University of Glasgow
Department of Computing Science

Lilybank Gardens
Glasgow G12 8QQ

%

University of St Andrews
Department of Computational Science

il ll}'.ﬂ il

North Haugh
St. Andrews KY16 8SX

Building a Microcomputer with

Associative Virtual Memory

Persistent Programming
Research Report 20

Building a Microcomputer with Associative Virtual
Memory

W P Cockshott

Glasgow University Computer Science Dept

ABSTRACT
This report describes the motivation for and design of the POPPY com-

puter designed to support persistent programming languages. The computer
uses a novel virtual memory architecture to support object addressing.

November 14, 1985

Building a2 Microcomputer with Associative Virtual
Memory

W P Cockshott
Glasgow University Computer Science Dept

1. Persistent Programming

Conventional programming languages like Basic, Pascal or C present the

programmer with two broadly different views of memory: program

variables and files. The distinction between them arose because a com-

gllster generally has two different types of physical store : RAM and
isks.

Variables are used to store the working data of a program and are held
in RAM, whereas files are held on Dmi and are used to transmit infor-
mation from one program to another. As most programmers Know to
their cost, files are a lot more tedious to program with than variables. It
is not just that they are slower than variables, they are also a lot less
flexible.

In a language like Pascal, your variables are Typed and you can create
new types of data to handle new applications. For graphics work you
can define types for PICTURES, WINDOWS, COLOURS etc, whose pro-
perties are optimised to suit the algorithms that they are going to be
used in. Your variables can also be structured using type constructors
such as arrays, sets, records and pointers. With these facilities you can
readily create arbitrarily complex data structures. The freedom that this
gives the programmer is even greater in those languages that allow the
dynamic creation of data on a heap. In addition, a modern program-
ming language will provide its variables with facilities for information
hiding by means of modules and scope rules.

Contrasting this with what we get from files we see that they come a
very poor second. They are untyped for a start. When you open a file
you do not know what its internal structure is going to be. It may have
been written as a file of records, but you can open it as a file of charac-
ters, so any type rules go out of the window.

Even worse, not all types of data in files. It is easy to build up a binary
tree or a linked list on the Pascal heap. If this is then written out to a
file of records, then all of the pointer structures get destroyed. If you
read the records back in, there is no way of linking them back together
again.

To cap it all, we find that files all appear to be "global". A file created
by one module of a program can be read in any other module, making it
very difficult to implement information hiding between modules.

-2

With all these disadvantages why do we put up with files?

It seems that there are three reasons. The first is just historical inertia.
The distinction between files and variables has been around so long that
it is part of the established paradigm of computing. It requires a con-
ceptual revolution to break away from it. Behind this there are
economic and technical reasons. Ram chips are volatile. They do not
store information in the absence of a power supply, so that disk files
tend to be used for information that has to persist over long periods. In
addition they are more expensive than disks. Small portablc computcrs
do use battery backed CMOS Ram chips for persistent storage, but for
price reasons the capacity on these is very small. Howecver these
hardware problems are by no means insuperable.

1.1. Virtual memory

Hardware designers were quick to see the possibilities inherent in rotat-
ing magnetic storage devices. Virtual memory using paging techniques
was achieved by the Manchester University ~Atlas” computer in 1960.
This allows rotating storage devices to be seen as an extension to the
(Von Neumann) random access store.

In the quarter century since that basic advance, software designers have
made supprisingly little use of the potentialities of virtual memory. It
has been seen mainly as a way of being able to run bigger programs. An
area of disk is set aside for page swapping, but this inherits both the
advantages and the disadvantages of conventional RAM. It is viewed as
both random access, and volatile. Persistent data is still kept in files.

1.2. Store mapping

Some of the relatively early virtual memory operating systems, like
Multics and the lesser known Edinburgh Multi Access System provided
an advance, in that they allowed files to be mapped into the random
access virtual memory. Persistent data could then be accessed as if it
were an array by the normal operations of a programming language.
However, this approach was only supported in certain systems program-
ming languages and never came into wide use. The operating systems
still maintained two seperate types of store, governed by different con-
ventions. There was the file store which was public, hierarchically
organised and addressed associatively via long symbolic file names. Then
there was the virtual memory which was essentially private and organ-
ised as an array. One area of store could be partially mapped onto the
other, but that presupposed that they were seen as different in the first
place.

1.3. PS-algol

From the late *70s there have been breakthroughs in programmin
language design that enable us at last to get away from the ol
file/variable paradigm. This has come through the incorporation of the
idea of persistence into a number of experimental programming

-3-

languages. The first of these were Smalltalk and PS-algol, former
developed at Xerox PARC and the latter at Edinburgh and St-Andrews
universisties. Subsequently the idea has been adopted in a number of
other languages: B from the Mathmatical Centre in Amsterdam, Poly
from Cambridge University, and Amber from Bell Labs.

These languages allow variables of any type to persist and havc no
notion of files in the usual sense.

PS-algol for example supports a persistent heap. Data of any type
including procedures can be put on the heap, which will then persist
beyond the time of execution of the program that created the data. The
important thing that distinguishes a persistent heap is that pointers or
references to objects can be made to persist, so that a linked list or tree
used by one program can be accessed weeks later by another. The PS-
algol system itself hides the existence of different store models in the
underlying operating system but only at the cost of considerable
software complexity and associated performance overheads. The various
teams implementing Smalltalk have also found that although a per-
sistent heap provides a superb programming environment, the complex
software needed to sustain it means that you need very fast processors
to get an acceptable performance.

