complexity: The complexity of the system must be kept under control, so
that developers and users can concentrate on the application rather than the
complexity of the system. This depends on establishing consistent rules which apply
throughout the design and being parsimonious in the intreduction of new concepts
into these designs.

b. Orthogonal persistence: The discontinuity between the method of using data that is

short term and manipulated by program and long term data that is manipulated by

the file system or DBMS causes unnecessary complexity. We have defined the
persistence of data to be the length of time for which the data exists and is useable[2].
‘We aspire to systems where the use of data is independent of its persistence.

¢ Controlled system evolution: The uses of data (including program) are neither limited
nor predictable. It is necessary to support the construction of unanticipated software
systems or databases which make use of pre-existing data (or program) even when the
data and program were defined independently of one another. For large scale, widely
used or continuously used systems any alteration to part of the system should not
require total rebuilding. We require a mechanism which will allow the programmer
to control the units of reconstruction.

d. Protection of data: Large bodies of data are inherently valuable. It is necessary to
protect them from misuse and from hardware and software failure. This implies both
a type and protection system to meet all our needs and recovery mechanisms to limit
the losses due to component failure.

e. Concurrent computation: A large body of data requires a community effort for its
construction and maintenance. Any useful body of data is likely to be of concurrent
interest to many users, probably in dispersed geographic locations. Different models of
concurrency and transactions may have to be accommodated by the underlying
mechanism.

We have designed and implemented the language PS-algol [3] as a testbed for experiments on

the above requirements. We report here on some results and propose further experiments in the

search for better programming systems.

2. Controlling complexity

In many ways the main task of computer science is to invent and implement appropriate
languages to suit applications at any level, both hardware and software, in order that programming
may become easier and cheaper. We may therefore use the experience of programming language
designers in controlling complexity with the aim of building a total system that will integrate all the

naming, binding and other mechanisms of programming languages, database systems and operating

systems.

Central to our method of language design is that the language itself should be simple. Merely
adding features to languages without integrating them into some overall design simply increases the
complexity of the system and can often lead to it being beyond the intellectual capacity of the
programmer and sometimes even the implementor. This complexity is often due, in part at least, to
being too restrictive but can be avoided by the language designer formulating the fundamental
concepts behind the language and generalising these wherever possible. Simplicity is achieved by
having no exceptions to these general rules.

Our languages are designed using three principles due to Landin[16] and Strachey[21] and
further developed by Tennent[22} They are

1. The principle of correspondence: the use of names should be consistent within a
language. In particular there should be a one to one correspondence between the
method of introducing names in declarations and in parameter lists.

2. The principle of abstraction: all the major syntactic categories should have abstractions
defined over them. For example, functions are abstractions over expressions.

3. The principle of data type completeness: all data types should be first class without
arbitrary restriction on their use.

We have described our design methodology fully elsewhere[12] and will not labour it here.
However in applying these rules no exceptions are allowed since having exceptions makes the
language more complex in terms of defining rules and usually less powerful since there are
restrictions. Designing languages using the above rules yields languages that are free from
inconsistencies and idiosyncrasies in this manner. Thus the rules can be used as a metric for
comparing languages. It is part of our research into programming language design to find further
rules, if there are any, to aid the design process. We have applied this general philosophy to the

design of programming languages and programming environments in the PS-algol system.

3. Orthogonal Persistence
We seek to eliminate the differences between programming language models of data and the

environment models of data. This can be done by separating the issue of what data structures are best

for a particular problem from the issue of identifying and preserving the data. This second property
we call persistence. A spectrum of persistence exists and is categorised by

1. transient results in expression evaluation.

2. local variables in procedure activations.

3. own variables, global variables and heap items whose extent is different from their

Scope.

4. data that exists between executions of a program.

5. data that exists between various versions of a program.

6. data that outlives the program.

The first three persistence categories are usually supported by programming languages and the
second three categories by a DBMS, whereas filing systems are predominantly used for categories 4 and
5. Persistence is therefore an abstraction over the programming language and file system or DBMS
views of data.

There are three major advantages in having only one model of data. Firstly in any traditional
program there is usually a considerable amount of code, typically 30% of the total, concerned with
transferring data to and from files or a DBMS. Much space and time is taken up by code to perform
translations between the program’s form of data and the form used for the long term storage medium.
For example, we normally have to explicitly flatten and rebuild graphs or trees modelled in the
programming language in order to write them out or read them back in from the file store. If this
activity is performed by the underlying system then every application program would be 30%
smaller in terms of code, with all the attendant benefits that entails throughout the life cycle of the
product.

