University of Glasgow
Department of Computing Science

Lilybank Gardens
Glasgow G12 8QQ

University of St Andrews
Department of Computational Science

North Haugh
St. Andrews KY16 8SX

DATABASE PROGRAMMING
LANGUAGE DESIGN

Persistent Programming
Research Project 17

Database Programming Language Design

Malcolm P. Atkinson and O. Peter Buneman

UNIVERSITY of GLASGOW
Department of Computing Science
GLASGOW G112 8QQ

Scotland

UNIVERSITY of PENNSYLVANIA

Department of Computing and Information Science
Philadelphia, PA 10104, USA

Copyright © 1085 Atkinson, M.P. and Buneman, O.1.

This work was carried out at the Universities of Glasgow and 4. Andrews and the
University of Pennsylvania.

Atkinson & Duneman: DBPL design 10 October 1085

Abstract

The necessity of integraling database and programming language techniques has
recenily received some long-overdue recognition. This paper reviews a number of
atlempts to construct dalabase programming languages by which we mean programming
languages which incorporate some kind of database technmology. Traditionally the
interface belween a programming Ianguage and a database has been through a set of
relatively low-level subroutine calls. More recenily, a number of attempis have been
made to construct programming languages with completely integrated database
management systems. Between these iwo extremes lie 2 number of other systems whose

purpose is to ease the burden of wriling database applications in high-fevel languages.

The design of these languages is still in its infancy; and the purpose of wriling such a
review is to atlempt to identify those areas in which further research is required. in
particular we shall focus on the problems of providing a uniform type system and
providing mechnisms for data to pessist. Other areas, of equal importance, such as

transaction handling and concurrency are not examined here in any detail.

Note to readers: In reviewing a subject that is changing so rapidly, it is impossible to
keep abreast of all developments; and while we have attempted a comprehensive survey
there are undoubtedly ommissions and innaccuracies. We would be grateful for any
information on new languages or revisions and developments of those we discuss so that
these can be included subsequent versions of the paper. We would be interested to learn

of better solutions to the problems that we bave used to illustrate the fanguages.

Categories and Subject Descriptors:
S.1.4 [Programming Technliques]:
Sequential programming, Functio sl programming;
D.2.2 [Software Englneering]: T'ools and techniques;
D.3.3 [Programming Languages|: Language constructs.

Keywords: Data bases, Data types, Prograraming languages,
Persistence, Polymorphism, Data models
Conceptual languages, Embedded languages,
Integrated languages, Persistent languages,

Atkinson & Buneman: DBPL design 10 October 1085
1. Introduction

Developments in davabases and programming languages have pmccedcd almost
independently of one another for the post twently years. Since nearly every program we
write requires access (o some form of ®*permanent® dala, enormous manpower has been
expended on developing individual databases for specific applications or in using a
programming language - database interface that requires considerable expertise. Worse
still are the impediments placed on system development by the lack of adequate
programming tools for databases. [t frequently hnpbens that the presence of an existing
database, mﬁintained under an established database management system has put an
effective stop to the use of advanced programming tools simply because the interfaces do
not exist and because it would be operationally impossible to restructure the data for a
betier programiming environment. As a result there are organizations that cannot adapt

to changing needs because of these limits to system development.

Until quite recently, the picture in database and programming language research was

equally discouraging. Both subjects had accumulated a few good prototypes; so that

-research in the separate arcas could be fairly easily classified by reference to one of a

limited family of languages or data models. Only recently has the weed to produce an
integrated system for programming and data management been recognised, and this has
led to a number of attempts to produce such systems either by wriling a completely new
database programming language or by enhancing an existing language with some form of
database management. In either case the usual approach has been to combine an

existing language with an existing data model.

Our purpose in writing this paper is to give an account of these attempts to integrate
programming languages and data bases in the hope of extracting certain principles that
should be used in future attempts to design programming languages or databases. In
fact, it is our hope that all future attempts at research in cither area will attempt to
develop a unified solution. Such a unified solution needs some guiding principles and
should take note of what has aiready been attempted. We therefore want to present a

survey of past and current effocts with reference to some test cases.

The three principles we shall eclicit are persislence, lype complefeness and
computalional power. To a limited extent, each of these can be given some formali,
semantic, definition; however, much theory remains to be developed. We are more

concerned here with the practi:al consequences of these principles and will altempt to

2

Atkinson & BDuneman: DBPL design 19 October 1985

clarify them and justify their importance through examples.

To illustrate persistence, imagine a second-level programming course in which students
are laught to write B-tree type declarations and manipulation routines in, say, Pascal.
This well-known excercise is an excellent illustration of how Pascal's dais lypes may be
used both in formulating the problemn aund in preventing the kinds of error that plague
poinier manipulation. Unfortunately, the student's code serves only as & model for the
code that is involved in a real implementation. It cannot be used to exploit secondary
storage - the raison d'elre of B-trees - since the only persistent data iype in Pascal, the
file, will not accomodale this structure. To implement a working D-tree, the student will
have to resort to a lower-level language for implementation or play tricks on the Pascal
compiler that violale the type rules, in both cases leaving open again the possibility of

pointer errors.

Type completeness refers to the way in which all data types should enjoy equal stalus
within a language. A well-known example of failure of type completeness is again to be
found in Pascal in which functions can only return values of a limited set of data types.
Another well recognised problem with Pascal's types is the impossibility of expressing a
new paramelerised type. The student’s B-tree code should surely work for an arbitrary
index type and an arbitrary result type, yet if we use Pascal’s type sysiem strictly, new
lookup and update procedures must be generated for every pair of types.! A more serious
problem will be seen with many of the languages in this paper in which cnly certain daia
types {such as files or relations) have the right Lo persist. For the most part, persistence

and Lype completeness go hand-in-band. They are however separale issues.

The lack of computational power is well known Lo anyone who has used 2 database
query language. There are programs, often involving numerical computations or
complicated manipulation of the database, that cannot be writien in the language. The
traditional solution to this problem has been to use iwo langunges, sometimes embedding
the query langiage in a computationally more powerful ®lower-level® language. While
nearly all tie programming languages we shall investigate provide adequaie
compulational power, they have often been embellished with new programiming

constructs for manipulating databases. The uniformity with which these constructs

ll_t should b2 strted that we are using, and criticizing, Pascal fop purely pedagogic reasoms. 10 s
prc?|§ely bec;;uac ‘ae language achieved sc much in making practical use of data types that we are in a
position o discusi Lhe next steps.

Atkinson & Bunemaan: DBPL design 10 October 1085

apply lo other data types is then the issue. In fact, computationsl and type completeness

are closely related; while persistence is again an independent issue.

We have writlen this paper as a review of a number of langnages which, we hope, will
provide ideas for future language designers. We have chosen certain languages because
we believe they have made contributions to the development of database programming
languages (DBPLs). The fact that we are often critical of these languages should not
detract from their importance. They were chosen because, although programming
language research is extensive, only a handful of language designers have recognised the
importance of database programming. There are undoubtedly omissions and the authors

would welcome information on other systems that are being developed.

Finally, a word about our methods. After elaborating on some of these concepts we
shall present the languages through a number of worked examples. The reader may get
bored with the detail and - quite reasonably - want to skip whole sections. This is
especially true of the first sections in which we have tried, through various examples, to
explain the problems for the benefit of both the database and programming language
communities. We hope the accompanying text makes it easier for the reader both to
understand the examples and perhaps to experiment with slternative designs for a

DDPL.

1.1. Provision of Independent Perslistence

In procedural languages, we normally think of objects as having a well-defined lifetime.
A variable declared in a block or procedure will ®persist® during the activation of that
segment of code and thereafter will be inaccessible. If an object is created as part of a
data structure, ils persistence, from the user's point of view, is the duration for which it
remains accessible. Some languages allow the explicit (and dangerous) control of
persistence through the use of storage de-allocation procedures such as free or dispose.
Without explicit deallocation, the logical persistence of objects during program execution
is well-understood. Moreover these mechanisms {scope rules, allocation and de-allocation)

can be apply to a wide range of types.

However, when data are required to last longer than the duration of one program
exccution, the lreatment is much less regular. For example the set of types that may
persist from one program execution Lo the next is often a small subset of, or even

dilferent from, the types available in the shorter time scales. In most languages the only

Atkinson & Buneman: DBPL design 1¢ October |
objecis endowed: wiih fong-term persistence are files; and while, in Pascal, files may
parameterised by other types and therefore can be used as a vehicle for the persistenc
olher objects; the parameterization is incompletc and cannot be used on, for exam
pointer iypes. Thus the programmer is consirained either ic use a possi
unsatisfactory subset of the available types, or must resort to "loopholes® through wh
the physical representation of types may be manipulated. The dangers of the lat
opiion need no further elaboration hiere:

We have argued elsewhere that this discontinuity in the treatment of dats associaf
with. a ‘change ‘in persistence is both deleterious and avoidable [Atkinson el
83a, Atkinson ef al. 84, Atkinson & Morrison 84]. The languages presented here displ
the discontinuity to a varying degree: the well-known programming languages, merc
support a very small subset of their types as persistent;? some languages provide
different sublanguage for their long term data storage; others introduce new types f.
data storage; whilst some exiend the range of persistence beyond program execution |
having a mechanism for storing their workspaces. Generally, in the fanguages w
examine, we find persistence presented as a binary division between near permanenc

and transient existence though we suspect that intermediate forms may be useful.

Although we cannot yel give precise semantics for persistence, we hope to convince th

reader thal there are certain principles of persistence that should govern languag
design:

k. Persistence should be a properiy of objects, not of types.
2. All objects should have the same rights to persistence.

3. While an object persists, so should its description (type).

The first two of these staie that an object’s persistence should be independent of its

Lype; persistence should therefore be regarded as a properly of data orthogonal to its

type. A corollary is that the code used to manipulate an object should not depend on its
persistence.

Failure to comply with the third principle is a common source of system
error. It should not be possible to write out an object

a3 one type and subsequently io
read it in as another.

This may be regarded more as a property of program
environments rather than programming languages.

We believe] that for data base
programing langnages the

issues of programming language and programming

2This subset is often farther limited by the language's implementation.

5

Atkinson & Buneman: DBPL design 19 October 1085

nvironment cannot be separated. Indeed, one of the authors {Atkinson and Morrison
¢ - .
8jhas recently demonstrated that program linking - normally associated with

programining environments - can be neatly represented by persistent functions.

A language in which the programmer has to include explicit statements to initiate or
organise transfer of data objects would not comply with the requirement tlnf‘xt the code to
manipulate an object should nol depend on its persistence. The required transfers
between stores can, and should, be inferred from the operations on the (l.utu. .A
programmer is distracted from the essence of an algorithm when reading or inserting

explicit transfer statements.

A counter srgument o providing persistence is that it is difficult to find good
engineering techniques to support arbitrary persistent structures. Certainly, possibly
because of the research effort expended, the mechanisms for some types, such as those

constructed as relations are better understood at present.

1.2. Data Type Completeness

Data Type Compleleness is only meaningful in languages that offer some form of type
parameterisation. For example, if the language allows an array of o construet, then we
should be able to use this with any type value for a. Thus array of char,
array of array of record ..., etc. should all be permissible types. Since procedures and
functions may themselves be regarded as having types (determined by the types of their
arguments and results), compleleness demands that any type should be admissible as the

value of such type parameters, including procedure or function types.

The concept recieved a boost with its practical demonstration in the languages of the
early seventies, especially Algol68 [van Wijngaarden ef al. 69] and Pascal [Wirth 71}
They demonstrated that it was feasible to specify languages with a high level of data
type completeness, and then to implement such languages. lHowever, engineering
considerations have tended to deter complete adherence to the principle. For example
set of in Pascal is limited to scalar Lypes; one cannol have set of array..., set of record...
elc. As another example, arrays, records, sets and functions may not be the result o* a

function.

While languages in the Algol-Pascal family allow the user to construct new data types

by use of predefined type constractors - types such as erray and file, which wheu

Atkinson & Duneman: DBPL design 19 Octlober 1035
®applied® Lo a type yield a new type - they do not allow the programmer to define type
constructors such as list, stack etc which require a type parameter. Thus a programmer
who needs (o build several different types of linked list must replicate the type
definitions for each type of element, s consequent problem is that the same procedures
{cons, reverse ete.} for each type of fist must be written. A more recent development has
been - the introduction’ of languages {ADA [Ichbiah ef al. 79|, ML [Gordon et al. 79],
POLY [Matthews 85a], RUSSEL [Demers & Donahue 70] and PONDER [Fairbairn
82, Fairbairn 85]) which, in various. ways, allow user defined parameterised types. In
these languages the user. may: define a data type list_of and use it with dilferent
parameters: . list. of record ..., list_ of Integer etc. In ML, for example, an expression a
tist {ML uses reverse notation for types) denotes a type for any type a. The term
paramelric: polymorphism is used to describe this form of parameterization. In other
languages {Ichbiah et al.: 79, Demers & Donahue 79, Matthews 85a] one may define a
type sorted list o, which is valid only if the type o satisfies certain conditions {e.g. there
is a comparison function < defined for it). It is also important to distinguish between
overloading and paramelerizalion. The former refers to the ability of a name to refer to
different_objects depending upon ils type, which is usually inferred from comlext. For
example, the implementation. and bebaviour of + depends upon whether its arguments
are reals, integers or (possibly} character strings. Despite its importance, type
parameterization is not yet widely understood, nor has it been developed to cover all the
requirements. of . database programming langusges. An excellent survey has been

prepared recently [Cardelli £ Wegner 85},

The data type declarations in a program perform a very similar function to the data
description language in a database schema, and we will be concerned with their relative
' capabilities. Type declarations can serve to describe named classes of data structures.
In the case of abstract data types, they introduce a set of names and associated
specifications for their use. These specifications can be formally described by an
algebraic aignalure. Where both data description languages and type declarations exist
separately the database interface needs ap arrangement for match'ng the names and
associated constructs. In early interfaces this was quite cumbersome but mechanisms to
simplify "the import of database names into the program have been developed
progressively. However, semantic differences remain to trap the unwary. The set of
objecls of the *types® provided by the DDL invariably persist longer than the execution

time of a program, but methods of providing transient instances of these types tnay not

Atkinson & Buneman: DBPL design 10 October 1085

be supported. Similarly, the instances of the programming language's types may have
transient persistance (i.e. within the execution time of one program) but may not be

allowed longer persistence. This failure of independent persistance, invariably results in

a failure of type completeness.

At present there are marked differences between the capabilities of the type regimes in
the programming languages, and those that we would like if we were to be able to
declare all the types introduced by the data models in their DDLs. We can view a given
data model as a type { type constructor) which when parameterised (with a schema text)
yields a new type. All databases described by that schema are then instances of that
type. Although it is not, at present, possible to wrile down parameterised types to
correspond to each data model in any programming language yet developed, this is such
an important path towards unification that we explore the language trends which make
this look potentially possible. These include the polymorphic and parameterised types

introduced above.

1.3. Computational Power

To a programming language designer it is unthinkable that a language should not be
able to perform abitrary computations; but in database query languages there are usually
severe limits to the kinds of computations that can be performed. We shall examine in
this paper an example of a common class of computation that defeats most query
languages. Another failure of many of these languages is that they cannot evaluate, at
the top level, simple arithmetic expressions even though such expressions may be

permissible as part of a larger relational expression.

There are several arguments that can, snd have, been given in favour of restricling the
power of a query language. One is that it simplifies the language for the uger, who is not
usually a programming language expert. It is certainly true in the languages that we
shall survey that the languages that allow arbitrary computations are considerably more
forbidding than the query languages. We do not yec know whether this is necessarily the
case for all future database languages. We hope no: and are encouraged by the simplicity
of logic programming [Clocksin & Mellish 81] and some of the simple applicative
languages such as SASI, [Turner, D.A. 81] that allow the user to start by evaluating very
simple queries but do not impose any limit to the power of computations that can be
performed. Another reason for limiting computatioral power is to provide a subset of

operations that can be efficiently implemented ov o language that can be effectively

8

Atkinson & Buneman: DBPL design 19 October 1085
optimised. Again, the limits are arbitrary. While most query languages will compute an
average of a sct of numbers, few will compute the variance, even though any data base
machine or management system that can efficiently compute an average should be able
to do the same for a variance. Moreover, many of these langnages will not allow the user

to define a function that compules the variance.

Since most of the languages we shzll deal with are database programming languages as
opposed Lo query languages; they do provide adequate computational power. lloweves,
the way this is provided is mot always uniform. Several of the languages allow an
iterator of the form for tn Sdo .. but limit this to cases where § is a sequence or set in
the database.: Whether this is a failure of computational power or lype compleieness is
arguable, nevertheless a’ shift of. compuatational strategy is often forced upon the
programmer. for the performance of more complicated tasks. This is especially true of
embedded languages and - languages that are in some sense combinalions of 2

programming language and a database query language.

Atkinson & Buneman: DBPL design 160 October 1985
2. A Test Case and some Basic Approaches

In order to illustrate in a concrete fashion the issues presented in the previous section,
we shall use throughout this paper a specific set of database programming examples. In
doing this, we must obviously make some compromises. Database schemas can be
extremely complicated (hundreds of record types or relations may be involved), and
programs can be lengthy, involving widespread interaction with the user and with many
parts of the database. Given that space prohibits the presentation of large bodies of
code, the database example presented here is intended to suggest realistic components of
some large system. The example we shall use is an illustrative fragment of a
manufacturing company’s parts database. The reader is invited to imagine the rest of
this database, and the other processes and programs that would use it. The database
represents among other things the inventory of a manufacturing company. In particular
it represents the way certain parts are manufactured out of other parts: the subparts
that are involved in the manufacture of a part, the cost of manufacturing a part from its
subparts, the mass increment or decrement that occurs when the subparts are assembled.
Note that manufactured parts may themselves be subparts in a further manufacturing
process. The relationship between parts is therefore hierarchical, but it is a directed
acyclic graph rather than a tree, {or part D may be used in the manufacture of parts B
and C, which are both used in the manufacture of part A. In addition, certain
information must be held on the parts themselves: their name, identifying number and, if
they are imported, (i.e. manufactured externally) the supplier and purchase cost. The
first task is therefore

Task 1: Describe the dalabase.

In traditional terms we are asking for a database schema, however in the languages we
shall examine, this description is sometimes part of a type definition. Not all the
descriptions will be equivalent (in the sense that they could be automatically transformed
one into another). For example, there are conditions on the database that in some data
models are implicit, in others, can be represented explicitly in the type declarations
{schema definition) or as integrily constraints automatically enforced, whilst in other
systems it mar be the responsibility of programmers to ensure that all updating
programs preserve these conditions.

Having defin=d the database, we want to write three programs against it. The first is
simple and is chosen to provide an introduction to each language:

Task 2: Prind the names, cost and mass of all simported parls that cost more
than $100

10

Atkinson & Buneman: DBPL. design 19 October 1085

Database query languages are designed lo make the expression of queries like this
extremely simple; and a measure of programming languages in general is Lhe simplicity

with which the code for jueries such as this can be expressed.

The next example is somewhat more complicated and defeats many query languages:
Task 3: Print the lolal mass and lolal cost of a composile part.

Since a part may be made from other parts including parts which themselves are

composite, this calls for at least one recursive traversal of the paris hierarchy of the

database. The inability of relational query languages to perform recursive traversal or

®transitive closure® has long been recognised [Aho & Ullman 79).3 This example poses

some additional cfficiency problems: avoiding repeaied computation of costs and masses

of subparts, and the desire to compute both cost and mass in parallel.

Finally we would like to demonsirate update by adding some information to the
database:

Task 4: ltecord in the database a new manu facluring slep, i.e. how a new

composile part is manu faclured from aubparis.
The point of this last example is to examine where, in the program or {ype system,
integrity constraints are implemented. Implementation of such updates are dominated by
user interface construction and by the need to isolate ihe dialogue with the user from the
consequent action of changing the database. In our examples we have largely ignored the
user interface, but have shown how the isolation may be achieved. This update task also
raises several issues central o databases, but largely ignored in programming languages.
How the change is reliably recorded? When does it becomes visible to other users? These
questions introduce the topics of concurrency, transactions and protection. Lack of space
precludes their detailed discussion in this paper, but their omission is certainly no

indication that they are of lesser importance.

As we have already remarked, these examples only serve to represent a small fragment
vi what would actually be involved. The need to represent other data would better set
the context of this example. For instance, it would be desirable to provide details of

suppliers, their reliability, current stock, current orders, delivery times, assembly times,

3 : . -
Consulcn?bl.e work has recently been done to extend query languages to include some form of teansitive
closure; but it is not clear whether these address efficiency issues. Even then, a solution to the transitive

tlovure operation itself dves not ecessarily solve all the problems of a database interface, in particular it
does not solve our third task

Atkinson & Buneman: DDBPL design 10 October 1085
manufacturing processes, part strengths, shapes ete. Similarly many processes would
pormally use such data, such as design, testing, maintenance, production ete. It is also
likely that short examples like these will fail to do justice to certain features of the
languages we shall review. While we shall comment on these where possible, we must

again excuse ourselves from a detailed presentation on the grounds of lack of space.

To present the technical issues in terms that should be familiar to most people, we shall
atlempt these tasks in Pascal and a relational database query language. Neither of these
languages can be regarded as databose programming languages; Pascal has inadequate
persistence and most query languages have inadequate computational power. However,
many of the attempts to produce database programming languages are based on a fusion
of the two approaches. These two examples will therefore serve to introduce the basis

for many of the later comparisons.

2.1. The programming language approach illustrated with Pascal

Many applications are wrilten using a programming language alone, either managing
without permanent data, or using some programmer contrived mechanism to store the
data in files between program runs. Pascal has seriously limited forms of persistent data,
so, like the B-tree example cited earlier, our code is no more than an illustration of what
needs Lo be done; but we can use the types of Pascal to provide a representation of the
part assembly as it might be implemented in secondary storage. We could, of course,
code a real (secondary storage) database in Pascal, but we would have to resort to our

own pointer management, and would not gain the benefits of Pascal's type checking.

Figure 2-1 shows a type declaration corresponding to Task 1.4 The data structure we
have chosen is a standard linked-list implementation of a many-many relationship, as
described in [Date 83a). It is also similar to the Codasyl implementation that we shall
describe later. Note that the only available *bulk® data types available in Pascal, arsay,
set and file are inappropriate for this task. Moreover the programmer cannot construct
an appropriste parameterised data type such as tist_of. Ilad this been possible we could

then have declared types tist_of Part etc to model the collective objects in the schema

1When we first worked through the various examples, we tried to adopt a unifonn type lun} and case
convention for various languages. However, we could not find any convention that was consistent with
the cultures of all the languages in which we were interested. lnstead, we tried to wmk‘ each cxa‘mpl‘c in
the style of the descriptions and reference maouals at our disposal. We have however tried o maintain 3
uniforin naming coanvention, thus Part will usually sefer Lo a data type and aPurt to a value. [ven
maintaining a naming convention is not alwaye possible.

12

Atkinson & Duneman: DBPL design 19 October 1985

type
PPType = {[ese, Composite);
String = packed arvay [1..16] of char;
Grams,
Dollars = infeger;
FPariRef = |Part;
PartList = | PariCell;
Usealist = {Use,
UsedInList == {Use;
SuppList == | SuppCell;
Part = gecord {to represent a part}
Name: String;
Usedin: UsedinList;
essa PartType: PPType of
Composste: {AsaemblyCost: Dollars;
Massincrement: Grams;
MadeFrom: UsesList),
Hase: {UnitPrice: Dollars;
Afass: Gramoa,;
Suppliers: SuppList)
end;
Use = pecord {represents the assembly-component relationship}

Quantity: inleger;

Uses, Usedin : PartRef,

NextUses: UsesList;

NeztUsedin: UsedinList
end;

PartCell = rpecord
Cont: PariRef,
Nezt: Partlist

{to sepresent the set of all parts)

end;
SuppCell = record .. end;
var Database : record

Parts: Partlist;
Suppliers: Suppiiat
end,;
Figure 2-1: Task 1 describing the data in Pascal

explicitly. On the positive side, note that the variant record mechanism of Pascal neatly
captures the specialization hicrarchy of this example, and the fequirement thai every
part be either a CompositePart or a BasePart. It models this case well as the specializations
are exclusive but cannot deal so readily with specialization where overfap is permitted.
Another advantage of Pascal {as opposed, say, to PL/1) is typing of pointers. This is of
substantial benefit in wriling applications against struclures such as these where it s
extremely easy to confuse two pointers. We shall see this problem of type checking
again_ in many of the traditional methods of programming against Codasyl databases
There are in fact two kinds of type checking that are used {often simultaneously) in

database programming languages: stalic type checking like that in Pascal will simply

13

Atkinson & Buneman: DBPL design 10 October 1985
insist on all objects being typed in advance of program exccution; dynamic checking
prevents lype errors at run-time by raising exceptions. In the implicit pointer

manipulation that is performed for some databases, one frequently has neither.

The main omission of this type declaration is that there is no provision for efficient
look-up of, say, a Pert record given ils Nome. We need here some sort of indexing
mechanism, such as a B-tree or hash table that would implement an efficient look-up.
Apart from the fact that standard Pascal would not allow us to build a peraistent index
structure, there is the adaiuional, and more serious, problem that one could not make it
generic. [If one were to work within the type framework of Pascal, one would have to
write two sets of almost identical routines to implement both Name o Part table and, say,
a Sname Lo Supplicr table.

program Taskg,
{The type declarations of fig 2-1)

var pl: PartList;
{Code 1o build the data hase must go here since

we have no persistence}

begin
pl := Database Parte,;
while pl 5 il do
begln
with pl{.Cont} do
A (PartType = Basc) and {UnitPrice > 100) then
welteln(Name, UnitPrice, AMass);
pl = pl{.Nezt
end
end.

Figure 2-2: Task 2: A Pascal program to retrieve expensive parts

Figure 2-2 presents a Pascal solution to Task 2. It follows immediately from the type

declaration.

Figure 2-3 sketches a Pascal solution to Task 3. Organising the recursive traversal of
the part hierarchy presents no logical probiems. The introduction of pirrameters and of
local variables to represent partial totals permits both values to be <aleulated in one
traversal (something that cannot be done in some other languages). The structure of
costAndMaas is easy Lo recognise. In contrast the intent of the relatively simple function
JindPart is much less obvious. Again, what is required here is an efficieat (scarch tree or

hash table} indexing type. Any DBPL should incorporate a generic ndex type. A

I4

s

Atkinson & Buneman: DBPL design

10 October 1085

procedure Tusk3;

{The type deciarationa of fig 2-1}

Punction findPart(pn:String):PariRef;
{Returns refecence to
var pl: PartList; resull: PartRef,
begin
result ;== nii;
pl:=Database Parts;
while (reault = oll) and {pl 7 all) do
I pl}.Cont].Name = pn then result := plf.cont;
else pl:==pl{ Next;
Jindpart .= result
end;

part pamed pn; oil otherwise})

procedure cost AndMass{p: Part; var resultCost: Dollars;

var resull AMass: Grams),
var subTutalCost: Dollars, subTotal Mass: Gromes, ul: UseList;

begin
with p do
8¢ PartType = Dase then
begin
resultCost == UnitPrice; result Mass :~= Afass
end
else

begin {recursively compute costs and masses of subparta}

resultCost := AssemblyCosi; result Mass = Rfassincrement;
ul = AladeFrom;

while ul 7 il do
with ul] do
begin

Cost AndMass{Uses§, subTotalCost, aubTotal Masa);
resultCosl 1= resultCost + quantity®subTotalCoss;

result Mass ;= resuli Aass + quantity®subTotel Aoss;
ul ;= NeztUses

end
end
end;

procedure main;

var itsCost: Dollars; itsMass: Grame; pref: PartRef;
begin

pref = findPari(’Maat %
if pref #% nil then
begin
costAndMass(pref}, i6sCost, s Mass);
weltein(itaCost, itsAfass)
end
end;

begin main end.

Figure 2-3: Task 3: Pascal code to compute cost and mass simultaneously
minimal requirement of Pascal and related languages for database programming is the
provision of a persistent version of such a type.

The question posed by these examples is whether the powerful higher fevel types such

15

Atkinson & Buneman: DBPL design 10 October 1085
as index or relation can be introduced - making Task 2 and findPart succinet - without
loss of the regularity which makes costAndMazs straightforward to code. There is also an
inefficiency in the code of costAndMass concerned with the recalculation of data about

coimmon subassemblies, which we will show later can be addressed without obscuring the

algorithm if such higher level types are available.

program Tookd;
{The type declarations of fig 2-1}

{Code to interact with the user do get the name, assembly cost
and mass of a new pard together wilh its subparts and

their quantitics. We assume that a PariRef pe bas beea
constructed together with a MadeFrom list, but this has not
yet been installed in the database; i.e. pointers exist from this
PartRef to structures in the database but not vice versa}

var ul: UseaLiat; pl: PartLiat;
begin {install the part refesenced by pr}
ul ;= pri.MadeFrom;
while ul 7 nil do
with ul] do begin (add each component to usea list}
NeztUsedIn == Uses} .Usedin;
Useat UsedIn = ul,
ul := NextUses
end;
new(pl);

pl}.Cont :== pr; plj.Nezt .= Database.Parts; Database.Parts := ol;
end;

Figure 2-4: Task 4: Pointer manipulation required Lo install a part

Figure 2-4 shows how Task 4 may be coded in Pascal. No facilities exist in the

language for identifying this as a transaction® or for arranging to deal with concurrent
access.

2.2. The relational approach

Since its initial formulation [Codd 70] the relational model has been a basis for
discussing data design, and, as techniques have been developed for the efficient

representation of relations and rel.lional operators, relational systems have become

increasingly marketable. [Schmidt 2 Brodie 83] gives a good survey of this species of
database system.

