University of Glasgow
Department of Computing Science

Lilybank Gardens
Glasgow G12 8QQ

University of St Andrews
Department of Computational Science

North Haugh
St. Andrews KY16 8SX

Procedures as
Persistent Data Objects

Ao De s

Persistent Programming
Research Project 9

Also

Glasgow Computing Science
Department Report CSC/84/R3




FROCEDURES AS FERSISTENT DATA OBJECTS

M. F. Atkinson+, P.J. Bailey*,
K.J. Chisholom+, W.F. Cockshott+
R. Morrison®

+ Department of Computing Science,
University of Glasgow,
Lilybank Gardens,
Glasgow GiZ 860G

* Department of Computational Science,

University of St. And rews,
North Haugh,
St. Andrews KY16 88X

PERSISTENT FROGRAMMING
RESEARCH FROJECT 3

Also:

GLASGOW COMPUTING SCIENCE DEPQRfMENT
REFORT CSC/84/R3




Freface

This report is the first produced since part of the team
moved from Edinburgh to Glasgow. A preliminary report of
the ideas in this paper will be presented at the Fourth
Conference on Foundations of Software Technology and
Theoretical Computer Science, Bangalore, India (15 December
1984). The version presented here has been submitted to ACM
TOFLAS. Fersons wishing to cite this paper are requested to
contact the authors for the correct citation information.

An interpreter for the language, which will run all the
exawples shown here, and which will accommodate reasonably
sized collections of data is available written in c, and
raming under Berkeley UNIX /.2 on the VAX and under PNX2 on
the ICL FERG. Further information about these and other
impleventations, and about tne development of our persistent
programming research is available from the authors at either
institution or at the address given with the bibliography.




This work supported at the University of Glasgow by SERC grants GRC 21977
and GRC 21960 and at the University of St Andrews by SERC grant GRC 15907.
The work 1is also supported at both Universities by grants from
International Computers Ltd..

Author’s addresses: M. P. Atkinson, Department of Computing Science, 14,
Lilybank Gdns., Glasgow, Scotland, Gl2 8QQ. R. Morrison, Department of
Computational Science, University of St Andrews, North Haugh, St Andrews,

Fife, Scotland, KY16 9SX.

We wish to extend the traditional role of programming languages to
provide the facilities normally left to other functions such as the file
system or linker. Our target is to provide a totally integrated
environment where the user never has to step outside the programming
language for any computational activity.

The advantage of such an approach to system construction dis in
simplifying the number of different ad hoc mechanisms used in constructing
large systems. 0f course, it would be easy to build these ad hoc
mechanisms into the language and not achieve the desired effect.
Therefore it is important to have a regular design of the programming
language to minimise these mechanisms.

In this paper we concentrate on the use of first class procedures and
orthogonal persistence and show how the two concepts may be used to
implement abstract data types, modules, separate compilation, views and
data protection. Furthermore we demonstrate how the ideas may be used in
system construction and version control.

The safety of the system is provided through the type mechanism of
the language and we discuss the tradeoffs between security and flexibility
and static and dynamic type checking for dynamically evolving systems.

Some of the issues presented in this paper relating to first class
procedures have been discussed before [9,20,24,25,26] and we use such
higher order functions in conjunction with our notion of persistence to
demonstrate the above claims.

We have built the programming language PS-algol [1,7] to investigate

these ideas and all the programs presented have been run on that system.




1.1 What is persistence?

The persistence of a data object is the length of time that the
object exists. In traditional programming languages data cannot last
longer than the activation of the program without the explicit use of some
storage agency such as a file system or a database management system. In
persistent programming, data can outlive the program and the method of
accessing the data is uniform whether it be long or short term data. We
have discussed this concept fully elsewhere [l]. The language concepts
presented in this paper depend on persistence being provided as an
orthogonal property of data; all data objects, whatever their type, have

the same rights to long and short term persistence.

1.2 what are first class procedures?

Most programming languages provide facilities for abstractions over
expressions and statements. Indeed these abstractions, functions and
procedures, are often the only mechanisms for abstraction in a programming
language. The power of the mechanism is derived from the fact that the
user of the procedure does not require to know the details of how the
procedure executes, only its effect. We use the word ‘procedure’ to
represent both procedure and function when it is not necessary to
differentiate between them.

The procedures of Algol 60[21] and Pascal[28] can only be declared,
passed as parameters or executed. However, as has been pointed out by
Morris [20] and Zilles [31], to exploit the device to its full potential
it is necessary to promote procedures to be full first class data objects.

That is, procedures should be allowed the same civil rights as any other

data object in the language such as being assignable, the result of
expressions or other procedures, elements of structures or vectors etc.
Lisp [18] was the first language with first class procedures and other
languages include Iswim [15], Pal [9], Gedanken [24], Sasl [26], ML [19]
and with some restrictions Euler [27] and Algol 68 [32}. Of course the
applicative programming technique revolves around the ability to have
first class procedures in the language and central ideas such as partial

application are not properly implementable otherwise.

