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Preface

This manual presents the design of the PS-algol abstract machine
that is used in distributed copies of PS-algol released in early 1985. It
is hoped that the report will be of help to people considering porting
PS-algol to new machines as well as to people wishing to understand our
work. However, people intending to port PS-algol should contact the
Persistent Programming Research Group for information on reports of
porting in progress and for details of changes in the abstract machine.

This report describes the abstract machine which is the basis of
the present interpreter written in C, and running on the DEC VAX computers
running Berkeley UNIX 4.2 and on the ICL PERQ computers running PNX2. An
implementation is in progress for the ICL 2900 and a code generator for
the VAX is being comnstructed.

There are substantial changes in the abstract machine from
earlier versions, and people with earlier information should regard it as
superseded by this report. ’

The reader of this report is advised to read it in conjunction
with PPR12 "The PS-algol Reference Manual : second edition" and PPR13 "The
CPOMS Persistent Object Management System" which all describe different
aspects of the same release of PS-algol and which will be published at the
same time.

For further information please contact the addresses given

above.
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1 Introduction

The PS—algol abstract machine is a refinement of the S—algol abstract
machine[l] but differs from it in four important aspects. Firstly PS-
algol supports first class procedures which means that simple objects may
be encapsulated in a procedure suspension long after they have gone out of
scope. A consequence of this is that these objects must be kept on the
heap and not the stack. However the recursive nature of the language
lends itself naturally to implementation using a stack and thus the PS-
algol machine simulates a stack using separate heap objects for each stack
frame. Again because of the encapsulation the stack frame models a block
and not a procedure as in S-—algol i.e. the system uses block level
addressing.

The second major difference between the PS-algol machine and the S~
algol machine is the instruction code format. The PS-algol machine uses a
byte orientated system with most instructions having long and short forms
for different lengths of operands.

The PS—algol system also supporits persistence. This does not require
major changes to the abstract machine itself but to the facilities the
machine provides and the software necessary to support the system.

Finally the PS-algol machine uses a display mechanism to identify the
free variables of an environment. The display is kept on the pointer
stack(see later) amd is wused by the stack load and stack assign

instructions.

2 Abstract Machine Registers

The registers of the PS-algol machine are used to identify the local
and standard frames on the heap as well as the top of the local main and
pointer stacks and the code pointer. Since there is a main stack and a

pointer stack for each environment there are two stack registers for each

enviromment. The registers are

cp code pointer

1MSP local frame main stack top

LPSP local frame pointer stack top
1MSB local frame main stack base

LPSB local frame pointer stack base
SMSB standard frame main stack base
SPSB standard frame pointer stack base




3 Heap Formats

All data objects are kept on the heap. This includes code for
procedures and the main program and therefore the only dynamic storage
system that need be supported is a heap system with a garbage collector.
PS-algol is a block structured language that is well suited to a stack
implementation technique. The action of the stack is simulated within the
heap to implement the block structure.

To accommodate persistence the system requires object level
addressing. However we must be careful that pointers in the system point
to objects only and not to sub components of an object such as the field
of a structure. Thus parts of an object always have a two part address.

The heap items are strings, vectors, images, structures, files, code
vectors and frames. Their heap layout is as follows in the VAX and PERQ

implementations. Note that bit 31 of a word is the most significant.

3.1 Headers
Bits 28-31 of the first word of a heap item (referred to as word 1
below) identify the type of heap object. The following are possible

value object
o reserved for compacting garbage collector
string
file
structure
vector of pointers
vector of procedures (closures)
vector of integers or booleans
vector of reals
frame

code vector

- D 00 SN Y R W N e

s

image

Thus the markers in the first word look like.

bits 28-31 identification of heap object

bit 20 mark bit for the garbage collector

bit 19 written bit for persistence object manager
bit 18 reserved for persistence object manager
bits 16-17 reserved for future use

L2
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bits 0-15 as defined below
3.2 Strings
word 1 bits 0-15 number of characters‘in the string

followed by the characters 1 per byte
padded up to a 4 byte boundary.

3.3 Files
word 1 bits 0-15 size in bytes of the file object including the
buffer. This is padded to a 4 byte boundary.
3.4 Structures
word 1 bits 0-15 size of the object in 4 byte elements.
bits 21-27 number of pointers inmcluding the class identifier

word 2 The class identifier (a pointer to a string)
followed by the fields with the pointer fields

first. The compiler performs this rearrangement .

3.5 Vectors

word 1 bits 0-15 not used
word 2 lower bound
word 3 upper bound

followed by the elements

3.6 Frames

word 1 bits 0-15 size of the frame in bytes padded to a 4 byte

boundary.
{ ]
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The frames model the environments. There are two stacks, the main

stack which grows forwards and the pointer stack which grows backwards.




The compiler will calculate the maximum size of each stack and when set up
LMSP points to after PSL and LPSP points to before the display. Note that
the stacks grow in opposite directions and that the dynamic 1link(DL),
static 1link(SL) and procedure address(@) are on the pointer stack.

In order that this frame may call others and return correctly we
require to store the pointer stack 1ink(PSL), the return address(RA) of
the calling frame, the line number (LN) where called from and the values of
IMSP and LPSP in MSP and PSP at the point of calling. So that pointers do
not point into the middle of objects RA is relative to the start of the
code vector of the calling procedure. The full address can be found by
using the dynamic link and the procedure address in that frame. For the
same reason LMSP and LPSP are saved as offsets in the same manner. PSL is
relative to the start of the frame.

The first elements after the closure on the pointer stack make up the
display of the frame. There is one display entry for each Jexical entry
outside the lexical level of the frame (i.e. LL-1) with the outermost
lexical level being next to the procedure’s address (@). This is used by
the load and global imnstructions to find non local frames. Furthermore
the frame records its own lexicographic level (LL) in order that it may be

used to find the size of the display when entering procedures and blocks.
3.7 Code Vectors

word 1 bits 0-15 size in bytes padded to a 4 byte boundary

1 H | | {Max .ms | | Vector of | | i
| E | V|V |=mmem— | | procedure | Vector | Strin§ |
| Al P} S |Max.ps| Code | closures | of | Literals |
| D | { | | Strings | |

| < Py

| | |

S

Associated with each code vector there may be a vector of procedure
closures, one for each procedure declared inside this one, and a vector of
strings which contains the string literals used by this procedure. Note
that the vectors of closures and strings and the strings themselves are
all separate heap items. The code vector contains pointers to these
vectors(VP,VS) and the maximum size of stacks that it uses (Max .ms ,Max.ps)

in stack elements.

On initial loading all the code is brought in as one contiguous
chunk. The string literal addresses are relative to S and the procedure
addresses in the closure are relative to the start of the unit of
compilation. The addresses must be fixed up on initial loading. If a
code vector is brought in from the database the addresses will be fixed up
automatically by the persistent object manager. The static links in the
procedure closures are null initially. VS and VP are initially relative

to the start of the code vector.

3.8 Images
TR T I I I T I
el | | | | ! | 1
| a |bitmap| file | X ] Y I X 1 Y |
| d |vector|descptr| offset | offset | dim | dim |
| e | ptr | | | | | |
[ i i | | |
word 1 header
word 2 pointer to the vector of bitmap vectors
word 3 pointer to the file descriptor (if necessary)
word 4 X offset into the bitmap vector
word 5 Y of fset into the bitmap vector
word 6 X dimension of the image
word 7 Y dimension of the image

The bitmap vector is kept as a vector of integers laid out as
follows. There is one of these for each plane in the image.

word 1 header

word 2 lwb

word 3 upb

word 4 X dimension of the bitmap

word 5 Y dimension of the bitmap

word 6 offset to start of the image from the start of the object.
word 7 number of scan lines in this page.

words 8 - bits
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4 The Abstract Machime Code

The PS-algol abstract machine code, PS-code, is designed to fit
exactly the needs of the PS-algol language. Appendix II describes the code
generated for each syntactic construct in the language and Appendix III
the operation codes and format of each abstract machine instruction. Here
the individual instructions are described. They fall naturally into

groups. Typed instructions have an encoded name with the following

convention.
ib integer or boolean
T real
s string
P pointer, picture or image
pr procedure
v void

Reals, integers and booleans reside on the main stack all other

objects on the pointer stack.