Figure 2-5 shows how the data could be described in a prototypical relational system.

Sic. a collection of operations that appear (a) to run to completion of not to rus at all and b} are
indivisible in that no other program can run againet the saame data duting the transaction [Date 83a

16

G

Atkinson & Duneman: DBPL design 19 October 1085

Part{Pno: Pnum, Name: String)

Baacl’—ﬂ_rn_&m Prum, UnitFrice: Dollars, Mass: Grams)
CompositePart{'no: Prum, AssemblyCoct: Dollars, Massinerement: Grama)
MadeFrom{Assembly: Pnum, Componeni: Pnum, Quantity: Posint)
SuppliedBy(Pno: Prnum, Sno: Snum)

Figure 2-6: A DDL fragment for a relational representation of the database
It shows the column and domain names of each of five relations with the primary keys
underscored®. DBut it does not define the interdependence of the relations, nor the
interpretation of the values within them. Some would contend this is a symptom of a
general shortcoming of the basic relational model, in that it fails adequately to define the
interrelationships between relations [Date 81b] and carries insufficient indication of the
semantics of a database [Codd 79, Kent 78, Kent 70]. In contrast, Merreit contends
[Merrett 83} that this lack of semantics is to the relational model's advantage, making it
a belter basis for organising data siorage, and as a kernel for data manipulation
languages. Ile illusirates this with a demonstration of bow the model may represent line
drawings [Merrett & Déchting 84] and text [Merrett 85a]. Tt should also be noted that
relational systems do not usually provide, or allow the definition of, the domains used in

figure 2-5.

Figure 2-8 indicates some of the constraints needed in addition to those imposed by the
keys in Lhe relational schema. These have been stated in predicate calculus but could
equally well have been stated as equations or inclusion relationships on relations derived
using relational algebra. Contrasting this with the Pascal schema (type declaration} we
see that the use of reference types can be used o capture some of these constraints. In
relational databases these constraints can also be stated in terms of foreign keys, which
have been discussed [Date 81b, Codd 79} but not, to our knowledge, implemented in any

praciical relational database management system.

The complexity of programming with pointers was one of the strongest arguments for
the use of the relat.onal model. At the time the relational model was iniroduced, much
database programining was done through the use of low-level packages that manipulated
pointers on seconuary storage. One can imagine what these early database management
systems were like if one removes the type information from our Pascal program thereby

laying open the possibility of confusing pointers to different types of objects. However,

Sk or Lutorial materi t o i is di
:tit on relations the reader is directed to one of the following books [Date 8 i
83b, Merrett 84; Taichritzia 77, Ullman 82) owing books [Date 813, Date

17

Atkinson & Buneman: DBPL design 19 October 1085

Cach base and composite part is also a past)
g:r“elcl::&; in BasePart there cxlata p In Part such that p.fho = b.fno

b ¢ ln CompositePurt there exlsts p in Part
for eac such that p.Pro = cfo

{A part must be a composite pare of 2 bought in part}

h plin Part
for eac tfurc exlste b ln BasePzr: such that p.Pno = b.Pro

v
° there exlsta c In Compcesitefart such that p.Prno = c.Frno

Exclusion - we don’'t make purts we buy))
go:ceu:h bin BasePart, ench ¢ tn CompositePart b.Pno 3 c.ino

{Only Composite Parts can be assembled))

for each m In AadeFrom there exlsts c in Compositefart
such that m.Assembly = c.Pno
and ((there exlats ¢’ in CompositcPart such that m.Component = ¢'.i'o)
or (there exlsts p In Part such that m.Component = p.Fno))

{We only buy-in Base Parts}
for each s in SupplicdBy there oxiats b in BaseParl
such that s.Pno = b.Pno

{All base parts have a supplier.} '
for each b in HBasePart there exiate o In SupplicdDy
such that b.Fno = 5./ho

Figure 2-8: Some integrily constraints on the parts relations
the introduction of typed langunges and data definition tools (as well as partially typed
systems such as Codasyl) has done much to alleviate these problems. Nevertheless our
Pascal types are still not nearly as simple as the relational schema. The problem here is
that references are used both to maintain referential inlegrity and to build the data
structures required in the database. The importance of referential integrity has been
supported by [Atkinson 78, Date 81b). 1f and when implementations of these models
exist, it will be interesting to see how the treatment of refercnces combines with their

treatment in a host programming language.

The first Lwo constraints of figure 2-6 also suggest a type hierarchy, which was
modelled as a variant record in the previous Pascal example. Later these ideas of
g -neralisation and specialisation heirachies [Smith 77) are scen as fundamental to the
+emantic data models [Brodie ef al. 83, Borgida 83]. A number of constraints could have
ocen made unnecessary by eliding the first three relations, this would leave a less precise)
description of less compact data, and the problems posed above would not have gone

away, as they would reappear in the treatment of nol applicable or null values.
Most relational systems offer a simple query language, and data mantpulation language.

18

Atkinson & Buneman: DBPL design

19 October 1985 Atkinson & Buneman: DBPL design

10 October 1085
SELECT Part.Pname, BasePart UnitPrice, BasePart. Mass complicated language - due more to lack of time rather than lack of intellect - often
FROM Part, Basepart
WHERE Part. Pno=~FHasePart Frio
AND BasePart UnitPrice > 100

account for the rather artificiar distinction between ®applications® and ®systems®

programmers, and accounts for Lt common frustrations of data analysts who do not see
¥
Figure 2-7: Task 2: retrieve details of expensive paris in SOQL

8 p p

o e

.

e

5

e

complicated programming system and place an effective barrier on the sophistication of
queries that users can pose for themselves,

This would usually suffice for Task 2 as we illustrate by coding the query in SQL [Date

83b] as shown in figure 2-7.
scan, nor to organise output explicitly.

type inheritance implicit in the specialization hierarchy.

By contrast Task 3 is impossible in most query relational languages. In fact it can be

shown [Aho & Ullman 70 that a general fransilive closure operation cannol be
expressed with a relational algebra expression.

Since relational query languages are
based indirectly on relational algebra, and since this task calls for something at least as

powerful as a transilive closure operation, the failure of query languages al this level of
complexity is nol surprising. A user confronted with a problem such as this would
therefore be confronted with the following options:

1. Unload the relevant portions of the database into a file and use a separale
language, or even hand calculation, to complete the task.

2. Use a more powerful language that can call

directly upon the query language
for partial computations.

We shall discuss this under embedded languages.

3. Write a query that performs the computation to some finite depth. For
example, one might assume that no assembly has a sub-assembly which itsell
has sub-assemblies.

The first option is probably the most frequently taken in the commercial world.
Analysts or *end users® are unaware of what software may be available to perform more
complicated queries, and systems programmers and designers are unaware of the amount
of hand calculation that follows from a limited query language or set of reports. This
has three consequences: the requirement for more general computational power continues
to be underestimated, the volume of data transferred or printed is unnecessarily high,
and there is a possibility of

introducing errors during transcription and interpretation.

Both of the first two options require the user to undertstand a separate and more

The difficulty of acquiring skilis in the more

10

This relational calculus query avoids much of the
complication of the Pascal program {figure 2-2) as it does not need to organise the data

However, the Pascal program had one
advantage, it did not need 3 join {the first line of the WHERE clause} to deal with the

themselves as computer programmers.

Relt{Pnum, Ve, Vm) <-

SELECT Component.Pno, Quantily®*Unitprice, Quantity® Masa
FROM Composite, Base, Use

WHERE Composite.fno = Usc. Assembly

AND Base.Pno = Use.Component

Rel#{Pno, V¢, Vm) <-

SELECT Pno, AssemblyCost, Masslncrement
FROM Composite

RelS(Pno, Xc, Xm) <-

SELECT Pho, SUM Ve, SUM Vi
FROM

(SELECT *

FROM Rui2)

UNION

{SELECT *
FROM Rel)
GROUP BY PNum

Rel§{Pno, Xc, Xm))
<- SELECT Pno, UnitPrice, Mass
FROM Base

Answer(Pno, itaCost, itsMass) <-
(SELECT *
FROM Rel3)
UNION
(SELECT *
FROM Rely)

Figure 2-8: A partial result for Task 3 in SQIL

Figure 2-8 shows an allempt at the third option on the very unrealistic assumption
that the parts explosion diagram is only one deep, ie

composite parls are only
constructed from base parts. The solution presented here may not be the shortest or the
most efficient.

The computation proceeds by first constructing a relation, Rels that
contains part numbers of each composite part and Lhe total cost and the total mass for
each of its subparts (which must be in Base). Reig essentially renames Compasite so that
its column names are compatible with those of Retr. Rl is then constructed to contain
the total cost and total mass of each composite part. Dy further relabelling of columns,
we include the base parts with their costs and masses Lo get the final result, a relation of
all part numbers with total cost and mass, in Answer. Bven at this point, the SQI, code

starts to look considerably more forbidding than our previous Pascal solution,

20

Atkinson & Buneman: DBPL design 10 October 1085
Atkinson & Buneman: DBPL design 19 October 1085

arguably, lack of an adequate data model. Whether some combination of these
it is not hard [Nikhil 84] to combine the operators of the relational algebra with some ’

approaches can overcome these obstacles is the subject of the next section.
form of function definition in 2 simple interactive language ic provide sufficient

computational power to solve Tast 3; and one wonders why this is not done more often.
We shall also sce that in section 3.7 that the relational algebra can be extended to
provide a reasonably concise solution to this task. We mentioned in the introduction
that two reasons are often given for the Jailure of most relational query languages to
provide adequate power to solve Task 3: one is that “end users® will {for whatever
reason) be unable lo learn & more complicated language, the other is that s relational |
language should be limited to the opemiions that some database processor can perform
efficiently. It would scem as that this is the sort of program that an end user might
reasonably want io write, and that it should be possible io formulate it. Moreover, this
is precisely the sort of task that a database machine can perform efficiently and the only

reason for excluding it is that by allowing general recursive programs, one is allowing

certain compuiations that mighi not be efficiently implemented.
INSERT INTO Part <1234, *Mast®>
INSERT INTO ComposifePart <1234, 20, 150>

INSERT INTO Use <1234, 912, 50>
INSERT INTO Use <1234, 603, i>
..ele

Figure 2-0:

TASK 4: Recording how a new part is composed

s

Performing the update, Task 4, in SQL exemplifies the need for transactions and
integrity constraints. For example, we need to ensure that the parts data remains

acyclic and that the condition that a part is either base or composile is maintained.

Murcover,A it is up to the user to inveni an appropriate part number {the need for which
is engendered by the relational model). Figure shows the interaction that might take
place il SQL were to be used for this task. We should mote that this update would
probably be preceeded by a query that found the relevant part numbers given, say, their
names. The fact that this whole process is so prome io constraint violation and
Lranscription errors means that in any working environment, lhis updite would be

implemented using an embedded language if it were to be performed at all
taskfrequently.

L
e
G
s

e

The purpose of this section was to introduce four iasks that we believe are

characteristic of database programming and to show two approaches that failed for
different re

asons to meet the challenge: Pascal because of inadequate pe.sistence and
lack of the appropriate data types; SQL because of lack of computatioral power and,

21

Atkinson & Buneman: DBPL design 1% October 1985
3. Bxisting Database Programming Languages

We now turn to solutions to our problem set that achm"y work. We shall discuss
several approaches. The first is the .raditional solution of communicating with the
database through a set of subrouiines Codasyl database management sysiems are
almost always used in this fashion and much database programming is done by using
Codasyl subroutines from languages such as Cobol, PL/1 and Fortran. In fact,
preprocessoss or modified compilers have been developed for these languages, Cobol in
particular, that provide a more consisient surface syntax for these subroutine ealls.
However, we do not want to call Cobol-Codasyl a database programming language
because the Codasyl schema declaration, the Data Definition Language is not part of the
®type® declaration of Cobol. The honour of being the first successful integrated
database programming language must go to Pascal/R [Schmidi 77). Pascal/R is Pascal
with an added relational data type. It has been used fairly exiensively, and is the second
representatlive language presented im this seclion. We shall then examine another
commonly used method of database programming, that of embedded relational
languages. Finally, we shall look at a number of interactive languages that, because of

their persistence or Lypes have some relation lo database programming.

3.1. The Codasyl approach: the database as external subroutines

Providing access to the database through a set of subroutines is the usual method of
database programming for all pre-relational database management systems, and is again
common in micro-compuler based database management. We shall use Codasyl as an
illustration since it prescribes one of the most sophisticated interfaces. Since the host
languages have inadequate type systems for describing the database, this musi be done in
a separate language, the Data Definition Language (DDL). In Codasyl the DDL performs
the task of physically describing the database layout and of describing the basic logical
relationships. From this, subschemas, or views, may be generzled through further use of
a DDL. Most database text-books, e.g. [Date 81b} describe how this is done. in general
the quality of languages against Codasy| databases has been somewhat worse than that
against relational databases, their development having been retardéd by the complexity

of the details in the Codasyl specifications. A survey is to be found in [BCS 8i).

The Codasyl interface is most commonly used from COBOL, PL/! or FORTRAN,
Neither of these languages have parameler structures, functions with the appropriate

types, nor adequate control structures to permit a good assimilation of the Codasyl

23

Atkinson & Buneman: DBPL design 10 October 1985

Baselart CompositePart

Sxtra
cALc(Name)
Part Supply
- L
Usedln MadeFrom Supplies
k — :
. Component Supplier

Fig'ure 3-1: Task 1: Codasyl approach, Bachmann diagram

database model (even if it were simplified) into the language. We will not illustrate these
existing interfaces, as this would consume space without shedding much light on types or
persistence.. The interested reader is refered to [Atkinson ef al. 84] for an example of
such an interface. However, we will show how an efficient and convenient.interface can
be constructed using the types of Pascal. To prepare for this: figure 3-1 shows the
Bachmann diagram for our example database and figure 3-2 shows the corresponding
schema?. . Note that some of the referential constraints in figure 2-6 are implicit in
Codasyl and others are made explicit with MANDATORY set membership. We are not
aware of an implementation in which it is possible to express the constraint that a Part
should not be both a CompositePart and a BasePart. These are two choices for representing
the specialisation hierarchy (represented as a variant record in our Pascal data - sec
figure 2-1) in the Cod:.syl approach:

L Place all the fields in one record to represent all parts, encoding not
applicable with some appropriate null value - similar to an alternative we
deseribed for r:lations.

2. Use a set to relate the most general type to other records that contain the

-IIFor lh(iac who aced Lo know more about Codasyl DBMS, tutorial material and discussion can be found
in [Olle 78

24

Atkinson & Buneman: DBPL design 19 October 1985

SCHEMA name s PartsDB.

AREA PartsAssembly.

AREA PartSupply.

DATABASENAME PariName, PICTURE A(16).
RECORD type FPart; {one for every part)
WITHIN area PartsAssembly;

LOCATION mode {s CALC an Name USING PartName;
DUPLICATES are NOT allowed;

02 Name; PICTURE A(i8).

RECORD type BDaasefart; {one for each imported part)
WITHIN area PartsAssembly, LOCATION is VIA Eztro;
02 UnitPrice;, PICTURE o(4);
02 Mass; PICTURE 9{7).

RECORD type CompoaticPart; {one for each assembled part}
WITHIN ares ParisAssembly, LOCATION fa VIA Ezires;
02 AssemblyCost; PICTURE 9{5});
02 Massfncrement; PICTURE 9{6).

RECORD type Use; {one for cach use of 2 part}
WITHIN area PartsAssembly, LOCATION fe VIA Usedin;
02 Quantity, PICTURE 9{4).

RECORD type Supply, LOCATION mode la VIA PAMI,
WITHIN area PariSupply;

RECORD type Supplier;
LOCATION mode s CALC on ...

SET Ertra, OWNER Part;
MEMDER BaascPart;
MEMBERSHIP is MANDATORY AUTOMATIC;
SELECTED by CALC USING PsrtName;

MEMBER CompositePart,;
MEMBERSHIP is MANDATORY AUTOMATIC;
SELECTED by CALC USING PariName.

SET MadeFrom; OWNER Part; {represent part explosion }
MEMBER Use;

MEMBERSHIP i1s MANDATORY AUTOMATIC;
SELECTED by CURRENT of OWNER.

SET UsedIn;, OWNER Fart; MEMBER Use;

MEMBERSHIP is MANDATORY AUTOMATIC;
SELECTED by CALC USING PartName.

SET Obtains; OWNER CompositePart; MEMBER Supply,
MEMBERSRHIP s MANDATORY AUTOMATIC;
SELECTED by CURRENT of OWNER.

JET Supplics; OWNER Supplier; MEMBER Supply;
MEMBERSHIP i« MANDATORY AUTOMATIC;
SELECTED by CALC USING PartName.

{represent type hierarchy}

Figure 3-2: Task 1: Codasyl DDL describing the parts data

additional information appropriate to its specialisation. Note this allows
specialisation to be overlapping or exclusive.

Te second option is taken in the example given here by using the sel Esirs. Since

25

Atkinson & Buneman: DBPL design 10 October 1085

reference, via sets, is supported, it is not been necessary Lo introduce fho, an artificial
,

key, as in the relational example.

Readers familiar with Bachmann diagrams will recognise the structure formed by the
record types Part and Component and the two sels, Usedln and MadeFrom. It ususally
indicates the presence of some kind of graph structure {in this case an acyclic graph on
the parts) and is quite common in the database designs we have observed. Its presence
generally implies the kind of recursive processing we are using as our solutions to Task 3.

= record
case RecordType: (BasePartType, CompositePartType) of
BasePartType: {BasePartVal:BascPartRef);
CompositePartType: (CompositePartVal:CompositePartRef)
end;
asePartRe = record
type B / Jound: boolean;
... {control information}
end,;
type CompositePartRef= record
Jound: boolean;
.. {control information}
end;
type PartRef = record
Jound: boolean;
... {control information}
end;
type UseRef = pacord
Jound: boolean;
... {control information)
end;
type BasePart = record
UnitPrice: 0..9999;
Masa: 0..00000090
end;
type ComposstePart = record
X AssemblyCost: 0..99999,;
Masalncrement: 0..0009900
end;
type Part = gacord
Name: packed array|l..16] of Char
end;
type Component = pacord
Quantity: 09099
end;

type ExtraClass

Figure 3-3: Pascal types automatically generated from a Codasyl Schema

The considerable investment in existing dotabases and in existing programming
languages means that developing better techniques for their combined use remains
important. . The use of Pascal with Codasyl is illustrated hese, using an interface

described in [Buneman et al. 82a], which has a number of advantages. It exploits the

26

Atkinson & Buneman: DBPL design 10 October 1085

procedure GetPart{InRef. Parifief, var OulRec: Part),
procedure FindFirstinAreaPart{var Outitef: PartRef);

procedure FindNeztinAreaPart{InRef: PartRef, var OutRef: Partflef);
... {similarly for other record classes and other Codasyl verbs.}

procedure FindDyKeyPart{KeyVal: PartName; var OutRef: PartRef);

... {procedures for the MadeFrom set}
procedure FindFirstinSet MadeFrom{inRef: PartRef; var OutRef: Useftef);

procedure FindNextInSet MadeFrom(InRef: UscRef, var OutRef: UseRef);

procedure FindOwnerinSet MadeFrom{inRef: UseRef; var OutRef: PartRef};
.. {etcetera for other Codasyl verbs and sets)

... {standard procedures for open, close for each area ete.}

... {standard procedures startTransaction, commitTransaction etc}

Figure 3-4: Pascal declarations automalically generated from

the Codasyl Schema
strong static typing of Pascal programs so that the Pascal compiler itself prevents many
of the errors common in programming with Codasyl databases. The technique is lo
generaie aulomalically a set of named types and procedures from the Codﬁyﬂ schema
{or subschema)j. The form of the generated Lypes can be scen in figure 3-3, which is part
of the data description that would be generated from our sample schema {see figures 3-1
and 3-2).

schema in a systematic way.

Note that the names of the types are construcled from the names in the
Record iype names in Pascal are the same as the
corresponding schema record type names. Field names within the record are the same as
the names in the corresponding schema record, and as near as possible have an
equivalent type to those in the original schema. An exira set of types, o be used as

lokens equivalent to database currencies in Codasyl are introduced with (he postfix Ref.

Note that the

procedure name encodes the operation {first) and the operand (record type and area or

A sample of the corresponding procedures appears as figure 3-4.

set Lype) second. The second past is the name of the set or record lype copied from the
schema®. The types of the parameters ensure that the appropriate type of currency is
supplied and the appropriate type of currency or record is yielded. A variant record has
been automatically introduced to accomodate the set Estre which has more than one
type of member. Thus our representation of specialisation automatically maps Lo

Pascal’s corresponding construct. This set of generaled types and procedures has linked

Lin the actual implementation there is some abbreviation

o

Atkinson & Buneman: DBPL design 19 October 1085
the data definition in the program in two ways: it has defined the mapping of types and
data between database and programming language;, and it has made the names
introduced in the schema available in the programming language’s name space,
arranging that they can only be used for operations that are appropriate to their values.
This relieves the programmer of the need to set up a mapping and therefore reduces the
number of mistakes that can be made. However, the programmer still has to understand

the Codasyl schema, which is quite different from the notation and structures familiar in
Pascal.
The code for Tasks 2 and 3 has the same structure as that of the (pure} Pascal code

given. earlier. However pointer manipulalion has been replaced by various calls to

external subroutines. In Task 2 the variable sBascPartRef is a Pascal record that contains

currency information needed by the Codasyl data manipulation subroutines and a field
named found that indicates, after any Find operation, whether an appropriate database
record was found. Thus the test aBascPartRef found corresponds Lo the test p! 3£ afl in
figure 2-2, and thie call to GetPart corresponds to dereferencing in the same figure. Again,
Task 3 exhibits the same complexity as the Pascal program. It is in this kind of task that
other Codasyl interfaces look even more complicated because the programmes must
explicitly control currency changes during recursion, and must take care not to confuse
currenchia of different ®types®, since they are usually all typed the same way, for

example as integers.

The ‘code to create and store a new composite part (figure 3-7) is probably more
cumbersome than it would be in more traditional Codasyl interfaces. In these interfaces
the procedures to store records are essentially unparameterised, and operate by
inspecting and modifying a global state. For this example, in contrast to Task 3, the side
effects created by one database operation would produce the correct global state for the
next operation, thus some of the variables figure 3-6 would be not be needed. In the
solution: presented here, the first parameter of any Siore ... procedure is the record to be
stored, the last is a data base reference which is set to refer to the record once it is
stored.. The intermediate parameters are references to owner records, one for each sel in
which the record being stored iy a member. Sets are referenced by position. This is
slightly unsatisfactory, but is probably better than constructing a record type in which
the sets could be named. A better solution is to use keyword parameters, and an Ada
interface for Codasyl, also specified in [Buneman el al. 82b), is considesably less

cumbersome because one can use keywords and exploit overloading so that, ‘or example,

28

Atkinson & Buneman: DBPL design 1% October 4

program {ask?
-..{Type declarations from figure 3-3}
...{Declarations of external procedures listed in 31}

ver aBlasePartRef: BasePariRef:; aBaseFasi: AzselPart;
aPartRef: PartRef; aPart: Part;

FindFirstinAreaBasePart{eBasePartRef);
while allasePariRef. found do
begin
GetBasePart{aBasePartRef, aBasePart)
; 3 aDasePart.UnitPrice > 100 then
begin
FindOwnerInSctExtra{aBasePariRef, aPartRef)
; GetPart{aPartRef, aPart)
; weitein{ aPart. Name, aBaselart. UnitPrice, aBasePart. Mass)
end {if}
; FindNeztInArcallasePart{aBasePs
end; {while loop}
end.

riRef, aBasePoriRef)

4

Figure 3-5: Task 2: Listing all the expensive parls using the Pascal

interface to Codasyl]

all the store procedures are called Siore.

3.2, Pascal/R: a true Database Programming Language
This section uses Pascal/R to illustrate s group of languages often called inlegraly
DBPLs [Pirotte 80, Atkinson ef al. 84), which

programming language with a data model?

attempt to combine a general-purpog
The level ¢

implementers wer

as consistently as possible.
integration depends on the degree to which the designers and
prepared Lo change the language they started with {most chose to start with Pascal) A
such languages are fairly numerous, the attempts to integrate programming language
with the relational model are summarised in figure 3-8.

Pascal/It has been fairly widely used in universities for research and teaching, and ha
also been used for some cominercial applications.
Modula/R [Koch ef af. 83] and for the present work of Schisidt's group, DBPL {Schmidi

& Mall 83}, and so it is chosen as the vehicle for our examp.es in this category.

It is also the starting point for

The first problem facing the integrated language designer, is how (o relate the two type

systems: that of the data model, and that of the PL. Iy Pascal/R the Luple is identified

9, . s
Rather than with an existing, external, database as in sections 3.1 aad 3.4

20

Atkinson & Buneman: DBPL design

19 October 1985

program {ask3;

{Type declarations from figure 3-3)

; Y
(Declnmtions of external procedures listed in 5-4}

edure CostAndMass(p: PartRef, var reauitToat, result Mass: integer);
"v,:cech: EztraClassRef, ¢Rec E‘tlraClau;
bRec: BasePart; cRec: CompositePart;
uRef: UseRe[, uRec: Use;

Ref: PariRef,)]
fubT!olalCoal, subTatal Mass: integer;

n
b;%:ldﬁratlnStlEzlra(p, eRef);
Gel(eRef, eltec);
case erec.RecordType of
BasePartType:

begln
Part{eRec.BasePartVal, bRec),
gi‘ullgta(;zalajr(-ebRec,Um'lCoal; result Mass = bRec. Mass

end: {of base part case}
)

CompositePartType:

‘ .
beGgelnCompaaileParl(eRec.CompoulcParlVal, cRec);

; == Incrament;
1Cost ;== cRec.AssemblyCost; result Mass := cRec.Maas ;
;ﬁ::dﬂ'r:lla&l MadeFrom(eRec.BascPartVal, uRef),

while ultef found do

begin
GetComponent{uRef, uRec);
FindOwnerUsedIn{uRef, pRef);
CostAndMass(pRef, subTotalCoat, aubTolaHv.Iau);
resultCost == resultCost + CampRcc.Quanhly.‘AubTolalCoal;
result Maass = result Moas + CompRec.Quantity®subTotalMass;
FindNeztInSet MadeFrom{uRef, uRcf)

end {while more subcomponents}

end{dealing with CompositePastType}
end {case of either specialisation)
end; {procedure CoslAndMass)

procedure main;)
var thePart: PartRef, itsCost, itaMasa: snteger;
begin :
FindByKeyPart{"Mast ', thePart),
if not thePart. found then writeln('Couldn”t find it')
else
begin
CostAndMass(thePart, itaCost, its Mass);
writeln(itsCoat, its Mass)
end
end; (main)

begin main end.

Figure 3-8:

with the record and relatlon of is introduced as & construclor similar Lo set of. It takes

Pascal program to compute mass and cost as in Task 3

two parameters, the type of the record which may be a tuple of the relation, and the

subset of that record’s ficlds that constitr.te the primary key (there are restrictions on

30

.
.
G
.
.
.
.
-
o
o
N
%

.
.
.
-

Atkinson & Duneman: DDPL design

program Tasky;
...{ Type declarations from fijure 3-3}
...{Declarations of external procedures listed in 3.4}

procedure doTasky;
Lype inpulListType = {InpulCell;
inputCell = record
Name: packed asray [1..16] of Char;
Quantity: 0..9999;
Nezt: inputLietType
end;

var inputList: inputfistType;
newName: packed array [1..16] of Char;
new AssemblyCost: 0..99999;
new Afassincrement: 0..9999999;
{inputl.ist is a list of names of the subparis of Lthe new part
together with their quantities}

al’art: Part; al’artRef, aSubPariRef. PariRef);
ankrtra: ExtraClass; anExtraflef: EztraClassRef, .
aCompositcPart: CompositePart; aCompositeRef: CompositePariRef,

aComponeni: Component; aComponentRef: ComponeniRef;
begin

...{code Lo interact with the user and get values for newName,
newAssemblycost, newAassfncrement and inputList)

with aPart do Name:=newName;
StorePart{aPart, aPartRef);
with enEztre do begin {Create and store the variant}

ftecordType:=CompositePartType; CompositeFartVal:=aPartRef
end;

StoreExtraClass(ankttra, anEztraRef),
with aComposilelart do begin

Masslncrement:==ncw MasaIncrement; AssemnblyCost:=new AasemblyCost
end;

StoreCompositePart{aCompoasitelart, anEziraRef, aCompositeRef),

{Create and stove the new pari}

while inputList 7% nil do begln {Now establish links to sub-paria)
JindByKeyPart(inpuiLisi].Name, aSubPartref};
aComponeni.Quantity:=inputList]. Quaniily;
fnputList:=inpullList|.Nezi;

StareComponent{aComponent, aPartRef, aSubPartRef, aComponentRef);
end

end;

beglin doTask{ end.

Figure 3-7: Pascal program to update a Codasyl database

the types allowed as wuch a record’s fields - we discuss the impact of the restriction
later).