The second major advantage is that it is conceptually simpler to have only one program view
of data. Again in traditional systems there are three models of data, one in the real world, one in the
database system and onme in the program’s runtime system. This is unsatisfactory since the
programmer or system designer has to visualise and maintain all of these models correctly. This leads
to an intellectual overhead in using these models and preventing them from becoming mutually

inconsistent.

The third major advantage is that the data type protection offered by the programming
language on its data is now available for all data. Thus the main protection mechanism is not lost
aCToss an unnecessary mapping.

We regard the provision of persistence as orthogonal to all other properties of data. For this
we define the Principle of Persistence Independence as

The persistence of a data object is independent of how the program manipulates that

data object.

That is, all code should be written so that it will work with the same interpretation
independent of the persistence of the data on which it operates. This reduces the number of
conceptual mappings from three to one - the one between the real world and the program model and
thus simplifies the task of building an application system.

We also identify an extension to the Principle of Data Type Completeness to handle
persistence. It is

All data objects should be allowed the full range of persistence.

Large systems need long lived data since they all need to store their code and data.
Computing systems that involve humans must support long term activity. Since the attention span of
the human is short in computing terms then the storage of the present state of an attempted solution
to a problem is essential. To achieve this in an integrated manner the system should provide

persistence designed by the above principles.

4. Controlled System Evolution
In traditional programming languages, operating systems and file systems there are a number

of binding mechanisms which are often not easy to comprehend or use. A binding mechanism has four
components by which it can be categorised. They are

a. what does the name bind to?

b. when is the binding performed?

¢ what scoping is involved?

d. when is the type checking performed?

Names of variables bind to locations whose value may change without altering the binding.

Constant names bind to values. The binding of both variables and constants is usually performed
when the location is created or the value calculated. That is, at run time unless of course the location
or value is manifest (a literal) when the binding may be performed at compile time. Manifest
constants can be seen in BCPL{20] or Pascal[24] and manifest locations are the variables of Fortran. In
block structured languages it is usual for variables to bind to locations created at run time. Constants
whose values are created dynamically can be seen in S-algol[12] the simple values of Ada[15] and
most applicative languages.

Names may be scoped statically in their compile time environment or dynamically in their
run time environment. The traditional algol scoping rule is static whereas dynamic scoping can be
seen in Lisp[18] or the segment binding mechanism of Multicg{11].

Type checking may be performed statically by the compiler or dynamically by the run time
system. Dynamic type checking occurs when the run time system executes code to ensure that the
data is of the correct type. This typically cccurs in read statements and in projections out of a union.
Some languages such as SASL{23] deliberately choose run time type checking to facilitate
polymorphism. For example it is difficult to write down or deduce the type of the self apply function

AX. XX
but simple to check it at run time.

There are potentially 16 different methods of binding commonly in use in modern computer
gystems based on the four binding choices given above. The most static form of binding is where only
manifest constants are allowed with static scoping and static type checking. The most dynamic form
allows variables with non manifest values, dynamic scoping and dynamic type checking. We coin the
term flexible incremental binding (FIB) to describe this mixture of bindings, which we expect to obey
the Principle of Correspondence. In practice most languages have more than one binding mechanism.

The example of Pascal is interesting here where we observe that variable names may be bound
to locations but not manifest locations and constant names may be bound to manifest values but not
values created dynamically. The scoping rule is static except for file names where it is evaluated in
the environment and is therefore dynamic. Type checking is static except in read statements and also

on the projection out of a union of variants both of which require a dynamic check.

4.1 Name Spaces

The advantage of statically bound systems is that errors may be detected early in the software
life cycle and that checks for correct program execution may be factored out by the compiler. It is
impossible to have a completely static system since we require some mechanism, e.g. the compiler, to
create the bindings in the first place. Thus if the system contains that binding mechanism it already
has a modicum of dynamic binding in it. This really should be obvious since to create dynamic
change we need some dynamic mechanism. The modern trend in programming languages is to make
as much of the binding as static as possible. The degree to which that can be achieved depends on the
application.

We assert that the total spectrum of binding mechanisms is necessary for large system
construction and evolution but we are unsure as to whether all of the intermediate binding
mechanisms are useful. We suggest therefore that the programmer should have control over the
binding mechanism.