Jumps
All the jump addresses are relative to the location following the
jump address. Only backward jumps have a short form. In the following

instructions L is a byte offset from the next instruction in line.

£ jump(L) unconditional jump forward to address L.

b jump(L) unconditional jump backwards to address L.

jumpf (L) jump forward to L if the top stack element is false.
Remove the top element of the stack.

jumptt(L) jump forward to L if the top element is true.
Otherwise remove the top stack element.

Jump£ £ (L) jump forward to L if the top stack element is false.

Otherwise remove the top stack element.

cjump.ib,r,s,p,pr(l) The type determines which stack to use. If the top
two stack elements are equal, remove both and jump
forward to L. Otherwise remove only the top stack
element. Be careful on equality of strings and

procedures.

&
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b jumpt (L) jump backwards to L if the top stack element is true.

Remove the top element of the stack.

fortest.op(L,MS,PS) The control constant, increment and limit are the top
three elements of the stack. If the increment is
negative and the control constant is less than the
limit or the increment is positive and the control
constant 1is greater than the limit then remove all
three from the stack and jump forward to L. Otherwise
create a frame using MS and PS to calculate the size.
It is in this frame that the body of the loop will
execute. This part of the instruction is like block
enter. The control constant has to be copied into the

new frame and the display is calculated.

forstep.op(L) Perform a block exit. Update the control constant by
adding the increment which is still on the stack.

Then jump backwards to L.

Procedure and Block Entry and Exit
The instruction sequence to call a procedure is
load closure
evaluate the parameters

apply.op

apply.op(ms,ps) ms and ps are the number of words of parameters on
each stack. Use the closure under the pointer stack
parameters to find the number of elements of each
stack that this procedure requires. This is kept at
the beginning of the code vector. Claim the space
from the heap. Fill in the header, PSL,RA,LN and DL.
Store the old values of IMSP and LPSP in the calling
frame. Copy the closure to the new frame. Make up
the display and then copy the parameters. The display
is formed by copying the display of the frame pointed
at by the static link and adding the new static link.
The number of display items can be found from LL in
that frame. Remember to generate the DL. Set up the
new values for LMSP, IMSB, LPSP and LPSB. Transfer
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control. Any procedure with a null static link is a
standard function written in C and implemented in the
interpreter. This may be implemented by a jump table
for each standard function reflecting the standard

function number generated by the compiler.

return.ib,r,s,p,pr,v Return from a procedure. This must get rid of the old
block. Move the result to the old stack top. Move DL
to LMSB. Calculate the return address. Use the old
frame to set up LPSB, LMSP and LPSP. The dynamic link
of the returning procedure should be nulled out to
prevent retention of the dynamic history over garbage

collection and commit.

block.enter(MS,PS) Enter a block. MS and PS are the stack sizes required
by the frame. Enter this as if it were an in line
procedure. The display- is the display of the
enclosing frame plus the current static link. The

lexical level goes up one.
block.exit.ib,r,s,p,pr,v Exit from a block. Same as return.

store.closure(n) This is the nth procedure in the vector of closures
for the current procedure. Load the closure from the
vector on to the stack. Remember to overwrite the
static link with the current value of IMSB and that

these are pointer stack values.

Stack Load Instructions
To ease the problems of garbage collection the frame models two

stacks. The main stack contains space for integers, reals and booleans
while the pointer stack contains space for all the pointer objects. The
pointer stack is used as the base for marking the heap. Objects on the
pointer stack may be strings, vectors, pntrs, files, images, frames and
code vectors. Reals take two stack elements each on the main stack as do
procedures (closures) on the pointer stack. A closure is made up of the
code vector address and the static link. These instructions are used to
load any data item that is in scope, on to the top of the stack. The data
items may be in the local, global, standard or intermediate environments

and a separate instruction exists for each form. Different instructions

r
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are also used for the separate stacks. The local, global and standard
forms of the instruction bave a parameter which is the displacement of the
item from the stack base. The intermediate form of the instruction
requires the address of the static environment as well as the
displacement. This is kept in the display and is given as an offset from
LPSB. The global environment is always the first entry in the display.

Only one form of each type is described.

local(n),global(n),stand(n),load(r,n) load on the main stack

dlocal(n),dglobal(n),dstand(n),dload(r,n) load double length item on to
the main stack

plocal(n),pglobal(n),pstand (n),pload(r,n) load on the pointer stack

dplocal(n),dpglobal(n),dpstand(n),dpload{r,n) load double length item on

to the pointer stack

Stack Assignment
For each of the stack load instructions there is an equivalent stack
assignment instruction. These instructions take the top element of the

stack and assign it to the address indicated in the instruction.

Comparison Operations

The comparison operations act on the data types int, real and string.
The top two elements of the stack are compared and removed. The boolean
result true or false is left on the main stack. Care should again be
taken in the comparison of strings which means element by element
comparison. Equality is defined on all the data objects in the language.

There is a separate form of the instruction for each type.

ge.i,r,s greater than or equal to
gt.i,r,s greater than

le.d,r,s less than or equal
1t.i,r,s less than

eq.ib,r,s,p,pr equal to

neq.ib,r,s,p,pr not equal to
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Arithmetic Operators
These instructions operate on the data types real and integer. The
top two elements of the stack are replaced by the result except for negate

and floatl which use only the top element and float2 which uses the second

top element.

plus,fplus add

times,ftimes multiply

minus, fminus subtract

fdivide divide real

div divide int leaving quotient

rem divide int leaving remainder

neg,fneg negate

floatl coerce the int to a real on top of the stack
float2 coerce the int to a real second top stack element

Yector and Structure Creation Imstructions
These instructions take information off the stack and create heap
objects. These objects are then initialised and the pointer to them left

on the top of the pointer stack.

make.vector.ib,r,s,p,pr{m) For i,b,r m is an offset from IMSP to the lwb
and the element values are above the lwb on the main
stack. For s,p,pr m is an offset from LPSP indicating
the extent of the elements. The 1lwb is the top

element of the main stack.

iliffe.op.ib,r,s,p,pr{n) n pairs of bounds are on the main stack.
However, the top of one of the stacks will contain the
initial value. The dinstruction creates an 1iliffe
vector of the shape indicated by the bound pairs and
the value of the imitial expression is copied into the
elements of the last dimension. The expression value
and the bound pairs are removed from the stack and the

pointer to the vector is placed on the pointer stack.

form.structure(m,n) The expressions which initialise the structure
fields have been evaluated on the appropriates stacks.
This includes the class identifier which is a pointer

to a string. m is the total size of the object on the

~:§§(
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heap and n is the number of pointers. After moving

the fields from the stacks the pointer to the

structure is placed on the pointer stack.

Vector and Structure Accessing Instructions

These instructions are generated by the compiler to index a vector or
a structure. The index of the vector must be checked against the bounds
before the indexing is dome. Similarly the structure class of a structure

must be checked.

subv.ib,r,s,p,pr The vector index is on the top of the main stack and
the vector pointer on the pointer stack. These are
used to check that the index is legal and then to find
the required value. They are removed from the stacks.