Another problem to be overcome, is how Lo identify databases, and how to introduce

names from the databas: inlo a program. Pascal/R added the database constructor lo

3

19 October 1yg Atkinson & Buneman: DBPL design

19 October 1085

r_— System Stasting PL DML T status
Pascal/R Pascal Calculus | working prototype
{Schmide 77| widely used
Aldat/MRDS et alg. Algebra working prototype
[Merrett 84} '
Astral Pascal Algebra proposal
[Amble et al. 79]
Rigel Pascal Calculus) partiaily
[Rowe & Shoens 79] implemented l
Theseus Euclid v Coleulue proposal h
[Shopiro 79] + |Lampson 77} ' I
Plain ' Pascal extended Algebra | partially i
[Wasserman et ol. 81} [|Wassermun 81 i implemented
, Modula/R Modula-2 Calculus product in .
;j [Koch et al. 83] i[Winh 83} l l wide use
AdaRel | Ada : 4 i Proposed
| Morowitz & Kemper 83] © [lchbiab et ol. 79]

e e e e e e ———_——— e ————

[

Figure 3-8: Combining Existing Languages with the Relational Model
Pascal. This constructor is parameterised in a manner similar to the record constructor
except that all fields have to be of type relation (another restriction considered later). A
database variable may then be declared in the program, and appear in the program's
parameters (c.f. file parameters in Pascal). This allows the same program to be run with
different databases of the same lype, and introduces the relation names for that

database into the program. The necessary type description of those relations ensures
that their columa names are available in the program.!0

The designer has also to decide what manipulations to provide. In Pascal/R relations
may be arguments of procedures, and there are relational operators that correspond to
relational calculus. The transition between these bulk operations (selected because of
their notential for efficient implementation (Jarke & Koch 82, Jarke & Koch 83, Bragger

et al. 83, Jarke & Koch 84]) and the iterative control structures of Pascal is made using

the ew iteration’ construct for each. Unfortunately this construct is not consistently

available for the other repetitive structures in Pascal/R, such as files and arrays.

10 : ; . . .
The Implt:‘mcnmlmu ren»tl.nc!u a program Lo operaling on ouly one DB, and prevents that from being
chiosen dyaamically - two faicly inconvenient restrictions.

|

Atkinson & Buneman: DBPL design 19 October 1085

Another mechanism based on {our procedures: low, next, high, and eor allows for explicig

conirol over the traversal of 5 relation.

type domains)
Paum = 1 .. macint, Part numbers}
String = packed array |1..16] of char;
Dollars = real;
Grame == rcal;

'{}ccords destined to become tuple iypes}

PartRec = pecord {one per past, base or composite)
Pno: Prnum,
Name: String
end;
DaesePartRec = gecord one per bought in part}
Pno: Prum, in Partitec}

Unitfrice: Dollars;
Alass:Grams
end;
CompositePartRec = record one per consiructed part)
Pno: Prum; in Partftec, not in BaseFartflec)
AsaemblyCost: Dollars,
Massincrement: Grams
end;
AadeFromPRec = pecord {one per PastfSubPast relationship}
Assembly: Prum; {in CompdsitePart}
Component: Paum; {in Part}
Quantity: Poslnt

end,;
SuppliedDy =2 pecord one for each supplier of each Past}
Pro: Prnum; in BaseParg
Sno: Snum in Suppliers
end,;

{suppliers etc}

{relation types}
PartRed = relatlon <Mo> of PartRec;
BasePartRel == relatlon <Pno> of BasePartRec;
CompositePartRel = relation <Pro> of Compositelart Rec;
MadckromBRel = relation <Assembly, Component> of MadeFromRec;
SuppliedUyRel = relation <Pro, Sno> of SuppliedDyRec;

{The data base type}
PartsDB == database
Part: PartRel; known paris}
BasePart: BasePartRel, paris bought in}
CompositePart: CompositePartRel;{complementary set ofconsiructed paris}
MadeFrom: MadeFromRel; paris to make a part}
SuppliedBy: SuppliedByRel; {who can supply each base part}

end;
Figure 3-8: Task I: describing the data in Pascal/R

Figure 3-0 shows the data definition corresponding to Task 1. Note the similarity with
the relational description in figure 2-5. This similarity extends to the inability to
describe the referential and inheritance semantics shown in figure 2-8. lowever, the

notation here allows the component types to be named. This is not necessary, bul it is

33

Atkinson & Buneman: DBPL design 10 October 1085

advantageous as it introduces names for types which are needed for programming with
this data. Note the difference from the Pascal example in figure 2-1 where variants are
used, capturing the semantics of the required and exclusive specialisations of FPart. The
version of Pascal/R available did not adhere to data type completeness and allow a
relation to be constructed over variant records, presumably because it is then more
difficult to define the operations on relations in all circumstances. The best that could
be done was to add a few comments.
program Taske{aPartDB);

- {the type decls from fig 3-9)
var aPartDB: PartsDB,;

with aPartDB do {relation names into scope)

for each bParl In BasePart: UnitPrice > 100 do
welteln(bPart.UnitPrice, bPart. AMass)

Figure 3-10: Pascal/R - partial solution to Task 2

The program in figure 3-10 shows how to obtain the price and mass of each base part.
This is relatively simple. However, as there is no inheritance mechanism, an explicit join
is necessary to find the name, as shown in figure 3-11.

program TuskalertDB};

{the type decls from fig 3-0}
var aPartDB: PartsDH;

with aPartDB do {relation names into scope)
for each bPart In BasePart: UnitPrice > 100 do
for each prt In Part: bPart.Pno = prt.Pno do
writeln{ prt.Name, bPart.UnitPrice, bPart. Mass)

Figure 3-11: Pascal/R - Task 2 printing name of expensive parts

Note ‘that the types of the controlled variables in the for each statement are
bFPart:BasePartRec and pri:PartRec. The automatic typing of these variables is convenient,
and their use avoids ambiguity in the sclection clause and in the iterated statement.
However; these intermediate type names are useful, as is shown in the example of a
function to locate a part, shown in figure 3-12. Doth the relation and the record type
are used. . That example also shows that obtaining a singleton set, then desetling to
obtain the one item it holds (a common operation in the upplicatious. tried), is not

particularly convenicat in Pascal/R. Later, we will sce a construct, the, in Daplex and
Adaplex, which has this purpose.

Phe Task 3 computation of cost and mass is shown in figure 3-13. There is the

equivalent of a join in this computation, but it is not written as such. The programmer

34

Atkinson & Buneman: DBPL design 19 October 1985

progr Bm 1.:sk3(aPartDBY);
{type decls from fig- 3-9)

‘;n? e PartD&: PartsDB;
gunc lon findPart{partName: String): Prum; {returns part number }

var aPart: PariRec; theParis: PariRel;

with aPartDB do
begln {relation names sow available}

theParts := [each prt in Parl: pri-Name = partName};

if size{theParis) # 1 then {ervor}
begin
wrlteln ("Ambiguous or unkpewsn part saime'};
findPart == Mazint {tepreacntinx unknown}
end of error}
elae
begln
low(theParta, aPart); {deseiting}

findPari := aFPart-Pno
end
end
end; {of findPart})

Figure 3-12: Pascal/R - function to locate a part

program Tusk3(aPartDBJ;
{type decls from fig. 3-0}

‘;ar alPartDB: PartaDB,
{findPart from fig 3-12)

procedure cost AndAfass{p: Pnum; var resultCost! Dollars;
var resull Mass: Grams);
var subTotalCost: Dollars; subTotal Maass: Grama; nf: MadeFromRec;

with aPartDB do

begln
A¢ BasePart|p] Yn BasePor{ then is it a base past?}
beglin base part case}

resultCost := BasePartjp].UnitPrice;
result Maas = BasePartjp|. Mase
end

else
begin {hese a composite part}

resultCost := CompoasitePart]p]. AssemblyCost;
result Mass == CompositePari[p]. MassIncrement;
for each m/f In [Aedefrom: mf. Assembly = p| do
with mf do
begin
cost AndMass{ Companent, subTotalCost, subTotal Muss %
resultCost ;== reaullCoat + Quantity ® aubTotalCost;

result Mass = result Mass + Quantity ® aubTotalRfase
of loop over componenta)

{of Base Part case}

end
end of Composite Pari case}
© end of scope of aPartDH relation names
end; of cost AndMaas}

procedure doTask3;
war it3Cost: Dollars; itsAfass: Gramas,
begin
cost AndAfass(findPart{ 'Mast '), itaCost, staMasa);
writein (itsCost, itsAfass}

end; {of doTask3}

beglin doTaskd end.
Figure 3-13:

has kept track of one of the contributing tuples, to use ils values directly. This alst
35

Pascal/R - program to obtain cost and mass

Atkinson & Bupeman: DBPL design 10 October 1985

saved the programmer defining the iype that would result from the join. 1t is difficult to

provide a single operator that will allow this addition, multiglication and recursion. We

will see a partial solution in section 3.7. The operation CompositePart[p]) used in this
example, treats the relation as a sparse array, rather than as a set. This can also be seen

as treating it as an extensionally defined function. A useful idea we will see again in

Daplex.

program TaskHaPartDB);
type decls from fig- 3-0)
to bold previously computed cost etc}

memoRec= record
in CompositePart)

ForPart: Pnum,;

TotCost: Dollars;

Tot Mass: Grama

end;
memoRel = relation <ForPart> of memolec;
var aPartDB: PartaDB; memo: memoRel;
. {findPast from fig 3-12)
procedure cost AndAass(p: Poum; var reaultCoat: Dollars;
var result Mass: Grams);
var subTotalCost: Dollars; subTotal Mass: Grama, mf: MadcFromBRec;

with aPartDB do

begin
i¢ BascPart|p] ta BascPart then is it 2 base pare?)
as for fig 3-13)
else
A miemolp| In memo then
with memolp] do
begin
resultCoat == TotCost,;
result Mase := Tot Mass

{memoised?)

{bese if alseady calculated})

end
clse not previously computed}
begin here a composite past}

resultCoat ;== CompositePart|p}-UnitPrice;
result Mass ;= CompoasitePart|p} Mass;
for each ... as for fig 3-13
ag for fig 3-13
memoise valuea for thi ¢
memo :+ [<p, resultCost, reault Mass>} “pard

c::d of Composite Part case)
oo 0: scope of aPuartDB relation names)
*
pebeidins Taoks, of cost AndAaos)
var ..
memo = ||; uothing calculated yet})

as for fig 3-13)

end-

Figure 3-14: Pascal/R - memoising the cost and mass

T i ' P - il
(] 3\'0“! the I'(.'peullve compuiation l()l’ COmnon h".).‘;“ll(“,lll('b & Inemno (’.Itd
I r

l v i
good engineerin cti i i
£ 8 practice trics Lo reuse common subassemblies, so this saving can be stgaificant

ai

Atkinson & Buneman: DBPL design 19 October 108;

structure!2 can be introduced and used, as shown in figure 3-14. Note that it is easy tg

declare and initialise the necessary set of values. The :4 operator is used 16 add a ney

result Lo memo, each time a composite part is calculated. The construct memolp}) 1n mcm,,k
to determine whether the part has aiready been calculated is not obvious as a construc
for determining whether the index value is in the set. It was also used to determing
whether a part was a composite part. It depends on memo]p| returning the empty tuple}::‘
<>, if the index is not present, and this tuple is not cousidered to be present in any;i
relation.!3 I is convenient to be able to declare in the program the memo relation of the
type initially specific o the database, but to have the instance extant only for each'
program run. AN the same mechanisims are available for dealing with temporary

refations, such as memo, as are available for persistent relations.

type
Pnum domaine as in fig 3-9)
Partftec . records as in fig 3-9
FdRee = record to package a Poum
Nom: (NeztPro, NeztSno, ... };
Value: snteger
end;
Partftcl {relations as in fig 3-0)
Iditd = relation <Nom> of Idiec,
PartsDB = database N
Part: ... {2s in fig 3-9)
Id: IdRel, {next identifier to use)
end;

Figure 3-16: Pascal/R - revising data description for update

In order to perform the update lask, it is necessary first to modify the database
definition of figure 3-9 Lo include a record of the part numbers used. This is shown in

figure 3-15 where the required integers are encapsulated in a dummy relation #4. It is

unfortunaie that type independence was not maintained io the extent thal we could ;

wrile

PartsDb ==

database
Part: ...

NeztPno: Pnum;
NextSno: Snum
etc

end;

{the next part aumber to use}

12A mechanism originally suggested by Michie [iichie 68]

35 i . . P
By s interesting to ask what the type of 'ae empty tuple is since fn presumably has type

T X relation of T — bool.

37

directed acylcic.

_ with Pascal/R as theie is no indication of the extent of a transaction.

Atkinson & Buncman: DBPL design 19 October 1035

4 is shown in figure 3-18.

rogram Tash juPartDB);
e type def® as in fig 3-15)
the fuaction findPart as in fig 3-13}
PartDB: PartsDB,;
;:;c:d‘:xrn mak:Sub{ asacmblyPro, componentPao; Prium; ¢ Poalnt);
beglin

with aPariDB do

begin
I?not Part|{ComponentPro| in Part then
... {Stop the transaction with an *Unknown component® message}

MadeFrom :+ [<sssemblyPno, ComponentPno, ¢>)

end

end; {of makeSubd}

procedure Main{newName: Slring; newAssemblyCost: Dollars;
newAfassIncrement: Grama);
var newPart: PartRec, newCompositePart: CompositePartRec,
cmpniList; relatlon <cPro> of '
record cPno: Pnum; Qty. Posint end,
h::‘{l:‘odc to obtain from the user the details of a part,
the composite past information, and the list of components
used in its manufacture together with quantities)
with aPartDB do
begin
with Id| NextPno | de
begin
newParl.Pno=value;
Part -+ {newPart|;
newCompositePart.Pno ;== value;
CompositePart i+ [newCompositePart];
for each mf In cmpntList do
makeSub{value, mf.cPno, mf gty)

{sec fig 3-15)

end of with Id| Nextfno |)
end of with aPartDL}}
end; of Main}

begin Main end.

Figure 3-18: Pascal/R - Task 4 recording how a part is made

This code is not typical of an update program, which would be largely concerned with
providing a suitable user interface, and checking that the user's input made sense. For
example, there is no check here that cycles are not being introduced into the intended
It con-urrent use of the database were anticipated, it would be
important not to:lock toc much while the user did input. However, that does not arise

The

implementation actually treats a whole program run as a transaction. One deficiency of
directly recording the integers in the database. The update program implementing Task

£ P ihi N . .
Pascal/R not exhibited in the examples, is the constraint that only one database may be
used in any given program. This seems scrious, as people often require to combine data

from: different “databases, produce copies ete. The main impact would be on the

Atkinson & Buneman: DBPL design 10 October 1985

introduction of names, Sirce Pascal/It treats databases like records, there would be no

problem of disambiguzting nanes, and so we assuine that a change to permit mulliple

database use would not be difficult.

3.3. Other languages that atiempted integration with relations
Many other languages have been proposed to combine a standard janguage with

relations. A few comments are offered on some of those that appear in tabie 3-8.

In the late 70s, there was considerable progress reported with the languages Plain and
Rigel. Plain was a particularly ambitious project, tackling a number of issues recognised
as relevant to making the implementation of interactive information systems easier. The
colations are similar to those in Pascal/R, with similar restrictions as to the attribute
types. One exlension is to introduce a marking, which refers to a subset of some base
relation(s) derived by evaluating expressions in the relational algebra over relations and
markings. Associative access on the key fields is supported in a fashion equivalent to
that in Pascal/R. The provision of exceplions should in principal, msake handling
relation aceess errors easier than in Paseal/R. But standard exceplions for relational
operations are not defined in the report [Wasserman el al. 81}. The foreach siatement is
consistently defined to be applicable to all composite objects, aggregaling sels or
sequences of vaiues of the same lype, rather than just over relations as in Pascal/R. In
addition there is a limited way of specifying the order of iteration, similar to that we will
see later in Adaplex4.1. Relational update operators almost identical with those in
Paseal/R are available. Persistence greater than the duration of a progfam is achieved
by binding a declaration to an externai object in the environment. It appears that this
was only intended for a limited subsel of types, such as procedures, modules and
relations. The authors understand that the underlying database handler intended for

Plain has been widely used [Kersten 81].

Using the relational calculus rather than algebra, Rigel was built on top of
INGRES [Stonebraker et al. 76]. lts type system is reported in [Rowe & Shoens 79}
Interest moved from the database facilities, to means of facilitating programming

interaction against relations via forms [Rowe 85}

The languages Thescus [Shopiro 79] and Astral [Amble el al. 70] were designed, but we

unders.and their implementation was not completed.

Atkinson ‘& Buneman: DBPL design 19 October 1985

Various plans for adding database faciliti>s to Ada have been mooted, besides Adaplex,
reported later. The suggestion for \da and relations, Adarel [Hlorowitz & Kemper 83, is
so recent Lthat an implementation is unlikely to be finished yet. It is not known whether
the proposal for a persistent Ada [lall 83] , with a similar notion of persistence to PS-
algol(see Section 8.1, is being implemented, but an interest in a similar idea is reported
at CCA, implementers of Adaplex.

3.4. Embedded Languages

This section, describing existing m.ethods of database programming, would not’ be
complete without some reference to embedded languages. Confronted with the failure of
a query language to handle a problem such as Task 3, or with the difficulty of
performing a safe update, the user of a relational database would normally turn to an
embedding of the query language in some more powerful language such as Cobol, PL/1
[Date 83a], or C [Stonebraker et al. 76). In such systems, queries can be interspersed
with a host language in such a way that makes them recogniseable by a precompiler that
generates the appropriate external subroutine calls. Since we have been using Paseal as
our relerence language, the solution to Task 3 is shown in figure 3-17 wusing a
hypothetical embedding of SQL in Pascal. It follows closely the code that would be used
for the embedding of SQL in PL/1 in System-R [Astraban 76). In this example, we have
only shown the code for the procedure CostAndMass. The code to drive this procedure

would also have to be wrilten in the host language.

In this example a special class of variables, prefixed with a $, serves as communication
between the host and query language. Since the host language has no data type
appropriate for representing the result of a query when this is a relation with more than

one tuple, a cursor (X} is used to traverse the relation in a fashion similar to reading a
file. 14

The code for this task combines two languages that we have already seen, and while
logically straightforward is awkward because the programmer must be bilingual. The
.mﬂin problem with ernbedded languages is that data may only be conveyed across the
Interface via variables of a very limited set of data types such as integer, character

strin e
g, and real. To our knowledge, no attempt has been made to establish a higher-level

I‘IN R
ote that the cursor i not an object i 4 ade
appropriate type. bject i the bost language and therefore cannot be declared with an

g1V

Atkinson & Buneman: DBPI. design 19 October 1085

procedure CostAndMass(P: Pyium; o ae resultCost, result Mass: integer);
var $/'mo, $Cost, $ Mass, $Component, $Quantily,
$subTotalCost, $subTotal Masa: inleger;
begin
$mo=P,
$SELECT UnitPrice, Mass
INTO $Cost, $ AMass
FROM BasePart
WIHERE Pno = $Pho;
1 ERRORSTATUS = 0 then
begin
resultCosl:=$Cosl;
result Mass:=$ Mass;
end
else
begin {we assume we have a composite part)
$SELECT AssemblyCost, Rasalincrement
INTO $Cost, $AMass
FROM CompositePart
WIIERE Pno = $/no;
resultCost:= $Cost; result AMass:=$ Mass;
SLET X BE {Define 2 new relation of subparta)
SELECT Quantity, Component
INTO $Quantity, $Component
FROM Use
WHERE Assembly = $ Assembly;
$OPEN X; {Set cursor to atart of relation)
while ERRORSTATUS = 0 do .
begin
$FETCH XY,
Cost And Aass($Component, subTotalCost, subTolalMass)
result Cost:=$Quantity® subTotalCost+resultCost;
result Afass:=$Quantily® subTolal Mass+result Mass;
end
end
end;

{we found a base part}

Figure 3-17: Task 3 in a hypothetical embedded query language

interface by establishing, say, a tuple to record or relation to array correspondence.

a.6. Loglic Programming

There is a well-established and elegant connection between logic programming and
relational databases [Gallaire ef al 84, Gallaire & Minker 78). In particular, one can
represent a relation as a set of simple predicates, all of the same arity, whose variables
are all constants. Queries can be simply formulated and there is no problem in writing a

logic program to perform transitive ciosure. In fact the following program computes the

Atkinson & Buneman: DBPL design 19 October 1985
transitive closure of the part - sub-part relationship:!® the development of logic
programming with inheritance.

AnySub(z,y):- MadeFrom(z,y, _)
AnySub(z,z):- MadeFrom(z,y, _), AnySub(y,z)

Unfortunately the introduction of arithmetic that is required for Task 3 considerably
complicates the program and requires the addition of ®cuts® to control the evaluation.

A problem very similar to Task 3 is worked out in some detail in [Clocksin & Mellish 81

The connection between database constraints (such as functional dependencies, multi-
valued dependencies etc.) and types is a subject that is greatly in nced of research. It is
again possible to model database constraints very elegantly in logic programming and to
devise systems that do not allow the addition of a predicate —- a form of update -- should
it violate these constraints. llowever, there is nothing corresponding to static lype-
checking available for logic programming, although proposals for such a type-checker
have been given by Mycroft [Mycroft 84]. We also understand [Vassiliou el al
83, Ullman 85| that there are attempts to produce an effective interface between Prolog
and a relational database management system in order to obtain, where possible, the
efficiency provided by the latter. Ilowever, we are unaware how these systems will deal

with persistence and modularity.

Thus, while logic programming clearly deserves consideration as a database
programming language, the issues addressed in this work are orthogonal to the issues of
types and persistence that are the focus of this paper. Current implementations of logic
programming languages deal with persistence in very much the same fashion as Lisp
implementations. However, we expect that this situation will change in the near future
and progress with implementations of logic programming systems that can be combined

with database management systems should be carefully watched.

15The problem of specifying parameters positionally can be acute in seal applications, where relations
tend to get extremely °fat®, ie. they contain a large number of columns. An interesting deve.opment is
recent work [Ait-Kaci & Nasr 85 in which inheritance can be used in logic programming. Amouns other
things, this permits the use of a keyword notation which combines more naturally with conventional
relational query languages.

42

Atkinson & Buneman: DBPL design 10 Oclober 1085

3.8. Persistence and Workspaces

Many of the languages we discuss in this paper - the database query languages in
particular - are designed to be used inferactively. In practice this mesns that an
environment is provided which the user, in lhe normal course of work, never leaves.
Editing, compiling/interpreling, debugging elc. are afll performed within the language
environment. Although it can be claimed that there is no difference in principle between
this and the interactive interface provided by many operaling systems for the traditional
edit-compile-run cycle used for many programming languages, there are qualitative
differences that are important for our examination of database languages especially with

respect to persistence.

Particularly important in the design of interactive languages and their environments is
that many of the services normally provided by the operating sylem, such as editors,
links to files, etc. are available in Lhe language environment itself and should be callable
from the language. This means tha.t some aitempt to deal with peristence must be made
within the language or language environmest. In this context the programming

enviconments for Lisp [McCarthy 82, Teitelman 75], Prolog and APL {verson 79] are

interesting.

The simplest form of persistence, provided by all useful interpreters for these languages
is some form of checkpoint-resiart instructions. By using these a programmer may save
the current state of the environment and resume it later. This is a simple {orm of all-or-
nothing persistence. a more sophisticated version of which is provided by Poly (see
section 5.2). Lisp is more interesting because ceriain objects such as lunctions (SEXPRs)
have a textual representation. These can be saved in files and read in again in some
subsequent session. By grouping collections of such objects in files a degree of
modularity can be obtained. However the list structues that one normally associates
with databases cannot easily be ®flattened® into a textual represeniation. Therefore
special purpose algorithms need to be developed for certain classes of structure. This can

be done, but there is a consequent loss of generalily of the fosm of persistence that is

avaifable.

APL deserves special mention both because of its type-chezking and ils pessistence.
Although it was designed primarily as a scientific programming language, it has been
widely used as a programming language for the implementation of small and medium

scale databases. One of the reasons for this is that it was one »f the first sophisticated

43

Atkinson & Buneman: DBPL design 10 October 1085

interactive languages to become available on the brands of hardware on which databases
are commonly needed. Another is that its workspace mechanism made it particularly
easy to partition and share data.

In APL, the only non-primitive data types are functions and arrays. There are no
reference types. Every data structure is therefore flat, and a workspace is no more than
a collection of such structures together with their names. The penalty for this
organization is that global references within functions cannot be bound statically and the
language exhibits the usual anomalies of dynamic binding. Type checking in APL is also
interesting because the only ®bulk® data type - arrays - is uniformly typed. Thus the
typeof Aand Bin A + B is

(array of real) or (array of integer)
rather than

array of {real or inleger)
Type-checking (and optimization) need only be done once for addition of arrays. This is
in contrast to Lisp where there is no mechanism for imposing a uniform type on the
clements of lists. APL programs that are written to exploit arrays and operators will

therefore have a very small overhead for type-checking.

The flatness of APL structures is similar to the first normal form requirement for
relational databases. Given this, it is surprising that non-one has yet attempted to
produce a relational database programming environment based on that of APL. One
reason is that efficient implementation of relational operators requires an elaborate
overhead of non-flat data structures, and these may be difficult or expensive o
disentangle when copying objects from one workspace to another. It is possible that

Aldat, which we examine in the following section, will be implemented along these lines.

3.7. Aldat

Aldat [Merrett 77, Merrett 84, Mesrett 85b] is an attempt to build a language that is
predominantly relational algebra, with minin.al extensions to give more programming
power. This is a contrast to all the other eximples which are basically general purpose

programming languages that have tried to deselop persistent storage.

In co 5 s g] i
nlrast to these attempls to develop persistent storage for general-purpose
programuming languages is the possibilily of extending a database query language to

9} N) ", ati 1
provide grealer computational power. Most query languages are more than bare
:

41

Atkinson & Buneman: DBPL design 16 Ociober 1985
interpreters of relationai calculus or algebra, but they are nevertheless limited as we
have seen in our efforts to solve Lask 3. Aldat [Merreit 77) however, uses the relational
algebra as the basis for an extended and generalized set of relational operators that,
together with recursion and function definition, provide an inieresting medium in which

1o apply the relational algebra to & variety of programming problems.

An example of Aldat's extensions to the operations of the relational aigebrs is a form of
selational composition R [Xy, ... X, icomp Ty, ... Y. S where Xy, .. X, and Yy, .. \¥y,
are lists of column names of relations R and S respectively. The meaning of this is to
take the cartesian product of relations R and S, select those tuples ¢ for which
(|x,}] = t|;], and then remove, by projection, the columns Xy, ... Xy, ¥y, - ¥, Given a
binary relation, R{e,b}®, one may define

R2 <- R ujoln (R {b leomp o} A}

m‘<- R ujoin {122 }b tcomp a} R}

RClose <- R ujoln (R [b lcompa] RClose}
where ujoln mcans natural join. The first two of these definitions perform closures of
depths two and three; the last is an sliowable recussive form and is a definition of the

transitive closure of R.

This expression of transitive closure is not powerful enough to solve Task 3 where we
nced Lo perform arithmetic in the course of forming the closure. To do this, in a fashion
reminiscent of APL there is a generalization of the transitive closure operation thatl
computes an “outer product® slong the edges of a directed acyclic graph. The first line
of 3-18 therefore finds the total number of any component involved in an assembly {be it
a sub-part, sub-sub-part etc.}. The next two lines crestes a uniform relation with cosis
amd masses for all parts in the data base (® <-° is assignment, ®<-+° is incremental
msignment}. The final line performs the appropriate join and reduction to give us the
total cost and mass for each part.

Quantities <- closure Use{Assembly, Component, °® of Qty meet +);

AllCandM |Pno.C,M <- 'no,UnitPrice,Masa] Base,
AllCand M {Pno,C .M <--- !’no,AaacmblyCoal,Maulncrcmcnll Base,

let TotalCost be equiv + of C ® Qty by Component;
et TotalMass be equiv of M ° Qiy by Component;

CostAndMass <- Pnuri, TotalCost, TotelMass in
{Quantitics {Component icomp Pno| AllCandAf),

Figure 3-18: A Compuiation for Task 3 in Aldat

45

Atkinson & Buneman: DBPL design 19 October 1085

This method is something of a departure from other methods we have seen for
performing Task 3. In the first place, the existence of a transitive closure operation
should allow for optimisation which would certainly include a form of *memoising®.
This, aind olaer aspects of transitive closure, are extensively discussed in [Merrett 84}
On the other Land, the computation produces all the costs and masses, which may be
more than was required and which, in a shallow parts explosion graph, means that much
more computation has been done than meeded. It is interesting to note that we cannot

directly extend the closure operalion to use user-defined functions that will directly
compute cost and mass. 18

In addition to a transitive closure operator, Aldat conlains iterators and allows, as we
have seen, certain forins of function definition. Merrett [Merrett 85b] shows how arcas as
diverse as geometric computation and inferencing can be represented using an extended
relational algebra. Aldat undoubtedly exhibits some form of computational completeness

)

and it would be interesting to have some theorelical characterisation of this.

pma:cl:”.-'.m'f, ;fz:jnucz:nﬂacnl:::‘ilu:lgksuml;:;:ly‘dwnh_ APL. lligher level operations like seduction, outes
J , i ete. o 0 know the sdentsty of their function argu y
18 not obvious how the identity is to be apecified for user defined lunclion: mente (0 for +, 1 for * ete) b

48

Atkinson & Buneman: DBPL design §0 Oclober 1085

4. Languages incorporating advanced data models

To this point we have looked only at the relational and network data models. The
failure of these models to capture adequate database semantics is well understood [Codd
79] and othes models, notably the entity-relation model {Chen 78], have beea widely used
ps design *cols for databases. Surprisingly, this data model does not appear to have had
a very direct effect on the design of database programming languages. ‘There are,
however, two data relatignships that have been found essential in databsse design and

have been caplured within the type system of several experimental daiabase

programming languages.