To accommodate flexible incremental bindings we have invented the name space. This is an
environment mechanism that permits the following:

a) the storage of bindings in a name space;

b) the dynamic use of names from a name space;

c) the static use of names from a name space;

d) the evolution of the names available in a name space;

¢) safe exchange of arbitrary data between parts of the system - especially between the
permanent store and programs.

Name spaces are data objects which act like abstract data types to yield the values of the name
space. These values are bindings between name and object and the name may be used in the current
environment. To statically bind to a name space we use

with name-space-expression compile statement
which provides an environment for the statement containing all the names in the name space. The
name space may be an object in the persistent store and the statement is bound in the compile time

environment. The name-space-expression is a manifest constant, statically scoped and statically type

checked. The bindings in the name space provided for the qualified statement are variable or
constant, manifest, statically scoped and statically type checked.

To bind a name space dynamically we use

using name-s pace-expression with signature do statement

In this the name space yielded by the expression must have the properties (name-type pairs) described
by the signature in order to match correctly. It is a partial match and is the same mechanism that we
use to match actual to formal type parameters in procedures and abstract data types to achieve
parametric dependent polymorphism as first used in Russelll10}. In this case the name-space-
expression, which may be regarded as an environment name, is constant but not manifest,
dynamically scoped and dynamically type checked using its signature. The objects yielded from this
name space are variable or constant, not manifest, and statically scoped and statically type checked.

We have chosen this combination of binding mechanisms to be under the programmer’s
control because we believe it will yield the right mix for building and maintaining large systems.
For safety, most bindings will be as static as possible with some dynamic element to accommodate
evolution. It is for the application designer to decide which mechanism is appropriate for a particular
application.

To accommodate evolution, name spaces may grow and contract. For example

extend name-space-expression with identi fier-list from statement
adds the new definitions of the identifier names to the name space. To contract the name space We use
drop identi fier-list from name-space-expression

which will remove the identifier names from the name space.

As a name space is itself an object in the language, a name in a name space may be bound to a

name space. Hence hierarchical naming structures similar to directory hierarchies are possible.

4.2 Outstanding problems

When file directories are used as an environment mechanism it is possible to write general
utilities which scan a directory, often interactively, revealing the directory’s contents and possibly
allowing user action - e.g. delete - on each file. Some equivalent operations on name spaces may be

useful, however, it is difficult to identify a primitive in terms of which they may be written.

10

Current practice is to step outside the type system or to depend on calling the compiler. Our desire to
support more of the total programming activity within the strictly typed language leaves us

confronting this problem.

5. Type Systems for Persistent Data

Ideally we would like a simple set of types, and a type algebra, so that by a succession of
operations of the algebra, and provision of parameters, we could define a data type equivalent to any
data model or conceptual data model. Parameterisation of such types yields schemata, ie. the types of
databases in the model, and each database is then an instance of such a type. We call this the "type
alchemist’s dream” as we do not yet know how to do it. In consequence the language designer has to
opt for a particular model. Contrary to our original beliefs, this has to contain types motivated by
long term data, because it tends to become large, and hence bulk operations and describing its
regularity become important.

Based on an extensive survey[S] of existing, research and proposed languages together with
experience of PS-algolld], we have come up with the following general advice with regard to
programming environments and persistent data.

1) the data types should include a mechanism to capture user communication including
graphical and audio facilities;
ii) the data types should be expressive enough to capture the structure and regularity
that will be required of the data;
iii) the data types should include program, as procedures and abstract data types;
iv) the data types should include a general purpose indexing mechanism, both
polymorphic and variadic;
v) the data types should include a bulk data type with operations on collections of data;
vi) the data types should include some form of inheritance to model specialisation;
vii) the types and bindings used should allow system evolution on an incremental and
localised basis.

QOur own preferences for a particular type system are defined elsewhere{6].

11

6. Concurrency and transactions

In the context of concurrency and transactions in the persistent information space architecture
we have identified the following as outstanding problems for which solutions will need to be found.
They are

1) there should be mechanisms to permit and control shared and concurrent usage;
ii) it should be possible to encapsulate any sequence of operations on the store into a
transaction, which behaves as a single operation;
iii) there should be privacy and access control mechanisms;

We have experimented with several versions of persistence{2,8] Each one has a notion of
transaction which allows a group of operations on data to appear atomic. The effects of the transaction
are only visible to other transactions that start after the transaction has committed. Thus they are a
mechanism for viewing and controlling change.