The resultant value is put onto the relevant stack.

subs.ib,r,s,p,pr The class identifier and the structure pointer are on
the top of the pointer stack. The field address, an
offset from the start of the structure, is on the main
stack. The class identifier is checked against the
structure class identifier and if it is the same the
field address is added to the pointer to yield the
absolute field address. The class identifier, field

address and the structure pointer are replaced on the
stack by the result.

subvass.ib,r,s,p,pr This assigns a value to a vector element. The value is
on top of the appropriate stack and the address is

calculated as in subv.

subsass.ib,r,s,p,pr This assigns a value to a structure field. The value
is on top of the appropriate stack and the address is

calculated as in subs.

1lwb remove the pointer to the vector from the pointer

stack and place its lower bound on the main stack.

upb remove the pointer to the vector from the pointer

stack and place its upper bound on the main stack.

is.op The class identifier is on the pointer stack and is




isnt.op

load .trademark(m)

Image operations

form.image

limit.2

limit.4
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compared with the class identifier of the structure
pointed at by the 2nd top element of the pointer
stack. Remove both and place the boolean result of the

comparison on the main stack.

This is the same as is.op except it has the opposite

test.

This loads the address of the class identifier on to
the pointer stack. m is the index into the string

literal vector of the current procedure.

The pixel and the X and Y dimensions of the image are
on the main stacke. Create an 1image descriptor
containing a pointer to a vector of bitmap‘ vectors
which must also be created. The dimension of the
vector of bitmap vectors is obtained from the
initialising pixel. The bitmap vectors have each
pixel initialised to the value of the initialising
pixel. Leave the descriptor to the image on the

pointer stack.

The top 2 values on the main stack are the X and Y
of fsets for the 1limit. A pointer to an image
descrii)tor is on the pointer stack. Create a new
image descriptor copying the bitmap and file fields
from the old one. Add the X an Y offsets to the
offsets in the old descriptor and place the result in
the new descriptor. Calculate the dimensions of the
new image and place these in the descriptor. Leave
the pointer to the new descriptor on the pointer

stack.

This is like limit.2 except that in addition to the X

and Y offsets being on the main stack there are also
the X and Y dimensions of the new image. Using these
values form a new image descriptor and place the

result on the pointer stack.
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subimage.op The 2nd top element of the main stack indicates the
start plane of the new image (numbered from 0) and the
top element the number of planes. After checking the
bounds with the image given at the top of the pointer
stack replace it by the new image descriptor. Like

limit this creates an alias.

subpixel.op The pixel specified at the 2nd top of the main stack
is indexed by the top element index. After checking
that the index is legal replace the two elements by

the new single depth pixel.

formpixel.op(n) n is the number of individual pixels that are on top
of the main stack and must be replaced by one pixel
representing them. The zeroth plane is the nth top

element and the n-1th plane the top element.

raster.copy,not,rand,ror,nand ,nor,xor,Xnor
These instructions result in almost the same code
being executed. The only difference between them is
the raster function actually used. The destination
image is on top of the pointer stack and the source
the second top. Clipping is performed according to
the destination image descriptor. Notice that the
image can be a bitmap or a file(for the screen). An

image is a bitmap if the file descriptor is a nullfile
pntr.

Load Literal Instructioms
These are used to load the value of a literal on to the stack. The

literal usually follows the instruction in the code stream and so the CP

register has to be updated accordingly.

LLe.nil.pntr load the pntr value mil.

LL.nil.pr Create the mnull procedure closure. This involves
creating a dumay code vector so that equality of
different nullproc’s will give false.

Ll.nil.string load the empty string on to the pointeyr stack.

LL.file load the nullfile on to the pointer stack.

LL.bool(n) load the boolean value n ( true or false ) on to the




LL.sint(n)

LL.real(n)
LL.string(n)

LL.1lint
LL.char(n)

String Operatioms

These are used

concat.op

substr.op

Input and Output

read.op(n)

0 read

1 reads
2 readi
3 readb
4 readr

5 read.name
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main stack. (O-true,non-zero—false)

load the value of a short integer ( =128 to 127 ) om
to the main stack.

load the real on to the main stack.

load the string address on to the pointer stack n is
the index of the string in the string vector of the
current procedure.

load a long integer, 32 bits, on to the main stack.

load the character n as a string of length 1.

to perform the string operations in PS-algol.

remove the two strings from the top of the pointer
stack and replace them with a new string which is the

concatenation of them.

A new string is created from the one at the top of the
pointer stack and replaces it. It is formed by using
the length at the top of the main stack and the
starting position at the second top. After checking

that these are legal they are removed.

the stream descriptor is on the top of the pointer
stack. This is removed and the value read is placed on
the appropriate stack. n indicates which read function

to use. They are

read a character and form it into a string.
read a string.

read an integer.

read a boolean.

read a real.

read a PS-algol identifier and form it into a string.

This takes a seed from the top of the stack.

6 peek
7 read.byte

8 read.a.line

9 eoi

write.op(n)

0 write.int

1 write.bool

2 write.string

3 write.real

4 out.byte

Miscellaneous

TeV.IS,rev.ps

erase.ib,r,s,p,pr
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same as read but do not advance the input stream.
read an 8 bit byte and return it as an integer.

read from the current input position up to and
including the first newline character. Return a string

of the characters excluding the newline.
test for end of input on the input stream.

The field width is either on the top or second top of
the main stack and the item to be writtem out either
under it or on the pointer stack. The stream
descriptor is under all this on the pointer stack. The
field width and the item are removed from the stack.
In the case of out.byte the file descriptor is also
removed from the stack. n indicates which function.

They are

write an integer in the field size specified at the

second top of the stack with s.w (at stack top) spaces
after it.

write a boolean in the field size specified. If the
field size is -1 or less than the size of the boolean
then write it out in the minimum space required.

Booleans are written out as either "true" or "false".

write a string in the field size specified. If the
field size is -1 or less than the size of the string

then write it out in the minimum space required .

write a real in the field size specified at the second

top of the stack with s.w (at stack top) spaces after
it.

write an 8 bit byte.

Swap the top two elements of the stack

remove an element from the stack




finish.op
abort.op
not.op

newline(n)
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stop the program execution
stop the program execution
perform a not on the boolean at the top of the stack

set the line indicator to mn.
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5 Loading and Initialisation Code

5.1 Initialisation
The initialisation sequence for the PS-algol interpreter may be split

into 12 sections. These are listed below.

i) enable interrupt handling
ii) Theap initialisation
iii) create single character strings
iv) create PS-algol vectors for the command line and environment
vectors
v) read in and initialise user code
vi) read in and initialise POMS code
vii) tidy up heap initialisation
viii) create standard identifier frame
ix) create a unified class identifier vector
x) initialise the interpreter’s database routines
x1) execute the POMS code to initialise the standard frame

xii) execute the user code

Note the order in which the interpreter executes these sections is up
to the implementor. The order given above vreflects that of the
interpreter written at St. Andrews. Note also that the POMS code
mentioned above is a PS-algol program that when executed initialises the
standard frame with the standard functions written in PS-—algol. Each

section will now be explained in more detail.

5.2 Interrupt Handling

Interrupts can occur for several reasons, e.g. arithmetic errors,
terminal hangup, memory addressing errors and forced program termination.
In all these cases it 1is important for the dinterpreter to process
interrupts so that it can if necessary terminate program execution
cleanly. Program termination for interrupts such as arithmetic errors
will result in an error message whereas other interrupts such as terminal
hangup will not. In addition to printing any error messages the
interpreter must also ensure the database locks held by the program are

released.(see Chapter 6).