The notion of inheritance has received atiention in various relevant fields and goes by
various names: in Artificial Intelligence, ISA bierarchies have been expressed in semantic
networks such as KL-One [Brachman 78, Brachman 83]; type (or class) inherilance is an
important feature of object-orienied languages such as Simula [Dabl & Nygaard 60] and
Smalltalk |Goldstein 80}; and generaliaation {or specialisation) were suggested for
databases by [Smith 77] and used as the basis for the Semantic Data Mode! [Hammer 75].
In our test case, an example of inheritance is to be scen in the relationship between
DusePart and Part. A BasePort is a special kind of Purt and therefore inheriis all the
atlribuies of Part. In the relational model, the only way lo capture this relationship is by
a °foreign key® constraint, which is not wsually available in relational schema
declarations. We used a variant record in Pascal to express this relationship, but this is

* in genceral too restrictive since it constrains {a} a part to be a base part or a composite
part and (b) no part to be both base and composite. In our example, Lthese are exactly
the conslraints we require; but compare this with a database that has persons,
employees, and students. Both an employee and a student are special kinds of person,
but we do not necessarily want either {a) or (b) to hold since » person could be neither a
student nor an employee or could be both a student and an employee. In Pascal, we can
relax constraint (a) by adding a third {empty) variant to the record type, but there is
nothing we can do to relax (b). In Codasyl we can use a set that contains iwo member
classes to suggest discriminated unions as we did in 3-§; but we need to consirain each
sel occusrence o have at most one member, and this can only be done by making sure
that each updating program respeeis this rufe. There is no checking mechanism built in

to Codasyl to enforce this constraint.

The other new data model is simply that of an extensionally defined function. The

relationship of a member to an owner class in Codasyl is many-one, as is the relationship

47

Atkinson & Buneman: DBPL design 190 October 1085
-tobe

of a non-key to a key fiedd in x relation. This leads to the possibility of expressing the
database as a collection of I'uuclifms so that, for example, Name can be thought of as a
function from Part to String. Among the advantages of the functional data model is that
extensional (database) functions can be given similar semantics to other functions. This
makes the functional data model a natural adjunct for Junctional programming
languages, in which functions are values and can be manipulated by other (higher order)

functions. Requiring a language to be functional is therefore a natural step towards type
completeness.

4.1. Daplex and Adaplex

The functional data model was first exploited in two languages, Daplex [Shipman
81] and FQL [Buneman 82]. The second of these has a polymorphic type system related
to that of ML, which we will discuss later. Daplex is interesting because it also captures
the notion of inheritance. Originally intended as a sublanguage, there was no intention
fhat Daplex should posess any degree of type completeness or computational power. It js
interesting to note, however, that Task 1, the data deseription, can be written in Daplex
to capture all the constraints suggested in figure 2-6, Task 2 and Task 4 can be writien
as neatly as in any relational query language, and Task 3 can almost be written
Although Daplex contains a transitive closure operation, it is not quite powerful enou rl;
to include the arithmetic operations required here!7 j

Rather than reviewing Daplex here (the reader is referred to (Kulkarni & Atkinson
85, Kulkarni & Atkinson 83} for experiments with the language), we shall look n.t a
substantial endeavour to conflate Ada and Daplex in the language Adaplex [Computer
Corp(fmtion of America 83]. Adaplex has maintained most of Daplex's data model in
that it exploits the functional model and inheritance. Some of the computational
structures of Daplex have been omitted since they can be performed in Ada. 1t should
be emphasised that Adaplex is not an embedding of Daplex in Ada in the sense of
embedded SQL. It is an extension of Ada to incorporate new data types and c(;lltr()l
structures corresponding to the functional model as formulated in Daplex, but consistent
with the design and philosophy of Ada. '

A“-h()ll ll a)lL‘X b' ipman 8 was a 1 ajor infiuence in “lc (IL‘bI e of Ad e the
g l) § l Mp ” n 1 ﬂ 1 { 4 Lll l X ll
»

Waui at {secti ;
8 in Aldat {section 3.7) there is a problem with limited forms of transitive closure

chosen bee: i . - Task 3 w:
ccause I s a natural task that shows up the problema of predefined transitive closure Pk b s

operations.

48

Atkinson & Buneman: DBPL design 18 October 1985

DECLARE Part ¢ »» ENTITY
DECLARE Name(larty — STRING
DECLARE PnotParty ~ INTEGER — No faclity for domains - like Poum

DECLARE Supplier() —» ENTITY

DECLARE BasePart() —» Port

DECLARE UnitPrice(HascPart) — INTEGER
DECLARE Mass(BasePart) — INTEGER
DECLARE SourcestBaseParty ~» Supplier

DECLARE CompositePart(y ~» Past

DECLARE AssemblyCost(CompositePart) — INTEGER
DECLARE MassIncrement (CompositeParty — INTEGER
DECLARE SubParts(CompositeParty —s Part

DECLARE Quantity(CompositePart. SubPartatCompositePart)y — INTEGER
DEFINE Usedin(Part)y —» INVERSE OF SubParts(CompoasitePari)
Figure 4-1: Task It A Daplex description of the paris data

notation for defining the database bears little resemblence to the Daplex notation for
function declarations shown in figure 4-1, but the main changes are surface syntax fo
comply with Ada convention. For example, the double headed arrow of Daplex becomes
set of in Adaplex. Figure 4-2 shows how the definition of the database (Task 1) is
recorded in Adaplex. Unfortunately, unlike Daplex, Adaplex does not allow us to define
a derived function, recording the fact that WherelUsed(Part) > INVERSE OF
ComponenlLiat(CompoailcPari}.

The operation of extracting the expensive bought in parts is simply encoded in Adaplex
as is shown in figure 4-3, obtaining Nemep}} automatically from Part, as the inheritance
was defined by the Include statement. Note that By Deacending allows the simple

specification of the order in which the selected entities are processed.

Coding Task 3 in Adaplex is more problematic. Figure 4-4 shows a program based on
the algorithm illustrated first in Pascal (Figure 2-3). The recursive scan of the paris tree
is much as it was in Pascal, and the management of getiing function values specific to a
specialisation of Parts is similar. The determination of which specialisation a part
belongs to is different because the specialisation structure in Adaplex is more gereral,
allowing overlap, and does not require the programmer to introduce the discrimiator.
One disadvantage of this is the loss of the possibility of encoding the selection using a
case clause. The selection of a part given its name is much simpler in Adaplex than in

Pascal. It would probably also be more efficient.
It is not certain whether a Part (Entity Instance) may be passed as a parametes as

40

Atkinson & Buneman: DBPL design 19 October 1085

datsbsse Parts le

type Supplier; —Needed for forward reference
type CompositePart;

type Prum 8 1. Mazint;

type Dollars ls real;

type Grams 1la real;

type Fart ls entity

Pro D Pnum;
Name :String{l..10);
WhereUsed : set of CompositePart;

end entity;

type BasePart le entity

UnitPrice : Dollaras;
Aosa : Grama,
SuppliedBy : set of Supplier;

end entity;

type CompoaitePart is entity
AasemblyCost : Dollars;
Masalncrement : Grams;
ComponentList : set of Reguirement;
end entlly;

taclude BasePart in Part;
include CompositePart in Part;

type Requircment le entity

Uses : Part;
Quantily : Posint;
end entlity;
end Parts;

Figure 4-2: TASK 1: Adaplex data definition for parts

with Parts;
use Parts;
print _Expensive _ FParto:
atomlic)
for each bPart in BasePart where UnitPrice bPart } > 100
by descending UnitPrice{ bPart) loop

Name{ bPart });
Engm'lﬁicc(bPart));
Mass),
NEW _LINE;
end loop;
end atomlc

Figure 4-3: TASK 2: an Adaplex program to list exnensive parts
shown in the above example, as Adaplex is quite restrictive absut the places in which

enlity types may be declared and used.

For reasons given earlier, it is desirable to improve on the abor e algorithin by adding a

data structure to hold a memo of subassembly properties already caleulated. It is

o0

Atkinson & Buneman: DBPL design 18 October 1085

~Using an aigorithm similar to that in Pascal - figure 2-3

with Paris;
use ['arls;
print _Cost _and_ Aass:
stomie
procedure costAndMass(in aPar:Part; out resultCost: Doliars;
oub result Mass: Gromaj;
declare
subtotalCost: Dollars; subfotadMass: Grams;
if aPart 18 In DasecPart then
resultCost ;= UnitPrice{ aPart);
result Mass := Unithfass{ aPart }
olse
resultCost :== AssemblyCost{ aPart);
result Mass := Massfncrement{ aPars };
for each cmpnt In ComponentList{ aPart) loop
cosiAndMasa(Uses{ cmpnt }, sublotalCost, subtotal AMass bk
resultCost := resullCost + Quantity{ cmpni) ° sublotalCost;
resultAass :== result Mass + Quaniity{ cmpnt } © subloialAfass;
end loop;
end if
end cost AndMasa;

declare itsCost: Dollars; its Mass: Graems;

costAndMass({aPart in Part where Name{aPart) = 'Mast '}, itaCost, its Mass);
IUTtsCost);

IUIVits Mass); NEW_LINE;

end atomle

Figure 4-4: TASK 3: Calculating a part’s cost and mass using Adaplex
unfortunate that this only appears to be possible if the daia base designer has the
forsight to include an appropriate entity type to hold these memos. Although such
forsight is in general improbable, we assume it occured for our problem. The fragment
of the parts database description then appears as in figure 4-5. The algorithm can now
be modificd to avoid reprocessing CompositePorts as shown in figure 4-6.

database Paris ia

—type declarations as in fig 4-2

type Afemno te entlty —lo siore interinediate results
ForParé : Part;
TotCost : Dollars;
Tot Masa : Grama;

end entity;
unique Forpart within Afemo;
end Farts;

Figure 4-65: TASK 1: Revised Adsplex data definition for parts

Note that the provision of sets in Adaplex makes it easy to introduce the appropriate
data structure, and the assumed indexing meckanism makes it efficient. The extra effort

required to construct this for Pascal, particularly if the number of parts allowed may be

51

Atkinson & Buneman: DDPL design 10 October 1085

~Using an improved algorithm similar to that in - figure 4-4
~Using a set to avoid retrav :tsing common subassemblies

~Preamble as in fig 4-4
declare Donefart: set of Memo;

procedues costAndMaso(ln aPart:Part; out resultCost: Dollars;
out result Mass: Grams),
declare subtotalCost: Dollars; subtotalMass: Gramas; donePart: AMemo;
if aPart ls In BascPart then
—As in fig 4-4
clse —~Not a base part - Composite
doncPart ;= { mem la DoneParts where ForPart{mem) = aPart),
if count(donePart) = 0 then —test if already memoised
reaultCost := AssemblyCost(aPart), ~Hege for a new subassembly
—As in fig 4-4
fnclude{new MemoliorPart = aPart, TotCost = resultCost,
TotMaas = result Mass))
Into DoneParts;
else ’
resultCost .= TotCoat(donePart); —here for a subassembly already
result AMass := Tot Mass{doncPart); —traversed
end 1f; —End any Composite Part
end if,;
end costAndAlass;

declare stsCost: Dollars; itsMass: Grams;
—sel the memo empty
exclude donelarts from doneParts;

—~Output as for fig 4-4

Figure 4-8: Revised Adaplex process to calculate cost and mass
very large!8 probably deters many programmers. Again there is some uncertainty as to
whether a set may be declared at this point in the program, and also whether the
coercion from a singleton set to the entity it holds works in this context. The use of an

exclude statement to obtain an emply set is somewhat odd.

Note that the provision of persistence is associated with implicit entity classes, refered
to as the extent of the entity class. In the examples, the use of an entily name after tn
{eg Part) is actually an abbreviation for the extent (g Purt'extent). These extents
automatically persist in the mocule like objects introduced by the databese construct. It
13 aot clear whether entities, such as the instances of Memo in the revised version, will
persist, but we hope they will not. Indeed that is why the set Donefarts was introduced
rather than use Afemo'eztent. The introduction of the construct for transactions -
introduced by atomlc - is a major step in clarifying the nature of operations on persistent

data.

mlixp;uuling a hospital, aircraft or ship for example.

*

Atkinson & Buneman: DBPL design 10 October 1085

To do Task 4, record a new composite part, and how it is made, it turns out to be
necessary lo backirack, and revise the definition of the paris database {Taski). This
revision is shown in figure 4-7.

Jdatabase Parls ls
~As for declarations in fig 4-5
tyoe Ids s {Nextfno, ... };
typa /d is entity
- IdName : Ids;
value : Posint,
end entity;

Figure 4-7: Adaplex declarations to keep irack of part number allocation
Note, as in Pascal/Rt (sce figure 3-14), the scalar valye canoot be siored directly in the
database; and the introduced packaging has the same overheads as before. Given this
structure, Task 4 can be accomplished as shown in figure 4-8.

with Parts; —according to revised def® in fig 4-8
wee {larts;

procedure makeSub{assembly:CompositePart; component:Part; g:Posint);
Include { new Reguirement {WhereUsed = assembly,
Uses = component, Quantity = q) into ComponentLisi{ assembliy };
end makeSub;

procedure Taski(ncp: CompositePart; newRequirements: aet of Requirement);
use the id in I/d where [dName=NeztPno;
Pro{ nep } := value;
include {ncp) Inte CompositePart —automatically included in Part
value ;= value + 1;

for each r In newRequirements loop
~handle exception for not found or ambiguous part
makeSub{ nep, Uses(v §, Quantity(r });
end loop
end Taski;

declare newCompositePart: CompositePart; newComponentList: set of Reguirement;
.. =Code 1o conduct user dizlogue and to create those values

task4:
atomie
Task4{ newCompositePart, newComponentList);
end atomic;

Flgure 4-8: Task 4: recording the definition of a composite part

The use cf set data struclures to cominunicate the new values from outside the
transaction, denoted by Lhe atomic unit, means that the dialogue with the user can be
prolonged, without the lock on the extents of Purts and CompositeFurts efc. being of
excessive duration. There is some doubt, however, as to whether enlity typed variables,

or sel typed variables are permitted outside an stomle unit. The IS-A heirarchy

53

Atkinson & Buneman: DBPL design 10 Octobar 1085

constraints are automatically met, as, when a new CompositePart i crealed with new, the

corresponding Part entity is also created, and the program must provide values for its

fields.

T'he cxiception mechanism of Ada can be neatly exploited in this sort of example. For
example, the desetting-mechanism, the, raises exceptions when its argument s nol a

singleton set. - ~

It is slightly strange that the language does not permit multiple instances of databases
of the same type, since corresponding ADA constructs can usually have multiple

instances.

4.2. Taxis .

Taxis{Mylopoulos et al. 80) represents the first altempt to exploit inheritance in a
conceplual modelling language, but it is sufficiently close to a database programming
language that we shall treat it as such. The basic notion in Taxis is a class which,
roughly speaking, can be considesred as an element of a type hicrarchy. There is a most
general class, ANY_CLASS, which has as subclasses: VARIABLE _CLASS,
AGREGATE _CLASS, FORMATTED _CLASS, FINITELY _DEFINED _CLASS,
TEST_DEFINED _CLASS, EXCEFTION _CLASS, TRANSACTION _CLASS. All database
programming in Taxis is performed by defining classes. For example, what we have so
far wrilten as procedures is formed in Taxis by creating an appropriate instance of a
TRANSACTION _CLASS, this being a predefined class whose intances may contain actlons.
A VARIABLE _CLASS is similar to o type with an associated extent, much like the entity
types of Adaplex.

Classes are themselves objects in Taxis and instances of a melfaclass called ANY. This
is usclul for attaching properties to classes themaselves rather than to their instances. For
example, to the class PART we might want 1o attach some statistics such as the number
of objects in that class and the maximum number allowed. Figure 4-0 shows a meta-
class definition for part with an asssociated transaction to count the number of parts in
that class. Having done this, figure 4-10 shows the declarations for parts, base parts and

composite parts.

A VARIABLE _CLASS is one thal has a modifiable extent {i.e. insertions and deletions
are allowed). In defining BASE_PART we are therefore creating a new VARIAULE _CLASS

54

Atkinson & Buneman: DDPL design 19 October 1985

VARIADLE _ CLASS PART _<’LASS with
atiribute prop.-iles
" howhfany : COUNT_OF,
mazAllowed : INTEGIR,
end ’

TRANSACTION _CLASS CCUNT _i7F raturne INTEGER with
parameters {c}
locaie o
- ¢: PART _CLASS, . -
o : INTEGER, - -
actions. .-
find : begin
d <-6;
for z in ¢ do
of <-cf 4+ 1;
end
give : peturn(ct)
end

a

Figure 4-0: A wmeta-class definition in TAXIS

PART _CLASS PART with
keyo
partsd: (Pno)
characterlstica
Pno: {ji:1000]};
Name: STRING,
attribute _properties
number _in__ stock: INTEGER;
end

VARIABLE CLASS BASEPART Yea PART with
atiribute _properties
unil _price: DOLLARS,
maga: GRAMNS;
end

VARIADLE _ CLASS COMPOSITE _PART lsa PART with
atirlbute properties
assembly _cost: DOLLARS,
mass _increment: GRAMS,
end

VARIABLE _CLASS USE with
characteristics
where__used: COMPOSITE _ PART:
uses: PART:
atiribute _propertles
quantity: POSINT;
en

Figure 4-10: Data description in TAXIS
that inherits all the properties of PART. Within these declarations, a key specifies an
altribute that must be wnique within the class, and charecteristics and
attribute-properties specify respectively fixed and modifiable attributes. The class USE

performs the usual many-many finking; here the separation 6f characteristics and

Atkinson & Buneman: DBPL design 10 October 1085

attribute _properties is somewhat arbitrary.

As il stands, -this declarat‘ion ensures that every PART is either a BASE_PART or
COMPOSI'I‘E__["AI(I’ simply because the last two classes are the only subleasses of PART
with modifisble extents. Therefore, the declaralion ensures that the only way an object
can becom: a PART is by being created as a BASE_PART or COMPOSITE _PART. The
declaration does pot, however ensure the mutual exclusion of these two classes. It is
worth digressing here to note that it is quite possible that in a different situation, one
might want to allow a part to be both base and composite, i.e. it is one that can both be
bought or manufactured. Moreover, it might be desirable to attach further propertics to
such parts such as whether il is more desirable to manufacture them or buy them. Taxis
allows us to create new classes that are subclasses of more than one existing class. This
is known as multiple inheritance, which is not allowed in Simula or Smalltalk and would be

difficult to model using the network or relational structures.

To ensure exclusion, assuming we want it, Taxis has an EXCEPTION _CLASS, which we
could use to raise an exceplion whenever an attempt was made Lo create a BASE PART
that was already a COMPOSITE _PART and vice versa. Details of this are beyond the
scope of this paper, but it should be emphasised that the entire structure of Taxis is built
around classes and inheritance. Thus, just as a VARIABLE _CLASS can have more
specialised subclasses, so can a TRANSACTION _ CLASS and an EXCEPTION _CLASS.

Classes are objects in Taxis, therefore we should be able to create a metaclass
SUPPLIER _CLASS and add, as an attribute of BASE _PART

attrlbute _properties

supplicrs; SUPPLIER _CLASS

which indicates that the suppliers of this part are given by the extent of a class which is
in the meta-class SUPPLIER_CLASS. Unlortunately, there is a restriction that elasses
cannot be crenied dynamically which prevents us doing this and to deseribe the
relationship between suppliers and basc_parts we would have to resort to another

®linking® class like USE. Contrast this with Adaplex, which provides set of.

Making classes objects of the same status as other values such as numbers ete. brings
up the delicate the relationship between data type and cless. I is clearly very

convenient in daabase programming to have extents associated with certain types. In

56

Atkinson & Buneman: DBPL design 10 Oclober 1985
contrast to Pascal/R, which maintaing a slrict separalion between types and sets of
values of that type, Adaplex and Tauxis both have a construct that looks like a type
declaration but has an associated extenl. Moreover, it i3 these types with associated
extenls which are peristeat. We do uol advocate this singling out of a subsel of types as
privileged to have persistence, and believe that the lack of a mechanism for dynamically
creating [possibly transient) subsets of those extents will lead to recurring problems.
Galileo {see section 4.3} allows the type-nnd extent to have different names, but
maintains an association between the two. In Taxis, we should regard nearly everything
as persistent since one should really think of a Taxis program as defining 2 permanent
collection of classes; in fact it appears ihat there is very liltle non-persistent dala in

Taxis. Local variables of transactions are an example.

To show a simple transaction, figure 4-11 shows an implementation of TASK 2. 1/O
and the full range of iterative control struciures are not defined in [Mylopoulos ef af. 80},
but we undersiand that they are taken from Pascal and our examples have been written
accordingly. It is not clear how this iransaclion would, in praclice, be invoked;
presumably some model of user interaction within the framework of Taxis is required
|Pilote 83).

TRANSACTION _CLASS EXPENSIVE _ PARTS with

actions
for @ _part in BASEPART do
it a_ part.unil__price > (00 then
wrileln(a_part.name, ¢__parf.unit _price, a _part.mass)
end

Figure 4-11: Task 2: An expensive parts transaction in TAXIS

A more comprehensive illustration of a transaction in Taxis is shown in figure 4-13.
Note that a transaction has special attributes for parameters, locals, actions and resulis.
Since we want this transaction to return pairs and, as in Pascal, there is no pairing
operator, we have constructed a special class to describe records containing cost and
mass ficlds. Notice that in this case we really only want this class to function as a type
for a local variable. There is no need for the class COST_AND_ MASS _RECORD to have
an associated extent. The intention of this code shouid be reasonably obvious. Note
that the iransaction is recursively invoked by an expression of the form z.cost _and_mass
where cost _and_mass is a name for the procedure taking one parameter. The result of

this transaction is the value on this ®attribute® of the part z.19 We have not given a

01y the original TAXIS papers recursive transactions were not defined. We undesstand fromn Alex
Dorgida that the approach is now to treat only the outermost transaction as atomic, ie. there are no
partial commits.

57

Atkinson & Buneman: DBPL design 10 October 1085

AGGREGATE _CLASS COST _AND _ MASS _RECORD with
attributes

coat: DOLLs RS;

mass: GRAMIS;

end; :

TRANSACTION _CLASS COST _AND _ MASS(p:PART}
setuens COST _AND _MASS __RECORD
with .
locals
a_ part: PART, -
empnt: COMPONENT.
total _coat: DOLLARS;
total _mass: GRAMS;
result _record: COST _AND _ MASS _RECORD,
actlon base__part_action on BASE _PART..cost _and_mass ls
begin - -
total _cost — a__part.unit _price;
total _mass —+» 6 _part.unil _mass;
return([fcost: total__cost, mass: total_ massf})
end;
action composite _part _action on COMPOSITE _PART..cost _and_mass ls
begln -7
total _cost — a_ part.asacmbly _cost;
total _masa — a__part.maas_increment;
for cmpnt in USE do -
1f empnt.whereused == a__part then
begin
total _cost — total__cost +
cmpnl.uses.cosl _and _masa.cost ® anpnt quaniity;
total _maass — total _maas +
4 cmpnt.uses.cost _and__mass.mass ® cmpni.quantily,;
end;
return(|cost: total__cost, mass: total__mass|)
end;
end

Figure 4-12: A recursive transaction in TAXIS
memoised version of this transaction, but see no particular difficully in doing so. The
appropriate ®*transient® data structure to hold partial calculations can be a class which is
a local of some enclosing transaction. It is worth noting that it would be nice to have
cost and mass as characteristics, rather than attributes of the
COST_AND_ MASS_RECORD class, but it didn’t seem possible in a transaction to create

an object with given attribute values rather than side-effecting the values of a local.

The update example shows a TRANSACTION_CLASS being used as a transaction.
Suppose, for example, we tried (o create a link to a sub-part whose name was not known
in the data base. The attempt to get _object from PARTS would fail and abort the whole

transaction including the generation of a new part number.

To summarise, Taxis has tricd to exploit inheritance to deseribe all aspeels of database

programming. While we have some doubt as to whether this can be done without

Atkinson & Buneman: DDPL design 19 October 1085

TRANSACTION-CLASS ADD-PART with
focals
newName: STRING,
new hi: GRAASS,
newACT DOLLARS;
subPart Name: STRING:
subPartQuantity: INTEGER,
begin
/[geaerate a new part sumber, NextPro.
. read in newName, new M, newAC// .
tnsert _object aPart In COMPOSITE with
name <- newName,
assembly _cost <- newAC,
mass__increment <- newAMIJ,
pno <- Nezxthno;
Fepeat
// read in subPartName and subPartQuantity /!
if g9 > 0 then
begin
get _object alurt from PARTS
where aPart.name == subPariName
insert__object in USE with
uses <- aSubFart,
whereused <- aPart,
quantity <- subPartQuantity
until subPartQuantity = 0
end

Figure 4-13: Task 4: An Update in TAXIS
making a large number of special classes with 2 consequent increase in complexily, we
should also acknowiedge that our tasks were mot designed to illustrate ail the uses of
inheritance. The reader is referred to ihe source material for some more alegant
demonstrations of Taxis [Mylopoulos ef af. 86, Mylopoulos & Wong 80]. It should also be
said thai Taxis was originally intended as a language for designing daiabase applications
and therefore might be partially forgiven for certain deficiencies such as fack of ifo. If it
is still intended for this purpose raiher than for programming database applications, one
" wanis Lo ask two related things of the language: first, how does one demonstrate that a
given set of programs in some other language satisfies & Taxis design, and second, what

guarantees does a Taxis desigp give on the correctness of an implementation.

A compiler for the full language is under development [Borgida 85a, O Brien
83, Chung 84, Nixon 84) and a compiler from part of an earlier version of Taxis to
Pascal/R was built at Toronto [Nixon 83]. Taxis is reported to be destined to be pari of
a major effort in programming environments, where experf tools will assist th:

programmer in developing an efficient information system in DBPL {[Schmidt 8s5).

Atkinson & Buneman: DBPL design 19 October 1085

4.3, Galileo A
Among the languages that have adopted a new type system, desigred to make the

meaning of the long term data morz apparent, is Galileo [Albano, A. et al. 83, Albano et
al 853}, which is a research language being developed at the University of HS:L. As such
it is presented alongside Taxis and Adaplex. 1t has a type system partially derived from
an early version of ML [Gordoa et al. 79]20_. ‘The derivation includes the addition of a

class and subtype mechanism. These are used in the daia description given in figure

4-14.

use PartsDB =
type Unil +
((y::um drop nonfix *, nonfix mod, nonfix /, nonfix div
with .
gnum * wUnil = mkUnit{g ® repUnit u)

)in)

type Dollars « Unit

and Grams = Unit

in
gee Parts class
Part «)
{ Name: string
and Pno: num assert within {1, 100000)
and WhereUsed := derlved all ¢ in CompositeParis with
this into Subparf of Cmpntlist of ¢
)
k Pro)
am;y (Ba)acParil partition of Parts with CompositeParts class
BosePart «

{ Vs Part
and UnitPrice: Dollars
and Mass: Grame)
SuppliedBy: var seq Supplier
am)ﬂ CompositeParts partition of Parts with Daselarts clase
CompositeParf «
ts Part
and var AssemblyCost: Dollars
end Maseincrement: Grame
and CmpniList: var seqg Use
)
and Use «
{ SubPart: Part)
and Quaniily: num assert >= 0 and integral

)
and Suppliers class
Supplier +»
()

Figure 4-14: Task 1 coded in Galileo

20T hese examples are fairly free from type declarations as Calileo inherivs the type inference
mechanism of ML [Milier 78).

ty

Atkinson & Buneman: DBPL design

In that figure, the PartsDB is made to persist by being prezeded by use which indicates
that the bindings being defined are to be stored permanently In this case the binding of
PartsDB to a new environment, which is a set of (name, object:type) bindings. Only one
environment exists at the outer level, which is extended implicitly by bindings preceded
by wse, but, Galileo provides environment manipulation facilities, such as: inner
environments, overlapping environments, _and, restricted and derived environments
(views?). Any environment may be established as the context for name interpretation for

subsequent code, by using snter, as in figure 4-15.

In coding task 1, operators are removed from the built in type aum to produce a new
abstract data type Unit- with dimensional properties. Two distinct types Dollars and
Grams are then defined. These represent the properties of those units more closely than

any of the types available in the preceding languages.

The name Parts identifies a clase, which is a sequence of instances of the abstract type,
separalely named, in this case as Part. It is important to note that the designers have
chosen to require separate names for the class, and the type of its members, in contrast
to other languages. Members of a class can be explicitly created and deleted. Creation
implies inscrtion into the class. It is not possible to creale two classes over the same
abstract data type, since reiteration of the data type name or definition, generates a
distinguished abstract data type. fleration over a class is shown in figure 4-15.

enter PartsDI;
All bln UasePuarts with UnitPrice > 100
Figure 4-16: Task 2 in Galileo without projection

enter PartsDU;
for bPurt In HaseParte with UnitPrice > 100 loop
{print Name of bPart; print UnitPrice of bPart; print Masa of bPurt)

Figure 4-18: Task 2 in Galileo projecting the result to required properties

MascPurts and CompositcPurta are defined as mutually exclusive subclasses of Parts by the
pariltlon of construct. Galileo also has a subset of construct to describe overlapping
subsets of a class and a restriction of construct to arrange automatic insertion into the
subelass on the basis of a boolean expression over constant properties evaluated when the
member is created. The types of a subclass must be specialisations of the types of a its
superclass. They inherit properties - as shown by ts Part - and insertion into a superclass

is a consequence of insertion into a subclass, see figure 4-10.