The concept of a transaction is clearly recursive with the fixed point being the machine’s
atomic store update. Nested transactions may be formed by grouping more than one store update into
a single transaction. The semantics of these nested transactions are reasonably well understood(1] for
a sequential process. At present we know of no satisfactory semantics for nested tramsactions in a
concurrent environment.

Often associated with a transaction mechanism are methods for making the store reliable and
for recovering from an aborted transaction. The stable store mechanism ensures that information is
always kept (or copied) on non-volatile storage devices. Thus in the event of a system crash no
information will be lost. Any stable store mechanism only gives relative protection since it may not
be able to recover from some types of disaster, such as an atomic explosion. Most systems however
provide an adequate level of service using a disk for the stable store. It is beyond the scope of this
paper to discuss reliability except to say that our information space will be built on such a system.

Recovering from aborted transactions is much more controversial, especially in a concurrent
environment. The problem is essentially one of undoing an action that other processes may have acted
upon. For example having printed a document it is difficult to see how it may be unprinted. Most

problems in this area involve interacting with the outside world. More about this will be said in the

12

next section.

For expressing concurrency there is no shortage of models. Programming languages have
provided semaphores]9] conditional critical region{13} monitor14] path expressiong7] and the
rendezvous{15] among others. There is very little agreement on which are appropriate mechanisms for
all programming activity. It would appear therefore to be sensible not to build any of these into a
system but to provide a method by which they may be built using a primitive and some abstraction

mechanism.

7. A persistent information space architecture

Specifying a computer architecture is equivalent to specifying a programming language that
defines the architecture. In recognising this we can use our rules for controlling complexity when
defining the language.

Central to our aim of building a total system capable of providing for all programming
activity in an integrated manner is our persistent information space. This space is made up of objects
which may be simple or highly structured and are part of the universe of discourse defined by the
type system of the PISA architecture. The type system must therefore be rich enough to satisfy all
our requirements. This we recognise as a research challenge.

The information space is persistent. That is, the programmer has no knowledge of where the
data resides. This may be done locally in main store or disk or remotely on non-local processors. The
programmer is relieved of the burden of organising the physical storage of data in the system and
presented with a conceptually simple model of data.

The mechanisms for binding in the persistent information space are those of the name space
together with those used for introducing names in the architecture language.

At present we feel that it is premature to build in mechanisms and protocols for concurrency
and transactions. We subscribe to the view that it is more sensible to build in a primitive for
synchronization and a mechanism for specifying non-deterministic parallel computation and building
the required protocols out of them by layers of abstraction[17]. For example it is possible to build
monitors out of a primitive semaphore and a cobegin statement.

At a lower level the persistent information space is supported by a stable store mechanism for

13

reliability. The stable store may be distributed over many storage devices and processors and it is
currently the focus of some research to build such a system.
Given the above components we envisage the architecture constructed diagrammatically as

follows.

Concurrency /
Transactions

Persistent
Information
Store

Stable Store

There are a number of lines built up by abstractions on the concurrency primitives. The
reason for this is that although it is obvious that all of the protocols may be built out of the primitives
it is not obvious that they form a hierarchy. Users of the persistent information space request a level
of service for the data they are going to use. For example, two Ada tasks may request a rendezvous
protocol over certain data. If this can be granted, the protocol is given to the user to manipulate the
data. The type of the protocol, be it a simple lock or a complicated transaction mechanism with
recovery depends on the application. The persistent information space should be regarded as being
inhabited by many processes concurrently. To use data simultaneously two processes must agree on a

protocol. Since the protocols contain the data any two processes that are independent in their use of

14

data may utilise competing protocols simultaneously.

7. Conclusions
A cause of difficulty in constructing suites of application programs out of existing languages,

libraries, operating systems and databases has been identified. It may be decomposed into two parts

1. an overcomplex relationship between programs and their environment

2. inconsistency among the services provided by the environment
The approach proposed to overcome this is to design the environment and the language as a coherent
whole. The initial steps outlined in this paper are sketches of the way certain facilities, such as
flexible binding, reliable storage, long term storage etc. - currently provided by the operating system
may be profitably specified as part of a language. Elsewhere we publish work where we demonstrate

this approach is feasible.