1.3 What is closure?

The most important concept in the understanding of first class
procedures is that of closure [12,25]. The closure of a procedure is all
the information required to execute the procedure correctly. It has two
parts. The first part is the code to execute the procedure and the second
part is its environment which contains the local and free variables of the

procedure and is often implemented by a static chain [23].

1.4 PS-algol notation

We will use PS—algol to illustrate our ideas and bhere we introduce
some of the syntactic elements of the language to help the reader’s
understanding of the later programs. This is perhaps best done by an

explanation of a program.

let sum = proc( *int A -> int )
begin
let total := O
for i = lwb( A ) to upb( A ) do
total := total + A( i )
total




end
write '""How big is the vector
let n := readi()
let this.vector = vector l::n of 0
write "Please input ",n," elements
for i = 1 to n do this.vector( i ) := readi()
write sum( this.vector )

g

This program reads in the size of a vector followed by the elements
of the vector and outputs the sum of the elements. Points to note are

a) the dot in the identifier ‘this.vector’ is part of the identifier and
does not signify anything like module qualification as in other
languages

b) all identifiers are introduced by let declaratioms. The let is
followed by a := or = signifying a variable or a constant and then an
expression. The type of the identifier is deduced from the
initialising expression which must be present

c) declarations and clauses may be freely mixed

d) the procedure expression comprises the procedure type, in this case
proc( *int -> int ) i.e. a procedure from a vector of integers to an
integer, followed by an expression of the correct type, again in this
case integer. Note we have used a block expression here where the
last expression in the block denotes its value

e) the procedure is applied by using its name and the parameters of the
correct type, in this case sum( this.vector )
This rather quick introduction to the language will be augmented by

discussion of the later examples.

2. First class procedures in relation to abstract data types.

The supporters of abstract data types [17] argue that it is essential
for powerful languages to have an abstraction mechanism over data objects.
In the same manner that a procedure separates the implementation of a task
from its use, the abstract data type separates the representation of a
data object from its use. Thus we have at once an abstraction mechanism
and a protection mechanism. The abstract data type defines the operations
available on the data object while only allowing the definition of the
type to manipulate or access the representation. Languages which support
abstract data types include Simula [4], Clu [16], Alphard [30], Euclid
[14], ML[19] and Ada [11].

None of the above languages, with the exception of ML and Clu,
support first class procedures. However, as has been pointed out by
Horning [10], the advantages and aims of procedural and data abstraction
are similar. Indeed if procedures are data objects the mechanism for both
abstractions can be the same -—- that of the procedure. This, of course,
is not a new idea and was present in the work of Strachey [25] and Zilles

{31].

2.1 The complex number example

To explain the mechanism the following program segment writtenm in
PS-algol [2] is given in Figure 3. The task it sets out to solve is to
define an abstract object for a complex number and to allow only the

operations of addition, printing and creation on the complex number.




let add := proc( pntr a,b => pntr ) ; nullproc

let print := proc( pntr a ) ; nullproc
let complex := proc( real a,b -> pntr ) ; nullproc
begin

structure complex.number( real rpart,ipart )

add := proe( patr a,b -> patr )

complex.number ( a( rpart ) + b( rpart ),a( ipart ) + b( ipart ) )

print := proc( pntr a )
write a( rpart ),
if a( ipart ) < O then "-" else "+",rabs( a( ipart ) ),"i"
complex := proc( real a,b -> pntr )
complex.number( a,b )
end
let a = complex( ~1.0,-2.8 ) ; let b = complex( 2.3,3.2 )
print( add( a,b ) )

The definition of an abstract type for complex numbers in PS-algol

Figure 3

In PS-algol a structure class is a tuple of named fields with any
number of fields of any type. The structure statement adds to the current
enviromment a binding in ﬁhe closest enclosing scope for the class name
(’complex.number’ in this example), and a binding for each field name
(‘ipart’ and ‘rpart’ in this case). When an instance of a structure class
is created (by complex.number( a,b ) above), it yields an object of that
class which may be assigned to an object of type pntr. The class of a
pointer 1is not determined at compile time but at run time and since the
structure class is similar to a type definition in other languages this
gives a degree of polymorphism to PS-algol.

The structure declaration in the example

structure complex.number( real rpart,ipart )

defines a structure with two real fields ‘rpart’ anmd ‘ipart’. To create

an object of this class we may use the expression

complex.number( 3.2,5.4 )

The fields of the structure may then be accessed by using a pointer

expression followed by the structure field name in parenthesis. e.g.

a( rpart )