61

19 October 1085 Atkinson & Buncman: DBPL design

consequentiy
inherited from th
fields may be update
properlies and altribules in
to declare a ®variable
constraint, and derived arranges that a fi

19 October 1985

s two deciarations to be sty itaneo Iy effective, a d
(] it o @ [H Htaneous ective B
YnstTuc rrang

nd con)

e allows the additional fields to be introduced simultaneously with those
e supertype after 1s, this is equivalent Lo speciolisataion. var m(llcu;tes
d, otherwise ficlds retain their creation time value. Cnmp.?rc with
Taxis, or ¢ as a prefix of 3 type in PS-algol (sce section 6.1),
@ that is updated only once as it is created. aasert establishes a

eld is aulomatically computed when needed,

ther than stored. It is possible that this language gives the most precise definition of
rather .

the data, in terms of a well defined set of types, of all the languages we examined.
e dats,

Fi 116 shows a solution for Task 2. Since the language is implemented to
Figure 4-

y ithi i R] | ould be
P 2 1 R

i tal execule statements unlcss they are ‘Wi”ll[l a function ”](resuil w
"“l“tdld Li } C

iti i i ase, the
i i . ' '
teturned immedmtely, as in 8 tra(htlonal query hngumge However, in “"3 ¢

language provides a continuum into arbitrarily complex programs.
an

B; .
:l"l:e:efﬂt';;lz cAnd M = (cost: Dollars and mass: Grama)
and cost AndMass{aPari:PartfcAndM ;=

i aPart alsoin BaseParts then {here for a simple base part}
a
newedAnd A UnitPrice of aPart, Maass of aPart }

e {here for 2 composite part}

UCost :== AssemblyCost of aPart
::2 V:i: result Aass ;= MassIncrement of aPart

in
for cmpnt In cmpnils of aPart loop
sur tempcAndM = cost And Mass{ SubPart of cinpnt }

i £ ® cosi of fempcAndAf
11Cost 1= resuliCost + Quanh(q of cmpn
::::u h;au == result Mass + Quaniity of cmpni ° mass of tempcAndhf

ngwcﬁndM(reaultCost, result Maso)

)
)

and findPart(name: string): Part =
get Part with Name of Part = name;

itscAndM = costAndMass{ findPart{ *Mast® W
pring cost of stscAndhd; print mass of itgzAndM

Figure 4-17: Task 3 in Galileo

Figure 4-17 shows the Galileo solution to Task 3. The language is recursive, and so the
traversal of the tree is easily organised. A type CAndM is constructed to pass back the
) i jvig :fine J asses,

compound result. The procedure to fiad a part is trivial, as get, defined over class

either returns a unique element, or raises ~.n exception.

62

Atkinson & Buneman: DBPL design 10 October 1085

enter PartsDB;
{2 structure to bold the memo)
memos class memo
{ thelart: Part and itsCost: Dollars and itshfass: Grams)
key thePurt

cAndM and start of costAndMass definitious)
test and handle base case}
else . composite case)
first test if memoised)
previousResult == get memos with thePart=p iffalls
{ here not in memo yet)
’calcuhte cost and mass as before}
newmemno{ aPart, resullCoat, vesult Mass)

newcAnd M| itsCost of previousResult, itaMaoas of previousResull }
{as before)

Figure 4-18: Memoisation of Task 3 in Galileo

The new fragmenl of code, to mememoise costAndMaos is shown in figure 4-18. The get

operation to select a memo from memos will fall if this part has not been previously

evaluated. Then the alternative code after iffalls catches the exception and organises the
caleulation. Thus provision of get suggests that Galileo has a general indexing structure,
at least logically.

enter PartsDB,;
. {code to set up new values by dialogue)
Lo that newName contains the name,
newAC the assembly cost
ete)

Task(nme: string, nAC: Dollars, n MI: Grams, nCL: seq Use)
(

nertPno = nextfno + 1 {issue acw part number)
newCompoaitePurt{ nme, nextfo, nAC, nMI, nCL)
)

{now a transaction)
Task{newName, newAC, newMl, newCL)

Flgure 4-10: Task 4 in Galileo

The code for task 4 is sketched in figure 4-10. nexPuo was in PartsDB and therefore
persistent. newCompooit: Part?! makes a CopmositePart and the corresponding Part, placing
them in their subclass and class respectively, if they pass all the asserted constraints.
The evaluation of epressions at the top level are transactions, so Tuski(...) is a
transaction. An exception is raised if it fails to conmrit, eg a constraint fails and is not

handled. The WhereUsed information is derived and so the programmer does not have {o

214 function that generates values of type CompositePart, which is created and given this name when
CompositePart is declared 7. a type.

63

i 19 October 1985
Atkinson & Buneman: DBPL design n

its construction - a marked improvement over the other languages we have
arraage ils
consi fered.

' s . . Y i . . o e a

If the group at Pisa are sucsessful in implementing Galileo, it will certainly be an

interesting persistent language. Recent work on the language and ils implementation is
inferes

described in [Albano el af 855, Albano el af 85c].‘ -

‘0

Atkinson & Buneman: DBPL design 10 October 1083
5. Polymorphism and Database Programming

At first sight, languuges like ML and Poly, which form the basis for this section, have
little to do with database programming, since they support limited forms persistence, nor
do they support a bulk data type (such as a relation) that is essential for database work.
Hlowever, we believe that the idea of polymorphic type systems is sufficiently
fundamental to the future development of datgbase programming that examination of
these languages is essential. It is worth noting that ML and Poly are interactive {in the
sense that they have incremental compilers) statically typed programming languages - a

property that they share with database query languages.

6.1. ML

Based on the typed lambda calculus, ML [Gordon et al. 79) has been developed to the
point thal it is now a practical programming language®2. For our purposes, its most
important properly is its polymorphic type systemn that allows types to be freely

paramaterised by other types. However, there are several other properties that are

-relevant to our discussion. In particular, ML is incrementally compiled. This means that

developing an ML program consists mostly of coding and interactively compiling small
programs, and from practical experience, most debugging takes place through interaction
with the compiler (in particular the type-checker). For the most part, type declarations
are not needed in ML as there is a type inferencing mechanism [Miloer 70] that

determines a type for each expression based on its environment.

ML also has an exception handling mechanism and a system of modules which is
currently under development. The latter is likely to have very important consequences

for database programming {Cardelli & MacQueen 85].

As an introduction to ML, figure 5-1 shows a function for concalenating two lists. Note
the use of pattern matching {:: is infix cons) to bind parameters.

val rec append(nll, l) = 1|
append((z:ir), 1) = z:append(r, L);
Figure 6-1: A simple ML function definition

In response to this input, the ML compiler will outpul a message Lo the effect that

append is of Lype {a list) X {a list) — a list, a being a type variable. Subsequent attempts

4

s undergoing rapid development, and there is an attempl to arrive at an agreed standard, so the
reader is warned that versions exist with substantial differences from the version that was used to test
these examples [Milner 83, Milner 84, MacQueen 85).

685

Atkinson & Buneman: DBPL design 10 October 1085

to evaluate the expressions append([1,2;3], 4} and eppend({1;2;3],[*cat®]) would both fail at

compile time, ihe first because 4 is not a list and the second because there is no type a

for which [1;2;3] and {#cat®] are both of iype alpha list. Given this degree of type
324

checking, it is impossible - apart from problems posed by lack of storage resources - for
¥

append iiself to fail at run-time.

'r(; turn to our database tasks, we have noted that ML does not bave data types
appropriste (o database work. Our first task is therefore to create some new iypes that
might be generally useful. Figure 5-2 shows a sel dala type, where the (concrete) data
type Sef is used internally to implement the abstract data type set®3. Note that the use
of the higher-order function reduce has made many of the definitions quite compact.

abstype 'a sel = Set of ‘a liat
with
val emnplyset == Set nli
and rec choose{Set mll} = escape ®choose® |
choose{Set(z':l)} = 2°
and inseri(z, Set l) =
let val rec ins nil = z:mil|
ins(z'::d) = If z==z' then z":f olae z"::ins {
in Set{ins [} end
and reduce § (Set nll} z = z |
reduce [{Seb z:) z = f{ 2, reduce f {Set {) z);
val remove{z,8) =
reduce (f\m{z“,a') - if z=xz' then o' else insert{z’,s')} » emptyaci;
val member(z,5) = reduce (fun{z,8)- {{z = z} or b}) & false;
val union(si,a8) == reduce inscrt af o8,
val difference{s],82) = reduce remove sl 28,
val intersect(sl,08)=difference{al,dif ferencefs !, s B)};
val mapset § 2 = reduce (fun{z,o’)-inscrt(f z,5'}} s emptyset;
val filter ps =
reduce (fum {£,0')1f p £ then insert{z,s') else 9’} s empiyset;
val foreach s f = reduce {fun{z,y){f z;{)}) s {};
val settoliot(Set 1) = I;
val pec listtoset nll = emptyset|
listloset{z::l) = inseri(z, listtoset 1)
end;

Figure 6-2: A set abstract data type in ML25
Thm.ughout the paper we have stressed that the kind of direcied acyclic graph that we
need {o represent the parts explosion diagram is exiremely common in database design,
and we have complained about the difficully of enforcing comstraints that will, for
example, ensure that it is acyclic. Figure 5-3 shows a somewhat laborious implementation

of an absiract data type for a directed acyclic graph {dag). The assumption is made that

234 is conventional to uee case in this way in ML.
“Sthe character behaves as a letter in forming ML identifiess, thus p, p', p", 'p elc are different

uarelated identifiers. However, there is a convention of using identifiers beginning with a ' as type
parameler names, and we adhese to that in these examples.

66

Atkinson & Buneman: DBPL design 19 October 1085

unique values are altached both to the edges and points (vertices) of the graph. The
functions pointset and edgeset return the sets of values associated with the points and edges
in the graph. These are of type pointType and edgeType respectively. downedges and upedges
both return sets of (edge-value, point-value} pairs found on the downward and upward
edges atlached to a point. addpoint ads a new point to the dag, and addedge adds a new
edge, but fails if adding the edge would create a cycle.

abatype ('pointType, 'edgeType) dag = Dag of
{'pointType X (('edgeType X 'poiniType) list) X {(‘edgeType X 'poiniType) liat)) Liat
with val newdag = Dag nll;
val pointset(Dag I} = lLiattoset {map (Pan(p, _,_)p)!l);
val edgeset(Dag 1) ==
reduce union sa emptyset
where val ss =
listtoset (map (fun{ _r, _)listtoset{map (fun(e, _)-) r)) 1)
end;
val rec downedges(p, Dag nll) = escape *downedges®|
downedges(p,Dag {(p' 4, _):ll)} = 1€ p' = p then listtoset |
else downedges(p, Dag l);
val rec upedyes(p, Dag nll) = cacape upedges®|
upedges(p,Dag ({p, _4):l1)) = 1€ p’ = p then listtoset |
else upedges(p, Dag l);
val rec abovelpl,pld) =
i member(pl, pointact d) & member(p8, pointset d)
then (pl = p2) or
reduce {fun{{ _ p),b)-b or above(p,p.d)) (downedges {p1.d)) fulse
elae escape "above®;
val addpoint(p, Dag 1) = ¢ member(p, pointset{Dag 1))
then escape ®addpoint®
else Dag((p,nil,nll):l);
val addedge{pl,c,p8, d) ==
If mot{member(p!, pointset d) & member(pg, pointact d)) or
member(e, edgeaet d) then escape *addedge®
elee If above{pf,p1,d) then escape *addedge®
else
let val rec putin nil = nli)
putin{{p,leig):Nl) =
i pl = p then (p(e.pt):0112):putin{ll)
else If p2 = p then (pl1,(c,p1):12):putin(il)
else (pl1,1t):putin(ll),
val Dagll = d
tn Dag{putin(il))

end;
val show(Dag 1) = {
end;

Figure 6-3: A directed acyclic graph type in ML

Oune can achicve something similar to a record type in ML with a further d-da type
declaration such as that shown for Part in fligure 5-1. llere we have used an ordinary
{not abstract) type declaration since there is no reason for a program not to have access
to the representation. The selectors are defined as functions on the type Part making this
a rather clumsy version of the declarations we saw in Adaplex. Note that we Lave been

able, through the use of refercnce types (ref) Lo obtain the distinction between constant

67

Atkinson & Buneman: DBPL design 10 October 1085

and updateable attributes also used in Taxis {see 4.2) and in PS-algol (see 6.1). Since the

relaticaship between Part and Use records is o be completely expressed by our dag data

type, the only point in creating a new Use data type is lo preserve the mnemonic value
, U

of Quantily.

type Part = AMkPart of
string - . B
Base of int vef-int ref- supplier act vef |
Composite of int ref - ini ref)) fef
with val Name {MkPart(zef {theName, _, _}}) == theName
and UnitPric I\ﬂ:Parl}reﬂ_,_,Unae‘;ef thePrice, ,)))) = thePrice
and Maass(AkPari(vef{__, _ Dase(_ vaf menim,_“))ﬁ = theMass _
and Suplicrs(MkPart(ref{_, _,Base{__,_.wef theSuppliers)))} = theSupplicrs
and AszemblyCost(MkPari{vef{ _,__,Composite(rel theAC, _)')) = theAC
and l\lu:alncremcnl(Alk[’arl(reﬂ__,_.Compo:ih(*,ref theAN)))) = thehll
and lslase{ MkPart(vef{ _, _ Dase _})) = true} .
IsDasc(MkPart{ref{ _, _.Composite _}}) = false
end;

type Use = AkUse of int ref
with val Quaniity{ Mkuse (ref g})) = ¢
end;

type Supplier = .
type DatabaseType = (MkDatabase of {({Part # Use) dag) # Supplier set)) veff
with val [)iagram(ref(Mkl)aiaba.n}lhtl)/ﬁG,_m = theDDAG

and FParis aDatallase = pointset {Diagram aDotallase)

and Suppliersiref AkDatabase{__ theSupplicra})} = theSupplicrs
end;

val Datgbase = AfkDatabase{emplydag, empiyset};

Figure 5-4: The Database declaration {Task 1) in ML

Equality of seference types follows the same rules as, say, Pascal. Therefore we ean
insert iwo records in the database that contain the same attribute values (as in Adaplex,
Galileo and PS-algol). However there is no associated extent with any type, and our

final vel declaration for the database is constructed in the same spirit as Pascal/R.

The code for the next two tasks in ML is extremely simple because we constructed the
appropriale higher-level functions for sets. The code for Task 2 is sufficiently close to the
simple query languages (further similarity could have been aclieved by writing an infix
where to replace filler) to justify our earlier claim that syniactic simplicily on simple
queries should not exclude general computational power. ML comes close Lo an ideal; and
designers of query languages should also comsider the ®Z-F® notation used in SASL
[Turner, D.A. 81] and Miranda {Turner 85]. The query could have been even simpler if
one had been able to extend the print function to work on se.s and avoid the need for an

explicit iteration. Perhaps the main clumsiness is the explicit - eference to database that

68

Atkinson & Buneman: DBPL design 19 October 1085
is needed. One would like to open a syntact.e ~cope, much as is done in Pascal/R.
Joreach (filter IsBase (parts databasc))
(fun p.If unitprice p > 100 then print{name p, unitprice p, maass p));

Figure 6-6: DPrinting expensive parts in ML

Memoising the code for Task 3 poses no particular problem in ML, but we should note
that a generic ®lable® type similar to that of PS—Algol would be extremely useful {as it
would be in Pascal) if one wants to write 2 momo function that is both general and
efficient. One cannot implement this efficiently in ML as the implementation methods
(hash coding or search trees) call for gencric hashing functions or generic comparison
functions. These are not available to the programmer, nor can they be implemented by
the programmer without violaling the type rules. Memoising also presents another
interesting challenge to the designers of functional programming languages ldeally one
would like to be able to define a higher order function that takes a function as argument
and yeilds a more efficient version of the function as a result. It is easy enough to write
down the rules for transforming the function, but to implement the transformation
requires access to the structure of the function.

val rec costAndAlass aPart =
¢ lsllase aPart then (UnitPrice aPart, Mase aPart)
else reduce (fun((alse, thePart), (subTotalCost, subTolalMass))
let val (resultCost, result Mass) = cost AndMass thePart
and ¢ = Quantity{aUse) In
resultCost*q + aubTotalCost, result Mass®q + subTotal Mass
end)

downedges(aPart, Diagram Databaac)
{AssemblyCost aPurt, MassIncrement aPart)

Figure 6-8: Function'to compute cost and mass in ML

Updaling the database is follows the original Pascal example. We assume that the
update program is provided with a new (composite) part and a list of (Use, Fart) pairs. It
should be noted here that in this representation, the updating program should take care
to ensure that the new part is composite since our type declarations do not prevent base
parls at non-terminal points of the Dag. Ttis program can be considered a transaction
in the sense that the database is only upated at the end, and any failure (e.g. in adding
to the Dag) would abort the function befor: this update took place. This is a somewhat
facile notion of the implementation of a database transaction since we are calling for the
database to be copied. Had we implemented our Set and Dag data types using side
ceffects, ML would not be able to provide a mechanism for implementing this as a

transaction.

60

Atkinson & Duneman: DBPL design 10 October 1085

: isl: {ial}} =
datel NewPart: Part, Sublist: ({Usex Part)
;;:ng —:- fl(ddpm'nl(NewPart, Diagram{ Database }}

ddlist ol d) = d | _
o hz;;lli;;f : r)” % j = addedge{ NewPart, ¢, v, addlist{ {, d })

in
addiiat{ {, d)
end

;)T?jibau:= ! MkDatabase{ d, Suppliers{ Database })
)

Figure 6-7: Updnti'hg the database in ML

5.2. Poly
The language Poly {Maithews 85a], which is a derivative of Itussel [Demers & Donahue

70}, has been developed at Cambridge as a parametric polymorphic language. This furm
of polymorphism depends on the introduction of type parameters to procedures, which
differs from that in ML (section 5.1). A discussion of the relationship betwecn these
forms of polymorphism is given in [Cardelli & Wegner 85]. A particular feature,
allowing suecinct programming, in Poly is the enclosure of type parameters to procedures
in square brackets in the procedure declaration. This indicates that the actual
parameter for this type may be omitted from the procedure application, as it may be
inferred from some other actual parameter. The allowable actual values may be
restricted, and the names of operations on the type may be statically introduced into the

procedure’s scope, by a signature, called e speci ficafion in Poly, introduced by typs.

The language has four type consiructors, record, atructure, uniom, and proc. New
absiract types may be declared using type ... end. The language includes exceptions.
{terators may be defined over new types, as in CLU [Liskov ef al 81], from which Poly's

notation for values associated with a iype derives.

To show the power of this parametric polymorphism, we present fraginents of a Poly
program capable of doing all the tasks. However, it has been internalionalised, that is,
parameterised with the currency and mass units in use. lustances of the database type
may then be used in different countries, but the iype rules ensure that no computation
accidentally mixes roupl:s and dollars ete. Figure 6-8 shows the majority of task i, as
the definition of a type 'or Purl, parameterised over Currency and Mass _ Unit. Figure
5-0 is then a procedure heading for a procedure, which, when applicd to an actual

cusrency, and an actual mass unit, will provide a Parl type exclusive to those units.
Note that the recoi- * Sperators over a currency are defined precisely, and with

70

10 Octlober 1085

Atkinson & Buneman: DBPL design 19 October 1085 Atkinson & Buneman: DBPL design
type {{art) Define the type of a past) 1ot Dollars ==]))
by its operations} tyg-e Dollars) extends integer; {+ s inberited from integer]
make_part: proc(p_name: string)Part; Hars, y: integer) Dollors
R convert _to_ basic: proc(aPart: Part; cost: Currency, mase: Mass_Units; fet * == proc(z: Dollars. y:
' : aupplier: Supplicr _Type); hegln
convert __to__composite: proc(aPart: Part; cost _sncr: Currency, z Dollars$® Dollars$upl y }
mase _incr: Mass_ Unita); end;

= proc{ z: Dollars)

odd_part _to_ composite: proc(cPart: Part; ncw _aub_part: Part; fet print == pv .
quantity: inlcger); bogln print('$") print{ =) end fof defining Dollars)
. print: proc(Port); L . end -7
coat: proc(Part) Currency; .
masa: proc(Part) Mass _Units; fet Pounds == . .
Jorm: proe(Part) string; type { Pounds) extends integer: 4+ is inhesited from integer})

introduce a pair type for cost and mass . 3
cost and masa: (palr typ } fob ¢ === proe{ x: Pounds; y: snteger) Pounde

type (cost _and_maaa) . begln
print: proc{ cost _and _mass); xdf’oundasﬁ Pounds$up{ v }
cost: proc{ cost _and_maas) Currency; end; . d
mass: proc{ cost _and _mass) Maas_Units; let print == proe{ = l’o:n“r;’ ;2nd
end; T - begln print{ = J; print{ {of defining Pounds)
both: proc(Part) cost _and_masa; end
i : b i
”‘;:‘:‘;:?) _.purts {define an iterator) Jot American_ Part_Type == p_ Part{ Dollare, Pounds)
type (lter) a standard type) . .. merican market
init: proc ler, required standard values) Figure 5-10: Defining a part type for the A
continue: proc (Iter) boolean;
value: proc (lter) Part; fet Yen === nteger:
":;“: proc (e) Her type (Yen) extends integer; {asa for Dollass in fig 5-10}
en
: - print{ ‘yen' } end
end ;wcmn print{ z); print{ 'yee') {of defining Yea}
en

Figure 6-8: A complete parameterised type for Part in Poly ot Grams me
type (Grams) axtends integer;

et Supplier _ Type === type ... end; {as for pouads in fig 5-10)

let p_ Part == '"begln prini{ 2 §; print{ 'Grams' “?gr defining Grams}
proc{ Currency, Musa_Units: Two type parameters} end
¢ Unit bi th defi
yPe Lalinit) :t :::a:n:;:c foir:wi;slind' et Japanese_Part _Type == p_ Part{ Yen, Grams)
+ . proc Infix { aUnit; aUnit } aUnit; . e market
* : proc Infix (aUnit; integer) aUnit; Flgure 6-11: Delining 2 pert type for the Japanese
print: proc(aUnit)
end let Task2 === proec
begln
) :l:ei:l;i‘p:ts‘lype) f:? { American_}’ar(__TypcSou:r_aH_par“(),
] procla_ Part: American _ Part _ Type)
> begin 3
{the body of p_Part}) Wa Part-form = -[}u‘;c f;m;mo
. then W a Part-cost > dollars
Figure 6-0: Poly procedure heading for the part type creator Ah:: prini{o_ Part)
reasonalle legibility {compare with Galileo's the only other language in which this was 4 end};
and;

feasibl: - section 4.3), but here, also with generality. Figures 5-10 and 5-11 show . .
e .) ' g . y ‘ gt Figure 5-12: Poly prints expensive paris
applic stions of this procedure to appropriately defined units.
. 32
‘) in the code for task 2, figure 5-12%6.
Given these various type definitions, it is necessary to be explicit about the actual

operaior or proc: lure being applied, this is done by qualifying the name with the type

. . . . S . : ding ituelf.
name as . {ypc name$value name. This can lead to a little verbosity, as can be seen 26Note that most of the time the compiler is able to disambiguate the overloading

71 72

Atkinson & Buneman: DBPL design 19 October 1985

Note the use of the iterator. OFf course the simplicity of this code depends on suitable
definitions being made in the body of the procedure p_ Fart, as it did in ML and Galileo
(sections 4.3 & 5.1). Later, PS-algol takes a similar approach (section 6.1). However, it
is not simply a case of moving the work from one place to another. Generally,
associating the code with the database or the type definition should allow it to be reused
readily from many programs using the database ortype. This has two advantages. The
effort of writing the code is amortised ovuer many applications, and, probably more
importantly, the detailed operations on the data are localised to a known collection of
code. This obviously has advantages for maintenance and integrity.

let Task3 == proc(a_ Part: American_ Part_Type)
begin
print(a_ Part);
print{ a_ Part-both);

print{ \a')
end;

Figure 6-13: Poly code for Task 3 on an American part

Agnin the code, shown in figure 5-13, for Task 3 rests heavily on the code within
p_luarl’s body. Figures 5-14 and 5-15 show a fragment of this code. I uses essentially
the same approach as ML (figures 5-3 & 5-8). We show only the memoised version,
which was fairly easily constructed, as the implemeatation had a ®generic®?? hashing

function rehash.

The update operation is straightforwardly coded, and is not shown, as again it is
predominantly code written in the body of p_part. As described in more detail in the
context of PS-algol, this gives protection. In both these languages, local variables in the
type constructing body hold such things as the part number and the universe of parts.
Bach application of p__part creates a new environment for the body with a separate and

totally independent set of these values.

Persistence is achieved in Poly [Matthews 85b] using the same loading algorithms as in
PS-algol. The naming is however more convenient, as the code is statically bound to
preserved, and distinguished outer environments (2 similar treatment is planned in
Galileo - section 4.3). This static binding means that a procedure needs to be compiled
in cach environment in which it is to be used. Avoiding this, yet keeping the simple

naming and type equivalence, is an unresolved challenge. A solution has to be found

27wovidcd the key was integer!

73

Atkinson & Buneman: DBPL design 190 October 1985

in the context of p__part's body }
see fig 5-0)
ted tran _close ==
pmcirlepe: ‘
type (v _lype)
y+p: proc Infix (r__type; v_type) r_tupe;
¢ . proe Inflx (r _type; integer Vr_type;
M b 1 t)r__type;
B fun: proc| bassic_par _type; B
" fun: ite_part }r_type } proc{ part) r _type
¢_ fun: proe| composite_p }] o=t i)

i
bi:s&?loldcr === rehash{ 10, r _type) start hash table empty}

letrec {_¢ === proc{ & _part: part) r_lype
begin
et source ===m a__part-source;
If sourceis_unsel then ralee cosl not set)
elae §f sourcess _basic then b__[uvﬂ source-proj__basic)
e‘l::gln {Composite part case}
{look up part aumbes in table, raise exceplion
if mot yet ealculated])
holder{ repr{ 6__part-p_no)
c-tch(proc(exceplion _name: slring Jr__fype {catch not calculated yet}
begin {exception catcher}
et composife === source-proj_ composiic,
et value == foldf o
proc| 6 _rec: composite__part$made _vec; snitial: r_type) v _type
begin (the proc to be applied by fold}) N
(¢ a_recparts yr_type$® o_rec-quantity § + snitial
end, {of proc applied by jold}
¢ fun{ composite } } (composite made fmf: 14 |
holder{ repr(a_part-p_no)} := valug; {Cache it)
et and retusn it}

{an inferred type parainetler}

{now required parameters)

{body of ¢t __c}

value !
and of exception catcher}
end of Composite part case)
end; of t_¢)
tE_c

{of tran _ close}

Figure 5-14: Generic transitive closure code in Poly

snd

before the technique used by Poly would work for large and commercial systems, as has
been argued elsewhere [Atkinson & Morrison 85]. The Poly system of persistence at
present is essemtially based om a workspace approach (see section 3.6}, but with
incremental foading. The incremental type-checking necessary in PS-algol, is of course
avoided with this static binding approach, simplifying systemm implementation

considerably.

74

Atkinson & Buneman: DBPL design 19 October 1085

some time after decl® in fig 3-44}
still io p_ part body}
first define a type to hold buth
cost and mass, and to have necessagy
operators})
Yot cost _and _mase ==
typa { coot _and_maas) extends record(cost: Currency; mass: Mass _Unita);
fet + === proc{ z, y: cost _and_mass) cost _and_maasa
begin cost _and_mass$constr{ -cost + y-coat, z-mass + ymaas) end;
let ® == proc(z: cosl _and_maas; g: injeger-) coal _and__maas
beglin cost__and_masa$constr{ z-cost Currency$® g, z-mass Mass_Units$® ¢) end;
let print == proc(5: cost _and_mass)
begin print{ *cost =.°); print(z-cost };
print{ *mass = *), print{ z-maas) end
end; {of defining cost _and__mass type)

{now apply tran_close Lo get
parallel computation of cost and mass)
let both === tran_ close}
proc{z: basic_part)cost _and_mass
begln cost _and _massgconatr{ z-cost, z-mass) end,
proc(z: composite _part)cosi _and__mass
begln cost _and__mass$conatr(z-cost _incr, z-masa_incr) end);

Flgure 5:16: Using the transitive closure code to calculate
both cost and mass in one traversal

75

Atkinson & Buneman: DBPL design 19 October 1085

8. Persistent languages
The last two languages we shall review are DPS-algol and Amber. These are

distingnished from other languages we have seen in that they adopt a uniform approach
to persistence. In both these languages, any value may persist; thus persistence is not
determined by type. The only other language we bhave seen with this uniform approach
is APL 3.6, but because of its scoping rules (among other things), APL does not maintain

an enlirely uniform approach to values.

6.5. PS-algol
The lznguage PS-algol [PPRG 85] is a derivative of S-algol [Cole & Morrison

82, Morrison 79]. [t is an experimental langunge designed to show that persistence can
be provided orthogonally to type [Atkinson ef af. 81, Atkinson el al. 83b, Atkinson el af.
83a, Atkinson and Morrison 84] and that graphically based human computer interaction
can be supported by language features [Morrison ef af 86, Morrison el al 85a, Morrison el
al 85b, Atkinson & Morrison 88]. This latter property is important in the typical
application programs that involve persistence, but il is notl discussed further in this

paper.
structure Part {
epate Exira;
pnte WherelUsed;
estring Name;
eint Pno)

{define a class of objects

iTo Componite or Dasic Part
1to list of uses

{constant name

Inot logically necessary

frefered to via Part{Extra)
fin Dollars

tin Grams

ito list of suppliers

structure HasePari{
int UnitPrice;
int AMass;
putr Suppliers)

sbructure CompositePart
int AssemblyCost;
int Massincrement;
potr CmpntList}

fin Dollass
fin Grams
feto list of Uses

structure Use (
pate theSuperPart;
pnte theSubPart;
Int Quantity)

Hto a Part
Tio 2 Part
fhow many used

structures Supplier { ...)
etc.

structure List{ Istand sed fise cell

poter Hd, Next)

Figure 8-13 Tack 1 in PS-algol
Figure 8-1 shows the type definitions in PS-pl,ol. The structures used are similar to

76

Atkinson & Buneman: DBPL design 19 October 1085
those in the first Pascal exainple, figure 2-1, but the data is not as precisely described as
the Lypes of referends of pointers are not specilied, and integer values cannol be
constrained to a subrange. DBut it does discriminate between updateable and constant
fields {orefixing the type with ¢ for assign once fields, and using = rather than 3== for
initialisation of assign once ®variables®), a consistent treatment of the concept, already
seen in Taxis (section 4.2) and Galileo (section 4:3). The absence of precision about
referends can be exploited to write (unpara.meterised) polymorphic functions, as shown
for list manipulating routines in figure 8-2. Compare these with the similar ML functions

for manipulating sets (figure 5-2).28

The langnage is strongly Lyped, as the access to a field of a structure, with the
construct poinler-ecpression { field-name), is checked for type consistency. This can be
achieved because field-names must be unique within the current scope {they are
introduced by the structure definition) and hence they identify the expected type of
pointer object {ie a member of that structure class). This is the only dynamic type
checking used in PS-algol, all other type checks are performed statically. This mixture
has proved invaluable in providing a persistence mechanism supporting system evolution,
and in providing associalive structures (Tables etc) defined and implemented in the

language.