8. Acknowledgements

Our dependence on a working implementation of PS-algol, from which we have learnt much,
cannot be overstated. It was built largely by the following members of our team: Pete Bailey, Fred
Brown, Paul Cockshott and Al Dearle. We also benefitted from suggestions and ideas arising in
discussions with Peter Buneman and Tony Davie.

Alvey grant IKBS 104 supports this research at both Universities and at ICL. The work is also
supported at Glasgow by SERC grants GRC 21977 and GRC 21960 and at St Andrews by SERC grant

GRC 15907 and at both Universities by grants from ICL.

9. References
1. Atkinson, MLP., Cockshott, W.P. & Chisholm, K.J. NEPAL - The New
Edinburgh Persistent Algorithmic Language. DATABASE Infotech
State of the Art Report 9, 8 (1982), 299-318.
2. Atkinson, M.P,, Bailey, P.J., Cockshott, W.P,, Chisholm, K.J. & Morrison, R.
An approach to persistent programming. Computer Journal 26, 4 (1983), 360-365.
3. Atkinson, M.P,, Bailey, P.J,, Cockshott, W.P. & Morrison, R.

PS-algol reference manual.

S

9.

10.

11.

12,

13.

14.

15.

15

Universities of Glasgow and St Andrews PPRR-12

(1984).

Atkinson, M.P. & Morrison, R. Procedures as persistent data objects.
ACM.TOPLAS 7, 4 (1985).

Atkinson, M.P & Buneman, O.P. Database programming language design.

in preparation.

Atkinson, M.P. & Morrison, R. Types, bindings and parameters in a persistent environment.
Proc. Appin workshop.

Universities of Glasgow and St Andrews PPRR-16 (1985), 1-24.

Campbell, R.H. & Habermann, AN. The specification of process synchronization
by path expressions.

Lecture Notes in Computer Science, 16 Springer-Verlag (1974).

Cockshott, WP, Atkinson, M.P,, Bailey, P.J,, Chisholm, K.J. & Morrison, R.

The persistent object management system. Software, Practice & Experience 14 (1984).
Dijkstra, EW. THE multiprogramming system.

Comm.ACM 11,5 (1968),341-346.

Demers, A. & Donahue, J. Revised report on Russell.

Technical report TR79-389, (1979), Cornell University.

Dennis, JR. Segmentation and the design of multiprogrammed computer systems.
JLACM 12,4 (1965), 589-602.

Gunn H.LE,Morrison R., On the implementation of constants

Information Processing Letters 9,1 (1979), 1-4.

Hoare, C.A.R. Towards a theory of parallel programming.

In Operating System Techniques (Ed Hoare & Perrot).

Academic Press, London (1972), 61-71.

Hoare, C.A.R. Monitars : an operating system structuring concept.

Comm.ACM 17, 10 (1974), 549-557.

Ichbiah et al, The Programming Language Ada Reference Manual.

16

16.

17.

18.

19.

20.

21.

22.

23.

ANSI/MIL-STD-1815A-1983. (1983).

Landin, P.J. The next 700 programming languages.

Comm.ACM 9, 3 (1966), 157-164.

Krablin, G.L. Building flexible multilevel transactions in a
distributed persistent environment.

Proc. of the Appin workshop.

Universities of Glasgow and St Andrews PPRR-16 (1985), 83-106
McCarthy, J. et al. Lisp 1.5 Programmers manual.

MLLT. Press Cambridge Mass. (1962).

Morrison, R. S-algol language reference manual.

University of St Andrews CS/79/1 (1979).

Richards M. BCPL, a tool for compiler writing and systems programming
AFIPS SICC 1969

Strachey, C. Fundamental concepts in programming languages.
Ozxford University Press, Oxford (1967).

Tennent, R.D. Language design methods based on semantic principles.
Acta Informatica 8 (1977), 97-112.

Turner, D.A. SASL language manual.

University of St.Andrews CS/79/3 (1979).

Wirth, N. The programming language Pascal.

Acta Informatica 1, 1 (1971), 35-63.

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,

Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,

Glasgow G12 8QQ

Scotland.

Books

Davie, A.J.T. & Morrison, R.
"Recursive Descent Compiling", Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.))
"Databases”, Pergammon Infotech State of the Art Report, Series 9, No.§,

January 1982. (535 pages).