1.4. Virtual Memory Micros

Over the last couple of years however, it has become possible to buy
microprocessors With virtual memory. It should thus be possible to build
a relatively cheap personal computer with hardware support for per-
sistent programming. The rest of this article describes the Poppy, a sin-
gle board computer with a virtual memory system optimised for per-
sistent programming languages.

What are the requirements of persistent programming that have made
it relatively difficult to support with purely software techniques?

Persistent programming systems, whether PS-algol or Smalltalk. are
object based. Instead of viewing store as a uniform array of bytes, they
view it as a collection of objects on a heap. Each object is addressed via a
unique Persistent Identifier (PID). A PID is valid not just for the run of
one program like anormal store address, but for an indefinite period.
Objects identified in this way may migrate through the store lavers
from RAM to disk and back again.

This means that there are potentially a very large number of PIDs and
secondly that since there is no fixed relationship between a PID and a
store location, the underlying addressing mechanism is associative rather
than direct.

BOX 0
Object Oriented Programiming

In object oriented languages like PS-algol or Smalltalk objects may be simple things like
strings and arrays or they may be more active objects ca- pable of carrying out computation in
thelr own right. An example of this might be an abstract object like a dictionary that
maps words in one language into those of another. The following program fragment shows how
we might define this sort of object in PS-algol.

1) First we must say what interface the dictionary object will present to the outside world. For
this PS-algol uses what it calls "Structure Classes’.

structure dictionary(
proc{siring- >string) trans;
proc(string,string) define

)

This defines a dictionary to be an object that has two attributes, an ability to map strings into strings
and to define mappings between strings.

2) We now define a Generator Function that will manufacture dictionaries

let make.dict = proc(->patr)

begin
structure cell(string name,equivipntr lefi,right)
let head:=nil

let enter = proc(cpntr curr.celltemp -> pntr)

case true of

currcell = nidl : temp

temp(name) < curr.cell(name) : begin
. eurrcell(left) == enter(currcell(left)temp)
curr.cell

end

temp(name) > curr.cell(name) : begin
curr.cell(right) s enter{ curr.cell(right)temp)
curr.cell

end

default : curr.cell

dictionary(
proc(estring n - > string)
begin
let p = head
while p ~ = nil and n ~ = p{ name) do
p=if n <p(name) then p(left) else p{ right)
if p is cell then plequiv) else "unknown”
end,
proc(string s1,52)
head:menter(st,ce11(s1,52,niLnil))
)

end

BOX 0 (continued)

quired to define and translate words.

3) We now declare a dictionary in the global environment:
let english.to.american = make.dictQ
The english.to.american dictionary will then last as long as the global environment lasw,
seconds or months.
4) We can then insert and lookup words

english.to.american(define)"colour”,” color™)
english.to.american(define)(" programme”,” program”)
write english.toamerican(transX"dived”)

he

This defines makedict to be a function that creates 2 dictionary with the funclional aitributes re

that

Box 1
Each object in the PS-algol system has a unique identifier (
called a PID or Persistent IDentifier in PS-algol) and ad-
dressing has to be done in two parts, using an objct ID,
and an offset into an object.

0BJECT

PiD

* FIELD

-
QFFSET

1.5. Persistent Address Spaces

How big is a big address space?

One is accustomed to think of a 24 bit address space as large and a 32
bit address space as huge. Once you go over to persistent programming,
things look a bit different. For a start you have to divide the address
space up between different users. You could give every user their own
32 bit address space, but this would mean t%;lat they could not share
data, which would not be very satisfactory. On a large machine you
can easily have one or two hundred registered users. If you reserved a
byte of the address to specify a user number you find that you arc
down to 16 megabytes per user. Remember that this has to hoid not just
transitory data that is used during computations, but all the long tcrm
data that would normally go into the file store.

For most users at present 16 megabytes would be enough, but for some
it is already a bit tight and we know that with the development of
computing the amount of store used has risen inexorably. If you start

-6 -

holding digitised images or digitised voice online then you are going to

need a lot more memory. A 3§1bit address space is likely to look rather

tight for persistent programming within the the next decade or so. But

2]'ius’t hg;v big an addressing system does persistent programming
eman

In languages that use a heap, a great number of objects are created that
last only a short while. If each object were given a new object number,
object numbers will be used up faster than the accumulation of per-
sistent objects would justify. Broadly there are two solutions o this,
either you make the object space so big that you never run out, or you
build in a garbage collector that is able to recover unused object
numbers. /

The first solution seems to be the better. Once you go to billions of
objects, conventional garbage collection techniques are likely to be too
expensive. A pointer fgollowing arbage collector would be far too slow
when working on a heap of t%js size. A reference count one would
impose an overhead cost on every pointer assignment and upon every
stack retraction. It is likely that on very large heaps it will be necessary
to use incremental garbage collections based upon local information to
tidy up local regions of the global heap. Such techniques will hold onto
some things that could be discarded, but provided that we are not going
to run out of object numbers, this would be supportable. Infrequently
used objects would migrate onto optical archive store. Some objects in
archive store will never be reused because they are actually unreach-
able though the system does not know it, but it is in the nature of
archive stores to hold a lot junk that nobody is going to ever look at
again.

How big does your object address space have to be so as not to run out
of object numbers?

Back of an envelope calculations indicate that a 48 bit object number is
likely to be enough. A computer creating half a million objects per
second would take over 10 years to run out of object numbers, by
which point it is likely to have been scrapped. In the end, in order to
allow room to expand the address space accross a network, I chose a 64
bit PID (see box 2).