5.3 Heap initialisation and tidy up

The heap provides the interpreter with dynamic storage for the PS-
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algol data structures. To initialise the heap it is simply necessary to
obtain a section of contiguous memory and initialise a pointer to the
first free address and the first illegal address (see chapter 9). Having
initialised the heap the interpreter’s storage allocation package can now
be wused. However the garbage collector should be disabled during
initialisation (except for part xi see later) since no space can be freed
and the information necessary to perform the marking phase of a garbage
collection will not be available.

Once the user and POMS code has been read in all the space already
allocated on the heap will never be reused and will never contain pointers
to the rest of the heap. This information should be used to reduce the

area of the heap over which the garbage collector need operate.

5.4 Single character strinmgs

Purely for efficiency considerations - vreducing heap traffic;
speeding up single string comparisons, it has been found advantageous to
provide the run time system with a set of single character strings within
the heap. This means that PS-algol I/0 routines such as read, peek and
the machine instruction LL.char need uot go through the storage allocation
process. Instead the address of one of these single character strings is
calculated (normally one or two machine instructions). This makes
execution faster and also helps reduce heap usage. Notice that substr.op

and concat.op should make use of this facility.

5.5 Command line and emvironment veclLors

It is undesirable for the standard functions options and environment
to have to calculate their respective vectors on every call. To avoid
this overhead the vectors are created during initialisation and pointers
to them saved for later use. The environment vector is specific to UNIX,

it provides a form of logical name mapping.

5.6 User code

A PS-algol code file consists of a sequence of one or more code
vectors followed by the class.id vector followed by padding characters
followed by 18 bytes of information. For further details of this layout
see Appendix I.

All references in the code to the head of heap objects have to be

specified by the compiler as offsets (the compiler cannot generate

absolute addresses). It is vrequired that these references be made

*
E
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absolute before interpreting the code. There are four sets of such
references:

i) a code vector may reference two vectors as described above. A
null reference is indicated by zero.

ii) a procedure closure vector will reference code vectors within
the code file. It is only necessary to make absolute the
procedure address. This is accomplished by adding into the
offset provided the base address of the code file in memory.
The static link remains null at this time.

iii) a string vector will reference the string literals immediately
following it. To make these absolute the base address of the
string vector is added to the offset provided.

iv) the class.id vector contains the address relative to the start
of the unit of compilation of every class identifier. These
addresses must be made absolute on loading.

Having read in the code, checked the version number, made absolute

the reference offsets it is only required to remember the starting address
for the user code file for initialisation to be complete. The start

address is a pointer to the first code vector to be executed.

5.7 POMS code

The reading in of the POMS code is identiecal to that for the user
code as is its dnitialisation. Again it is necessary to remember the
starting address. This code will later be executed to initialise part of

the standard frame (see Chapter 7).

5.8 Standard identifier frame

This frame provides an environment for all the pre-declared
identifiers in PS-algol €.g. sin,cos etc. A description of this frame is
provided by a standard declaration file that is used by the compiler to
allocate addresses to the pre-declared identifiers (see appendix 1IV).
This file should be used in the same way by the implementor to ensure that
the interpreter initialises the standard frame correctly. Among the
values to be initialised by the interpreter are the real literals,
standard I/0 files and interpreter implemented standard procedures. The
interpreter implemented standard procedures can be identified by having a
zero static link in their closures. Any procedure with a static link of

zero can then be treated specially at procedure application. A number of
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pre-declared procedures are written in PS-algol. All such procedures are
initialised by executing the POMS code. The registers SMSB and SPSB are
initialised at this point.

5.9 The Class identifier vector

Every PS—algel code file contains a class identifier vector, hence
during initialisation there are two class identifier vectors, ome for the
user code and ome for the POMS code. These two vectors are combined for
the use of the database routines. Two uses are made of the combined
vector, namely allocation of reserved pids to structure trademarks and
optimisation of structure class comparisons. When a structure trademark
is brought in from a database the class identifier vector 1is consulted.
1f the trademark is in the vector the pointer in the vector is used
otherwise the trademark is added to the vector. Using this technique
checking of trademarks should succeed without having to compare

characters.

5,10 Initialising the C-POMS

Several tables are held by the interpreter to perform address
mappings from pids to local addresses and from pids to disk addresses.
These tables are initialised with a set of reserved pids for some
structure trademarks, interpreter implemented standard procedures, single
character strings, error message strings and the nil pointer literal. 1In
addition a set of registers are initialised that will point to a list of
the databases accessed by the interpreter. This list is required for the

marking phase of the garbage collector (see Chapter 8).

5.11 Executing the POMS code

To initialise the PS-algol procedures in the standard frame the POMS
code must now be executed. A global frame is first created for the POMS
code and then the local stack registers are initialised. The size of the
frame is encoded in the code vector pointed to by the POMS code start
address. The interpreter’s decode loop is then called to execute the POMS
code from byte 16 (the start address) of this code vector. If the
execution of the POMS code terminates normally the decode loop will return
and initialisation continue. If it does not return the interpreter should
have terminated with a suitable error message. Garbage collection is

enabled before the decode loop is called and disabled after.
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5.12 Executing the user code

The final step of the initialisation is to construct a global frame

for the user code and enable the garbage collector. This last step and

execution of the user code is identical to that for the POMS code.
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® Persistence Hooks

6.1 Interpreter support for the C-POMS

A program module within the interpreter implements the persistent
object management system, called the C-POMS since it is written in C. It
is interfaced to by means of private standard functions or by several
internal functions. The private standard functions are used by the PS—
algol POMS code to implement a higher level database interface for the
user. In return for the database interface the interpreter must provide
the C-POMS with the heap allocation routines and a pointer stack to allow
it to preserve its pointers. The internal functions and the heap
interface will now be described, the private standard functions are

described in appendix 1IV.

6.2 Intermal access to the C-POMS

The internal access to the C~POMS is necessary for translating PIDs,
releasing database locks at program termination and for restoring one of
the C-POMS address tables after a compacting garbage collection.

PID tramslation is done by an illegal address routine that returns
the heap address of the PID's object. This is dome by first looking up
the PID to address table and if necessary copying the object in to the
heap from its database. PID translation and testing if a pointer needs
translating can be quite expensive so it is done as few times as possible.
This is achieved by the interpreter using the following rules. Once a PID
is translated the PID is overwritten with its corresponding local address
so reducing the amount of PID translation. Note that this overwritting is
most effective if it is at the source of the PID, that is in the field of
the structure rather than on the stack. Secondly when illegal address is
called for a code vector the vector’s two pointers (VP,VS) are converted
to heap addresses so that dereferences of its procedure and string vectors
need not test if these pointers are PlDs. If a PID for a frame is
translated the frame’s display is converted to local addresses to avoid
checking for a PID on every use of the display. Whenever a pointer value
is first placed on the local stack frame it will be converted to a local
address. To complete the set of rules dereferences of pointer objects in
vectors and structures cause a test for a PID and possible translation.

These rules are sufficient to guarantee no PIDs are encountered on

the frame of an executing procedure or block. If a frame does have a PID

g
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in it then it must have been imported from the persistent store and so
cannot belong to an executing procedure or block. Consequently
instructions that operate on the local stack frame need never deal with
PIDs.

Database locks need to be released at program termination. A call to
the routine provided by the C-POMS should therefore be inserted in the
code that performs program termination.

The C-POMS maintains two hash tables for mapping PIDs to addresses
and vice versa so, if a compacting garbage collection occurs the address
indices may be invalidated. A routine is provided by the C~POMS to enable

the garbage collector to rethread the address to PID hash table.