Cole, A.J. & Morrison, R. . .
"An introduction to programming with S-algol", Cambridge University Press,

Cambridge, England, 1982.

Stocker, P.M., Atkinson, M.P. & Grey, P.M.D. (eds.) _
"Databases - Role and Structure”", Cambridge University Press, Cambridge,

England, 1984.

Published Papers

Morrison, R. .
"A method of implementing procedure entry and exit in block structured high level

languages". Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z.
"The Graffiti graphics system", Proc. of the DECUS conference, Bath (April 1978),
5-10.

Atkinson, M.P.
"A note on the application of differential files to computer aided design", ACM
SIGDA newsletter Summer 1978,

Atkinson, M.P.
"Programming Languages and Databases", Proceedings of the 4th International
Conference on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78,
408-419. (A revised version of this is available from the University of Edinburgh
Department of Computer Science (EUCS) as CSR-26-78).

Atkinson, M.P.
"Progress in documentation: Database management systems in library
automation and information retrieval”, Journal of Documentation Vol.35, No.1,
March 1979, 49-91. Available as EUCS departmental report CSR-43-79.

Gunn, H.LLE. & Morrison, R.
"On the implementation of constants”, Information Processing Letters 9, 1 (July
1979), 1-4.

Atkinson, M.P.
"Data management for interactive graphics”, Proceedings of the infotech State of
the Art Conference, October 1979. Available as EUCS departmental report
CSR-51-80.

Atkinson, M.P. (ed.)
"Data design”, Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R.
"Low cost computer graphics for micro computers”, Software Practice and
Experience, 12, 1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"PS-algol: An Algol with a Persistent Heap", ACM SIGPLAN Notices Vol.17, No.
7, (July 1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Nepal - the New Edinburgh Persistent Algorithmic Language®, in Database,
Pergammon Infotech State of the Art Report, Series 9, No.8, 299-318 (January
1982) - also as EUCS Departmental Report CSR-90-51.

Morrison, R.
"S-algol: a simple algol",-Computer Bulletin 11/31 (March 1982).

Morrison, R.
“The string as a simple data type", Sigplan Notices, Vol.17,3, 46-52, 1982.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming", presented at CREST course UEA,
September 1982, revised in "Databases - Role and Structure”, see PPRR-8-84.
Morrison, R.
"Towards simpler programming languages: S-algol", IUCC Bulletin 4, 3 (October
1982), 130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Problems with persistent programming languages”, presented at the Workshop
on programming languages and database systems, University of Pennsylvania.
October 1982. Circulated (revised) in the Workshop proceedings 1983, see
PPRR-2-83.

Atkinson, M.P.
"Data management", in Encyclopedia of Computer Science and Engineering 2nd

Edition, Ralston & Meek (editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Algorithms for a Persistent Heap", Software Practice and Experience, Vol.13,
No.3, 259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"CMS - A chunk management system", Software Practice and Experience,
Vol.13, No.3 (March 1983), 273-285. Also as EUCS Departmental Report

CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming", presented at the DEC workshop
on Programming Languages and Databases, Boston, April 1983.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"An approach to persistent programming", The Computer Journal, 1983, Vol.26,

No.4, 360-365 - see PPRR-2-83.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming”, 10th Austrafian Computer
Conference, Melbourne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.
"High level language support for 3-dimension graphics”, Eurographics
Conference Zagreb, North Holand, 7-17, Sept. 1983. (ed. P.J.W. ten Hagen).

Cockshott, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Morrison, R.
"POMS : a persistent object management system”, Software Practice and

Exerience, Vol.14, No.1, 49-71, January 1984.

Kulkarni, K.G. & Atkinson, M.P.
"Experimenting with the Functional Data Model", in Databases - Role and
Structure, Cambridge University Press, Cambridge, England, 1984.

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough", Foundations of Software
Technology and Theoretical Computer Science (ed. M. Joseph & R.
ggyaagasundar) Lecture Notes in Computer Science 181, Springer Verlag, Berlin

Atkinson, M.P., Bocca, J.B., Elsey, T.J., Fiddian, N.J., Flower, M., Gray, P.M.D.
Gray, W.A., Hepp, P.E., Johnson, R.G., Milne, W., Norrie, M.C., Omololu,
A.O., Oxborrow, E.A., Shave, M.J.R., Smith, A.M., Stacker, P.M. & Walker, J.
"Thg Proteus distributed database system", proceedings of the third British
National Conference on Databases, (ed. J. Longstaff), BCS Workshop Series,
Cambridge University Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R.

