University of Edinburgh

Department of Computer Science

James Clerk Maxwell Building
The King’s Buildings, Edinburgh

University of St Andrews
Department of Computational Science

Ll

North Haugh
St Andrews, Fife

Progress
with Persistent Programming

PPR-8-84
February, 1984

Progress with Persistent Programming

M.P. Atkinson,
University of Pennsylvania, Dept. of Computer and Info. Science
School of Engineering and Applied Science, Philadelphia, PA 19104

P. Bailey, University of St Andrews, Dept. of Computational Science
North Haugh, St Andrews KY16 85X, Scotland

W.P. Cockshott,
University of Edinburgh, Dept. of Computer Science,
The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland

K.J. Chisholm,
University of Edinburgh, Dept. of Computer Science

R. Morrison,
University of St Andrews, Dept. of Computational Science

DATA CURATOR
DOCUMENTATION

10 February 1984

Copyright (C) 1984 Data Curator Group
Dept Computer Science University of Edinburgh

Atkinson et al.: Progress with Persistent Programming

1

2

E]

5

6

1

Table of Contents
. INTRODUCTION
1.1. Structure of this chapter
. LANGUAGE DESIGN
2.1. Applying the language design principles to database languages
2.1.1. The idea of persistence
2.1.2. The data objects and the principle of completeness
2.1.3. The cost of not providing data type completeness for persistent
data
2.1.4. Summarising data type completeness
2.1.5. Introducing the conceptual store
2.1.6. Identifying the operations on the objects
2.1.7. Identifying useful abstractions
. AN ILLUSTRATIVE EXAMPLE
. CALL INTERFACES TO PERSISTENT DATA
4.1. Backing store operations
4.2. Data structure libraries
4.3. Abstract structure libraries
4.4. Summarising the call interface method
. EMBEDDED DML
5.1. An example using an embedded language
- INTEGRATING PROGRAMMING LANGUAGES
6.1. Pascal/R: a composition of Pascal and relations
6.1.1. Summary of Pascal/R
6.2. The DAPLEX extension to ADA
6.2.1. Summary of ADAPLEX
. PERSISTENT PROGRAMMING LANGUAGES
7.0.1. Other work on providing persistence
7.1. PS-algol applied to the family tree
7.1.1. Data definition in PS-algol
7.1.2. Building views on views
7.1.3. Performing an update
7.1.4. Performing retrievals with PS-algol
7.2. Summary and analysis of PS-algol
. CONCEPTUAL PROGRAMMING LANGUAGES
8.1. The family tree example in Galileo
8.1.1. A data structure for family trees in Galileo
8.1.2. Retrieving data in Galileo
8.1.3. Update in Galileo
8.2. Analysis of the Conceptual Programmming languages
. APPLICATIVE PROGRAMMING DEVELOPMENTS
9.1. Developing ML
9.1.1. Examples in standard ML
9.2. Analysis of Applicative languages
0. CONCLUSION

10 February 1984

42

44
45
45
47
48
48
50
50
50
51
54

Atkinson et al.: Progress with Persistent Programiming

11. Acknowledgements

10 February 1984

56

ii

Atkinson et al.: Progress with Persistent Programming

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:

Figure 5-1:
Figure 5-2:
Figore b-3:
Figure 5-4:
Figure 5-5:
Figure 5-8:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 8-5:
Figure 8-8:
Figure 8-7:
Figure 8-8:
Figure 6-6:

Figure 8-10:

Figure 8-11
Figure 7-1:
Figure 7-2:
Figure 7-3:

Figure 7-4:
Figure 7-5:
Figure 7-8:
Figure 7-7:
Figure 8-1:
Figure 8-2:
Figure 8-3:
Figure 8-4:
Figure 8-5:
Figure 9-1:
Figure 9-2:
Figure 9-3:

List of Figures

A Bachmann diagram of the example data
A possible representation of the example data as relations
A possible representation of the example data in DAPLEX
A query in DAPLEX to print the antecedents of Janner Curnow
A standard test for evaluating Database programming languages
Retrieval of all the females, coded in DAPLEX
Antecedants Retrieval using a Ring Structure Processor
An instance of the structure being processed by figure 4-1
Adding a new child example using 2 Ring Structure
Example of a set theoretic like program to do the ancestors
retrieval

A CODASYL schema to represent the family tree

A CODASYL subschema to represent the family tree
A Fortran program to print all the females

A Portran and CODASYL DML program to print the ancestors
A Fortran subroutine used by the program in figure 5-4

A Fortran and CODASYL DML program to record a birth
Pascal/R datastructure declaration for a family tree

Pascal/R program to print the females in the family tree.
Another Pascal/R program to print the females.