6.3 Heap support for the C~POMS

As mentioned above the interpreter must supply the C~POMS with the
heap allocation routines. However this is not sufficient as some of the
C-POMS routines, particularly commit and open database are Thighly
recursive and must be able to preserve their pointers over garbage
collections. To overcome this a special stack should be provided for the
C-POMS for it to keep its pointers on. This can be easily done using a
vector of pointers with a register to point to the top stack element.
Routines should also be provided to alter the stack size in use. Null

pointers could be used to fill unallocated stack elements.
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7 Bootstrapping POMS

7.1 Bootstrapping the C-POMS

In order to run the C-POMS, the interpreter must be given a directory
in which to keep all its files. This should be an empty directory since
the C-POMS will create any files it wuses if necessary. In a UNIX
enviromment a shell variable PSDIR is used by the interpreterAto find the
name of the directory. To discourage access to databases from outwith the
C-~POMS the supplied directory should be made accessible only to the PS~
algol system. In a UNIX environment this can be done by creating a PS~
algol user to manage the PS-algol system. This user owns the PS—algol
interpreter and has sole access to the C-POMS directory. It is then only
possible, wusing the set wuser id facility, for normal wusers to access
databases if they are running the PS-algol interpreter, i.e. only if they

are running PS~algol programs.

7.2 Bootstrapping the PS~algol POMS code

The normal PS—algol user is supplied, via the standard frame, with a
set of database procedures that assume a table as the root object in a
database, a set of table handling procedures, a real 1/0 package, raster
graphics wutilities and the outline graphics procedures. When the
interpreter starts up none of these procedures are available although the
standard frame has space reserved for them. Any attempt to use them
before they are initialised will result in a run—-time error.

There are two possible methods of initialising the standard frame
with these procedures. Firstly the procedures may all be declared in the
PS-algol initialisation program that is run before the user program.
Indeed this was the original scheme for providing the tables and real 1/0
procedures. However as the number of procedures and their complexity has
grown this method has become undesirable. Some of its disadvantages
include having to recompile a large mnumber of procedures when one is
changed, a large amount of code must be placed in the heap that may never
be used and more importantly it is not possible to allocate reserved pids
to the procedures.

The alternative method that has been adopted is to make the PS-algol
initialisation program import from a system database all the necessary
procedures. In this way all the procedures and their objects are given

unique pids and may be modified independently of each other. Each set of

sl jEm—
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procedures is then maintained by a program that places its procedures in
the system database. An important feature of the initialisation program
is that 4if 4t can’t find a particular set of procedures, the
initialisation continues leaving them uninitialised. This is necessary to

allow the construction of the system database by a PS-algol program.

7.3 Constructing a PS-algol system database

As a result of implementing the basic database routines in the
interpreter it 1is possible to manipulate databases independently of
tables. A description of the relevant standard functions can be found in
appendix IV. The first step in constructing the system database is to
create the database using the ‘createdb’ private standard function. A set
of table handling procedures can then be declared and used to create a
table containing themselves. The root of the database resulting from the
‘createdb’ function is then made to point te this table. If a commit is
done at this point then the system database will have a copy of the table
routines in a table. Once this stage is complete all the high level
database functions are available to future programs.

To ensure that the table procedures are available it is necessary to
be able to interrogate a table without access to the table handling
functions. This is accomplished by ensuring that when a table is created
it is represented by a structure of procedures that operate on it. Hence
if the structure class for a table is known the set of table handling
procedures for it can be accessed. The initialisation program must
therefore know the structure class of the table pointed to by the root of
the system database. Assuming the table is of the appropriate form the
initialisation program can extract all the procedures it holds and place
them in their positions in the standard frame. Having extracted the table
handling procedures the high level database functions can then be defined.

The next few steps involve running programs in which the other
required procedures are declared and entered into the table in the system
database using the high level database procedures. Again the structures
in which these procedures are placed must be incorporated into the

initialisaticn program.
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8 Marking for Garbage Collection

Once it is impossible to satisfy a given request from the heap, it is
neccessary to initiate a garbage collection sequence which will make
available for re-use, heap objects which are no longer reachable. 1In
order to distinguish garbage from wanted items all those items which are
wanted need to be marked as such. This is where the marker comes in.

The marker is a routine which given an initial heap item will mark it
and then recursively mark any other heap items which it references (see

Chapter 9). There are basically seven distinct types of heap item, these
being

i) strings,files
ii) structures
iii) vectors of pointers
iv) vectors of non-pointers
v) code vectors
vi) frames

vii) dimages

There now follows a discussion of the intricacies of marking these types

of heap item.

8.1 Strings and Files

Strings and files contain no pointers to other heap objects, so the
marker need go no further.

8.2 Structures

An instance of a structure contains a count of the number of pointer
fields within its body. This value must always be greater than zero as
there is always present a pointer field to the structure’s class
identifier which is held as a string. The class identifier field is the
first word after the header word of the structure. Any other pointer
fields occur immediately after the class identifier field. This
rearrangement of the structure fields is handled automatically by the
compiler and 1is transparent to the user. When marking a structure

therefore, it is simply a case of iterating through the number of pointer
fields.

8.3 Vectors of pointers

This category consists of vectors of procedure closures, pointers,
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images and strings. The number of pointer elements is calculated from the
vector bounds held in words two and three of the vector header. The
elements follow the bounds. In the case of a vector of procedure closures
it is important to remember that each element consists of two pointers - a
pointer to the code vector of the procedure and a pointer to a frame ie.

its static link.

8.4 Vectors of non-pointers
This category consists of vectors of integers, pixels, booleans and

reals. As with strings all that needs to be done with these is to mark

them.

8.5 Code vectors

Code vectors contain two pointers - one to a vector of procedure
closures and the other to a vector of strings. These are found in the two
words following the code vector header word. Again simply iterate through

these two pointers.

8.6 Frames

Each instance of a frame contains a pointer stack. The base of this
stack may be obtained by adding the offset found in word two of the frame
to the base address of the frame. The third word after the pointer stack
frame base (psfb) contains an offset from the psfb which indicates the
pointer stack top address (pst). By iterating from the pst to the psfb all
items referenced by the frame will be marked.

A useful aid to marking is to implement null pointers as zero. In
fact the compiler does this when creating code vectors. If a given
procedure has no procedures declared within it then the value for the
procedure vector address in the code frame will be zero. Similarly, for
the string vector address, if the procedure contains no string literals of

length greater than one character.

8.7 Images
Images contain two pointers. The first is to the bitmap vector and
the second to a file descriptor if the image is the screen. The two

pointer fields occur immediately after the header in the descriptor.
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9 Dynamic Storage Allocation With a Compacting Garbage Collector

The design aim of the storage allocator is to produce a utility which
will allocate store as quickly as possible. To this end a storage
allocator was written which allocates store from a single block of space.
Assuming finite space this in turn requires a garbage collector which
compacts wanted items to the bottom of the space.

In order to be able to garbage collect it is first necessary to mark
all the heap objects which are reachable either from the user’s data
structures or from the run time support routines. This marking algorithm
is described in detail in chapter 8.

As a consequence of the compacting garbage collector algorithm every
pointer to an object that may move must be in the heap. This is achieved
by having a vector of pointers at the re-use base to hold the pointers
normally held in registers. The pointers that are saved in this vector
are SMSB, LMSB, the pointer to the class identifier vector and the
pointers to the tables and stack used by the C-POMS. The register CP is
saved by entering it as an offset in the return address field of the
current frame. The registers IMSP and LPSP are entered as offsets in the
MSP and PSP fields of the current frame. All the other pointers held by
the runtime support such as LPSB and SPSB can be calculated from the
pointers held in the vector of pointers. Hence when garbage collection is
complete all the registers can be restored from the vector of pointers.
Once the vector of pointers has the registers copied into it the marking
algorithm can mark from it and find every reachable object.