"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985)
- see PPRR-9-84.

Morrison, R.,Bailey, P.J., Dearle, A., Brown, P. & Atkinson, M.P.
"Th_e persistent store as an enabling technology for integrated support
environments”, 8th International Conference on Software Engineering, Imperial
College, London (August 1985), 166-172 - see PPRR-15-85.

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent enavironment", proceedings of
Data Types and Persistence Workshop, Appin, August 1985, 1-24 - see
PPRR-16-85.

Davie, A.J.T.
"Coqditiona! declarations and pattern matching”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

Krablin, G.L.
"Building flexible multilevel transactions in a distributed persistent environment,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
86-117 - see PPRR-16-85.

Buneman, O.P. :
"Datg types for data base programming”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.
"Addressing mechanisms and persistent programming", proceedings of Data
Types and Persistence Workshop, Appin, August 1985, 363-383 - see
PPRR-16-85.

Norrie, M.C.
"PS-algol: A user perspective”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.
"On the need for a Flexible Type System in Persistent Programming Languages”,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
423-438 - see PPRR-16-85.

Morrison, R., Brown, A.L., Bailey, P.J., Davie, A.J.T. & Dearle, A.
"A persistent graphics facility for the ICL PERQ", Software Practice and
Experience, Vol.14, No.3, (1986) - see PPRR-10-84.

Atkinson, M.P. and Morrison R.
"Integrated Persistent Programming Systems”, proceedings of the 19th Annual
Hawaii International Conference on System Sciences, January 7-10, 1986 (ed.
B. D. Shriver), vol llA, Software, 842-854, Western Periodicals Co., 1300 Rayman
St., North Hollywood, Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.
"A Persistent Information Space Architecture”, proceedings of the 9th Australian
Computing Science Conference, January, 1986 - see PPRR-21-85.

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.1,
(1986) 38-45.

Atkinson, M.G., Morrison, R. & Pratten G.D.
"Designing a Persistent Information Space Architecture”, proceedings of
Information Processing 1986, Dublin, September 1986, {ed. H.J. Kugler),
115-119, North Holland Press.

Morrison R., Dearle, A., Brown, A. & Atkinson M.P.; "An integrated graphics
programming environment", Computer Graphics Forum, Vol. 5, No. 2, June 1986,
147-157 - see PPRR-14-86.

Buneman, O.P. & Atkinson, M.P.
"Inheritance and Persistence in Database Programming Languages”;
proceedings ACM SIGMOD Conference 1886, Washington, USA May 1986; The
Association for Computing Machines, 11 West 42nd St., New York, NY 10036; -
see PPRR-22-86.

Brown; A.L. & Dearle, A.
“Implementation Issuses in Persistent Graphics"; University Computing, Vol. 8,
NO. 2, (Summer 1986) - see PPRR-23-86.

Internal Reports

Morrison, R.
"S-Algol language reference manual”, University of St Andrews CS-79-1, 1979.

Bailey, P.J., Maritz, P. & Morrison, R.
"The S-algol abstract machine", University of St Andrews CS-80-2, 1980.

Atkin':son, M.P., Hepp, P.E., lvanov, H., McDutf, A., Proctor, R. & Wilson, A.G.
EDQUSE reference manual®, Department of Computer Science, University of
Edinburgh, September 1981.

Hepp, P.E. and Norrie, M.C.

"RAQUEL: User Manual", Department of Computer Science Report CSR-188-85
University of Edinburgh. ’

Norrie, M.C.

"The Edinburgh.Node of the Proteus Distributed Database System", Department
of Computer Science Report CSR-191-85, University of Edinburgh.

In Preparation

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : A DBMS based on the functional data model", to be submitted.

Atkinscn, M.P. & Buneman, O.P.

"Database programming languages design", submitted to ACM Computing
Surveys - see PPRR-17-85.

Persistent Programming Research Reports

Theses . This series was started in May 1983. The following list gives those produced and
those planned pius their status at 28th October 1986.

The following Ph.D. theses have been produced by member of the group

and are available from: Copies of documents in this list may be obtained by writing to:
The Secretary, ' The Secretary,
Persistent Programming Group, The Persistent Programming Research Group,
University of Glasgow,) Department of Computing Science,
Department of Computing Science, University of Glasgow,
Glasgow G12 8QQ, Glasgow G12 8QQ.
Scotland.