A Pascal/R program to print the ancestors of Janner Curnow
A revised version of the tree searching loop
Another rendition of a procedure to compute the next generation
Pascal/R program to record a birth
The data structure definition in ADAPLEX for the family tree
ADAPLEX program to list the females

ADAPLEX program to print the ancestors

ADAPLEX program to record a birth
A PS-algol data structure for the family trees
A PS-algol program to set up a new empty population
PS-zlgol program to store a new person procedure in the
database
A different view {abstract data type} is established
record birth of Morwenna Trefusis
A PS-algol program to print the females in a population
A PS-algol program to list the antecedents of Janner Curnow
Definition in Galileo of an Abstract Type for ®dates®
A Galileo definition of an abstract type for family trees
A Galileo program to print the names of the females
A Galileo program to retrieve the ancestors of Janner Curnow
A Galileo program to record a birth
An abstract ML type for sets
An abstract data type for any lattice
Examples of using the abstract type for sets in ML

1id

10 February 1984

10
11
11
12
12
i2
14
15
16
Vi

26

23
28
29
29
30
32
33
34
35
38
38

41
42
42
43
45
46
47
47
48
51
52
52

Atkinson et al.: Progress with Persistent Programming

Figure 9-4:
Figure 9-5:

ML program to print the list of females
Printing a list of the ancestors 1n ML

10 February 1984

52

Atkinson et al.: Progress with Persistent Programming 10 February 1984

The copyright of this document belongs to Cambridge University Press,
Cambridge, England 1984. This particular copy is produced only for academis
consultation. To cite the paper please refer to it as being in the book
Database - role and structure to be published in 1884 by CUP. The
consultation however, is serious as a more detailed and more modern survey is
in preparation, therefore, the authors would apprecizte 2ay comments, and
suggestions, particularly any notes of omission or misunderstanding. Such
notes should be sent to Maleolm Atkinson st the University of Peunsylvania.

The department of Computing and Information Science al the Usiversity of
Pennsylvania has provided the support and stimulus for the preparation of this
document. We would particularly like to thank the Dsta Base Programming
Language Seminar Class of the Fall of 1982, who collected much of the data
and bebaved as a sounding board for all of it.

it is inevitable that we will have misunderstood some people’s languages,
partly due to insufficient care, bul often because the papers we could obtain
were obsolete or gave insufficient detail. In these cases we apologise to the
reader for our inaccuracy and to the original authors for our misrepresentation.
Similarly the selection of one language for detailed study rather than another
may sometimes be arbitrary - in which case we apologise to those authors
whose work was omitted - and say to them, please be sure we have your latest
papers for the revised version. To the reader the remedy is to wait for the new
edition.

1. INTRODUCTION

In 2 preceding chapter Peter Buneman has analysed the problems of matching
programming languages and databases. This chapter re-examines that domain from
another viewpoint, as progress in the relationship between programming languages and
databases is crucial to the exploitation of both these sofiware system components.

The various developments which have influenced the way people can program with
persistent data are examined from the viewpoint of programming language design. For
engineering reasons we cannot ignore feasibility (an understanding of which has been
developed by the database community), but in this chapter the emphasis is on linguistic
issues.

The approach of language design is used to separate issues so that their independent

Atkinson et al.: Progress with Persistent Programming 10 February 1984

development may be understood and assessed, particularly of interest is the issue of how
to provide persistence. The development considered includes the early packages of
subroutines, the hosted DML’s such as EQUEL [Stonebraker et al. 76] and those used for
CODASYL databases [Olle 78]. These progress to the attempls to build integrated
languages by combining database constructs with existing programming languages to
form new languages, as in: PASCAL-R [Schmidt 78], PLAIN [Wasserman et al. 81] aund
RIGEL [Rowe 80]. Those languages combine the features of PASCAL and relations; a
similar philosophy underlies ADAPLEX [CCA83], where Shipman’s version of the
functional data model, DAPLEX [Shipman 81, is being embedded in ADA [Ichbiah el al.
79]. The view that the principle of data type completeness is of paramount importance
has led to the PS-algol experiment which takes a contrasting approach: that the eritical
step is not the addition of new data structures to a language but the provision of

persistence as an orthogonal property of all existing structures.

It is concluded that the treatment of persistence as an orthogonal property of data
structures is 2 promising strategy in the design of database languages. This prompts a

pumber of questions:

e What are the data structures we would like in these languages?

o How should current work in programming languages influence database
programming languages?

® How will the need for persistence influence language design?

® As better database programming languages become available, how will
programmer behaviour change?

@ Will the form of constructed systems change?

e Do these changes require a revision of the programming support
environments?
This chapter is an attempt to further identify these questions about language design and
to provide our view of the currently available answers.