The compacting garbage collector algorithm to be described is an
adaption of an algorithm given by Morris [2]. 1In general terms the
algorithm requires two sequential passes across the heap with compaction
resulting from sliding wanted objects over garbage. Before describing the
algorithm in detail it is first necessary to consider the runtime heap
layout,

By
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| | | | | { }
| Run time | User | Save | Standard | Other l_‘_> |
| Support | | | | Heap ] |
| Code | Code { Vector l’ Frame % Objects |l !
l | |
| | hl hI
re~use eap eap
%ggg base top max

Heap layout at run time

Because of the nature of the code produced by the PS-algol compiler it is
guaranteed that the runtime support code and the initial user code can
never contain pointers to objects created at run time. It is therefore
possible to implement a re-use base, as shown in the above figure, beneath
which compaction cannot take place and there are no pointers requiring
updating due to the movement of objects during compaction.

For the following algorithm to be implemented it 1s necessary to be
able to distinguish pointers from cobject headers. This has been achieved
by making the assumption that pointers are not going to be larger than 28
bits and ensuring no heap object has a tag value of zero. In this way
inspection of the high order 4 bits distinguishes pointers from object
headers.

The following algorithm immediately follows the marking of

accessible objects described in Chapter 8.

scan 1

The first scan of the garbage collector runs from the re—use base to
the heap top. If a heap object is found to be unmarked the next 4 bytes
are over-written with the object’s size and the next object is considered.
The over-writing with the object’s size is done purely for efficiency
reasons in the second scan. As the minimum size for a heap object is
eight bytes this presents no problems. 1If the heap object is marked for
retaining, all its pointer fields are examined. Each pointer which points
backward inte the heap but does not point before the re-use base is
reversed ie. the contents of the 4 byte quantity being pointed to is
swapped with the pointer value. Note that the contents pointed at may be
either an object header or another pointer. Peointers polnting forward are
left alone in this scan. The next object is theu considered and the

process continues until the heap top is reached.
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scan 2

The second scan runs from the re—use base to the heap top. This scan
requires a second pointer (shift address) into the heap indicating the
point to which an object should be shifted in order to compact. Until an
unwanted object is encountered this pointer will always coincide with the
scanning pointer. If an unwanted object is found the scanning pointer
jumps over it and the shift address remains unchanged. If the object has
a valid object header then if necessary it is slid into position and the
shift address updated. Should the first 4 bytes of the object be a
pointer then this pointer will represent a previously reversed pointer
from another heap object. In fact what has happened is that a set of
nodes pointing to a common node has been transformed into a chain of
pointers to the common node. What is required is to step down this chain
over-writing the pointers at each step with the shift address. When the
end of the chain is reached ie. a valid object header is found, this 1is
placed into the original and the original slid down to shift address.
Once an object has been correctly sited any pointers within it are
examined. Any forward pointers are reversed (as for backward pointers in
scan 1) so that they may be correctly updated when the objects they point
to are moved later during this scan. Backward pointers are left unchanged
as they are now pointing to objects which will not move throughout the
remainder of this garbage collection. Lastly the object is marked
unwanted ready for the next garbage collection. This process continues

until the heap top is reached.

Once scan 2 has been completed the garbage collection is over. If
not enough free space has been released to satisfy the original request
then either the heap may be expanded or selected heap items may be written
back to the data base in order to release more space. Should the second
alternative be chosen it is not necessary to go through a mark phase again
as a garbage collection has just completed and by definition the only
objects left in the heap are those reachable. Because the above algorithm
has the effect of turning multiple pointers to a common node into a chain
of pointers to the common node, it may be adapted to enable all the
common references to a node to be updated with the node’s address in the
data base. This therefore allows selected objects to be transferred back
to the database whilst maintaining heap integrity. A careful strategy for

expulsion of heap objects must be worked out before attempting this.
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Appendix I Appendix 11

The Compiler Output Format PS~code Generated by the PS-algol Compiler

At the end of each program the compiler will pad the output code to a A summary of the PS-code generated by the PS-algol compiler for each

128 byte boundary. That is the compiler outputs the code vectors, syntactic construct is given here. In the description E, in the source

foll i
owed by the vector of closures, the string literal vector and the code represents an expression and E, in the code represents the PS-code

stri 1i . i i i i i i i
ng literals. The last piece of information is the class.id vector for that expression. Sometimes the expressions are of type void. A

followed by some padding characters and then the following six pieces of description of the instructions themselves is given in Appendix IIIL.

information.
code size in bytes (4 bytes) ) Source PSzcode
start address in the code (4 bytes) ' ~E E not.op
standard frame main stack size (4 bytes) +E g neg.op
standard frame pointer stack size (4 bytes) vrlteu%?rﬁ f‘:nCtlonéE%n E.gnifyﬁflun‘%gigg:gg.......
version number (1 byte) .+.En En’ write.op erase.op
POMS version number (1 byte) Write operates for reals, ints, bools and strings.
Each unit of compilation is made up of a number of code vectors. At output EO,EL:EL"....En:En’ EOEIE%‘.n ﬁltaggé'éﬁ.éfééé-op
the end of the unit of compilation there is a string vector whose elements out.byte EQ,E1,E2 EO El E2 write.op
point to the string literals that are class identifiers. The string read s.i read.op
addresses are relative to the start of the unit of compilation. These read( E ) E read.op
addresses must be made absolute on loading. similarly for peek, read.name, reads, readi, readb, eol and read.byte.
E1(E2) := E3 El E2 E3 subvass or subsass
El or E2 El jumptt(l) E
El and E2 El jumpff (1) EZ l
%é)(blnary op> E2 El E2 binary.op
EléEZlEB) El E2 E3 substr.op or subimage.op
EL(E2) El E2 subs or subv or subpixel.op
E(El,«..sEn) E Ele...En apply.op
@E of T{EI,....En] E El.......En make.vector
E(El,.....En E Elec.c...En form.structure
E E finish.op
abor , , abort ;op
vector El::E17,...En::En’ of E El E1"...Fn En” E iliffe.op
if El do E2 El Jumpfélg E2 1:
) . if El then E2 else E3 El ﬂumE jump(m) 1: E3 m:
r B repeat El while E2 2 bJu g 2
¢ ” repeat_El while E2 do E3 l: El E2 jump (m% E3 Jum (1) m:
while El do E2 1: El Jumif(m) E Jumpé ? m:
for I=El to E2 by E3 do E4 El E2 E3 fortest.op E4
. forstep.op(l) m:
let 1 =
let I :=E E
proc ; E E return
structure load.class id
image El by E2 of E3 E2 E3 form.image
N limit El at E2,E3 El h2 E3 limit.2
jimit El to E2 by E3 at E4,ES El E2 E3 E4 E5 limit.4
{raster.op> El onto E2 El E2 <raster.op>
{literal> 1l.literal dependent on type
<identifier> load.stack
{identifier> := E E load.stack.assign

A load.stack instruction -may be one of load, pload, dload or dpload for




each of the four environments.

cach assignment. There 1s an equivalent instruction for

The unary functions are upb, lwb, float.