1.6, What chip to choose

There are now several microprocessors supporting virtual memory: the
Intel 286 used in the IBM PC/AT, the Motorola 68020, the Intel 432
and the National Semiconductor 32000 series. Which one is most suit-
able for an associative, object oriented virtual memory?

Examination of all of these architectures, led me to the conclusion that
only the NatSemi 32000 series met all of the requirements. At first this
may seem paradoxical, as the 32000 series (like the 68000 series) has

7.

Box 2
An obvious extension to the idea of a large persistent address
space is to allow the address space to be distributed over scveral
machines. This requires a further extension of the address space,
If we allow for a local area network with 64000 machincs, we (ind that
a 64 bit key would uniquely identify every object cver created on any
machine on the network.

rl 6 BITS 48 BITS

Nelwork address Local object Number

the classic Von Neumann view of memory as a uniform array of words,
whereas the Intel machines are explicitly object oriented. Both of them
have serious limitations. The 286 allows far too few objects: each uscr
only has access to 8192 object descriptors, this comes from it being basi-
cally a 16 bit machine. The intel 432 is a more serious proposition.
Again it was rejected as having too small an address space. Other disad-
vantages of the 432 were its low speed and the lack of affordable com-
pilers for it.

The National Semiconductor 32016 turned out to be flexible enough for
some quite simple additional hardware to turn its flat, paged, virtual
memory into an associative object oriented virtual memory.

1.7. Programmers view of Poppy

To the machine level programmer, the Poppy’s store is divided into 3

parts:

1 Machine registers make up the fastest store, it has 8 floating point
registers, 8 general purpose registers and 8 special purpose registers.

2 Temporary values that will not fit into registers are stored on a
stack.

3 Data of longer duration is held on a vast heap, made up of a practi-
cally inexaustible number of named objects.

The Poppy instruction set is an extended version of the NS32000 archi-
tecture. Certain of the machines addressing modes to enable them to
dereference 64 bit object keys rather than 24 bit virtual addresses.

The basic NS32000 architecture supports a 24 bit virtual address space,
which was well described in the April 1983 edition of Byte. Most
addressing modes on the Poppy still operate using this space.

1 Register

The general purpose and floating point registers scrve as the
operands in Register address mode.

2 Register Relative

-8 - 9.
A general purpose register contains a 24 bit virtual address. o S
Wh%ch a displacement g?dded to derive the effective address. Box 3
Memory Space
This is similar to the Register Relative address mode but uses one of
the dedicated high level language regiaters PCSP,FPSB plus an
offset to get to the operand. T%‘éie register again all contain 24 bit
pointers.
ObJCCt Dereference Disp 1 Steck Register Disp 2

This is the new addressing mode added by the PSm to the basic
NS32000. It allows a 64 bit PID in memory to be derefenced. An
offset is added to the start of the object refered to by the pointer to
obtain the operand, it is explained in box 3.

32 it patr 1 ¢

[e—

In memory indirect addressing
a patr on stack is used to find

Immediate the address of a word in virtual
The operand is encoded within the instruction. oty
Absolute disp 1(disp2(SP)) | register } Target vord
in virtuel
An absolute address within the 24 bit virtual address space is memory
specified.
Register Disp 2

Top of stack

The operand is Pushed (Poped) onto (from) the top of the stack.
Indexing

Any of the address modes other than theRegister or Immediate may
be further qualified by an index. Indexing has the effect of calcu-
lating an "effective address” (in virtual memory) and then mul-
tipying one of the general purpose registers by 1,2,4,0or 8 and then
adding it to the total to get the final Effective address of the
operand. The indexing option thus allows for arrays of bytes, short
integers, integers, and PIDs or reals.

Disp 1 Stack—

) 3} PID oa steck
| e— |

- Grane D

Cffset

In object addressing the
same address mode is
used but instead of a
poty on stack, a 8 byte
PID is associatively
translated to find the start of an object
prior to the offset being added

Object refered
to by PID

Tergel word
ia object

1.8. Poppy Hardware architecture

The Poppy is a single board virtual memory computer based upon the ;
National Semicondutor 32000 series chipset, with a custom additional

memory management unit. The overall logical structure of the processor

is shown in the following diagram:

1.8.1. Processor Diagram on object addressing mode

The Processor is made up of 4 National Semiconductor chips, a timer, a

CPU, a memory management unit or MMU and a floating point unit.
These are connected via a 16 bit multiplexed private address/data bus.
In normal operation the CPU outputs a virtual address onto the

- 10 -

Box 4

cPy Memery Management
Meltiplex Bus Unit

Fleatling Point
Precessor

Dynemic Rem
Contreler

Ras/Cas Address

te dyramic RAM

DA Controler
Pid trans end bus interface

i Mein Date Bus

[

Main eddress Bus

Processor Block Diagram

multiplexed bus during the first time interval of a store cycle. This is
latched into the MMU which tranlates it into a physical address which
is output on the next store cycle.

1.8.2. Memory

The physical address is latched and output to the demultiplexed address
bus to which the memory is connected. This memory is made up of
both nonvolatile RAM and more conventional volatile Dynamic RAM.
The nonvolatile RAM is made of high speed CMOS static ram with
lithium battery backup to provide 10 year data retention. The dynamic
ram can be made up of either 64k or 256k chips. To save board arca
the dynamic RAM is mounted on 256k or 1 Meg SIPs, enabling cither
512k bytes or 2 Mega bytes to fit into an area of 4.8" by 2.2". This way
of mounting chips Jooks like becoming a a standard for dynamic rams
since it gives about 4 times the density of conventional DILs. Data com-
ming from or going to the memory travels along the demultiplexed data

- 11 -

bus.