The list functions are saved in a database called lib by arranging that they are
accessible from the root of that database, just like any other data. In figure 6-2 that
accessibility is via a table (a polymorphic data structure implemented in PS-algol). The
value of the root of each database (returned by open.database?¥) is a table; entries in
The first

open.dalabase also starts a transaction. On commit all the data reachable from a

that table are any structures the programmer chooses to put there.

database's root is transfered to that database, the transaction is terminated, and a new

one begins.

*BThe distinction between the various forma of polymorphism is important. o the parameterised
polymorphism of ML it is impossihle (as in Pascal) Lo confuse reference typea. In PS-algol there is only one
paotr type, so confusion of the referend structure types is possible but will generate a run-time error as
500n as any access Lo the structire is attempted. This in turn should be compared with other fanguages
and data base systems where no checkiug (static or dynamic) is done on pointer types, and where
confusion of these types can lead to a chain of unintended actions leaving one at the mercy of the
operating system to catch eome low-level and apparently unrelated violation of sun-time constraints.
Parameterised polymorphism ia clearly desirable but, as we shall argue in the concluding section,
techuiques for combining it with database programming are not yet understood.

QUI‘S—ngnl allows dots within ide.dtitiers - dot is NOT aa operator in PS-algol.

77

Alkinson & Buneman: DBPL design 19 October 1985

i tdefine a class of Lis¢ objecis
atruature List{ define a clas: i

potr [1d, Nert }
ito hold Bist functivns
fields for hd ti etc

;i)roc'pntr, proc(pntr — bool) — potr) filtr;

eproc{pntr, proc{patr)} app;

cproc(pntr, proc(pate — patr) ~ pnte) map |

igecls for bd, ¢ etc

let filter = proc(patr I, proc(patr — bool) cond — pntr)

if § = nif then nlf

structure ListPack {

else
if cond(I(FId)) then
List{ {Hd), filter{ {{Nezt), cond)}
zlse
Jilter{ l{Nexzt), cond }

et appTolist = proc(pntr [, proc{pnie) /)
while { ¥ nll do
begln f{ H{Hd)); t ;= {Nezt); end

lot mapList = proc(pntr |, proc{pntr — patr) J — patr)
i£ § == nll then nll

else i
List{ f{ {Hd)), mapList{ I{Nezt), J)}
et db = open-database{ *1ib®, “pw®, *write®))
1f db s error record do beglin weite ®'nSorry lib in vse®; abort end

let Ip = ListFack{
1def®® of bd, ti etc

filter, appTolist, maplList)
s-enler{ "ListPack®, db, ip)
ot done = commit{))
iF done tant errorRecord do write *'n list pack in database®

Figure 8-2: PS-algol program to set up a library of list routines

The types of the list functions are specilied in the structure class definitions, and are
recorded with the data on the daiabase, to reuse the data an equivalent class must be
declared. Consequently the type can be checked om rcuse, and there is sufficient
information for all function applications based on the values extracted from the

stricture, Lo be statically typed.

\s the procedures are first class, and all reachable data is preserved, environments
refesenced by the procedure are preserved. This can be used to initialise a database as
shown in figures 6-3,6-4. The first figure siores in the Iib database a function which
when applied initialises 2 parts database and provides a set of functions over it. The
second figure shows one such application, and the resuit being put in a new database.
The data ip th- environment of initialiseParisD is seplicated each time that procedure

is applied, .ad the closures of the procedures in the resuit have this environment bound

78

Atkinson & Buneman: DBPL design

Ideclarations of figure 6-4

declaration of ListPack figure 6-2
siructure PartaDHPack(

proc{ strlng — pntr) GetFart;
proc{ proc(pntr—bool).proc(pats)) ForSomcParta;
pros{ atelng, Int, Int, pntr) NewCompositePart;

)
fobtain the latest list routines
let lib = opcn-database] ®libe, *pwe, Swrite®) .
12 libYs error-record do ...
let listPk = slookup(*ListPack®, lib }
let filter = UstPk(filtr); let appToList = listPk{ app),
let mapList == list Pk map)

let InitialisePartaDB = proc(— patr)
begin
let nexti’no = ¢
et Parts .= all
let ByName = table()

frunning count of part aumbers
Hlist of all parts
lempty table indexes parts by name

lconstruct a PartsDBPack as a result
PartsDOPack(

proc(atring name — pntr)
slookup(name, DyName),

proc(proc(patr — bool cond; proc{pntr action)
appTolast(fslter(Parta, cond), action),

proc{ string newName; Int newAC, new MI: patr newCL)
!see figure 6-6

1GetPart

end lof IanitialisePartsDB

structure IPDDPack(proc(— patr IPDB)
s-enter{ "IPDPPacke, lib, IPDBPack(InitialisePartsDB))

let done = commit()

Figure 8-3: PS-algol program to create and store a parts DB initialiser
structure II'DBPack(proc(— patr IPDD)

let lib = open-database{®lib®, *pw®, *read*)
12 lib 18 error-record do -

let partsDBInitialiser = a-lookup(*IPDBPack®, Lb){IPDP)
let newPartsDB = partaDBlnitialiser()
let partsDD = open-database] *PartsDB®, *Eigg®, “write®)
¢ partsDU ls error-record do

begln write ®'aCaa’'t create new DB®, abort end
s-enter(*PartsDB®, partaDB, newPartaDB)
let done = commit()
If done lsnt error-record do write *'aNew parts DO ok®

Figure 8-4: I’S-algol program to set up a new parts database
to them. This also means the variables in the environment are pow protected, and other

programs can only use them via the procedures provided.

70

19 October 1085

i 19 October 1985
Atkinson & Buneman: DBPL design ctobe

fet parfsDB = open-database| spartsDB®, *Ligg®, ®read® }

3¢ partsDB is error-record do .. Ideclasation of PartsDDPack as figure 6-3

. *PartsDD®, parta DB} ForSomefarts)]
ookupl*Farts !d:’clamtwn of Purt & BasePars fig 8-1
~ bool)
i jvcBascPart = proc(pets aPort o)
le:,f:'}:ifg-:‘l::) fe BascPart and aPart(Extra)(UnitPrice) > 100

-priniPart = proc{pntr aPart)
h:fi?e age, gfart{Name), * °, alPart{Pno}

iet JorSomeParts =

forSomeParts(expensiveBasePart, printPart)

ino changes implies no need to commit

Figure 8-6: Task 2 in PS-algol

The program lo accomplish task 2, shown in figure 6-5 uses these procedures, not
having direct access to the variables. The database lib has been used to allow :.scp:u‘alc
compilation of relevant utilities, figures 6-3 & 6-4. The usual type-checking fxn(l
incremental loading of PS-algol, arranges the correct composition of precompiled
components when they are first used. The present version of PS-algol does not have
immediate ‘execution, congequently it is not possible to make this appear like a
conveniional query. The program shown is dominated by the text to define and
explicitly extract utilities from the database. Only definitions that are going to be used
are given, so they form a subset view of the data, making it clear which paris of the

database definitions each program depends on.

The program in PS-algol to do task 3 is very similar {o that given for Pascal, exeept
for superficial syntax, so it is not shown here. The composite value cAndAf could be
returned from the procedure cosfAndAfass as a siruclure insiance cf Galileo. The
memoisation of ihis function can easily be achieved by constructing a fable for the
duration of the evaluation. The function GelfPart shown in {igure 8-3, would be used to

find the pari whose properties are to be computed.

Figure 6-6 shows the procedure, omitted from figure 68-3 that creates a new composite
part. Note that it is actually declared in the context of InitialisePartsDE and so
arranges consisient changes to the data in and refrenced via that environment. As no
ollier routlines exist which can update that data, we can be sure {if the routines in that
environment, that perform update, are correct) it will remain consistent. This procedure
would then be oblained from PartsDD and used within a transaction in the manner

already ilfustrated.

80

Atkinson & Buneman: DBPL design 10 October 1083

!a procedure expression Lo be compiled in the
tcontext shawa in figure 6-3

proc(string ncwName; Int newAC, new MJ; patr newCL)
begla -
nes!Pno = nextPno + 1 tisaue part number
let aCompositePart = CompositePart{ ncwAC, new M, newCL)
let aPart = Pari{ aCompoaitePart, nil, newName, nextPro)
Iplace on list of all parts
Parts = List{ aPart, Parta) -
fputin the index
s-enter{ newName, ByName, aPart)
larrange where used list
let recordUse = proc(patr u)
begin
tes user = ufthePort)
user{Wherelsed) := List(aPart, user{Wherellsed))
end
appTolist{ newClL, recordUse)
end lof expression for NewCompositePart

Figure 8-8: A procedure to perform creation of a composite part
to perform Task 4 in PS-algol

Two features of PS-algol have been exploited heavily in these examples: the ease of
putting any data structure in a database, even though they may contain inter-database
references; and the use of procedures to encapsulate didta. This consistent treatment O‘i,

data and program allows systems to be built incrementally, and the use of data .

structures to be controlled.

programming, which we have tried to illustrate here, and which is why the division of

the examples over tasks is not homomorphic with the examples in other languages.
Syntactic support for database access, tables and rebinding with items in the database is

obviously desirable, but currently is not provided. Research into methods of meeling

this deficiency is reported elsewhere [Atkinson & Morrison 85].

8.2. Amber

Amber is an experimental programming language for personal computers developed by
Luca Cardelli [Cardelli 84a). Although it is derived from ML and Galileo, its treatment

of persistence is such that it is appropriate lo group it with PS-Algol. Like PS-Alg)l,

Amber is a statically scoped language that also has built-in support for graphics. It .dso

has a uniform persistence mechanism based on the use of dynamic values. In addilion,
the type system exploils inheritance, introduced in Taxis and Galileo, and extends this to
work on higher-order (function) types. Concurrency in Amber is achieved through the

use of channels, which are also typed values and are used for transmitting vilues

between processes.

81

It leads to a quite different style of system structure and

Atkinson & Buneman: DBPL design 10 October §085

The aspects of Amber that we shall examine lhere .nrc‘ pertistence Aun‘d mu'!lip‘k-
inherifance. - A dynamic value in Amber is one which carries ils type 1|csc|"|plu)l| with it;
sach s valu bas type dynsmic. Dynamic values can be coer.ced t«T an): given type by a
coercic + oprrator, and should the types not maich, the .coerc.mn fjllla. Tbus the form of
type-checking achieved is somewhat similar to that obtained in l’b—/\lgo! through th.e use
of pntr types. For example, in both langl{ageq one can construct Ilsts‘uf dyn:uAmc (0-r
poil;leri valies and then write a polymorphic procedure to rever:?e such lists. 'Ag:un, this
forii of polymorphism should not be confused with the paramelric polymorphism of ML.

Any dynamic type in Amber can be made persistent. To see how this works, figure 6-7
hows the type declarations for our database schema. Since Amber has no bulk (set or
shows 2l

relation) type, the type declarations have been based on the implementation used in the
2 r

original Pascal example.

The rec ... and ... and ... construction is for creating a tuple of mutually dependent

These are bound to names by ¢ype ..., ..., ... for types {value for

types or values.

values). The notation €ny: Ty, no: Ty, .. > declares a record type and [ny Ty ny: Ty, a
K T - o'

variant type. The symbol :> (instead of :) indicates an updateable field. There are no

explicit pointer types.

in designing the types for the Amber example, we have brought the variant up (o the
top level. Our reason for doing this is to illustrate the workings of multiple inheritance
in-Amber; 2part from this and the different method of indicating modifiable values, the
The

The

type declarations follow closely those of the original Pascal example (figure 2-1).
whole ‘declaration is enclosed in a module which exports the type declarations.

reason for exporting the value DataBaseTypeVal is described below.

Figure 8-8 shows the structure of a typical program that is required to modify a
database.. We have shown that part of the program that reads in a value from a file,
checks that it has the correct type, produces a (non-dynasnic) valu: for that type, and,
later, writes an updated version of that value out to a file. To elahorale, using the type
declarations in the PartsDataBaseType module, the program first reads in a value from the
file PartsDataBaseFile, whick is a dynamic value {since dynamic values are the only values
that can persist). The next statement checks its type. There is a built-in type Type that
is used to describe the type of a dynamic object. Objects of type Type are not themselves

Lypes; they are jusi values whose structure reflects the type structere of the language.

82

Atkinson & Buneman: DBPL design

module *PartsDataBase® -
export
type CompusitePast, BasePart, AnyPast, Uselist, PartlList,
Supplist, DataBaseType
value DataBaseTypeVal: Type

type {CompositePart, BasePart, AnyPart, UseList, Partlist,
Supplist, DasaBaseType)=s. - ..
rec CompositePart 18 € Name : String, Usedin 1> Usel.ist,
AsserndlyCoost : Dollars,
Maasslncrement : Grams,
MadeFrom :> UseList»

and BasePart 1s € Name : String, UsedIn :> UseList,
UnitPrice : Dollars,
Afass : Grams,
Suppliers 1> Supplist»

and AnyPart Ia [Bese: BasePart, Composite: CompositePart)

and UseList 1s [ndl : unit,
cell : € Quantity : lnt,
Uses :> AnyPart,
UsedIn :> CompositeParst,
NeztUses :> Usellist,
NeztUsedIn :> UseList»]

and PartList e [nil: wait, cell © € cont : AnyPart, next PartList»|

and Suppl.ist 1a ...

and DatalluseType ls € Parts :> Partlist, Supplier :> Supplist:®

value DataBaseTypeVal =
typeOf{dynamie €Parts = nil, Suppliers =ail»)

Figure 8-7: Task 1: describing the data in Amber30

The Tunction typeOf lakes a dynamic object and returns a value of type Type. Thus in :

checking that the dynamic value has the correct type, we compare the value produced:

by typeOf(newValue) with the typeOf an exemplar dynamic type in the module in figure 6-7.
It should be emphasised that values of type Tupe are only used as a guide. The
subsequent coercion will fail if the type of the dynamic value does not malch the given
Lype. ’

Figure 6-0 provides a simple example of inheritance in Amber. The code for

CostandMass is not given here but would be similar Lo that used in our previous examples

0Amber uses the Roman face for type and value id:nufiess, and italic for labels. This is not merely
convention, but is semantically significant. The assumption s made that the language will be used on
machines with bit map graphics and a what-you-see-is-wha'-you-get editor.

83

: : sman: DDPL design
19 October 1085 Atkinson & Duneman

19 Oclober 1085

3 ’Par&sDatal)nseTy,)c“
lT;;;e Compositelart, fyasel?ar
Supplist, DataBaseType

¢, AnyPart, Usel.ist, Partlist,

valie DataBaseTypeVal © Type

import('ParlsDamBmscFile') — pewValue has type dynamic

fet 1ewValue =

T alne) = DataBaseTypeVal then
14 QYPQO’I(B:‘:)‘::H;‘)“ _?:o"c. pew Value to DagailfaseType
o .

do .- — Perform updates

do e.;pmt(‘!’anaDataD:mcFile', dynl:nﬂc Datalase)
faa !intStnng('PnrlaDataBueFllc corrupted®) _—
et Figure 8-8: An outline of an update program in Amber

Vllﬂﬁccg:;::&ﬂ?f :Iy!'nrt _+ €coat : Dollars, mass : Grams2» is ...
ree Col :

type Part = & Name : String, UsedIn > UseListp
value NameOf = fun p : Part — String fa p.name

< »
value MastExpensiveComponent == fun p : AayPark — HasePart ls ..

Figure 8-9: Mustrating the use of inheritance in ,Amh” o

wch as in 2-1 that are based on a similar data structure. More mtcrcsmfg is the tpr:
Zecinraﬁon for Part. The fields of Part match {both in label and type) fields that are
i nd CompositePert. From ghis it is inferred that boih BasePart and
e wro su This means, for example, tha any value that is of

NameOf and

i types of Part.
CompositePart are subly . ‘
type BasePort is also of type Part. Now consider the functions
Ayl (EsperisiveComponent. NameOf is of type Part — String and therefore can also take any

ostExpen . ‘ . ' | ke oy
bject whose Lype is Purt as argument. Thus since any object of type HascPart is also 0
obije

On the

m P y v is type is
Ollle!' hand A/IOB‘EZPCH“VCCO pOﬂC"‘ Iel.ll!‘ils 8 BaasePart and an ﬂh“‘} 0[‘«l"ﬂ K
s

type Part, NameOf is also of type DasePast — String and CompositePart — String.
»

necessarily of type Pert. Thus AfostExpensiveComponent is also of type AnyPart — Parl. As
a resull, the expression

NameOf{ MostEzpensiveComponent a)
where a is of Lype AnyPart, is wll-typed.

In general, there is a partia. ordering (&) on record types and if zf luncli«'m fis (Tf type
o <> v then it is also of type o’ — ' whenever ¢ T o’ and ¢ T r. From this ordering we
can infer a partial ordering on function types:

g—r £ o'—1" wbe. ..

‘Loand v T v

b i i i - ic {or conltravariant) on the
In other words 1his ordesing on funclions is anti-monolonic {

84

Atkinson & Buneman: DBPL design

argument type. Cardell {{ 4,421l 84b] provides a semantics for this ordering and slmw;'

how inheritance combines natuially with functional programming. It should be noted}'

that a symmetrical ordering happens for variant types.

Wegner 85] it has been suggested Lhat type hierarchies of this kind can be combined wiq}“’:

the parameterised-polymorphism’ ia- ML and that a type checking algorithm exists, by

type inferenc{ng is, in general, no longer possible, -

This ordering may seem problematical at first and should be compared with the
orderings on classes in Taxis. However, it has recently been shown [Buneman 85) that j
this form iuheritance is carried down to the level of values, a natural typing of relations,

and other data structures such as the tables of PS-Algol, may be achieved.

85

19 October 1y j

More recently [Cardelli &

19 October 1985

Atkinson & Buneman: DBPL design

7. Conclusions
i i i 5" conviction of the importance «
The impetus o write this paper was the authors’ comnviction of I ace of
programming language design. At the outsel of this paper we gave three criteria
¥

accordmng to which we expected to compare various designs for database programming

languages: data type completencss,- persistence, and computational power. An obvious

way. {o summarise would therefore be to _pro«que a consumer guide based on these

critéria: but there would be little point to ithis since most of the languages we have
¥

surveyed are nob yet on the market and in many cases the designs are not complete.

Whesn & sufficient number of these languages are in a state that they can be used in

anger, we will be in a better position to make more accurate comparisons and perhaps lo
'

influence subsequnt designs.
jimplementation problems that are common to database programming.

Moreover we will be better able to understand the

The importance of a survey like this is mot to produce detailed comparisons and
analyses but to identify some common researchk themes, or principles, that we have

perceived in most of the languages we have discussed and which are surely in need of
further work. To recapitulate, they are

§. The need for a uniform language. There should be no major linguistic
barriers to the development of programs that are computationally complex.

2. The provision of & mechanism to controf persisience that is independent of
type.

3. A built-in abstract data type, or family of types, to represent the regularity
of large volumes of data. :

4. A polymorphic indexing or retrieval mechanism for efficient implementation.
It is possibie that this could be combined with, or subsumed by, (3).

5. Programs, or procedures should be typed objecis and uniformly treated as
values that may persist.

6. 'The type system must represent some form of inheritance.

7. The types, or modules, must permil some form of incremental, dynamic,
binding.

8. As'much static type-checking should be performed as is consistent with (7).
8. A notation should be provided to signify °variables®, that recieve a value

computed at the fime they are created, but which cannot be updated
subgequently,

In addition, ther. are equally important issues that we have nol discussed here. These

80

Atkinson & Buneman: DBPL design 10 October lﬂaf

lucdude locking and sharing mechanisms, privacy control, transactions and rccove,yf
These topics deserve a separale survey in the context of duabzm. programming and wjj

certainly have equally difficult research areas.

We will briefly. elabozate on these points here, but we should stress that although thn
paper is about design, implementation is equally important. It took some ten years fo
relational technology to develop to the point that relational systems could compete | it
efficiency with existing database management systems; and we are only now in a positio
to understand the advantages and drawbacks of relational database programming
languages and Lo use these as a basis for the discussions of the next wave q
programming languages. If the ideas examined here are to be taken seriously, it woul(

be a great pity if we have to wait another ten years in order to understand what furthey

research is needed.

7.1. Computational Power

Since we had assumed that all languages would provide adequate power, we expectedE
that this issue would be quickly laid to rest. Recall that Task 2 was introduced (see 2) to
Lest if a simple query could be expressed simply, while Task 3 was intended to discover if
a languages computational power was at all limited. While it is true that all the
languages beyond the relational query languages appear to provide the power of 3
Turing machine, several omissions were discovered that might have been pinpointed by;
putting a language design oul to independent tests. Initially it was not clear, for
example, whether recursive Lransactions were possible in Taxis (see 4.2). In Adnplex(seefl
4.1}, the lack of temporary entity types made the coding of the memoised version of
Task 3 particularly cumbersome3!. In general, all the computations we demanded
appeared possible, but sometimes so awkward as to be impracticable; and the

awkwardness was invariably associated with lack of type completeness.

We claimed in the introduction that we saw no reason why a language should not be
both powerful and simpie enough for the uninitiated user, and we believe that languages
such as SASL and Prclog have convincingly demonstrated this for general computations
in languages with sinple type systems. In Galileo (see 4.3), we saw thal simple

operations such as Task 2, could be written as straightforwardly and succinetly as a

31We understand that the Adesigns of both these languages have recently been changed o correct these
failings.

87

: real v syntax errors give ri

19 October 1985

Atkinson & Duneman: DBPL design

i this brevity, but we were also able to
age. ML, (sce 5.1) shared
reletinnal query languag P

PR N d a] suceine lly afte d(‘ﬁlgl\ll\g
f much more com)IlC!lted L()lilplld“()“ e ll.l"y
Lrpro J—ﬁk ‘1 a d| I T

i sriate abstract data type to support general computations of that class.
the sporodril

. we epcountered with languages (such as ML) whose syntax is based

only problemn
The LT 2 s is that the lerseness of this syntax often means that what are

the jambda calculu s of |
0“ se to incorrect programs that are syntactically well formed but

l-typed. - The resulling type error inessages that result, say, from a misplaced
ili-typed.

thesis or from forgetting the precedence of operators can be extremely confusing
parenthe

i i C ime v aplan 8:"
i as be ni ol ed in (,X[)(!I'lllll_nts "\dp H
€ l'leﬂC(!(l user. One of u e nvoiv
evel for an Xpe 3 IlJS

ith Turner's °2-F* [Turner D.A. 81] notation for database iterations. Not only is it
with Tur - . : Lo ‘
t fy simple to understand, being syntactically quite close to the relational guery
extreme y y
languages, it is also convenient for several forms of high-level optimisation [Nikhil 84}
ang s
I ges such as Galileo, ML, and Miranda suggest that it is now possible to produce,
.angua i !
in languages with rich type systems, the same sort of smooth “ramp® for the user to
in langu: y y

i B s) " e R M N .v‘ S s
climb in developing progressively more complicaled programs that is extubited by SASL,

1) ive la ¢ is i ant to continue this principle
Prolog, and other simple interactive languages. I is important i ple,

especially where interaction with complex daia types, such as database schemas becomes

important. A major problem with these languages is that, while the treatment of simple
im .
correct programs may be simple, interpreting the type or run-time errors that result from

incorrect ones often requires expert understanding of the language.

To summarise, we believe that there is no reason to limit the power of a database
programming language on the grounds of simplicity, nor have we seen that there are
gains in overall efficiency that result from allowing only a limited subset of operators.
On ilie contrary, the inefficiencies introduced by having to switch language, program
around the deficiency, or move data between programs, when the database language is
not powerful enough for a given task, are much more serious. We suspect the same is
true for the design of database machines. They should implement certain operations very
efficiently, but should also interpret a language that is powerful enough to express an

arbitrary database program.

Y

Atkinson & Buneman: DBPL design 10 October 194

7.2. Data Type Compleieness

There is no need to elaborate any further on the failure of data type completeneg
The challenge to the designer of a-new or newly extended programming language is {
produce the appropriate set of base types and type constructors. The constructors ar
are, of course, closely related to*the-choice -of data model, whereas base types may |
related to application targels, and both might be expected to vary. Looking at the mor,
recent languages (see 4, 5 & 8) we find that there is considerable convergence in t}
choice of constructors. In particular, all have an indexing mechanism, which in some j
directly exposed as a type; all have some nolion of a class; and have altempted to de

with inheritance.

7.2.1. Indexes and Bulk Structures

The usefulness of a generic index type in programming languages is self-evident, ang
was the basis of several early database management systems. Provision of such
structures is met with enthusiastic use. In PS-algol (section 6.1) and Poly(Section 5.2
the structure was insufficiently generic because the key type was restricted. In Pascal /]

(section 3.2) the relation could be treated as a sparse, multidemensional, array an

subscripted on a key tuple. Adaplex and Galileo do not make the structure explicitly

available, but follow relalional query systems in using it as an optimisation technique.

The design of these indexing constructs is invariably closely linked with the bulk data
constructors such as relations. But this is only one context in which they may be useful;
and it remains an open question as to whether they should Jhave a separate type or

whether both structures, relations and indexes, can be subsumed in one generic type.

Iterators and some collection of bulk operators for these structures are clearly essential;
but what form should a *place holder® or ®cursor® have, and how should the order of
iteration be specified? In fact the question of whether the bulk type should have an
ordering, and whether cursors are even necessary has yel to be resolved. These, as well
as problems of implementation are research issues. In particular, our experience has
shown that the majority of ®bulk® structures are small so that many implementation

strategies have excessive overheads.

80

Atkinson & Buneman: pBPL design 19 October 1985

7.%2.2. Classes . .
Task 1 we wished to model the parts used in manufacturing as a sct of uniformly
fs 3 as

typed enlities: The need f(or this kind-of representation is ubiquitous in databases and
any database language must provide a mechanism {or doing this. In Pascal/R, o‘ne starts
by comstrucling a record type and using that to constfuct a relation. '-l‘here is tlms‘a
clear separsti;m between the underlying type of the entity and the associated extent {in
fact ihere may be several extents associaled with a given t‘yp‘e). .The cnt.lty typel. of
Adaplex and VARIABLE CLASSES of Taxis do noi make this distinction. Gulh.leo Teqmres
a seperate name for the extent and the underlying entity type, but although 'll will .all()w
classes over identical types, the type for each class is a new type. Effcectively, in all
thiree; one: declaration produces both the type and the extent. The designer of a new
language should ask what is to be gained by doing this. In Pascal/R, the fact t.hnl the
constituent fields of records that form the basis of relations are limited to certain types
should be regarded as a failure of type completeness resulling from an engincering

con@rromise. It would in fact be useful, to have a relation of integer, that is to have a

generic gef type.

if one is to adopt a single declaration for a type and extent, a consequent problem is

whethier the extent should necessarily be persisient. One may also require a
representation of a subset of the extent. We have seen that temporary relations can be
most useful in certain kinds of computation and that having persistence as a default will

necessilate a separate method of declaring temporary extents.

Note that in Pascal/R, persistence is a property of a database, not of a relation. The
fact that databases can contain only relations should again be regarded as an enginecring
compromise, and it would be extremely useful il objecis of other types could put in a
Pascal/R 'data base. The database construcior of Pascal/R is a good method of
establishing a type and naming convention for a database. However, mulliple instances,
and fields of any type are required to conform with type completencss. But to conform
with ihe need to allow the normal progress of database evolution, the binding eannot be
enlirely static. Amber (section 8.2 addresses this with ils type dynamic, PS-Algol uses the
dynamic properties of pointers and tables, and Galileo and Poly exploit the manipulation
of environmenis. All these mechanisms address somewhat different functions and further
research on the appropriate mixture of static and dynamic binding is discussed elsewhere
[Atkinson and Mt 34,

00

Atkinson & Buneman: DBPL design 19 October 1985

7.2.3. Inheritance .

All the advanced database programming languages express some form of inheritance
within their type system. Taxis is interesting in its attempt to use inheritance as the
basis for nearly all aspects of the language. Each language takes a somewhat different
approach to expressing constraints on specializations of a type. In Pascal (section 2.1),
for example, the variants of a record are disjoint.-Thus a péraon record type may have
variants that correspond to student and en;ployee types, but to create a person record

. type that represents both a student and an employee (or neither) requires extra variants
to be added. In Adaplex, disjoint unions are the default, but can be relaxed with an
overlap statement. Moreover a type is the union of its subtypes, and to allow that a
person may be neither an employee or a atudent requires the declaration of a further emply
sublype Lo account for this. By contrast, in Taxis, the default is that a person may be
student, employee, both, or neither. In fact some work is required to express an integrity
constraint that will prevent the two subtypes overlappi'ng. In Galileo, three options are
provided for specifying how subtypes and supertypes relate to each other. In Amber, the
subtype relationship is inferred from the intrinsic properties of the type.