PPRR-1-83 The Persistent Object Management System -

Atkinson,M.P., Chisholm, K.J. and Cockshott, W.P. £1.00
W.P. Cockshott ‘
Orthogonal Persistent, University of Edinburgh, February 1983. PPRR-2-83 PS-algol Papers: a collection of related papers on PS-algo! -
Atkinson, M.P., Bailey, P., Cockshott, W.P., Chishoim,
K.J. and Morrison, R. £2.00
K.G. Kulkarni)) .
Evaluation of Functional Data Models for Database Design and Use, University of PPRR-4-83 The PS-algol reference manual -
Edinburgh, 1983. Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00
P.E. Hepp PPRR-5-83 Experimenting with the Functional Data Model -
A DBS Architecture Supporting Coexisting Query Languages and Data Models, Atkinson, M.P. and Kulkarni, K.G. £1.00

University of Edinburgh, 1983.
PPRR-6-83 A DBS Architecture supporting coexisting user interfaces:
Description and Examples -

G.D.M. Ross) N . Hepp, P.E. £1.00
Virtual Files: A Framework for Experimental Design, University of Edinburgh,
1983. PPRR-7-83 EFDM - User Manual -
K.G.Kulkarni ‘ £1.00
G.O. Owoso) o) . PPRR-8-84 Progress with Persistent Programming -
Data Description and Manipulation in Persistent Programming Languages, Atkinson,M.P., Bailey, P., Cockshott, W.P.. Chisholm,

University of Edinburgh, 1984. K.J. and Morrison, R. ' £2.00

PPRR-9-84 Procedures as Persistent Data Objects -
Atkinson, M.P_,Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R, £1.00

PPRR-10-84 A Persistent Graphics Facility for the ICL PERQ -
Morrison, R., Brown, A.L., Bailey, P.J., Davie, AJ.T.
and Dearle, A. £1.00

PPRR-11-85

PPRR-12-86

PPRR-13-85

PPRR-14-86

PPRR-15-85

PPRR-16-85

PPRR-17-85

PPRR-18-85

PPRR-19-85

PPRR-20-85

PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PS-algol Abstract Machine Manual
PS-algo! Reference Manual - third edition

CPOMS - A Revised Version of The Persistent Object
Management System in C -
Brown, A.L. and Cockshott, W.P.

An Integrated Graphics Programming Environment - second
edition -
Morrison, R., Brown, A.L., Dearle, A. and Atkinson, M.P.

The Persistent Store as an Enabling Technology for
Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, AL. and
Atkinson, M.P.

Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R.

Database Programming Language Design -
Atkinson, M.P. and Buneman, O.P.

The Persistent Store Machine -
Cockshott, W.P.

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R.

Building a Microcomputer with Associative Virtual Memory -
Cockshott, W.P.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D.

Inheritance and Persistence in Database Programming
Languages -
Buneman, O.P. and Atkinson, M.P.

Implementation Issues in Persistent Graphics -
Brown, A.L. and Dearle, A.

Using a Persistent Environment to Maintain a Bibliographic
Database -
Cooper, R.L., Atkinson, M.P. & Blott, S.M.

£1.00

£2.00

£2.00

£1.00

£1.00

£15.00

£3.00

£2.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

PPRR-26-86 Exception Handling in a Persistent Programming Language -
Philbrow, P & Atkinson M.P. £1.00

PPRR-28-86b A Domain Theoretic Approach to Higher-Order Relations -
Buneman, O.P. & Ochari, A. £1.00

PPRR-29-86 A Persistent Store Garbage Collector with Statistical Facilities -
Campin, J. & Atkinson, M.P £1.00

PPRR-30-86 Data Types for Data Base Programming -
Buneman, O.P. £1.00

In Preparation

Some Applications Programmed in a Persistent Language -
Cooper, R.L. (ed).

PS-algol Applications Programming -
Cooper, R.L.

A Compilation Technique for a Block Retention Language -
Cockshott, W.P. and Davie, A.J.T.

Thoughts on Concurrency -
Wai, F.

Concurrency in Persistent Programming Languages -
Krablin, G.K,,

Providing Database Interfaces Within A Persistent Environment -
Atkinson, M.P. & Cooper, R.L.