1.8.3. PID Translate Unit

Between the multiplexed address/data bus and the demultiplexed buses
is the PID tramslate unit (PTU). This unit supports thc new object
addressing mode. Logically it is a 512 word associative cache memory
mapping %’IDS to virtual addresses.

MULTIPLEX BUS Box 5§

Ceche Rem

B (lo bits)

Memory
4 eddress
registers

Main sddress bus (hi bits)
Comparaler

7

Mein Deta Bus

Buffer
Diagram of the logical structure of the PTU

When the Processor uses the Object Indirect mode of addressing, the
CPU thinks that it is just trying to fetch a 32 bit pointer from memory
as per the NS32000 memory relative addressig mode. Instead of allow-
ing this to happen, the PTU traps this, and fetches not a 32 bit pointer
but a 64 bit PID from memory. It looks this up in the associative cachc
and returns the virtual address corresponding to the PID. The processor
"thinks" it is using the old memory relative addressing mode, when in
fact there is an associative operation going on behind the scenes.

How does this associative memory work?

-12-

A true associative memory chip is a set of entries each made up of M
bits of tag and N bits of data. When the chip is presented with an M bit
pattern on its inputs, it simultaneously compares this with the tag fields
of all the entries and if one of them matches, the .cor_r&cpondmg N bits
of data are returned. Because of technical difficulties in producing such
chips they are not readily available, and practical associative memories
in applications like Mini or Mainframe cache memories have to be built
out of conventional RAM chips.

These work on a modification of the hashing techniques used for
software table lookup applications. Two banks of fast static RAM are
used, the tag RAM which is M bits wide and the N bit wide data RAM.
The input pattern is hashed to provide an address in the tag RAM and
then the tag at that address is compared with the input tag, if they
match then the data at the corresponding address in the data ram is
returned.

74 . Box 6
H
. 2
Y E 3*
g i 1SS
3 e
EA cncue sarelcx 13

MUT) b2 APAGTS,
D4R B3 AOOAS

K Ao
KRt

T

o
=E"

pats-1z { PRocassos
. o

b ADO-15

Apores Bus - Ao-23

REG 308 N
Réssecour

maTcH

3 DATABUIN!
D&-1S

DRTR BUS 42
po-

The implementation of the PTU

- 13-

This is the technique used in the Poppy, except that for reasons of econ-
omy the tags and the data are held on the same chips. The PTU archi-
tecture is shown in Box 5 . It sits between the processor’s private multi-
plexed address/data bus and the main address and data busses going to
memory. It is made up of:

Buffer

Between the databus and the private address/data bus are a 16 bit
bidirectional buffer and a 16 bit comparator connected in parallel.
This buffer can be opened to allow the passage of data to and from
the private bus. The comparator detects whether the contents of
the two buses is the same.

The buffer is implemented wit 7415245 s and the comparator with
a pair of 74f521 s.

Memory-Address-Registers

The private bus is connected to the address bus via two memory
address registers, the Data Address Register and the Pid Address
Register. These are implemented by using 2 of the 4 registers in a
set of 741s670s.

Cache
The cache is made up of 8192 by 16 bit words of CMOS static

Cache-Address-Register

The low order 3 address bit of the cache come from the main
address bus, but the mid order bits come from a separate 8 bit Hash
register, and the high order bits come from the control unit.

Control-Unit

This unit monitors the CPU bus transactions and steers data
between the various busses and registers.

During a normal memory fetch the address is latched into the Data
Address Register which is then output onto the address bus. During an
object indirect instruction, the following sequence of events takes place:
1 The CPU outputs the virtual address of a PID on the stack, simul-
taneously the Status Monitoring unit spots that this is an Object
Indirect addressing mode and puts the

The MMU translates this to a physical address

The PTU senses that this is a PID fetch and takes hold of the bus

and latches the physical address of the PID into the Pid Address

Register.

4 The memory returns the first 16 bits of the PID, which pass
through the bus buffers and a hashing function is performed to

W

- 14 -

produce an 8 bit result. This is latched into the Hash Address Regis-
ter.

5 The bus buffers are disabled and the PID cache outputs the first 16
bits of the PID found in the cache onto the private bus.

6 This is compared with the corresponding 16 bits of the PID being
read from main memory.

7 If they are equal the next 16 bits of the PID in memory and the
PID in the cache are compared, and so on until all 64 bits of the
PID from memory are shown to correspond to the pid in the cache.

8 If the two PIDs differed, then an address fault interupt is gen-
erated, otherwise the cache returns to the CPU the virtual address
at which the object corresponding to the PID is located. The proces-
sor then adds the contents of an index register to the virtual
address to find the field within object that the instruction wants.

1.8.4. Input Output

The board has two 1O interfaces. There are iSBX bus sockets and there
is the BBC tube. Both of these are proprietary interfaces. The two of
them are under the control of DMA and interrupt controler chips, the
NSC 16203 and NSC 16202 respectively. The NSC 16203 provides 4
DMA channels and the NSC 16202 provides either 8 or 16 interrupt
channels.