The interaction between procedures that operate on the type hierarchy also needs to be
considered. We defined specializations of a Taxis TRANSCACTION CLASS (that operated
on parts) to operate on base- and composite- parts. This apparently gives rise to a
hicrarchy of transaction classes that corresponds to the hierarchy of other classes, or
lypes. As we have seen in section 6.2, in Amber this hierarchy of procedure types is
contravariant [Cardelli 84b] with the hierarchy of argument types since any procedure
that takes a part as an argument can necessarily take a basc-part as argument, but not
vice-versa; in other words there are more procedures that operate on base-parts than on
parts. This leads to the initially rather surprising conclusion that we should think of the
type of a procedure that operates on parts as a specialization of the type of a procedure

that operates on base-parta.

4.3. Polymorphism
The examples given in ML and Poly show that parameterised polymorphism is an
extremely powerful tool for constructing new data types. llowever, there are 1 number

of tasks relevant to database programming that still defeat polymorphic languages.

One that we dis~ussed is the construction of a generic index type. For this one needs a

hash function (for Lash tables) or a comparison function (for search trees), and whlc it is

01

Atkinson & Buneman: DBPL design 19 October 1985

alwaye possible to construct such functions, the construction usually depends on some
system dependent information about the structures involved. Therefore, a generic index

type, given the state of these Janguages, must be pre-defined.

A second, and more fundamental, problem relevant to databases is the data type of a
relation. Suppose one wishes to assign a data type to the user-defined function:
j'oina(z,y,z) = join(z, join(y,z)) ‘
where join denotes the natural join of two relations. How would one express the
argument and result types of join3 if it is to be a generic function, i.c. defined for all
relations (r,y,z)? The interaction between relational data types and polymorphic
programming has yet to be properly understood; in fact we believe that the data type of

the nalural join has yet to be discovered.

As another example, consider the problem of substituting for every occurance of one
value (substructure) in an data structure of arbitrary type another value of a different
(or even the same) type. We can do this if we know the complete type of the data

structure in which the substitution is to be done, but we cannot produce generie code to

_do this for all types, even though at some level of database restructuring, this is a

common operation. Similar problems arise if one wishes to define a universal printing

function, a snapshotting function, a generic forms based data acquisition function, ete.

The requirement for ®universal application® programs like the problems just
mentioned [Owoso 84, Owoso 85| is so extensive in the database context that this arca
requires immediate attention. One strategy, illustrated by the Poly examples, is to have
every object provide a sufficient set of base functions. But if that is pursued, it will
certainly be necessary to have a mechanism for adding to the set of base functions
already in the database. This appears to be an unsolved problem for typed languages
and the lack of a solution is still an argument that is often ranged against strict (or any)

Lypiflg.

There are a number of programming tasks that require sonie form of self-reference in
the language. We have remarked that it is not possible 10 write one function that
memoises another in languages such as ML, while this is possible in an untyped language
such as Lisp. A similar problem is that, in an incremental programming cenvironment
one would liker to call upon the compiler as one calls upon other functions, but how is

the type of the compiler to be expressed?

02

Atkinson & Buneman: DBPL design 10 October 1085

Finz'ly, we should emphasise that strict type-checking i3 highly desirable for database
stion is how much of it can be made static? Since the term

programming. The open que
y 3 question that can be answered with a better

sgiatic® is relative, this is onl

understanding of persistence.

7.4. Persistence

We have advocated througout this pnper' that persisience and data type should be

have also seen that transience is equally important for

orthogonal properties of data. We
e have reviewed, PS-Algol, Galileo, Poly and

certain structures. Of the languages W
Amber provide a completely uniform approach to persistence.
m of checkpointing {section 3.6). The user

Some interactive languages provide a for
However this is not adequate for

may save an existing workspace and recall it later on.

database work. There i3 no way 2 user can exploit
ly that the database itself should be persistent, but that

modularity to save parts of his

workspace. For example it is like

experimental programs should be kept in 2 separale, disposable, workspace. More

important, when sharing of databases is required, checkpointing s completely

APL does provide decomposable

t since APL's workspaces are

inadequate. 1t is interesting to note here that
However this is relatively easy to implemen
maintain references from one wo

aces prohibits the use of references - essential for

workspaces.
flut. There i3 no need to rkapace o another.
Usnfortunately, the use of flat worksp

database work - and makes static scoping difficult to manage.

Transactions and concurrency are both intimately connected with the provision of

ted by Adaplex stomle and in PS-algol.

persistence. ‘Transactions were explicitly suppor
ncurrency and distrobution find

Other languages, which are addressing the problem of co

transactions essential [Liskov, et al. 83). Recently, there has been considerable debate as

to whether it is appropriate o build in a particular model of transactions, or whether it

is better for the language to provide move primitive constructs, out of which the
constructs appropriate transa :tiona
ve provides [Krablin 85, Weihl 85a, Weihl 85b). This is still an open
pen question ‘s the treatment of exceplions in a persistent
[Borgida 85b, Dorgida 85¢| has argued that it is

stems whose integrity constraints may be

programiner | and concurrent behaviour for the

various abstractions |
rescarch question. Another 0
environment. In recent work, Borgida
pecessary to design database management sy

violated, and has analysed the persistence of error states in a database.

03

Atkinson & Buneman: DBPL design
10 Octlober 1085

No { “ e l ngy with th -~|)] p { Adap! hicl herits tl
ne o h anguages ith e posstble excepiion o daptex, which mmherits the

Pty s e of Ada has adequate facilit (§ e and
: i N 1 1 ilities for ¢ meurrency The des gn
imples entatior of concu y cls ate C i(‘ ab)‘) ’
¥ rrenc constry i))
? appropri LS ¢ FOETaminiy
ate for datal
{ abhase progra in
g

languages, is clea i
guages, is clearly a prerequesite for their serious use

7.6. Mo rity:
Tr'aditi(:::;“:::g'r:"::::tr:d for perslst:encg and organisation
. pmgmmminglanguage res‘earch has distinguished between the language
o toginalm;guutge environmeni. One of the achievements of database
rogmbine s been aambafra e parts (Tf %ﬂi:e environment with the language itself.
e e programming is, as we have seen, to treat the database
ment and to have separate programs for compiling and linking

Cllcﬂlﬂb ele ' ast dﬂhlbﬂﬁe programing fan uages have made 3 BNt
S . n conir
’ g 1]:4 guag an tial

CO"UIb““Oﬂ to what must be desirable fo u . *) e
irable f [il" !nng ages. a proper sc luti
on Lo il
|||Qegi ation of lnnguages with thelr environments. l' or datubmses this requ PO
N ires a proper

131 P y >
persisten o i ﬁnd When, to n E an l pe- i
()(]@i ()i ersistence a (l of h()W L EO”" bindin and type-chec klng.

in programming environments, 1t 13 ne essary Lo manipuiate many persistent « eets
. i n] '
¢ t c { jate istent ol ts

. 1 .
su 5 P l[lc 1] L (4 eels »
cit as ce)mpllcd code
. ich ;] i
l 1] code interface spec ations and ¢ ode 1) objeets Wy be

fganise 111 2 any
(o] d as O(jl]iegzz. !ﬁ. 9 reasonn,ble to QXPBC‘. thﬂt a propers ml('gra&lun of 1Y)

language Wl"l its environment Wl" Iend to &he same dntzﬂmse programimning I(lilig“algc

b ing used ﬂo h 8 puly e ogramimin
.
L] t these Enodules as s USG(] EOI miﬂ Othcs dat sim lll ing the)7 i
? g § |4 wng

Further, the module]
o nmin;::zil(; x;'context for retaining the procedures and other data
o o et | mnn |.ngs between types, values and names. Indeed one of
bttt seltusne ot Tl;agmf the large numbers of names that appear in a
oty impo,ﬂm:eiy also h?r-m a natural unit for component replacement.
e b o1 o g S“;w 0: o:iamsmg the construction and maintenance of both
betwwen the treatment of program n:d gorfa::;eﬁ ::l;::i::;pi):;e“ o v ditincton

As bﬂ seen In ()‘y i]hi(‘() a Gl i S-Rl G Wlli'fe ithe ﬂlh’l‘() es U' moauies were
we ve P Galhi
] n]g I, h 4 ful ¢
P [} 1! I y
)
FOCe (IHNE 4)!1)51"’95 or einvironments, that ”Ie ill()(illl(} can be llb(.‘(l to enforce nlll)l“ ar

P on and co a] the sy of uch current rescarch 0 Xampie
rolectio nsirainls ')
hlS 18] Il § Ib]ect much cur l'(' for ex l

in consequence, we recognise that.a 8 gyslemn Ccomal Anguages are of necessily database
nseq

. 3

Operating sys i

that. all i &] mﬂlggs fn iy datal

04

Atkinson & Buneman: DBPL design 18 October 1085

[Atkinson & Morrison 85, Cardelli & MacQueen 85]. If database programming language
research succedes, then programmers will no longer conciously use databases, and it is
possible that the form longer term data will be presented in, will be modules that happen

to retain their data longer than others.

8. Acknowledgements .

Much of the moaterial for this paper was assembled during a seminar course at the
University of Pennsylvania in the spring of 1084. We very much appreciate the
contributions made by the participants in that seminar, Mark Reinhold, Sharon Perl,
Rishyur Nikhil and others. We particularly appreciated the assistance given by Dave
Matthews, who actually programmed all the tasks before our very eyes, in Poly. Many
usefu! discussions with Luca Cardelli heiped in our understanding of Galileo and Amber.
Alex Borgida gave us much belp in understanding Taxis. Joachim Schmidt and Mattius
Jarke explained Pascal/R and its descendants, Modula/R and DBPL to us. Steve Fox of
Computer Corporation of America, helped us with the Adaplex examples. Anthonio
Albano and Renzo Orsini have helped us with Galileo. Ron Morrison, Tony Davie, and
the rest of onr Persistent Programming Research Group, helped by being both a critical
and a constructive sounding-board. David MacQueen, Peter Wegner, and Bob iarper,
as well as all the others that were at the Appin workshop, not yet meantioned,

contributed to our general understanding of Lypes.

Our work together was supported by our (wo Universities of Glasgow and
Pennsylvania. The University of Edinburgh helped with access to equipment, during one
stage in the preparation of the paper. Our work was funded by the British Science and
Engineering Research Council, who gave a fellowship to Peter Buneman to spend a year
in Scotland (GRC 86280). Support was also provided by ONR contract 5-20680 and a
National Science Foundation CER grant 5-22030. Other grants from SERC: GRA
86511, GRC 21077, GRC 21060 and GRGC 00000 provided travel, electronic

communication and equipment.

05

. (A"}ano el al 85b}

Atkinson & Buneman: DBPL design E0 Octol 108
ctober 5

References

[Aho & Uliman 74
A!u'., A.V; and Ullman, J.D. .
Universality of Data Retrieval Languages
In Proceedings of the b ACM Symposis *
~] ymposium on Princi
Frogramming Languages, pages 110-120. ACIV;,"i:),"I,(‘;.a o/
|Ait-Kaci & Nasr 85)
Ait-Kaci, H. and Nasr, R.
il:g{?;iﬁs(l),:gﬁ fl’)rogmmming Language with Built in Inheritance
inson, M.P, Blmema.n, O.P. and Morrison, R. (editors) ‘
I’ersigl;:giﬁ?gg:ﬁfnﬁﬁpm ’a?porkahgp’?n Persistence and Data Types
eran: ving fiesearch lteport 16, pages 000-00(
Persistent Programming Research Group, Univlur.git; of (}l:u:i;nw

Department of Computi io
Avigust. 1085, puting Science, Glasgow (112 BQQ, Scotland,

Also to appear in ACM l rinci lES Ol i in ;anguages 1986
I P [l rogramm |
A")ilﬂo, ‘Lv Cillde"l, l“ ﬂl]d OlSIl“, "'

Galileo: A Strongly T i
" yped Interactive Conceptual Lan d
ACM transactiona on Database Systems lO(‘.!):O()(%O()g“K%:;ch 1085

Albano, A, Giannotti, F., Orsini
AL G A O ini, R. and Pedreschi
;I‘h; tz'pe system of Galileo. 4 Pedrsehi, B
n Atkinson, M.P., Buneman, O.F. and Morri
]) o, O.P. orrison, R. {editors
gocge;[mlga of the Appin workshop on Persislenf’e andblkalu T
Pe::il:g::t [{’rogramn!mgll?eamrch Report 16, pages 175-195 wpes
rogramming Research Group, Universil l‘(‘
Repartment of Computing Science, Glasgow ({12 8(%((2, Sj~l‘m[-;0w’
et 1085, , Scotland,
|Albano et al 85¢]

'{i\;:ba?oy ;I‘X., Ghelli, G. and Orsini, R.
he Implementation of Galileo's g')ersistenl Val
y alues.
In .?}rl::::dn_, M.P., Bunemu_n, O.P. and Morrison, R. {editors)
Pemislel’r‘?z;):‘{giﬁfn.?nﬁpan Ia;;orkath[;m Peroistence and Data Types
i 1ing fcesearch fleport 16, pages 197-20
E[;irslstlcnt ngmmmmg Rtesearch Group, Univ[:‘rgity of'(ll:j ow
" partment of Computing Science, Glasgow (112 8QQ), Se g '
ugust, 1985.) » Seotland,
|Albaro, A. et al. 83]
?l%gpo, l/\{, Cardelli, L. and Orsini, R
salileo: A strongly typed lnleraci;'ve'(‘onc
¢ " Conceplual Lan .
Technical Report, Bell Laboratories, Bell Tclvphon: I',:’{;:::;j:ftoriv-;

Internal Techni : .
USA. 198340 inical document Services, Murray Hill 13500, NJ,

Submitted to ACM transactions on Database Systems.

06

Atkinson & Buneman: DBPL design 10 October 1085

[Amble &t al. 70} Amble, T, Dratbergsengen, K., and Risnes, 0.
ASTRAL: A structured and unified approach to d

manipulation.
in Proceedings of the database architeclure con ference, Venice, llaly.

June, 1970 - -

atabase design and

[Astrahan 76] - Astrahan, M. M. et al. -
System R: relational approach to database management.

- " ACM transactions on Database Syslema 1:97-137, June, 1076.
[Atkinson 78] Atkinson, M. P.
Programming languages and databases.
In S. B. Yao (editor), The fourth inlernalional con ference on Very
Large Data Bases, Berlin, Wesl Germany, pages 408-410.

September, 1978,

[Atkinson & Morrison 84
Atkinson, M., and Morrison, .

First Class Persistent Procedures are enough.

1o Proceedings of the fourth Con ference on the Foundatliona of
Theorelical Compuler Science and So flware Technology, Bangalore,
India, pages 223-240. Springer-Verlag, Berlin, December, 1084.

[Atkinson & Morrison 85}

Atkinson, M.P. and Morrison, RR.

Types, Bindings and Parameters in a Persistent Eavironment.

I Atkinson, M.P., Buneman, O.P. and Morrison, R. (editors),
Proceedings of the Appin workshop on Persislence and Data Types
Persiaten! Programming Reaearch Report 16, pages 1-24.
Persistent Programming Research Group, University of Glasgow,
Department of Computing Science, Glasgow G12 8QQ, Scotland,
August, 1085,

A revised version may be prepared for a paper at IFIP86 in Dublin.

[Atkinson & Morrison 86]
Atkinson, M.P’. and Morrison, R
Towards an Integrated Persistent Graphical Programming Language.

In Proceedings of the 185 fHlawaii International Con f. on Syslems
Sciences, pages 000-000. January, 1986.

|Atkinson et al. 81]
Atkinson, M.P., Chisholm, K.J. and Cockshott, W.P.

PS-algol: an Algol with a Persistent Heap.

ACM SIGPLAN Noticea 17(7), July, 1981

‘Also available as Tecnical Report CSR-04-81, Computer Scicnce
Department, University of Edinburgh.

[AtLinson et al. 83a]
Atkinson, M.P_, Bailey, P.J., Chisholm, K.J., Cockshott, W.P_ and

Morrison, R.
An Approach to Persistent Programming.
Computer Journal 26(4), November, 1083.

07

Atkinson & Buneman: DIIPL design 19 October 1085

[Atkinson ef al. 83h) :
atkinson, M.P., Chisholm, K_J., Cockshott, W.P. and Marshall, R.M

Algorithms for a Persistent Heap.
So ftiware Practice and Experience 13(7), March, 1983.

|Atkinson ef al. 84
. Atkinson, M.P., Bailey, P., Cockshott, W.P i <
Atkinson, N ott, W.P., Chisholm, K.J. and
Progress with Persistent Programming.
Dalaba‘scn - role and sirucfure.
Cambridge University Press, Cambridge, England, 1984,

|Atkinson and Morrison 84}
A'lkinson, M.P. and Morrison, R.
Fl(rst Class Persistent Procedures.
ACM transactions on Programming La]
7(-4):000-000, Ociober, 1084. g Languages and Systems

{BCS 81) The British Computer Society Query Language Group: Editor Samet

Q~uc'r'y Languages: A Unified A
] : pproach, lleyd
‘Monographs in Informatics. ¥ eyden and Son Lid, 1081,

|Borgida 83} Borgida, A.
Fealures of Languages for Conceplual In formation System
Development ‘
Technical Repost, Department of Computer Science, Hill Center
Rutgers University, New Brunswick, New Jersey 08003, USA. 1083

{Borgida 85a] Borgidas, A.
Communications regardin i i i
g stalus and interpret K
Personal communication. erpretation of Taxis
October, 1085

[Borgida 85b] Borgida, A.
:’Iexible data exceptions.
n Bubenko {editor), VEDB1 I
) 1 R pages 000-000. August 5
Tltle,edllor,pnges,orgnnismtior; needed. tgtst, 1085

[Borgida 85¢] Borgida, A.
Accomodaling exceptions to t
; ype.
in Altklnsolnf MP., Blmewm\py O.P. and Morrison, R. {editors),
Procge: mgs,o] the Appin workshop on Persiatence and Data Types
Pers_wlcnl Iroyrmmr!mg feesearch Report 16, pages 265-271
Dz;)sls:cnt f:m‘ggimmmg Research Group, University of (i|a:;i;ow
artment of Computing Sci slas ¥ '
Rognet, 1085 puting Science, Glasgow G12 8QQ, Scotlan {,
Revision expected November 1985.

[ﬂ!a:hman / EE Blm":l"“ﬂ"' RJ
A NCW [l”ﬂ(l!g"! fO! Replwenlmg A’\ vwwledye,
le(‘hmcal llc[)or& B"N [{C ort 3605 olt
¢ por N l] l Buanck an(i l‘lL‘\Vl“All,

08

Atkinson & Buneman: DBPL design 19 October 1085

[Brachman 83] Brachman, R.J. ‘ . '
What IS-A Is and Isn't: An Analysis of Taxonomic Links in Semantic

Networks,
Compuler 16(10):30-35, October, 1083.

[Bragger et of. 83 -)
. Braggger, .P., Dudler, A, Rebsamen, J. and Zehoder, C.A.

Gambil: An interactive Database Design Tool for Data Structures,
Integrity Constraints and Transactions.

Dalabase Techniques for Professional Workslations [Zehnder 83].

Eidgenossische Technische Hochschule Zurich, Institute Fur Informatik,
1083, pages 65-05.

{Brodie el al. 83] Drodie, M., Mylopolous, §. and Schmidt, J.
On conceplual modelling: perspeclives from arli ficial intelligence,
databases, and programming languayes.
Springer-Verlag, Berlin, 1983.

[Buneman 82] Buneman, P., Frankel, R.E. and Nikhil, R.
An Implementation Technique for Dalabase Query Languages.
ACM Transaclions on Database Management 7(2), June, 1082.

(Buneman 85] Buneman, O.P.

Data Types for Dala Base Programming.

in Atkinson, M.P., Buneman, O.P. and Morrison, R. (editors),
Proceedings of the Appin workshop on Persislence and Data Types
Persistenl Programming Research [teport 16, pages 285-208.
Persistent Programming Research Group, University of Glasgow,
Department of Computing Science, Glasgow G12 8QQ, Scotland,
August, 1085,

[Buncman el al. 82a}
Buneman, P., Hirschberg, J. and Root, D.
A CODASYL interface for Pascal and Ada.
In Proceedings of the second British National con ference on
Dalabases: Dristol, England. July, 1082

(Buneman e al. 82b]
Buneman, O.P., Hirschberg, J and Root, D.
Integrating CODASYL with high level programming languages.
In Proc. the 284 of British National Con ference on Dalabases. 1982.

[Cardelli 84a} Sardelly, L.
Amber.
Technical Report, ATLT Bell Labs, Murray Hill, N, USA, 1084.

{Cardelli 84b] Cardelli, L.
A semantics of Multiple Inheritance.

Semantics of Data Types: Inlernational Sympcsium,
Sophia-Antipolis.
Springer-Verlag, Berlin, 1084, pages 51-67.

00

Atkinson & Buneman: DBPL &esign 10 October 1985

[Cardelli & MacQueen 85]

Cardelli, L. and MacQueen, D.M.

Persistence and Type Abstraclion.

In Atkinson, M.P., Buneman, O.P. and Morrison, . (editors)
Proceedings of the Appin workshop on Perssatence and I)’alu Types
Persistenl Programming Research Report 16, pages 221-230.
Persistent Programming Research Group, University of Glasgow

- Department of Computing Scignce, Glasgow G112 8QQ, Scotland,

August, 1085. . '

[Casrdelli & Wegner 85)
Cardelli, L. and Wegner, P.
On Understanding Types, Data Abstraction, and Pol i
i , , ymorphisin.
ACM Computing Surveys 0(00}:00-00, Aug, 1085. !
Personal communication, submitted to Computing Surveys.

[Chen 76} Chen,P.P.S.
The Entity-Relationship Model: Towards a Unified View of Dat
: :) : ata,
ACM Transactions on Dafabase Syatems 11(1), March, IO‘IG.l

{Chung 84} Chung, K.L.
lmplemen{atlon of Tuis, process management and enforcement of
scm.nnhc Integrity Constraints.
Muster s thesis, University of Toronto, Department of Computing
Science, 1984.

[Clocksin & Mellish 81]
Clocksin, W.F. and Mellish, C.S.
Programming in Prolog.
Springer-Verlag, Berlin, 1081.

{Codd 70} Codd, EF.
A Relational Model for Large Shared Databanks,
Communications ACM 13(6):377-387, 1970.

[Codd 79) Codd, EF.
Extending the Relational Model of Data to Ca i
t 2 sapture More Me .
ACM Transaciions on Dalabase Systems 4(4), Deccm(l)mtr, I(():’II'(])'."g

[Cole & Morrison 82}
gol? Al and Morrison, R.
n Introduction To Frogramming With S-algol
Cambridge University Press, iﬂB?? e

[Computer Corporation of America 83}
Smith, J.M., Fox, S and Landers, T.
ADA{;LE(‘I'X: Rationale and R:ference Manual
second edition, Computer Cozporation of America, Four Cambri
» Cor : \ Jambridge
Center, Cambridge, Massachusctis 02142, 1083. e

[Dahl & Nygaard 66)
Dahl, O. and Nygaard, K.

Simula, an Algol-based simulation language.
CACM 9:671-678, 1066.

Atkinson & Buneman: DDBPL design 19 October 1856

[Date 81a] Date, C. 1. N
An introduction o database systems, 3rd edition.
Addison-Wesley, 1081,

[Date 81b} Date, C.J.

Referential Integrity. - -

In The seventh internalional con ference on Very Large Data Baseas,
Cannes, France. VLDB, 1081.

[Date 83a} Date, C.1. -
An Introduction to Database Systems.
Addison-Wesley, 1083.

[Date 83b] Date, C.1.
Database: a primer.
Addison-Wesley, Reading, Mass., USA, 1083.

[Demers & Donabue 70
Demers, A. and Donahue, J.
Revised reporl on Ruasell.
Technical report TR70-380, Cornell University, 1970.

[Fairbairn 82] Fairbairn, 1.
Ponder and its Type ayslem.
Technical Report 31, University of Cambridge Computer Laboratory,
Cambridge, England, 1082.

[Fairbairn 85) Fairbairn, IR

A New Type-checker for a Functional Language.

ln Atkinson, M.P., Buneman, O.P. and Morrison, R. {editor),
Proceedings of the Appin workshop on Peraistence and Data Types
Persistenl Programming Reaearch Repori 16, pages 107-123.
Persistent Programming Research Group, University of Glasgow,
Department of Computing Science, Glasgow G12 8QQ, Scotland,
August, 1085,

[Gallaire & Minker 78]
Gallaire, 1. and Minker, §., Eds.
Logic and Databases.
Plenum, New York, USA, 1078,

[Gallaire el al 8
Gallaire, I1., Minker, J. and Nicolas, I-M.
Logic and Databases: a Deductive Approach.
Compuling Surveys 16(2):153-185, June, 1084.

[Goldstein 80] Goldstein, *. P. and Bobrow, D. G.
Extending object oriented programming in Smalltalk.
In Proceecings of the 1980 Lisp Con ference, pages 75-81. August,
1080

|Gordon et al. 79§
Gordon, M.J., Milner, A JR.G., and Wadsworth, C.P.
Lecture Moles in Compuler Science. Volume 78: Edinburgh LCF.

Springer- Verlag, 1079,

101

Atkinson & Buneman: DBPL design 19 October 1085

[Hall 83) ilall, PAYV.
A-li. ¢ Dalabase Management to Ada.
w M SIGPLAN notices 13{3):13-17, April, 1083,

[Hammer 75) Hammer, M.M. and McLeod,D.J.
Semantic lntegrity in a Relational Data Base System.
. In Ist Inlernational Con ference on Very Large Data Dases.
. September, 1975,

{Horowitz & Kemper 83 -
Horowitz, E. and Kemper, A.
AdaRel: A relational Exlension of Ada.
Technical Report TR-83-218, University of Southern California,
Department of Computing Science, Los Angeles, California, USA,
November, 1083.

{lchbiah ef al. 79)
Ichbiah et al..

Rationale of the Design of the Programming Language Ada.
ACM Sigplan Noticea 14(6), 1070, Bune

{tverson 79} Iverson, K.E.
Operators.
TOPLAS 1(2):161-176, October, 1979.

[Jarke & Koch 82]
Jarke, M. and Koch, J.
A Suryey of Query Oplimizalion in Centralized Databuse Sysicms.
Technical Rf:port, Center for Research on Information Systems, New
York University, November, 1052. ’
CRIS 44, GBA 82-73 (CR).

[Jarke & Koch 83}

arke, M. and Koch, §.

Range nesting: a fast method to evaluate quantified queries.

In Proceedings of the ACM SIGMOD international con ference on
A’lanage.menl of Data, San Jose, Cali fornia. Association of
Computing Machinery, May, 1083.

Also as a technical report (rom: the Center for Rescarch on Information
Sysiems, New York University CRIS 49, GBA 83-25 (CR).

{Jarke & Koch 84]
Jarke, M. and Koch, §.
Quesy Optimisation in Databse Systems.
Compuling Surveys 16(2):111-152, June, 1084.
[Kaplan 8} Kaplag, H.
High Level Interfaces for Databases.
Master's thesis, University of Peunsylvania, Department of Computing
and Information Science, 1083.
[Kent 78] Kent, W.
Dala and Realily.
North-Iioliand, 1978.

102

Atkinson & Buneman: DBPL design

[Kent 79]
[Kersten 81]

[Koch et al. 83)

[Krablin 85}

10 October 1085

Kent, W.
Limitations of Record-based Information Models.
ACM Transaclions on Dalabase Syatems 4(1), 1979,

Kersten,M.L. and Wasserman,A L
The Architecture of the Plain Data Base FHandler.
So ftware-Practice and Exzperience 11:175-186, 1081. -

Koch, J., Mall, M., Putfarken, P.-Reimer, M., Schmidt, . W. and

Zehnder, C.A. -

Modula /R report. Lilith version.

Technical Report, Eidgenossische Technische Hochschule Zurich,
Institute Fur Informatik, 1983.

Krablin, G.L.

Building Flexible Multilevel Transactions in a Distributed Persistent
LEnvironment.

In Atkinson, M.P., Buneman, O.P. and Morrison, R. {editors),
Proceedings of the Appin workshop on Perssstence and Data Types
Persistent Programming Research Report 16, pages 83-105.
Persistent Programming Research Group, University of Glasgow,
Department of Computing Science, Glasgow G12 8QQ, Scotland,
August, 1085.

[Kulkarni & Atkinson 83}

isulkarni, K.G. and Atkinson, M.P.
Use of PS-algol to experiment with data models.
Software Praclice and Ezperience 15(0):000-000, xxx, 1083.

[Kulkarni & Atkinson 85)

[Lampson 77)

|Liskov et al 81)

Kulkarni, K.G. and Atkinson, M.P.
EFDM: Extended Functional Data Model.
The British Compuler Journal 28(0):000-000, xxx, 1085.

Lampson, B.W., Horning, I.J, London, R.L., Mitchell, J.G., and Popek,
G.L.

Report on the programming language EUCLID.

SIGPLAN Notices 12(2), 1077.

Liskov, B. et al.

Lecture notes in Compuler Science. Volume 114: CLU reference
manual.

Springer-Verlag, Berlin, 1081.

Goos and Hartmanis, Eds.

|Liskov, et al. 83}

Liskov, BB., Herlihy, M., Johnson, P., Leavens, G., Scheifler, R. and

Weihl. W.

Preliminary ARGUS re ference manual.