The example, in Figure 3, shows three procedure variables being
declared and in the following block being assigned values. The
representation of the complex number is encapsulated in the block and is
not available to other parts of the program. Since the field names of the
representation of the complex number are local to the block only the
procedures defined in the block may use these names. Outside the block
the names are invisible. Thus we have completely separated the
representation of the data object from its use and achieved one of the
aims of abstract data types. Indeed the block could be rewritten to
represent the complex number in polar co-ordinates without changing the
external meaning. Furthermore we have demonstrated again that the
traditional block structure and scope rules of Algol 60 with the addition
of first class procedures are sufficient to support abstract data types.
Figure 4 shows how the block can be made into a function itself perhaps to

be located elsewhere in the program or separately compiled.
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structure complex.arithmetic( proe( pntr,pntr ~> pntr )cadd ;
proc( pntr )cprint ;
proc( real,real -> pntr )ccomplex )

let complex.arith = proc( -> pntr )
begin
structure complex.number( real rpart,ipart )

complex.arithmetic(
proc( pntr a,b -> pntr ) tcadd
complex.number( a( rpart ) + b{ rpart ),a( ipart ) + b( ipart ) ),

proc( pntr a ) teprint
{ write a( rpart ),

if a( ipart ) < O then "-" else "+",rabs( a( ipart ) ),"i" },
proc( real a,b -> pntr ) tccomplex

complex.number( a,b ) )
end !of complex.arith

!main program ——~ redo the names
let t = complex.arith()
let add = t( cadd ) ; let print = t( cprint ) ; let complex = t( ccomplex )

let a = complex( 1.2,0.3 ) ; let b = complex( 9.4,-3.2 )
print( add( a,b ) )

The complex number package

Figure 4

The structure class ‘complex.arithmetic’ contains three procedures as

elements. The notation

proc{ pntr,pntr -> patr )

denotes the type of a function from two pointer parameters to an object of
type pointer whereas proc( pntr ) denotes the type of a procedure with one
pointer parameter.

In the main part of the program an application of the function

‘complex.arith’ yields a structure of class ‘complex.arithmetic’ which is
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assigned to the name ‘t’. In the procedure ‘complex.arith’ the same three
procedures as before are defined and their closures exported via a
structure. This is slightly more complex than the last version in that
there is an extra dereference to obtain the same names but that is a

syntactic problem which can easily be overcome if necessary.

2.2 Data protection
Morris [20] specified three ways in which a data object may be used

in a manner not intended. They are

"l. Alteration : An object that involves references may be changed
without use of the primitive functions provided for
the purpose.

2. Discovery : The properties of an object might be explored
without using the primitive functions.

3. Impersonation : An object, not intended to represent anything in
particular, may be presented to a primitive function
expecting an object representing something quite

specific."

The first two problems are overcome by the methods already
demonstrated in PS-algol. Since the names of the fields in the structure
class are only known to the primitive procedures, by the scope rules, then
the objects can never be accessed except by the primitive procedures.
However impersonation is a problem in PS-algol because structure class
pointers are checked at run time. It is not that the impersonmation will

not be discovered but that it will cause a hard failure at run time. If
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this is not acceptable it is possible to check the class of the object declared in ML. We ignore the fact that ML does not have real as a base

before allowing any operation on it. Thus we can define the program’s type for this example.

action if an impersonation is attempted. In our example the procedure
abstype comp = comp of real # real

with
. val add( comp( rl,il ) ) ( comp( r2,i2 ) ) =comp ( ( vl + r2 ),( il +i2 ) )
and print( comp( r,i ) ) = ( output( terminal,stringofreal( r ) ) ;
output ( terminal, if 1 < 0.0 them "-" else "+" ) ;

‘complex.arithmetic’ may be rewritten as in Figure 5.

let complex.arith = proc( ~> pntr ) output ( terminal,stringofreal( realabs( i ) ) ) ;
begin output ( terminal,"i" ) )
structure complex.number( real rpart,ipart ) . and complex r i = comp ( r,i )
en

let error = proc( pntr a ~> bool )
if a isnt complex.number then
begin
write error.message
true
end else false

An example abstract datatype declaration written in ML

Figure 6

it is useful to compare this with the declaration given in Figure 3.
complex.arithmetic(

proc( pntr a,b -> pntr ) 1cadd The abstype .... with construct in ML is essentially an environment
’ !

if error( a ) or error{ b ) then nil else X . . .

complex.number( a( rpart ) + b{ rpart ),a( ipart ) + b( ipart ) ), manipulation, so that after the construct the declarations appearing
proc{ pntr a ) teprint between with and the corresponding end are installed in the subsequent
if error( a ) then write "This is not a complex number" B , ) ) )
else { write a( rpart ) enviromment, but the type “comp’ is available only in the environment of

3
if a( ipart < 0 then "-" else "+",rabs( a( ipart ) ),"i"
Cip ) P ’ the declarations after with. This is nearly equivalent to the notation in

proc( real a,b -> pntr ) lecomplex . . A A
complex.number( a,b ) ) Figure 3, with the following detailed correspondence.

end !of complex.arith

The complex number package with impersonation checks 1. In Figure 3 the three let clauses introduce the three names into
Figure 5 the outer environment whereas in Figure 6 the same three names are
The above example is rather cumbersome and demonstrates how a good left, by being declared after the with, in the outer scope.

exception handling mechanism [11,19] could be utilised to provide simpler
2. The begin end pair delimits a scope level as does a with end pair.
code.