The binary operations are eq.op, neq.op, Llt.op,

plus.op, times.op, minus.op, div.
concat.op. P> p, div.op, rem.op,

L. 0 le.op, gt.op, ge.op
divide.op, isiop, isﬁt.op and

case EQ of
EiIl,El12,..0.4.Eln : E10

E21,E22,......E2n : E20

EOQ
Ell cjump(ll) E12 cjump(ll)ae....El i
Ml'gng(Ml) 11 : E10 jamp éitg » ejump(ll)

so0seceacac
N
.
°

default : Ek+l O Mk :ElH 0

xit:

r

Appendix III
PS—algol abstract machine operation codes

Note

The operation codes are held as 8 bit quantities. If the instruction
requires an operand then the operand will follow in the next 1, 2, 3 or 4
bytes of the code. Therefore most of these instructions have a long and a
short form. If there are two forms the operation codes usually differ by

128. Typed instructions have an encoded name with the following

convention.
ib integer or boolean
r real
s string
P pointer
pr procedure
v void

Jump Instructions

The code address in the instruction is relative to the code pointer.
That is the address of the instruction following the jump in the code
stream. Jump addresses are in bytes. The number in brackets is the

number of bytes in the operand(s).

0 128 fjump(2)

1 bjump(l) 129 bjump(2)

2 130 jumpf(2)

3 131 jumpff(2)

4 132 jumptt(2)

5 133 for.test(2,2,2)
6 for.step(l) 134 for.step(2)
7 cjump.ib(2) 135 cjump.r(2)
8 cjump.s(2) 136 cjump.p(2)
9 cjump.pr(2) 137

10 bjumpt(l) 138 bjumpt(2)
11 139




Stack accessing imstructions
The address is the stack offset from IMSB or LPSB in the appropriate
frame. The instructions starting with the letter p refer to the pointer

stacke.

12 local(l)

13 plocal(l)
14 dlocal(l)
15 dplocal(i)
16 global(l)
17 pglobal(l)
18 dglobal(l)
19 dpglobal(l)
20 stand(1)

21 pstand(l)

140 local(2)

141 plocal(2)

142 dlocal(2)

143 dplocal(2)

144 global(2)

145 pglobal(2) e
146 dglobal(2)

147 dpglobal(2)

148 stand (2)

149 pstand (2)

22 dstand (1) 150 dstand (2)

23 dpstand (1) 151 dpstand (2)

24 load(1,1) 152 load(1,2)

25 pload(i,1) 153 pload(1,2)

26 dload(l,1) 154 dload(1,2)

27 dpload(1,1) 155 dpload(1,2)

28 local.ass(1) 156 local.ass(2)
29 plocal.ass(1) 157 plocal.ass(2)
30 dlocal.ass(1l) 158 dlocal.ass(2)
31 dplocal.ass(l) 159 dplocal.ass(2)
32 global.ass(1l) 160 global.ass(2)
33 pglobal.ass(l) 161 pglobal.ass(2)
34 dglobal.ass(1l) 162 dglobal.ass(2)
35 dpglobal.ass(l) 163 dpglobal.ass(2) %F
36 stand.ass(l) 164 stand.ass(2)
37 pstand.ass(l) 165 pstand.ass(2)
38 dstand.ass(l) 166 dstand.ass(2)
39 dpstand.ass(1) 167 dpstand.ass(2)
40 load.ass(1,1) 168 load.ass(1,2)
41 pload.ass(1,1) 169 pload.ass(1,2)
42 dload.ass(1,1) 170 dload.ass(1,2)
43 dpload.ass(1,1) 171 dpload.ass(1,2)

The load instructions have as a first operand the th index into the

display and as the second operand the stack address.

Procedure and block entry and exit

44
45

47
48
49
50
51
52

apply.op(l,1)

store.closure(1l)

return.ib
return.s
Teturn.pr
block.exit.ib
block.exit.s

block.exit.pr

Image QOperations

57
58
59
60
61
62
63

Structure

64
65
66
67
68
69
70
71
72
73
74
75
76

subimage.op
form.image
limit.2
raster.copy
raster.rand
raster.ror

raster.xor

and Vector imstructions

form.structure(l,1l)
is.op
subs.ib
subs.s
subs.pr
subsass.ib
subsass.s
subsass .pr
makev.ib(2)
makev.s(2)
makev.pr(2)
iliffe.ib(2)
iliffe.s(2)

173 store.closure(2)
174 block.enter(2,2)
175 return.r

176 return.p

177 return.v

178 block.exit.r
179 block.exit.p
180 block.exit.v

185 subpixel.op

186 form.pixel.op(l)
187 limit.4

188 raster.not

189 raster.nand

190 raster.nor

191 raster.xnor

192 form.structure(2,2)
193 isnt.op
194 subs.r
195 subs.p

197 subsass.r

198 subsass.p

200 makev.r(2)
201 makev.p(2)

203 iliffe.r(2)
204 iliffe.p(2)




77
78
79
80
81
82
83
84
85
86

1liffe.pr(2)
subv.ib

subv.s

subv.py
subvass.ib
subvass.s
subvass.pr
upb.op

concat.op
load.class.id (1)

Load literals

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

1l.int (1)
11.bool(l)
1l.string(l)
1l.char(l)
1l.nil.string
1l.nil.pr
eq.ib

eq.s

eq. pr
neq.ib
neq.s
neq.pr
1t.i

1t.s

le.i

le.s

gt.i

gte.s

ge.i

ge.s

plus

minus

rem

fplus

fminus

206
207

209
210

212
213
214

218
219
220
221
222

224
225

227
228

230

232

234

236

238

239

240

241
242

subv.r

subv.p

subvass.r

subvass.p

lwb.op
substr.op
load.class.id (2)

1l.int(4) 32 bits
1l.real(8) 64 bits
1l.string(2)
11.file

1l.nil.pntr

eq.r

eq.p

neq.r

neq.p
leer
le.r
gt.r
ge.r
times
div
neg

ftimes
fdivide

115 not.op
116 floatl
120 erase.ib
121 erase.s
122 erase.pr

123 rev.ms

124 newline(l)
125 finish.op
127 read.op*(1l)

243

248
249

251

252
253
255

fneg
float2
erase.r

erase.p

rev.ps

newline(2)
abort .op

write.op**(1)

% read.op uses the second 8 bits for the following functions

W~ i L e

reads

read .byte

read

read .name

readr

%% yrite.op uses the second 8 bits for the following functions

?
1
0 readi
2 readb
4 peek
6 eoi
8 read.a.line
0 write.i
2 write.b
4 write.r

1

3

write.s

out.byte
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Appendix IV let structure.table = proc( -> *cstring )
! this returns a vector of strings containing all of the
The Standard Identfier File and Standard Frame | class identifiers used in the program
The standard identifier file is used by the compiler to declare the

procedures and identifiers that are global to every program. Therefore it ! File I/0 Identifiers

is dimportant that every program is compiled using the same standard let read.blocks = proc( file f ; imt blks -> *int )

identifier file and that the standard frame is initialised accordingly. ! this reads blks four byte words from the file into an integer vector

To ensure this is the case the implementor should use the standard let write.blocks = proc( file f ; *int blks )
identifier file to provide the compiler with a suitable address allocation ! this writes a vector of integers to a file

strategy. ,
Addresses are allocated on the appropriate stacks in increasing order & E e let open = proc( cstrimg f ; cint m -> file )
as identifiers are encountered in the standard identifier file. The main ! this opens the file with name f in mode m
stack starts at stack offset 2 and the pointer stack at stack offset 3. ! modes are: 0 - read only, 1 - write only, 2 - read and write
However it is not desirable to include all of the standard functions in et close = proc( cfile f )
the standard identifier file because some of them may violate the type ! this closes the file for file descriptor f.
rules or the database locking conventions. To overcome this problem three
integers are inserted at the start of the file to indicate how many let seek = proc( cfile f ; cint offset,from )
identifiers are missing. The fivst integer is the number of main stack ! this moves offset bytes through file f from 0 - start of file,
addresses allocated, the second is the number of pointer stack addresses ! 1 - current position and 2 - end of file
allocated and the third is a version number for the PS—algol POMS code. let create = proc( cstring f ; cint m )
Using this mechanism it is possible to have two versions of the standard ! this creates a file with name fname in mode m, m is the decimal value
identifier file, i.e. one for ordinary user programs and one for system ! of the file protection bitmap
programs.
let flush = proc( cfile f )
he structure of the standard idemtifier file ! this causes the output buffer for file f to be written out
Everything in the standard identifier file is legal PS-algol code
except for the three integers mentioned above. The initial values of the let read.real = proc( cfile £ -> real )
identifiers are ignored at runtime because no code is generated for these ! this reads characters from file f to form a real number
declarations. As a consequence of the hiding mechanism any standard g ! this is written in PS-algol and loaded by the PS-algol POMS code

identifier that is to be hidden must come at the beginning of the file. let writer = proc{ cfile f ; ereal n ; ecimt a,b )
The standard identifier file is therefore divided into a public and

t this writes a real number n to file f
private section.