The iSBX bus is a simple IO bus developed by Intel for their multibus
series of boards. It allows small daughter boards to be mounted on a
CPU board. Each of these boards may contain one or two 1O devices.
Several manufacturers produce these boards and the interface was
chosen for its simplicity and the cheapness of the boards. Examples of
the sort of functions that are available on iSBX boards are serial inter-
faces, parallel interfaces, floppy disk controlers, SASI interfaces and
graphics boards.

There are two iSBX bus sockets on the board. Each looks like a set of 16
memory mapped byte wide registers. Each socket also has associated
with it 2a DMA channel and an interrupt channel.

The Tube is a proprietary high speed IO interface using custom VLSI
chips developed for the BBC microcomputer, manufactured by Acorn
Computers. Along with carefully designed software protocols it allows
the Poppy to delegate all terminal, network, and disk IO to the BBC
microcomputer. High level commands are passed to the BBC machine
which then executes the IO operation concurrently with the Poppy,
allowing the Poppy to continue with computation. The tube is con-
nected to a DMA and an interrupt channel on the Poppy.

The BBC micro can control floppy disks and winchester disks and pro-
vides a bit mapped graphics display, with the option of a mouse inter-
face.

_15-
1.8.5. Database Assist Hardware

Two additional pieces of circuitry have been included to speed up data-
base searches on the persistent store. One of these is the PF474 string
search processor described in the November 1984 edition of Byte. The
other is a special hashing unit that is intended to be used for computing
the indices of relational databases in persistent store.)

1.9. Storage management

Storage management software on the Poppy has to cooperate with the
hardware in presenting the programmer with a view of single, large,
object addressed store within which all distinctions between different
storage media and the geographical location of these media are effaced.
The storage system can be viewed from 3 levels:
Object store
Paged virtual memory
Physical store made up of:
Non volatile RAM
Volatile RAM
Rotating store

1.9.1. Object store

The object store is made up of up to 2 to the power of 64 distinct

objects. In principle each of these should be able to contain from 1 to 4

g?abyt_es of data. However for reasons to do with the restriction of the

addressing of early models of the National Semiconductor 16032 series,

%he practical limit for the size of each object is somewhat under 8§ mega-
ytes.

Each object is mapped onto the paged virtual memory of the processor as
it is used, in a way analogous to the mapping of virtual pages onto phy-
sical pages in a conventional virtual memory system. On occasions
objects have to be unmapped from the virtual memory of the 16032 in
order to prevent the virtual memory becoming too full.

At run time the PTU will translate PIDs to virtual addresses provided
that the appropriate PID/address pairs are loaded into the cache. If the
PID is not found in the cache a PID/missing interrupt is generated and a
software procedure is invoked to locate the object refered to by the PID
and load the PID/address pair into the cache. The PID which caused the
address fault has had its physical address stored in the PID Address
Regi fr. Iniirection on this register enables the value of the PID itself
to ocate:

1.9.2. Pidlam

This software procedure uses a data structure termed the PIDLAM
which is short for Persistent IDentifier to Local Address Map. The
PIDLAM is a hash table in virtual memory with the structure shown in
Box 7. Entries are found by Hashing a PID and then if necessary,

1

The Pidlam

chasing down an overflow chain until an entry with the same pid is
found.

There is an entry in the PIDLAM for each object currently mapped
onto virtual memory. Therefore, if an object is resident in virtual
memory, the PID/missing interrupt can met by searching thc
PIDLAM. Otherwise the object must be taken from rotating storc and
mapped or moved into virtual memory.

<9.3. Paged Store

The paged virtual memory is accessed via two level page tablcs as
shown in Box 8. The 24 bit virtual address of the NS16032 provides 16
megabytes of virtual address space.

For reasons of efficiency, we divide objects into two great classes - the
%ﬁgd and the non-paged. Large objects are paged, small objects are not.

is distinction arises from a desire to make the best wish of the two
types of virtual memory technology on the POPPY. Wc¢ have paging
hardware and object addressing hard ware.

- 17 -

Box 8

e

YIRTUAL MEMORY LB b'l:___r‘[_7 bx(s‘_______l_‘? bits .____l
i v

YIRTUAL ADDRESS
PAGE TABLE REGISTER ® MMU
] kpc:?
PAGE TABLE 7541
o
2 / — ' H
7
nwoi.___ L
o
7L
s -
POINTER 37 H
TABLES '9 g
o I H

PHYSCAL ADDRESS
[L) 1)
Nys e pace MO~ BIT OFFSET

~ 1
5!28‘YT[|
1\' PAGE FRN‘I‘lS
\l PHYSICAL PIHWYV/‘/

Paged Virtual Memory on the POPPY

The object addressing hardware maps objects to virtual addresses, the
paging hardware maps virtual pages to physical pages. The simplest way
to use these would be to allocate a range of vitua% addreses for a hcap,
and map a working set of objects onto this heap. When an object was
addressed and found not to be present, it would be copied from disk
into the heap. This is what happens with existing softwarce implemen
tations of PS-algol.

This approach has a the drawbacks that if we are dealing with very
large objects then we may be faced with the overhead of bringing in a
lot more data than we actual need. If we just alter one word of a [0000
element array, the whole array is still copied in to the heap.

To overcome this, we chose to COPY small objects onto the heap, but to
MAP large objects onto to virtual memory.

- 18 - -19 -

A mapped object need not all be resident in physical memory, instead it Bon
occupies a range of virtual pages individual members of which are X
brought into physical memory on demand. Non-paged objects are copied
into a heap on demand. To the extent that the heap into which they are
coppied is itself paged, then they also need not be physically resident.
However, it does seem reasonable to keep the virtual size of the heap
sufficiently small as to ensure that most of the heap is likely to remain
in in physical RAM. Otherwise, we would be faced with having two
swapping mechanisms competing with one another.