3. In Figure 3 the representation of the complex number is introduced
2.3 Comparison of first class procedures and abstract data types
by the structure declaration which is local to this inner scope
Figure 6 below shows how the abstract type for complex numbers may be
only. In Figure 6 the representation of complex is introduced by
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the abstype statement and this binding is available only in the
proc{ pntr a ) Iprint
scope by with and end. begin
) write a( rep,l )
for i = 2 to n do write
4, In both cases in the inner scope three bindings of names to end,

i

, ",a( rep )( 1)

procedural values are declared. ' proc{ *real r -> pntr ) fcreate
if upb( r ) = n and 1lwb( r ) = 1 then vec(r)
else { write "wrong size" ; nil } )

The similarity is semantically almost complete. As a consequence of end ! of make.vector.pack
the need to define the binding in one scope and introduce the name in An example of defining a parameterised type
another the names have been declared as variables as in Figure 3, whereas Figure 7

they are constants in ML. The other differences are merely syntactic ---—
The operators may now be used as shown in Figure 8. To introduce
the main one being the rather redundant declarations of “add’, “print’ and
parameterisation of abstract types may mean more complexity than utilising
‘complex’. The designer has the choice of requiring this or adding new
the parametric mechanisms we already have with procedures.
constructs such as abstype to the language.

Another aspect of using a procedural mechanism is that it provides let Pack.2D = make.vector.pack( 2 )
let Pack.3D = make.vector.pack( 3 )

parametric abstract types. Let us suppose that an abstract type for
let add2 = Pack.2D( add ) ; let print2 = Pack.2D( print )

vectors is required but that different dimensional spaces may be used and let mk2d = Pack.2D( create )
let add3 = Pack.3D( add ) ; let print3 = Pack.3D( print )
that vectors from these require different representations and different let mk3d = Pack.3D( create )
operators. Figure 7 shows an appropriate definition. let vl = mk2d( @1[ 1.1,2.2 ] )
let v2 = mk2d( @l[ 3.3,4.4 ] )
let v3 = add2( vl,v2 )
structure vector.pack( proc( pmtr,pntr -> pntr )add ; proc( pntr )print ;
proc( *real ~> pntr )create ) print2( v3 )
let make.vector.pack = proc( int n -> pntr ) let wl = mk3d( @1] 1.1,2.2,3.3 ] ) veeverecancos
begin
structure vec( *real rep ) An example of using the parameterised type
if n < 2 then { write "silly dimension" ; nil } Figure 8
else vector.pack(
proc( pntr a,b => pntr ) ladd
begin 3. First class procedures can perform as modules
let v = vector l::n of 0.0
fOI(i =)1 tondov(i) :=alrep (i) +b(rep (i) Many languages have also introduced the concept of modules Ada, Clu,
vec( v

end, ML, Modula-2 [29].
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These appear to serve three functions:

i) Provide a mechanism for own data, that is data bound with the
module over the scope or lifetime of the module, rather than
only for individual applications of the module.

ii) To be the wunit of program building being used in system
construction as a unit of specification, a unit of compilation,
testing and assembly.

iii) As a localisation or hiding of certain design decisions, in

other words, the provision of abstract types.

We show that, in conjunction with persistence as an orthogonal
property, first class procedures perform all these roles. The last has
already been demonstrated, the first can depend either on partial
application or be obtained in conjunction with the program building
facilities. These are simply based on the idea that programs may use
procedﬁres which other programs have left in a database. FEach of these
will now be demonstrated.

It is important to note, once again, though lack of space precludes
showing it in every example, that the normal parametric mechanisms of
procedures means that we now have modules which may be parameterised, and
for which many instances may exist. This is obtained without adding extra

constructs or concepts to the language.

3.1 Partial application

An advantage of having procedures as first class data objects is the

possibility of having partially applied functions. As a tutorial,
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preparatory to discussing views, let us provide an abstract structure to
maintain lists of things to do, for different people in different

contexts. This may be defined as shown in Figure 9.

structure list.pack( proc( string )add ; proc()clear ; proc()print )

let make.list.Pack = proc( string person,context -> pntr )
begin

structure cell( string item ; pntr next )

let list.start := nil

list.pack(
proc( string s ) ; list.start := cell( s,list.start ), tadd
proc() ; list.start := nil, tclear
proc() Iprint
begin
write "'n list of tasks for
let 1 := list.start
while 1 # nil do
begin
write "'n",1( item ) ; 1 := 1( next )

" 1

',person," doing ",context

end
write "’n"

)

end
end
Procedure to make various lists and provide routines to maintain them

Figure 9
This can be used the way shown in Figure 10.

let RMs = make.list.Pack( "Ron","Finish Paper" )

let MPAs = make.list.Pack( "Malcolm","Finish Paper" )

let RMadd = RMs( add ) ; let RMprint = RMs( print )

let MPAadd = MPAs( add ) ; let MPAprint = MPAs( print )

RMadd( "read Malcolm’s notes'" ) ; MPAadd( "Write rest of comments" )
RMadd( "type corrections" ) ; MPAadd( "Read next draft" )

RMadd( "Fix references" ) ; MPAadd( "Post last corrections" )
MPAprint() ; RMprint()