I in a field width of a with b spaces after the number
Private stamdard identifiers ! this is written in PS~algol and loaded by the PS-algol POMS code

Only those identifiers declared in the private section will be *

! C~POMS database functions

described here as the public identifiers are described in the PS~algol let createdb = proe( cstring name,pass ~> pnir )
language reference manual [3]. ! this creates a database with the given name and password, the root

! object is a opdb.result structure (see below). nil is returned
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! if successful, otherwise an error.record

let opendb = proc( ecstring name,pass ; cint m -> pantr )
! this opens the database with the given name if the password pass is

! correct and a lock for mode m (0 read, 2 read and write) can be

acquired. When locked all reachable databases must also be locked.
! A pointer to the root object is returned if successful, otherwise

! an error.record

let garbage.collect = proc{ cstrimg name —-> pmtr )
! this causes a garbage collection to occur that will try to restrict
1 its effect to the named database, this is to enable a form of

! incremental disk garbage collection. nil is returned if

! successful, otherwise am error.record

let Garbage.collect = proc( => patr )
! a full disk garbage collection is performed, any unreachable
! databases are removed. nil is returned if successful,

! otherwise an error.record

let error.records = @1 of c*cpntr[ @1 of epatr[ nil | ]

! error.record structures returned by POMS procedures

let shift.l = proc( int value,count -> int )
! shift the first parameter left ‘count’ places

! bringing in zeros at the low order end

let shift.r = proe( imt value,count -> int )
! shift the first parameter right ‘count’ places

! bringing in zeros at the high order end

let b.and = proc( int valuel,value2 -> int )

! logical (bitwise) “and’ of valuel and value?2

let b.or = proc( int valuel,value2 ~> imt )

! logical (bitwise) ‘or’ of valuel and value?

let b.not = proe( imt i -> int )

! boolean not operator

let fiddle.r = proc( real n -> *imt )

! split a real into a vector of two integers.

let class.identifier = proc( pmtr p -> string )
! given a pointer return the class identifier of the structure

{ that it points at

! Process control primatives

let fork = proc( => int )

! Unix process fork = returns process number of child to parent

{ returns O to child

let exec = proc( *string s )

! Unix exec — calls the shell using the command held in s

let wait = proc( int i ~> *cint )
! Unix system call - waits for a signal from a child process
! or for the process i to die

! returns the process id and the status

let system = proc{ string s —> int )
! Unix system library call

! does a fork and execs a shell to execute the command s

! Private Graphics functions
let line.end = proc{ #pixel i ; pixel p ;
cimnt x,y,direct => imt )
! searches for the first pixel of colour p from position x,y in i

! direct specifies the search direction
! 0dd numbers do not look at boundary pixels
t 0,1 - left 5 2,3 ~ right ; 4,5 - down ; 6,7 - up

! return the position of the pixel or 1 past the position last searched

let set.locator = proc{ cint mode,flags,tabs,ticks )

! set the conditions which govern when records are generated by the mouse

let set.cursor = proc( cint mode )

! set the mode in which the cursor works

let plane.of = proc( cfpizel i ; cint p -> *int )

t this procedure returns the ith plane of image 1

let pnx.line = proc({ cipixel p ; cint xl,yl,x2,y2,style )

! this procedure draws a line from xl,yl to x2,vy2 on image p




! style may be 1 ~ pixels off ; 2 - pixels on ; 3 - pixels opposite

PS-algol Prelude
In addition to the standard identifier file a prelude is used to

predeclare some useful structure classes. Several of these are used by
the PS-algol compiler to generate code to construct the Outline picture
representation. The first two are used by the C-POMS and so must remain
in a fixed position in the prelude. At runtime the C-POMS can index the
class identifier vector to allocate reserved pids to these structure
classes and use the trademarks it finds to comstruct error records and

database root objects.

structure error.record( cstring error.context serror.fault,error.explain )

! trademark for an error record

structure opdb.result( pntr root.of .db )
! trademark for the real root object of a database
structure culr.strc( epntr nxtre ; estring shade )

! trademark for the Outline colour of expression

structure oprtn.strc( cpatr 1ft,rght ; cint opoo )

! trademark for the " and & Outline operators

structure scrbl.strc( cstring msge ; creal x%1l,yyl,xxr,yyr )
! trademark for Outline text from to expression

structure poin.strc( creal pnx,pny )
! trademark for Outline point [pnx,pnyl

structure trnsfrm.strc( cint trnsfrm ; cpntr nrtre H

creal trnsfrm.x,trnsfrm.y )

! trademark for Outline shift, rotate and scale expressions

structure mouse( cint X.pos,Y.pos ;

cbool selected ; c*cbool the.buttons )

! this is the structure returned by locator

structure point.strc( cint point.x,point.y )

! this is the structure returnd by cursor.tip

APPENDIX 5
History & People

PS-algol is the third member of a family of languages. The
first, although we did not recognise it at the time, was a language
invented by David Turner called algol-s and was used by him and Ron
Morrison as the basis of a Senior Honours project at St Andrews University
[9]. David Turner subsequently took up an appointment at the University
of Kent at Canterbury and the second language, S-algol [8,12] was
developed by Ron Morrison and Pete Bailey using the main ideas of algol-s.
The third language is PS-algol and it incorporates the main concepts of
both algol-s and S-algol as well as the concept of persistence developed
at the University of Edinburgh.

The Data Curator project began in November 1979 funded by SERC
grant GR/A/86541 to Malcolm Atkinson at the University of Edinburgh.
Malcolm was joined by Ken Chisholm and Paul Cockshett and work began on
the theoretical basis of persistence, its integration into a programming
language and a support system for persistent data. After some
dissatisfaction with attempts to integrate persistence with Algol 68 and
Pascal contact was made with Ron Morrison and Pete Bailey in St Andrews.

In 1983, Ken Chisholm left the project and Malcolm Atkinson
spent a year (August 1983~July 1984) at the University of Pennsylvania,
USA. On his return he took up the second Chair of Computing Science at
the University of Glasgow. Ron Morrison spent July 1983 to December 1983
at the Australian National University, Canberra and on his return was
joined by Alfred Brown and Alan Dearle in St Andrews.

In 1983 1ICL began collaboration with wus on Persistent
Programming at both Universities funding some of the work and setting up
an absorber project to build compilers for PS-algol on the ICL machines -
initially the ICL 2900 series. Late in 1984 the combined teams were
notified that they had been awarded funding for the PISA project, which

will among other things develop further PS-algol.
Present Team Members

University of CGlasgow University of St Andrews ICL

Malcolm Atkinson Ron Morrison Graham Pratten

Paul Cockshott Pete Bailey John Robinson
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