Only one copy of each object is ever present so that all transactions that
can access the object work on the same copy. The definition of the loca-
tion of an object in virtual memory is handled by the PIDLAM (Per-
sistent ID to Local Address Map).

Non Page-
;aligned
:object
4

1.10. Making Object Oriented Languages really run

At least initially, the Poppy will be a single language machine, the
software will consist of an interactive PS-algol compiler and its run
time support. Any data declared at the outermost level of the system,
whatever its type will persist indefinitely.

For some time PS-algol has been running on the ICL/Three Rivers Perq
computer, which is a workstation in the same general class as the Xerox
star. Because this lacks the necessry associative addressing hard ware, the
language runs slowly. The experience of Smalltalk implementations too
is that 1t is difficult to get a satisfactory performance unless you have a
very high powered machine like the Dorado (which costs tens of
thousands of dollars). Hopefully, the type of simple associative
hardware used on the Poppy should enable these sophisticated languages
to be run fast on the next generation of cheap personal computers.

The Pool

- 19 -

- 20 -
_21 -
BOX 11
BOX 10
Physical Image Vir kil Image
TUBE ool
INTERUPT || FFFCoo
Ui rsei |)0 e et
. 22 Ervice ¢
- |25 Dnclynclual Jevices ceeopy S12bytos eack
5/91\5«:_; oo Tsorasiid 2 freames oo Fagefher
@ FEELo0 " TETRSTY
(/uw:) Dynamiec Ram E = FEEGoo FERS P/zjma/aafcffcss IFEF
- @!/hckr/l'u’/‘uu lDAa_A = =
5711: or - Al FFEvo0 SEE————
5\ L00000 StringComp || 5/,,,,5 D 'Oé‘j“}‘
" Pnsed D00, ! freie Thie 3
T5572 | or 000, crcne | Cache RAM 2fmmed [} 3 Basic Map Frame
758X 1) £EB 6’5'1’%!’7“ I (in f?ofg)kA
000000 § (= N 7774 rmaps .
! BooT. - ” Uofair 2
Hashg | oo RO Qf"“ Iz % /;ﬁcpagf,s a7phys:m/
L STATIC | — twwaed frane 3
b Aol A 7 I
E_RAM 4 420000 B 123 fra
CACHE
60£009
gz’,%/ DyM,,/j,MIC L 29 DIRERT /%dalca/ﬂJ/l’» Jooe
00c o0t - D;ﬂz ,
/58x% 5 Auxihary page I
c/gj/m/ 20m005 STHK 255 £o¢f Rom —);nfz/‘z% i
String 2 lo devices
Presier | 55000 :5"5';
7‘:“6‘/: n06000 ié ﬁcsz/mfo
uykrs €
/{;’/rl‘ﬂﬁ 004000 m Rom
qs 032006
Bool Rom
8« 000900 °
S)/&/ﬂ»«/ﬂ(/ Block
Poppy Physical Memory Map

Poppy Virtual Memory map and Standard Page Tables
This shows how the physical resources are mapped onto virtual space

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,

Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,

Glasgow G12 8QQ

Scotland.

Books

Davie, A.J.T. & Morrison, R.
"Recursive Descent Compiling”, Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.)
"Databases", Pergammon Infotech State of the Art Report, Series 9, No.§,
January 1982. (535 pages).

Cole, A.J. & Morrison, R.
"An introduction to programming with S-algol", Cambridge University Press,
Cambridge, England, 1982.

Stocker, P.M., Atkinson, M.P. & Grey, P.M.D. (eds.)
"Databases - Role and Structure”, Cambridge University Press, Cambridge,
England, 1984.

Published Papers

Morrison, R.
"A method of implementing procedure entry and exit in block structured high level
languages". Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z.
"The Graffiti graphics system", Proc. of the DECUS conference, Bath (April 1978),
5-10.

Atkinson, M.P.
"A note on the application of differential files to computer aided design", ACM
SIGDA newsletter Summer 1978.

Atkinson, M.P.
"Programming Languages and Databases”, Proceedings of the 4th International
Conference on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78,
408-419. (A revised version of this is available from the University of Edinburgh
Department of Computer Science (EUCS) as CSR-26-78).

Atkinson, M.P.
"Progress in documentation: Database management systems in library
automation and information retrieval", Journal of Documentation Vol.35, No.1,
March 1979, 49-91. Available as EUCS departmental report CSR-43-79.

Gunn, H.LE. & Morrison, R.
"On the implementation of constants”, Information Processing Letters 9, 1 (July
1979), 1-4.

Atkinson, M.P,
"Data management for interactive graphics”, Proceedings of the Infotech State of
the Art Conference, October 1979. Available as EUCS departmental report
CSR-51-80.

Atkinson, M.P. (ed.)
"Data design", Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R.
"Low cost computer graphics for micro computers”, Software Practice and
Experience, 12, 1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"PS-algol: An Algol with a Persistent Heap", ACM SIGPLAN Notices Vol.17, No.
7, (July 1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Nepal - the New Edinburgh Persistent Algorithmic Language", in Database,
Pergammon Infotech State of the Art Report, Series 9, No.8, 299-318 (January
1982) - also as EUCS Departmental Report CSR-90-81.