Using the procedures with local "memory" of lists

Figure 10
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Now on the assumption that a given person has tasks in a number of
contexts, it may be preferable to partially apply this procedure to yield
procedures for each person as in Figure 1l.
let make.lists.for = proc( string person —-> proc( string -> pntr ) )

proc( string context —> patr )
make.list.Pack( person,context )
Partial application of the make.list.Pack procedure
Figure 11
This can be used as shown in Figure 12.
let Rons.list.maker = make.list.for( "Ron" )
let Malcolms.list.maker = make.list.for( "Malcolm" )

let MPA.paper = Malcolms.list.maker( "First Class Fns Paper" )
let MPA.shopping = Malcolms.list.maker( "Shopping" )

Using the partially applied list maker

Figure 12

In these examples the procedures yielded by functions have own data
associated with them (the lists, the tasks and the persons in this
example) and so we have demonstrated that the first requirement for

modules can be met by first class procedures.

4. Separate compilation and binding

Aséuming the provision of persistence we now demonstrate how the
procedure may be used as the unit of system construction and the unit of
definition. Suppose a system is to be built out of the list maintaining

program — then to separately compile the list maintainer we could write a
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program such as that shown in Figure 13.

structure list.Pack( proc( string Jadd ; proc()clear ; proc()print )

let make.list.Pack = proc( string person,context —> pntr )
begin

let list.start := nil ; structure cell( string item ; patr next )
list.Pack(

proc

proc as in Figure 9

proc

)

end
structure mlp.container( proc( string,string -> pntr )mlp )
let db = open.database( "Library",'Gigha",'write" )
if db is error.record do { write "Database can’’t be opened" ; abort }
s.enter{ "make.list.Pack",db,mlp.container( make.list.Pack ) )
commit()

A complete PS-algol program to compile a pack of procedures and

store them in a database for future use

Figure 13

Since the program utilises the persistent mechanisms of PS—algol they
are reviewed here, but the reader who requires complete information should
read [1,2]. The ‘open.database’ operation opens the database with the
name given by the first parameter, establishing the rights specified by
the third parameter by quoting the password given by the second parameter.
It also begins a transaction which is completed by a ‘commit’ or aborted
by abort. ‘s.enter’ is one of the operations on tables, PS-algol’s
associative structures. By convention a successful ‘open.database’ yields
one of these tables. ‘s.lookup’ is also available to obtain entries from

a table.




20

4.1 Separately compiled code

We mnow use the definition in Figure 13 in a program to start a
database for a given person, in which are kept lists on various topics.

This is shown in Figure 14.

!A program to start a new database for someone’s collection of lists
structure error.record(string error.context,error.fault,error.explain)
!first get the predefined module for maintaining lists.
let db := nil
repeat

db := open.database( "library",'Gigha","read" )
while db is error.record do

write "’n sorry the library is being updated"

structure mlp.container( proc( string,string -> pntr )mlp )

let MkListPack = s.lookup( "make.list.Pack'",db )
if MkListPack = nil do { write "Make list pack not compiled yet" ; abort }

tfind out about the customer

write "Who are you?" ; let p = read.a.line()

!set up this database

write '"What password?" ; let pw = read.a.line()

let db2 = open.database( p+t+'.lists",pw,"write" )

if db2 is error.record do { write "Sorry no db space" ; abort }

linsert a table for a person’s lists indexed by topic

s.enter( "topics",db2,table() )

Ipart apply MkListPack to ensure name always p

let a.Persons.make.lists = proe( string topic ~> pntr )
MkListPack( mlp )( p,topic )

Ipreserve that for future use

structure a.Persons.list( proc( string ~> pntr )h.list )

s.enter( "a.Persons.MKlist",db2,a.Persons.list( a.Persons.make.lists ) )
commit()

An example of using a separately compiled procedure in PS-algol

Figure 14

Examination of Figure 14 shows a number of features. First, a
precompiled collection of definitions was obtained from the communal

database "Library". The code for this is the loop (normally executed
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once) to gain access to the program library down to the test that the list
package has been defined. This is equivalent to the module being obtained

in a typical module based language (ML for example) by

get<{Module name>

use<Module name>

It seems that this latter form is more succinct. However if the
arrangements for libraries and naming are agreed a standard procedure,
such as that shown in Figure 15 can be defined to achieve the same effect

equally succinctly.

4,2 Example of software tool construction
1A standard procedure to obtain a module

let get.from.any = proc( string module,lib,libpw -> pntr )
begin
repeat
let db = open.database( lib,libpw,"read" )
while db is error.record do
begin
write "Sorry for the delay, library",1lib,"is being updated™
wait( 5 )
end
let wanted.module = s.lookup( module,db )
if wanted.module = nil do write "Warning: Module",module,not defined"
wanted .module
end
let get = proc{ string module —> pntr )
get .from.any( module,"library","Barra" )

Standard module fetching procedure defined im PS-algol

Figure 15

In Figure 14, the second part of the program uses the predefined list

manipulating module to define a more specific module, which is left for
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further programs to use. This demonstrates two aspects of module -use:

i) the module was used without its implementation being seen by the
programmer — giving adequate protection against exploitation of
accidents of the present implementation.

ii) modules can be synthesised wusing other modules, allowing
construction of large programs, while the individual program
text that has to be read to understand the program at a given

level is kept small.