Techaical Report Memo 30, Programming Methodology Group,
Massachusetts Institute of Technology, Laboratory for Computer
Science, Cambridge, Massachusetts 02139, USA, October, 1083,

i03

Atkinson & Buneman: DBPL design

[MacQueen 85]

[Matthews 85a]

[Matthews 85b]

[McCarthy 62|

[Merrett 77|

[Merrett 83)

{Merrett 84]

[Merreit 85a)

[Merrett 85b]

19 October 1085

MacQuecn, D.M.
Modules for Standard ML.
Polymorphism 2(2), to appear, 1085,

Matthews, C.J.

Poly Manual.)

Technical Report 83, University of Cambridge, Computer Laboratory,
Feb, 1085.

Matthews, D.C.J.

Overview of the Poly Programming Language.

In Atkinson, M.P., Buneman, O.P. and Morrison, R. (editors),
Proceedings of the Appin workshop on Persistence and Dala Types
Persistenl Programming Research Report {6, pages 255-263.
Persistent Programming Research Group, University of Glasgow,
Department of Computing Science, Glasgow G12 8QQ, Scotland,
August, 1085.

McCarthy, J., et al.
LISP 1.5 Programmer’'s Manual.
MIT Press, Cambridge, Massachusetts, 1062.

Merrett, T.H.
Relations as Programming Language Elements.
In formation Processing Lellers 6{1):20-33, February, 1977,

Mergeit, T.H.
Exiending the relational data model to caplure less meaning.

ACM SIGMOD RECORD | 1983.

Merrett, T 1.
Relational In formation Systems.
Reston Publishing Co, Prentice-Hall, Reston, Virginia, USA, 1084,

Mesrett, T.I1.

First steps (o algebraic processing of text.
New Applications of Data Dases.
Academic Press, 1085.

Mesrett, T.I4.

Persistence and Aldat.

in Atkinson, M.P., Buneman, O.P. and Morrison, R. {editor),
Proceedings of the Appin workshop on Persistence and Dala Types
Persistenl Programming Research Report 16, pages 35-48.
Persistent Programming Research Group, Universily of Glasgow,
Department of Computing Science, Glasgow G2 8QQ, Scotland,
August, 1085.

[Merrett & Déchting 84}

[Michie 88]

Merrett, T.1L. & Dachting, B3
Relational storage and processing of two dimensional diagrams.
Compulers and Graphics 0(3), 1084.

Michie, D.
‘Memo' functions and machine learning.
Nature (218):10-22, April, 1068,

104

Atkinson & Buneman: DBPL design 18 October 1085

[Milner 78] Milner, R.
A theory of type polymorphism in programming.

Journal of Computer and System Science 17:348-375, 1078

Milner, R.
Flowgraphs and Now algebras.
Journal of the ACM 26(4):794-818, October, 1070. -

Milner, R. -
A proposal for standard ML.
Polymorphiam 1(3), December, 1083.

Milner, R.

A Proposal for Standard ML.

In Proceedings of the 1984 ACM Symposium on Lisp and Functional
Programming. ACM, 1984.

[Milner 70}

[Milner 83|

[Milner 84)

Morrison, R.
S-algol Language Reference Manual.
Technical Report CS/79/1, University of St. Andrews, 1079.

[Morrison et al 85a)
Morrison, RR., Brown, A L., Bailey, P.J., Davie, A.J.T. and Dearle, A.
A Persistent Graphies facility for the ICL PERQ.
SPE 15(0):000-000, xxx, 1085,
Also available as PPR-10-84, Persistent Programming Research Group,
University of Glasgow, Department of Computing Science, Glasgow
G12 8QQ, Scotland.

[Morrison et al 85b]

Morrison, R., Dearle, A., Brown, A.L. and Atkinson, M.P.

The Persistent Store as an Enabling Technology for Integrated Support
Environments.

In Proceedings of the 8% International Conf. on So ftware
Engineering, London, England, pages 000-000. IEEE, August,
1985.

Also available as PPR-15-85, Persistent Programming Research Group,
University of Glasgow, Department of Gomputing Science, Glasgow
G12 8QQ, Scotland.

[Morrison et al 86)
Morrison, R., Dearle, A, Bailey, P., Brown, A L. and Atkinson, M.P.
An Integrated Graphics Programming System.
The British Computer Journal 00(0):000-000, xxx, 1986.
Abio available as PPR-14-85, Persistent Programming Research Group,
University of Glasgow, Department of Computing Science, Glasgow
G12 8QQ, Scolland.

Myeroft, A.

Anin ferential type system for Prolog.

Technical Report, Computer Science Department, University of
Edinburgh, University of Edinburgh, Edinburgh EHo 3HD,
Scotland, xxx, 1084,

[Morrison 79)

{Myeroft 84

105

Aikinson & Buneman: DBPL design 10 October 1085

{Mylopoulos & Worz 80} o
AMylopouios, J. and Wong_, KT
Some fe: tures of the Taxis data model.
In The s cth inlernational con ference on Very Large Data Bases,

Aonireal, Canada. November, 1980,

Mylopoulos et al. 80]) i
IMytop Myl!opoulos, J., Bernstein, P.A. and Wong, LK. T.

A Language Facility for Designing Database Intensive Applications.
ACM Transaclions on Dafabase Syafema 5(2}, June, 1080.

Nikhil, R. .
An Incremental, Strongly Typed Applicative Programming System for

Databases. ‘ .
PhD thesis, University of Pennsylvania, Department of Computing and

Information Science, 1984,

Nixon, B.

A Taxis compiler. .

Master's thesis, University of Toronto, Department of Computing
Science, April, 1983.

Nixon, B. {ed.}.

Taris "8§: Selected Papers.

Technical Report TR CSRG-160, University of Toronto, Computer
Science Rescarch Group, Torentio, Canada, June, 1084

O'Brien, P.
Ap Integrated Interactive Design Environment for Taxis.
In Poc. of 1983 Sofifair conf.. Softfair, 1083.

[Nikhil 84)

[Nixon 83}

[Nixon 84]

[O’Brien 83}

[Olle 78] Olle, T.W.
The CODASYL approach to Data Base Management.
Wiley Intersicoce, New York, 1978.
[Owoso 84) Qwoso, G.O.
Dala Descriplion and Manipulation in Persislent Programming
Languages.
PhD thesis, EUCS, August, 1084,
[Owoso 85) Owoso, G.O.

Flexible data handling in Programming Languages.

In Atkinson, M.P., Buneman, O.P. and Morrison, . {editors),
Proceedings of the Appin workshop on Persistence und Dula Types
Persistent Programming Research Report 16, pages 006-000.
Persistent Programming Research Group, Univ.rsity of Glasgow,
Department of Computing Science, Glasgow 12 8QQ, Scotiand,
August, 1985,

Pilote, M.
A Programming Language Framework for Designing User Interfaces.
ACM SIGPLAN notices 18{8):118-138, June, 1933.

[Pilote 83]

fos

Atkinson & Buneman: DRPL design 10 October 1085

[Pirotie 80} Pirotre, A. and Lacroix, M.
User Interfaces for Database Apglication Programming.
Ia In fe oh State of the Art Con ference on Database. Infotech Limited,
14380. '

© [PPRG 85) Persisteat Programming Research Group, University of Glasgow,
- Department of Computing Science. . -
The PS-alyol re ference manual - second edilion.
Technical Report PPR-12-85, Persistent Programming Research Group,
University of Glasgow, Department of Computing Science, Glasgow
G12 8QQ, Scotland, 1085.

[Rowe 85) Rowe, L.
Windows on Relations.
In Bubenko, J. (editor), Proceedings of the eleventh inlernational
con ference on Very Large Data Bases, Singapore, pages 000-000.
August, 1085.

[Rowe & Shoens 79}
RRowe, L. and Shoens, K.
Data Abstraction, Views and Updates in RIGEL.
In Proceedings of ACM SIGMOD International Con ference on
Management of Data, pages 71-81. ACM-SIGMOD, 1079.

[Schmidt 77) Schmidt, JW.
Some High Level Language Constructs for Data of Type Relation.
ACM Transactions on Database Systems 2(3):247-281, September,
1077.

[Schmidt 85) Schmidt, J.W.
Plans for an Esprit project.
Personal communication.
August, 1085

[Schmidt & Brodie 83
Schinidt, J.W. and Brodie, L.M. (editors).
Relational Database Systems.
Springes-Verlag, 1083.

[Schmidt & Mall 83}
Schmidt, J.W. and Mall, M.
Abstraction mechanisms for database programming.
ACM SIGPLAN notices 18(6), June, 1083.

[Skipman 8)] Shipman, D.W.
The Functional Data Model and fhe Data Language DAPLEX.
ACM Transaclions on Databasc Syslems 6(1):140-173, March, 1981.

[Shopiro 79) Shopiro, JE. .
THESEUS - A Programming Language for Relational Databases.
ACM Transactions on Database Systems 4(4), December, 1970,

[Sith 77} Smith, J.M. and Smith, D.C.P.

Database Abstractions - Aggregation and Generalisation.
ACM Transactions on Dalabese Systems 2(2), June, 1077,

107

Atkinson & Buneman: DBPL design 19 Octlober 1985

[Stoncbraker el al. 76} L .
Stonebraker, M., Wong, £, Kreps, P, and leld, G.

The Design and Implementation of INGRES.
ACNM transactions on Dalabase Sysiems 1(3):188-222, September,

1976.

[Teitelman 75] . Teitelman, W.
INTERLISP Reference Manual.
Technical Report, Xerox Palo Alto Research Center, Palo Alto

,California, USA, 1975. °

[Tsichritzis 77] Tsichritzis, D. C. and Lochovsky, F. 1L
Data base management sysiems.
Academic Press, 1977.

[Turner 85} Turner, D.A. ‘
Miranda: A Non-strict Functional Language with Polymorphic Types.
In Jouannaud, J-P. (editor), Functional Programming Languages and
Compuler Archilecture, pages B-16. Springer-Verlag, Berlin,
September, 1085.
S-V lect. notes in CS no. 201.

[Turner, D.A. 81]
Turner, D.A.
The Semantic Elegance of Applicative Languages.
In Proccedings 1981 con ference on Functional Programining
Languages & Compuler Archilecture, Portsmith, New Hampshire.,
pages 18-22. Octobes, 1081,

[Uliman 82} Uliman, J.D.
Principles of Daiabase Syslems.
Pitman, 1082.
Second Edition.

{Ullman 85] Ullinan, J.D.
Implementation of Logical Query Languages for Database.
ACM transactions on Dalabase Sysiema 10{3):280-321, September,
1085.

|var Wijngaarden el al. 60)
van Wijngaarden, A. ef al..
Report on the Algorithmic Language Algol 68.
Numerische Malhematik 14:70-218, 1060.

{Vassiliou ef al 83}
Vassilion, Y., Clifford, J. and Jarke, M.
How does an vxpert system get its daia.
In Schkolnick, M. and Thanos, C. {editor), Proceedings of the ninth
inlernalional con ference on Very Lurge Data Bases, Florence,
{taly, pages 70-72. VLDB, November, 1083.

108

Atkinson & Buneman: DBPL design

[Wassermar 81

[Wasserman ¢t af

[Weihl 85a)

[Weihi 85b)
[Wirth 71)
[Wirth 83)

[Zehnder 83

18 October 1085

Wasserman, Al and Booster T.W.

String handling und patiern malching in PLAIN.

Technical Report 30, Laboratory of Medical Information Seience,
University of California, San Francisco, San Francisco, CA 04143,
USA, February, 1081.

Submitted for publication.

. 81}

Wasserman, AL, Shertz, D.D., Keérsten, M.L., Reit, R.P., and van de
Dippe, M.D. :

Revised Report on the Programming Language PLAIN.

ACM SIGPLAN Nolices , 1081.

Weill, W.E.

Linguistic Support for Atomic Data Types.

In Atkinson, M.P,, Buneman, O.P. and Morrison, R. (editors),
Proceedings of the Appin workshop on Persisience and Dala Types
Persistent Programming Research Reporl 16, pages 145-173.
Persistent Prograinming Research Group, University of Glasgow,
Department of Computing Science, Glasgow G12 8QQ, Scotland,
August, 1085,

Weihl, W .E.
Implementation of Resilient, Atomic Data Types.
TOPLAS 7(2), April, 1085.

Wirth, N.
The Programming Language PASCAL.
ACTA In formalica 1, 1971.

Wirth, N.
Programining in Modula-2: Second Edition.
Springer-Verlag, Berlin, 1083,

Zehader, C.A(Ed.).

Dutabase Techniques for Professional Workstations.

Technical Report §5, Eidgenossische Tecbnische Hochschule Zurich,
Institute Fur Informatik, CH-8002 Zurich, Switzerland, Seplember,
1083.

100

Atkinson & Buneman: DBPL design

Table of Contents
1. Introduction
1.1. Provision of Independent Persistence
1.2. Duta Type Completeness
1.3. Computational Power
2.'A Tesi Case and some Basic Approaches
2.1. The programming language approach illustrated with Pascal
2.2. The relational approach }
2. Existing Database Programmiog Languages
3.1. The Codasyl approach: the database as external subroutines
3.2. Pascal/R: a true Database Programming Language
3.3. Other languages that aitempted integration with refations
3.4. Embedded Languages
3.5. Logic Programming
3.6. Persistence and Workspaces
3.7. Aldat
4. Languages incorporating advanced data models
4.1. Daplex and Adaplex
4.2. Taxis
4.3. Galileo
5. Polymorphism and Database Programming
5.1. ML
5.2. Poly
6. Persistent languages
6.1. PS-algol
6.2. Amber
7. Conclusions
7.1. Computational Power
7.2. Data Type Completeness
7.2.1. Indexes and Bulk Structures
7.2.2. Classes
7.2.3. Inheritance
7.3. Polymorphism
7.4. Persistence
7.5. Modularity: a construct for persistence and organisation
8. Acknowiedgements

10 October 1985

Atkinson & Buneman: DBPL design

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4;
Figure 2-5:
Figure 2-8:
Figure 2-7;
Figure 2-8
Figure 2-0
Figure 3-1
Figure 3-2
Figure 3-3:
Figure 3-4;

v or o e

Figure 3-6:

Figure 3-68:
Figure 3-7:
Figure 3-8;
Figure 3-90:
Figure 3-10:
Figure 3-11:
Figure 3-12:
Figure 3-13:
Figure 3-14:
Figure 3-15;
Figure 3-18:
Figure 3-17;
Figure 3-18:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-6:
Figure 4-8:
Figure 4-7;
Figure 4-8;
Figure 4-9:
Figure 4-10:
Figure 4-11:
Figure 4-12;
Figure 4-13:
Figure 4-14;
Figure 4-16:
Figure 4-18:
Figure 4-17:
Figure 4-18:
Figure 4-10:
Figure 5-1:
Figure b-2:
Figure 6-3;
Figure b-4:

List of Figures
Task 1: deseribing the data in Pascal
Task 2: A Pascal program to retrieve expensive parts
Task 3: Pascal code to compute cost and mass simultaneously
Task 4: Pointer manipulation required to install a part
A DDL fragment for a relational representation of the database
Some intlegrity constraints on the parts relations -
Task 2: retricve details of expensive parts in SQL
A partial result for Task 3 in SQL
TASK 4: Recording how a new part is composed
Task 1: Codasyl approach, Bachmann diagram
Task 1: Codasyl DDL describing the parts data
Pascal lypes automatically generated from a Codasyl Schema
Pascal declarations automatically generated from the Codasyl
Schema
Task 2: Listing all the expensive parts using the Pascal interface
to Codasyl
Pascal program to compute mass and cost as in Task 3
Pascal program to update a Codasyl database
Combining Existing Languages with the Relational Model
Task 1: describing the data in Pascal/R
Pascal/R - partial solution to Task 2
Pascal/R - Task 2 printing name of expensive parts
Pascal/R - function to locale a part
Pascal/R - program to obtain cost and mass
Pascal/R - memoising the cost and mass
Pascal/R - revising data deseription for update
Pascal/R - Task 4 recording how a part is made
Task 3 in a hypothetical embedded query language
A Computation for Task 3 in Aldat
Task 1: A Daplex description of the parts data
TASK 1: Adaplex data definition for parts
TASK 2: an Adaplex program to list expensive parts
TASK 3: Calculating a part's cost and mass using Adaplex
TASK 1: Revised Adaplex data definition for parts
Revised Adaplex process to calculate cost and mass
Adaplex declarations to keep track of part number allocation
Task 4: recording the definition of a composite part
A meta-class definition in TAXIS
Data description in TAXIS
Task 2: An expensive parts transaction in TAXIS
A recursive transaction in TAXIS
Task 4: An Update ia TAXIS
Task 1 coded in Galileo
Task 2 in Galileo without projection
Task 2 in Galileo projecting the result Lo required properties
Task 3 in Galileo
Memoisation of Task 3 in Galileo
Task 4in Galileo '
A simple ML function definition
A set abstract data type in ML
A directed acyclic graph type in ML
The Database declaration (Task 1) in ML

19 October 1985

Atkinson & Duneman: DBPL design

Figure 5-6
Figure 5-8
Figure 5-7:
Figure 5-8:
Figure 6-0:
Figure 5-10:
Figure b-11:

+-Figure §.12:

Figure 6-13:
Figure b-14:
Figure 6-156:

Figure 8-1:
Figure 0-2:
Figure 8-3:
Figure 8-4:
Flgure 8-5:
Figure 8-8:

Figure 8-7:
-8:
Figure 6-9:

Printing expensive parts in ML
Function o compute cost and mass in ML,
Updating the database in ML .
A complete parameterised type for Part in Poly
Poly procedure heading for the part type ereator
Defining & part type for the American market
Defining a part type for the Japanese market
Poly prinis expensive parts
Poly code for Task 3 on pn American part
Generic transitive closure code in Poly
Using the transitive closure code to caleulate both cost and
mass in one traversal
Task 1 in PS-algol _ .
PS-algol program to set up a library of list routines
PS-algol program to create and store a parts DI} initialiser
PS-algol program (o set up a new parts database
Task 2 in PS-algol A
A procedure to perform creation of a composite part to perform
Task 4 in PS-algol
Task 1: describing the data in Amber
An outline of an update program in Amber
Iustrating the use of inheritance in Amber

19 October 1885

Bibliography

Copics of documents in this list may be obtained by writing to The Secretary,
Persistent Programming Research Group, Department of Computing Science,
University of Glasgow, Glasgow G12 8QQ, Scotland.

Atkinson, M.P.
‘A note on the application of differential files to computer aided design’,
ACM SIGDA newsletter Summer 1978.

Atkinson, M.P.
‘Programming Languages and Databases’, Proceedings of the 4th
International Conference on Very Large Data Bases, Berlin, (Ed. S.P.
Yao), IEEE, Scpt. 78, 408-419. (A revised version of this is available
from the department as CSR-26-78).

. Morrison, R.
S-Algol language reference manual. University of St Andrews CS-79-1,
1979.

Atkinson, M.P.
‘Progress in documentation: Database management systems in library
automation and information retrieval’, Journal of Documentation
Vol.35, No.l, March 1979, 49-91. Available as departmental report
CSR-43-79.

Atkinson, M.P.
‘Data management for interactive graphics, Proceedings of the Infotech
State of the Art Conference, October 1979. Available as departmental
report CSR-51-80.

Atkinson, M.P. (ed))
‘Data design’, Infotech State of the Art Report, Series 7, Nod4, May 1980.

Bailcy, P.J, Maritz, P. & Morrison, R.
The S-algol abstract machine. University of St Andrews CS-80-2, 1980.

Atkinson, M.P. (cd.)
‘Databases’, Perpammon Infotech State of the Art Report, Serics 9, No.,
January 1982, (535 pages).

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.

‘Nepal - the New Edinburgh Persistent Algorithmic Language’, in
Database, Pergammon Infotech State of the Art Report, Series 9, No8
(January 1982) - also as Departmental Report CSR-90-81.

Morrison, R.

Low cost computer graphics for micro computers. Software Practice and
Experience, 12, 1981, 767-176.

Atkinson, M.P., Hepp, P.E, Ivanov, H,, McDufl, A, Proctor, R. & Wilson, A.G.
‘EDQUSE reference manual’, Department of Computer Science,
University of Edinburgh, September 1981.

Atkinson, MP.,, Chisholm, K.J. & Cockshott, W.P.

‘PS-algol: An Algol with a Persistent Heap’, ACM SIGPLAN Notices
Vol.17, No. 7, (July 1981) 24-31. Also as Departmental Report CSR-
94-81.

Cole, A.). & Morrison, R.

An introduction to programming with S-algel. Cambridge University
Press, 1982

Atkinson, M.P.,, Chisholm, K.I. & Cockshott, W.P.

‘Algorithms for a Persistent Heap, Software Practice and Experience,
Vol.13, No.3 (March 1983). Also as Departmental Report CSR-109-82.

Morrison, R.

The string as a simple data type. Sigplan Notices, Vol.17,3, 1982.

Atkinson, M.P.

‘Data management’, in Encyclopedia of Computer Science and
Engineering 2nd Edition, Ralston & Meek (editors) January 1983. van
Nostrand Reinhold.

Atkinson, MP., Chisholm, K.J. & Cockshott, W.P.

‘CMS - A chunk management system’, Software Practice and
Experience, Vol.13, No.3 (March 1983). Also as Departmental Report
CSR-110-82.

Atkinson, M.P.,, Chisholm, K.J. & Cockshott, W.P.

"Progress with Persistent Programming”, presented at CREST course
UEA, September 1982, revised in Databascs - Role and Structure, sce
PPR-8-84.

Stocker, PM, Atkinson, MP. & Grey, P.M.D. (cds)

Databascs - Role and Structure, CUP 1984.

Atkinson, M.P., Chisholm, K.J. & Cockshott, WP,

"Problems with persistent programming languages®, presented at the
Workshop on programming languages and dalabase systems, University

of Pennsylvania. October 1982, To be published (revised) in the
Workshop proceedings 1983, see PPR-2-83.

Atkinson, M.P,, Bailey, P.J,, Chisholm, K.J, Cockshott, W.P. & Morrison, R.
‘Current progress with persistent programming’, presented at the DEC
workshop on Programming Languages and Databases, Boston, April
1983.

Atkinson, M.P, Bailey, P.J., Chisholm, K.J,, Cockshott, W.P. & Morrison, R.

‘An approach to persistent programming’, in The Computer Journal,
1983, Vol.26, No4 - sce PPR-2-83.

Atkinson, M.P,, Bailey, P.J,, Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming®, 10th Australian
Computer Conference, Melbourne, Sept. 1983 - see PPR-2-83.

Morrison, R, Weatherall, M., Podolski, Z. & Bailey, P.J.

High level language support for 3-dimension graphics, Eurographics
Conference Zagreb, Sept. 1983.

Cockshott, WP., Atkinson, M.P,, Chisholm, K.J., Bailey, P.J. & Morrison, R.
"POMS : a persistent object management system”, Software Practice and
Exerience, Vol.14, No.1, January 1984.

Kulkarni, K.G. & Atkinson, M.P.

"Experimenting with the Functional Data Model®, in Databases - Role
and Structure, CUP 1984.

Atkinson, M.P. & Morrison, R. _

"Persistent First Class Procedures are Enough®, Foundations of Software
Technology and Theoretical Computer Science (ed M. Joseph & R.
Shyamasundar) Lecture Notes in Computer Science 181, Springer
Verlag, Berlin (1984).

Hepp, P.E. & Atkinson, M.P.

Tools and components for rapid prototyping with persistent data, to be
submitted.

Atkinson, M.P,, Bocea, 1.B, Elsey, T.J, Fiddian, Ni., Flower, M,, Gray, PMD.,
Gray, W.A, Hepp, P.E, Johnson, R.G., Milne, W., Norrie, M.C., Omololu,
A.Q, Oxborrow, EA., Shave, MJR., Smith, AM., Stocker, PM. & Walker, J.

The Proteus distributed database system, proceedings of the third British
National Conference on Databases, (July 1984).

Kulkarni, K.G. & Atkinson, MLP.

EFDM : Extended Functional Data Model, to be published in The
Computer Journal.

Kulkarni, K.G. & Atkinson, M.P.
EFDM : A DBMS bascd on the functional data model, to be submitted.

‘Atkinson, M.P. & Buneman, O.P.
Database programming languages design, submitted to ACM Computing
Surveys - see PPR-17-85.

Atkinson, MP. & Morrison, R.
"Procedures as persistent data objects®, printed in ACM TOPLAS (Oct.
1985) - sce PPR-9-84.

Morrison, R, Brown, AL, Bailey, P.J., Davie, AJ.T. & Dearle, A.
*A persistent graphics facility for the ICL PERQ", to be published in
Sof tware Practice and Experience, November 1984.

Morrison, R, Dearle, A, Bailey, P, Brown, A. & Atkinson, M.P.
®An integrated graphics programming system”, to be presented at
EUROGRAPHICS UK, Glasgow University, March 1986.

Morrison, R., Dearle, A, Brown, P. & Atkinson, M.P.
"The persistent store as an enabling technology for integrated support
environments”, presented at 8th International Conference on SE
Imperial, (August 1985).

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment”, presented
at Data Types and Persistence Workshop, Appin, August 1985 - sce
PPR-16-85.

Davie, AJLT.
“Conditional declarations and pattern matching”, presented at Data
Types and Persistence Workshop, Appin, August 1985 - sce PPR-16-85.

Krablin, G.L.
"Building flexible multilevel transactions in a distributed persistent
environment, presented at Data Types and Persistence Workshop, Appin,
August 1985 - sce PPR-16-85.

Buneman, P.
"Data types for data base programming”, presented at Data Types and
Persistence Workshop, Appin, August 1985 - sce PPR-16-85.

Cockshott, W.P.
"Addressing mechanisms and persistent programming”, presented iat
Data Types and Persistence Workshop, Appin, August 1985 - sce PPR-
16-85.

Norrie, MC.
*PS-algol: A user perspective”, presented at Data Types and Persistence
Workshop, Appin, August 1985 - scc PPR-16-85.

Owoso, SO.0.
"On the need for a Flexible Type System in Persistent Programming

Languages”, presented at Data Types and Pemsistence Workshop, Appin,
August 1985 - sce PPR-16-85.

Hepp P.E. and Norrie, MC.
"RAQUEL: User Manual® Department of Computer Science Report
CSR-188-85, University of Edinburgh.

Norrie, M.C.
"The Edinburgh Node of the Proteus Distributed Database System®,
Department of Computer Science Report CSR-191-85, University of
Edinburgh.

Theses

The following Ph.D. theses have been produced by member of the group and
are available from The Secretary, Persistent Programming Group, University
of Glasgow, Department of Computing Science, Glasgow G12 8QQ, Scotland.

W.P. Cockshott
Orthogonal Persistent, University of Edinburgh, February 1983.

K.G. Kulkarni
Evaluation of Functional Data Modcls for Database Design and Use,
University of Edinburgh, 1983,

P.E. Hepp
A DBS Architecture Supporting Coexisting Query Languages and Data
Models, University of Edinburgh, 1983.

G.DM. Ross
Virtual Files A Framework for Experimental Design, University of
Edinburgh, 1983.

G.O. Owoso
Data Description and Manipulation in Persistent Programming
Languages, University of Edinburgh, 1984.

Persistent Programming Rescarch Reports

This series was started in May 1983. The following list gives those produced
and those planncd plus their status at 15 November 1985.

Copies of documents in this list may be obtained by writing to The Secretary,
The Persistent Programming Research Group, Department of Computing
Science, University of Glasgow, Glasgow G12 8QQ.

PPR-1-83 The Persistent Object Management System [Printed]
PPR-2-83 PS-algol Papers: a collection of related papers

on PS-algol [Printed]
PPR-3-83 The PS-algol implementor’s guide {Withdrawn]
PPR-4-83 The PS-algol reference manual [Printed]
PPR-3-83 Experimenting with the Functional Data

Model [Printed]
PPR-6-83 A DBS Architecture supporting coexisting user

interfaces: Description and Examples {Printed]
PPR-7-83 EFDM - User Manual [Printed]
PPR-8-84 Progress with Persistent Programming {Printed]
PPR-9-84 Procedures as Persistent Data Objects [Printed]
PPR-10-84 A Persistent Graphics Facility for the

ICL PERQ {Printed]
PPR-11-85 PS-Algol Abstract Machine Manual [Printed]
PPR-12-85 PS-Algol Refercnce Manual - second edition {Printed]
PPR-13-85 CPOMS - A Revised Version of The Persistent

Object Management System in C [Printed]
PPR-14-85 An Integrated Graphics Programming

Environment [Printed]

PPR-15-85 The Persistent Store as an Enabling Technology
for Integrated Project Support

Environment [Printed]
PPR-16-85 Proceedings of the Persistence and Data Types
Workshop, Appin, August 1985 [Printed]
PPR-17-85 Database Programming Language Design [Printed]
PPR-18-85 The Persistent Store Machine [Printed]
PPR-19-85 Integrated Persistent Programming Systems [Printed]
PPR-20-85 Building a Microcomputer with Associative
Virtual Memory [Printed]

PPR-21-85 A Persistent Information Space Architecture - lin Preparation]
PPR-22-85 Some Applications Programmed in a
Persistent Language [fn Preparation]

PPR-23-85 PS/Algol Applications Programs

PPR-24-85 A Compilation Technique for a Block
Retention Language

PPR-25-85 Thoughts on Concurrency

PPR-26-85 An Exception Handling Model in a
Persistent Programming Language

PPR-27-85 Concurrency in Persistent Programming
Languages

PPR-28-85 A Type Theory for Database Programming
Languages

[In Preparation)

[In Preparation)
[In Preparation]

[In Preparation]
[In Preparation]

[In Preparation]