Morrison, R.
"S-algol: a simple algol", Computer Bulletin 11/31 (March 1982).

Morrison, R.
"The string as a simple data type", Sigplan Notices, Vol.17,3, 46-52, 1982.

Atkinson, M.P., Bailey, P.J., Chishoim, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming”, presented at CREST course UEA,
September 1982, revised in "Databases - Role and Structure”, see PPRR-8-84.

Morrison, R.
"Towards simpler programming languages: S-algol", IUCC Bulletin 4, 3 (October
1982), 130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Problems with persistent programming languages”, presented at the Workshop
on programming languages and database systems, University of Pennsylvania.
October 1982. Circulated (revised) in the Workshop proceedings 1983, see
PPRR-2-83.

Atkinson, M.P.
"Data management”, in Encyclopedia of Computer Science and Engineering 2nd
Edition, Ralston & Meek (editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Algorithms for a Persistent Heap", Software Practice and Experience, Vol.13,
No.3, 259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"CMS - A chunk management system”, Software Practice and Experience,
Vol.13, No.3 (March 1983), 273-285. Also as EUCS Departmental Report
CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming"”, presented at the DEC workshop
on Programming Languages and Databases, Boston, April 1983.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"An approach to persistent programming”, The Computer Journal, 1983, Vol.26,
No.4, 360-365 - see PPRR-2-83.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming”, 10th Australian Computer
Conference, Melbourne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.
"High level language support for 3-dimension graphics", Eurographics
Conference Zagreb, North Holand, 7-17, Sept. 1983. (ed. P.J.W. ten Hagen).

Cockshott, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Morrison, R.
"POMS : a persistent object management system", Software Practice and
Exerience, Vol.14, No.1, 49-71, January 1984,

Kulkarni, K.G. & Atkinson, M.P.
"Experimenting with the Functional Data Model", in Databases - Role and
Structure, Cambridge University Press, Cambridge, England, 1984,

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough", Foundations of Software
Technology and Theoretical Computer Science (ed. M. Joseph & R.
Shyamasundar) Lecture Notes in Computer Science 181, Springer Verlag, Berlin
(1984).

Atkinson, M.P., Bocca, J.B., Elsey, T.J., Fiddian, N.J., Flower, M., Gray, P.M.D.
Gray, W.A,, Hepp, P.E., Johnson, R.G., Milne, W., Norrie, M.C., Omololu,
A.O., Oxborrow, E.A., Shave, M.J.R., Smith, A.M., Stocker, P.M. & Walker, J.
"The Proteus distributed database system", proceedings of the third British
National Conference on Databases, (ed. J. Longstaff), BCS Workshop Series,
Cambridge University Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R.
"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985)
- see PPRR-9-84.

Morrison, R.,Bailey, P.J., Dearle, A., Brown, P. & Atkinson, M.P.
"The persistent store as an enabling technology for integrated support
environments”, 8th International Conference on Software Engineering, Imperial
College, London (August 1985), 166-172 - see PPRR-15-85.

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment”, proceedings of
Data Types and Persistence Workshop, Appin, August 1985, 1-24 - see
PPRR-16-85.

Davie, A.J.T.
"Conditional declarations and pattern matching", proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

Krablin, G.L.
"Building flexible multilevel transactions in a distributed persistent environment,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
86-117 - see PPRR-16-85.

Buneman, O.P.
"Data types for data base programming”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.
"Addressing mechanisms and persistent programming", proceedings of Data
Types and Persistence Workshop, Appin, August 1985, 363-383 - see
PPRR-16-85.

Norrie, M.C.
"PS-algol: A user perspective”, proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.
"On the need for a Flexible Type System in Persistent Programming Languages”,
proceedings of Data Types and Persistence Workshop, Appin, August 1985,
423-438 - see PPRR-16-85.

Morrison, R., Brown, A.L., Bailey, P.J., Davie, A.J.T. & Dearle, A.
"A persistent graphics facility for the ICL PERQ", Software Practice and
Experience, Vol.14, No.3, (1986) - see PPRR-10-84.

Atkinson, M.P. and Morrison R.
“Integrated Persistent Programming Systems", proceedings of the 19th Annual
Hawalii International Conference on System Sciences, January 7-10, 1986 (ed.
B. D. Shriver), vol lIA, Software, 842-854, Western Periodicals Co., 1300 Rayman
St., North Hollywood, Calif. 91605, USA - see PPRR-19-85.

Atkinson, M.P., Morrison, R. and Pratten, G.D.
"A Persistent Information Space Architecture”, proceedings of the 9th Australian
Computing Science Conference, January, 1986 - see PPRR-21-85.

Internal Reports

Morrison, R.
“"S-Algol language reference manual®, University of St Andrews CS-79-1, 1979.

Bailey, P.J., Maritz, P. & Morrison, R.
"The S-algol abstract machine", University of St Andrews CS-80-2, 1980.

Atkinson, M.P., Hepp, P.E., lvanov, H., McDuff, A., Proctor, R. & Wilson, A.G.
"EDQUSE reference manual", Department of Computer Science, University of
Edinburgh, September 1981.

Hepp, P.E. and Norrie, M.C.
"RAQUEL: User Manual", Department of Computer Science Report CSR-188-85,

University of Edinburgh.

Norrie, M.C.
"The Edinburgh Node of the Proteus Distributed Database System”, Department

of Computer Science Report CSR-191-85, University of Edinburgh.

In Preparation

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model", to be published in The Computer
Journal.