The approach to module collection demonstrated in Figure 15 is just
one of many that could be defined. Different software construction groups
may define their own module naming and module storage conventions, and may
have their versions of ‘get’ and ‘get.from.any’ carry out authorisation
procedures and keep records of what has been used. This gives the basis
for constructing a variety of software construction tools within the

language.

4.3 Binding

Our implementation combines both dynamic aund static binding.
Variables within program text are statically bound, but the values of
pointer variables are dynamically bound to instances of structure classes.
This dynamic binding does not prevent programs being stongly typed but it
does imply that some type checking is dynamic (occurring near in time to
the final evaluation) rather than static (occurring at initial program
analysis).

We choose this phraseology, rather than referring to compile time and
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execution time as we see program evaluation essentially distributed
between the time the program source is first presented, and the completion
of execution. Partially analysed programs may be left for further
analysis and evaluation as data and resources become available. The
consequence may be, that checks can be factored out of the internal
operations.

This dynamic evaluation has inevitable costs. The program which
depends on it may contain errors which could have been detected at compile
time and hence reported more opportunely. The program which uses it may
execute more slowly because of the run-time checks. But many programs,
even in a statically checked language, may need equivalent run-time
checks. For example, to check that the tag field of a case statement
matches the field being used in a record, often not checked in Pascal, or
that an index is within range, or that an input text can be converted to
the expected type. By denying dynamic binding the class of programs that
can be written is reduced, for example without it it would not be possible
to write the associate structure is PS-algol that maps to members of a
mixture of structure classes including those yet to be declared when the
map is created. This lost opportunity can lead to other costs, either
these general purpose components cannot be written within the language, so
that some other language is used, or the programmer simulates types and
languages within the original language. The former incurs the cost of
linking between languages, loss of portability, and increased programming
difficulty. The latter incurs the cost of an extra layer of

interpretation and mapping and obscure convention to trap people who
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subsequently modify the program. The worst danger of the first solution
is that it requires the introduction of a Trojan horse into the type
system. So the choice of dynamic or static checking is a matter of
choosing the appropriate trade off between security and flexibility. We
note that this is similar to the debate in mathematics between open and
closed systems. In the context of software engineering it is still an
open question as to which is preferable.

We suspect that for very large or very long lived systems local
change and hence local evolution may be necessary. In which case dynamic
binding is a necssary mechanism. The programmer should be able to choose
the points at which he wants dynamic binding, since to bind all names
dynamically would be uneconomic. Typically we would expect small units to
be statically bound and to form larger units dynamically bound together.

The choice is offered via the constancy mechanism is PS-—algol. If an
identifier is bound constantly (=) the system may assume it will not
change. If it is a variable (:=) the value may be replaced.

In either case, since many instances of a class may exist, an
instance which implements an abstract data type in a way believed to be
appropriate to that particular usage can be bound. In the latter case, if
another implementation subsequently appears more appropriate, the new
value can be assigned. There are difficulties here that have not yet been
investigated, as the instance may have local storage.

The binding mechanism of PS-algol, in which the type of a referend is
checked when it is first brought from the database, has provided

incremental type checked 1linking and loading. A considerable
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simplification is achieved over our previous system (prior to procedures

as persistent data objects) where explicit use of a type checking linker

was necessary.

5. Comparison of modules with first class functions

We can now compare the anatomy of a module with that of our
definition wusing first class procedures. In a conventional modular
language there are three separate components concerned with modules.
These are:

i) the module interface definition

ii) the module body definition

iii) the module inclusion statement

The last has already been discussed in connection with Figure 15.
The definition of a structure to carry the pack of interfaces is the first
class procedure equivalent of the module interface definition. As in
module based languages it appears both in the context where the module
body is defined and in every context where the module is used. It
completely defines the types of all objects that may pass across the
interface, and with the type matching rules in PS—algol this ensures that
only modules with correctly matching types are assembled together.
Although only procedural components of a structure/interface are shown in
the examples, other data types may appear allowing direct access between
the module and its users to some shared variable. The program development

environment may provide tools to permit this interface definition to be

invoked by referring to its name.
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The module body in a modular language usually contains concepts for
defining imported, exported and private variable lists. It usually has a
method of defining data storage and data manipulation. All these are
defined here by use of the normal algol declarations and block structure
without additional concepts.

Where a module has internal storage, there is often a need to make
many instances of the module, possibly with different initial data. This
can be achieved with these first class procedures by simply calling them
repeatedly with different parameters = no special mechanism is required.
This is illustrated in Figure 14, where each time that program is used, a
new instance of the same module is created, with a different value for
person stored within it. Note that different definitions of procedures
which yield results of some type containing fields with equivalent
procedures allows the provision of module implementations tailored to some

known pattern of use.

6. New version imstallation

With all large systems, constructed out of separate modules, there is
a problem of managing the installation of mnew versioms. It is necessary
to modify the implementation of modules and then arrange for their
subsequent use. Often this can only be done when no part of the system is
running, then the new modules are installed by a complete system rebuild.
This may take considerable resources. The alternative of replacing a
module in situ has to be carefully managed, as it certainly could not be
done safely when the module is in use if that execution were affected.

In PS-algol the transaction mechanism makes the concurrent revision
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and installation of modules safe as the effects of a tramsaction are only
visible to other tramsactions that start after the transaction has
committed. Programs starting after it will use the new one for the whole
program execution if they are written in the style shown in Figure 14.
Other sof tware tools are necessary to complete an implementation of such a
dynamic binding mechanism.

More sophisticated mechanisms can be implemented with these

facilities. For example, a program may arrange to bind a particular

version of one module to the package it constructs, by leaving it directly

referenced, or leave it to be picked up when the package is run collecting

the latest version. Software tools could be writtem, to build up systems

where groups of modules could be installed, retained, replaced etc. using

no more language concepts than the features illustrated here.

7. First class functions as a view mechanism

View mechanisms are used in databases to perform two roles:

i) to provide a stable and appropriate view to the programmer

ii) to implement protection and privacy controls.

The first class functions, together with partial application perform

both of these roles. Stability means that the underlying data may be

changed without impact upon programs it was not intended to alter apart

from possible changes in performance. The person who changes the

underlying data is usually responsible for redefining the mapping that

provides the view except where the only available mappings are so simple
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that the new mapping may be inferred. If we interpose a set of functions,
then redefinition of these functions will provide the required stability.
Similarly, they can be defined so as to provide the appropriate view and
the access controls. We have discussed this use of first class persistent
functions elsewhere [3].

Figure 14 will again serve as an example. The function saved in the
database as ‘a.Persons.MKlist’ will now only make up lists, print lists
etc. for the one person who created this database. Ihus the view of the
data has been made appropriate by allowing the person to avoid redundantly
giving their own name every time, and has also been restricted to lists
concerned with that data. Note that the control and the remapping is quite
finely controlled but not over restrictive. For example there is nothing
to stop the programmer using this database to hold other data as well, to
which they may have any view or access. This seems correct.

In Figure 14 however the view constructed is not as secure as we
might wish, as a programmer using it could operate directly on the table
which holds the set of topics. To overcome this we refine the definition,
as shown in Figure 16. The revised version prevents any misuse of the
table of topics by making it available only within the body of the
‘make.lists’ procedure declaration. The refinement also produces four
procedures to work over the data, ome to initiate a list on a topic, and
the others as before, except that they now take a topic as a parameter and
work for any list for the given person. This illustrates the radical
revision of views that may be constructed, and the way precise control

over the operations on data may be obtained.
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!Refined Program to start a database for lists

st¥uctgre error.record ( strimg error.context,error.fault,error.explain )
write "Who are you?" ; let p = read.a.line()
write "What password?" ; let pw = read.a.line()

let a.Persons.make.lists = proc( string p -> pntr )
begin
let table.for.topics = table()

let get:topic := proc( string topic => pntr ) ; mullproc
get.topic := proc( string topic -> pntr )
begin

let pack = s.lookup( topic,table.for.topics )
if pack = nil then
begin
write "You have not started that topic’n"
get . topic("dummy")
end else pack
end

let db = open.database( "library","Gigha",'read” )
if db is error.record do
begin

write "Cannot open database Library",

nson ’
ond n",db( error.fault ),"'n",db( error.explain )

structure mip.container( proc( string,string -
g —> pntr )ml
let mklp = s.lookup( "make.list.Pack":db Y( mlp ) !see FEg&re 14

structure list.pack( proc( string )add ; proc()clear ; proc()print )

let start.topic = proc( string topic )
begin
let pack = mklp( p,topic )
s.enter ( topic,table.for.topics,pack )
end

let add.topic = proc( string topic,task )
get.topic( topic )( add )( task )

let clear.topic = proc{ strimg topic )
get.topic( topic )( clear )()

let print.topic = proc( string topic )
get.topic( topic }( print )()

start.topic( "dummy" )
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structure topic.pack( proc( string )start.t ; proc( string,string Jadd.t ;
proc( string )clear.t,print.t )
topic.pack( start.topic,add.topic,clear.topic,print.topic )]
end

let db = open.database( p++".lists",pw,"write" ) .
if db is error.record do { write ''sorry mo db space" ; abort }

s.enter( "a.Persons.MKlist",db,his.make.lists( p))
commit()

A refinement of Figure 14 to give a more restrictive and convenient view

Figure 16

Figure 17 then illustrates how this view may be used. Note that the
programmer has only the four operations available, and has no knowledge of
or access to the way the lists were represented. In this case the view
was fairly appropriate for the task. Another view might have provided an

extra operation to set the current topic, thus economising on the passing

of the ‘topic’ parameter.