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : A DBMS based on the functional data mode!", to be submitted.

Atkinson, M.P. & Buneman, O.P.
"Database programming languages design", submitted to ACM Computing
Surveys - see PPRR-17-85.

Morrison, R., Dearle, A., Bailey, P., Brown, A. & Atkinson, M.P.
"An integrated graphics programming system”, to be presented at
EUROGRAPHICS UK, Glasgow University, March 1986 - see PPRR-14-86.

Theses

The following Ph.D. theses have been produced by member of the group
and are available from
The Secretary,
Persistent Programming Group,
University of Glasgow,
Department of Computing Science,
Glasgow G12 8QQ,
Scotland.

W.P. Cockshott
Orthogonal Persistent, University of Edinburgh, February 1983.

K.G. Kulkarni
Evaluation of Functional Data Models for Database Design and Use, University of
Edinburgh, 1983.

P.E. Hepp
A DBS Architecture Supporting Coexisting Query Languages and Data Models,
University of Edinburgh, 1983.

G.D.M. Ross
Virtual Files: A Framework for Experimental Design, University of Edinburgh,
1983.

G.0. Owoso
Data Description and Manipulation in Persistent Programming Languages,
University of Edinburgh, 1984,

Persistent Programming Research Reports

This series was started in May 1983. The following list gives those

produced and those planned plus their status at 17th March 1986.

PPRR-1-83

PPRR-2-83

PPRR-3-83

PPRR-4-83

PPRR-5-83

PPRR-6-83

PPRR-7-83

PPRR-8-84

PPRR-9-84

Copies of documents in this list may be obtained by writing to
The Secretary,
The Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,
Glasgow G12 8QQ.

The Persistent Object Management System - Atkinson,

M.P., Chisholm, K.J. and Cockshott, W.P. [Printed] £1.00

PS-algol Papers: a collection of related papers on
PS-algol - Atkinson, M.P., Bailey, P., Cockshott,
W.P., Chisholm, K.J. and Morrison, R.

[Printed] £2.00

The PS-algol implementor's guide [Withdrawn]

The PS-algol reference manual - Atkinson, M.P.,
Bailey, P., Cockshott, W.P., Chisholm, K.J.
and Morrison, R.

[Printed] £2.00

Experimenting with the Functional Data

Model - Atkinson, M.P. and Kulkamni, K.G. [Printed] £1.00

A DBS Architecture supporting coexisting user
interfaces: Description and Examples -
Hepp, P.E.

[Printed] £1.00

EFDM - User Manual - K.G.Kulkarni [Printed] £1.00

Progress with Persistent Programming - Atkinson,
M.P., Bailey, P., Cockshott, W.P., Chishoim,
K.J. and Morrison, R. [Printed] £2.00

Procedures as Persistent Data Objects - Atkinson,
M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R.

[Printed] £1.00

PPRR-10-84 A Persistent Graphics Facility for the ICL PERQ -

Morrison, R., Brown, A.L., Bailey, P.J., Davie,

A.J.T. and Dearle, A. [Printed] £1.00

PPRR-11-85

PPRR-12-85

PPRR-13-85

PPRR-14-86

PPRR-15-85

PPRR-16-85

PPRR-17-85

PPRR-18-85

PPRR-19-85

PPRR-20-85

PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PPRR-25-86

PS-algol Abstract Machine Manual
PS-algol Reference Manual - second edition

CPOMS - A Revised Version of The Persistent Object
Management System in C - Brown, A.L. and
Cockshott, W.P.

An Integrated Graphics Programming Environment -
second edition - Morrison, R., Brown, A.L.,
Dearle, A. and Atkinson, M.P.

The Persistent Store as an Enabling Technology
for Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, A.L.
and Atkinson, M.P.

Proceedings of the Persistence and Data Types
Workshop, Appin, August 1985 - ed. Atkinson,
M.P., Buneman, O.P. and Morrison, R.

Database Programming Language Design -
Atkinson, M.P. and Buneman, O.P.

The Persistent Store Machine - Cockshott, W.P.

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R.

Building a Microcomputer with Associative
Virtual Memory - Cockshott, W.P.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D.

Some Applications Programmed in a Persistent
Language - Cooper, R.L., Cranston, R.D.,
Dearle, A. and MacFarlane, D.K.

PS-aigol Applications Programming - Cooper, R.L.,
Dearle, A., MacFarlane, D.K. and Philbrow, P.

A Compilation Technique for a Block Retention
Language - Cockshott, W.P.and Davie, A.J.T.

Thoughts on Concurrency - Wai, F.

[Printed]

{Printed]

[Printed]

[Printed]

[Printed]

[Printed]

[Printed]

[Printed]

[Printed]

{Printed]

[Printed]

£1.00

£2.00

£2.00

£1.00

£1.00

£15.00

£3.00

£2.00

£1.00

£1.00

£1.00

{In Preparation]

[In Preparation]

[In Preparation]

[In Preparation]

PPRR-26-86 An Exception Handling Model in a Persistent
Programming Language - Philbrow, P. [In Preparation]

PPRR-27-86 Concurrency in Persistent Programming
Languages - Krablin, G.K. [In Preparation]

PPRR-28-86 A Domain Theoretic Approach to Higher-Order
Relations - Buneman, O.P. [Printed] £1.00

PPRR-29-86 Extracting Garbage and Statistics from a Persistent
Store - Campin, J. [In Preparation]

PPRR-30-86 Data Types for Data Base Programming -
Buneman, O.P. [Printed] £1.00