Iprogram to provide end user interface to lists

structure error.record ( string error.context,error.fault,error.explaln )
write "Who are you?" ; let p = read.a.lineg)
write "Your password?" ; let pw = read.a.line()

ilet db = open.database( p++'.lists",pw, "write" ) .
if db is error.record do { write "Sorry mno db space™ ; abort }

!get & unpack saved view .
let hML = s.lookup( "a.Persons.MKlist",db )

structure topic.pack( proc( string ystart.t ; proc( string,string Jadd.t ;
proc( string )clear.t,print.t )

let st = hML( start.t ) ; let ad = mML( add.t ) ; let cl = hML( clear.t )

let pr = hML( print.t )

let current.topic := "dummy" ; let todo :=

repeat

begin .
& write "‘n what shall I do?" ; todo := read.a.line()
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case todo of

"quit" : {}

“start" : { write "topic?" ; current.topic := read.a.line()
st(current.topic) }

"change'" : { write "mew topic?" ; current.topic := read.a.line() }
"add" : { write "item?" ; ad( current.topic,read.a.line() ) }
"clear" : cl( current.topic )
"print" : pr( current.topic )
default : write "Command not understood"
W'l'ite " ln"

end

while todo # "quit"

commit()

A PS-algol program utilising the view constructed in Figure 16

Figure 17

8. Conclusions

We have tried to relate to the reader the potential of combining
persistence with procedures as first class data objects. While all the
examples in the paper run on our present implementation we recognise this
as a demonstration rather than a completion of an area of research.

The goal of better programming environments led us to implement
persistent procedures. Programming will be simpler when a programmer can
work within a single environment which is described and manipulated in
terms of a simple set of concepts. The introduction of persistence in
conjunction with procedures is a step towards achieving this, as it
permits program construction from separately defined parts to be described
and implemented using the same language and same type enforcement as is
used for writing programs. A simplification which is also sought by the
authors of Pebble [6]. We differ from them in choosing to accept a

dynamic binding of program parts.

We have decided to explore such dynamic binding as we believe that
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for very large systems the cost of completely rebuilding the system to
accommodate changes will be too great, and the opportunity for rebuilding
too rare. But dynamic binding involves two costs: a delay in detecting
some errors and increased run—time checks. We argue that the delay in
detecting errors can be minimised by eager type checking, whereby the
language processor attempts to detect errors as soon as possible. We
suspect that any language powerful enough, and which also allows methods
of detecting errors, will have some errors which cannot be detected until
late in the elaboration (input errors, overflow errors and some bounds
errors are examples). By permitting the programmer to choose to defer
other checks, but still insisting that evaluation is preceded by or
includes the checks, we change only the proportion of late detected
errors. In doing so, we allow a class of programs to be written which do
more general manipulation, the DBMS, data editors and browsers etc. than
is otherwise possible. These programs seem to suggest that dynamic
binding is necessary at the interface to long term data. The cost of
dynamic checking can then be minimised by arranging to factor out checks
(ultimately to language analysis time as in static type checking) with the
aim of performing checks once only. Research into this is reported by
Owoso [22]. Further research and experience of using such languages is
necessary to determine whether this is an appropriate tradeoff .

A number of requirements of modern programming languages, abstract
types, modules, separate compilation, module assembly with interface
checking, incremental loading and views are met by the provision of

procedures as first class data objects. It has long been understood that
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it is desirable to be parsimonious in introducing concepts into a language
design. It is a challenge to see if the present experimental language
which provides the semantics can be extended to a production language,
still retaining the parsimony.

At present the language is deficient in syntactic support for some
common constructs which can be coded. This should be relatively simple to
provide. More fundamentally the types, some of which persist, and the
names, some of which persist, need to be treated more consistently as
objects in the language. Standard concepts, such as exception handling,
need to be added and our implementation of concurrency needs to be
modified to reduce overlocking and be more under programmer control.

As this is the theme of our current research we hope to be able to
report soon whether it can proceed while we retain simplicity.

The provision of procedures and procedure activations that can exist
in a database opens up a number of interesting avenues of research, some
of which we have introduced in the paper:

i) Sof tware tools: managing versions, program assembly, program and data
dictionaries, reporting on data and programs etc. can be written
entirely within such languages. There are two advantages - the
complexity of going outside the language or of building interpreted
representations is avoided and the portability of implementations is
improved.

ii) Views and complex mechanisms of authorisation can be coded within the
language. New features are first needed to allow views to be bound

to existing data if all the functions provided in databases are to be




accommodated .

iii) Dynamic mechanisms to be invoked on database operations can be
implemented. This would include those proposals such as triggers in
System/R [5] and conditions in CODASYL DBTG [8] neither of which were
implemented, we suspect because the proper binding of procedures
within the database had not been developed at that time. This could
lead to various forms of active and deductive databases.

iv) Integrated interactive environments for general or special
programing may prove easier to comstruct and to evolve given such
persistent procedures.

Since readily understood and easily implemented languages are needed
as a foundation for software engineering, we argue that serious
consideration should be given to languages which support procedures as
data objects, which have an orthogonal provision of persistence and which

are not overgrown with numerous other concepts.
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