OQur discussion is restricted to the programmer's interfaces to persistent data. One
would hope that the general principles of language design will soon influence query
languages and other user interfaces. The programmer interface, however, is important
and will remain so, as there is always a need to write complex algorithms to operate
against some persistent data.

Atkinson et al.: Progress with Persistent Programming 10 February 1984

1.1. Structure of this chapter
In section 2 a2 review of language design is given, as it pertains to imtegration with
databases. Section 3 introduces an illustrative example.

The next two sections are concerned with the history which leads to the present
languages, as it has had a marked influence on their form. Section 4 examines the use of
collections of procedures to provide database facilities in a language. It is shown to be
inadequate, though it has the advantage of flexibility; unfortunately some so-called
languages for database applications siill depend on this approach. The following section
looks at languages made by embedding a DML in an existing language. Again problems
fundamental to the approach are exposed.

The next group of three sections examine present research in database programming
languages. Integrated programming languages, persistent programming languages and
conceptual programming languages have each been allocated s section. The integraied
languages are the attempis to take existing data models and existing languages and to
derive one coherent whole. The persistent programming research takes the view that
data bases can be constructed from the data types in a programming language, and that
the task is to regulate the promotion of data to longer term persistence. The conceptual
language rescarch is the atiempt to find languages that correspond with some natural
way of organising and manipulating the data. There is overiap between categories; for
example, Galileo, presented as a counceptual programming language, is also a persistent
language.

Section 9 gives the reader a glimpse of current work in programming language design
so thal an appreciation may develop of the potential influences. We particularly aote
succinct notations, simple but precise semantics, and flexible type sysiems. We also
observe a preference for aepplicative or funclionel programming style.

The paper concludes with a synopsis of the issues that have been exposed.

2. LANGUAGE DESIGN

The aims of the programming language designer must serve the cause of making it
easier for programmiers to write and maintain programs written in the language. Sought
after properties are:

e The programs should be easy to read and understand,

e The language should be easy to learn, remember and understand,

Atkinson et al.; Progress with Persistent Programming 10 February 1984

@ The language should be succinct.
To achieve these goals the language designer has found it beneficial to adopl the
following principles [Strachey &7}:

e The principle of data type completeness
» The principle of abstraction

» The principle of correspondence.

The principle of data type completeness states that all data types must have the same

ecivil rights® and that the rules for using the data types must be c(?lnplete, with no gaps.
This does not mean that all operators in the language need be de.fufed on all (?am t.y}.)es
but rather that general rules have no exception. This principle is importaat 1n making
the langnage powerful and in making it easy to learn, understand and remember. The
avoidance of special cases leads to simpler yet more powerful languages. For further

discussion see {Berry 81, Hoare 73, Richard & Ledgard 77, Tennent 77, Wirth 74},
Abstraction is the process of extracting the general structure to allow the inessential

details to be ignored. This principle is invoked by identifying the semantically
eaningful syntactic categories and providing abstractions over them. For example:

m
Syntactic category Abstiraction
expression function
statement procedure
declaration module

The principle of correspondence states that the rules for introducing and using nan.xes
should be the same everywhere in a program. Often this refers to the rules for declaring
names in program blocks, and those for naming the parameters of procedures. But it
may equally be applied to the rules for introducing the names of fields in records, or any
other names, such as the names of modules.

The importance of locality is partly 2 responsibility of the language designer (for
example in S-algol [Cole & Morrison 82] declarations can immediately preceed the need
for the identifier, in contrast to Pascal {Jensen & Wirth 75]), and partly an injunction to
use a language wisely. It means that programmers’ design decisions should be localised.
This was called information hiding by Parnas [Parnas 72]. In practice it means that the

4

Atkinson ef al.: Progress with Persistent Programming : 10 February 1984

language designer should provide scopes and modules!, and that the programmer should
make his declarations in as local a scope as possible, and group logically closely related
code together into modules.

To organise a language design, it appears to be best to decide first what objects the
language will operate on. This can be further divided into identifying the atomic
objects, and then the constructors which allow composite objects to be synthesised from
them. Next, one identifies the operations which may be applied to the objects, identifies
the supported abstractions, introduces a store to hold the objects and [inally packages
these concepts in 4 simple syntax.

Of course design is never so simple, and the process is not simply ordered, bui involves
iteration and insight. One important iteration is to improve the parsimony of concepts.
If two concepts in the language look similar the designer must investigate whether there
is a more primitive concept that will serve both roles.

2.1. Applying the language design principles to database langusges
These stages of a design will be used to look further at language features.

2.1.1. The idea of persistence

We use the word persistence to describe thati property of data that determines how
long it should be kept. It is an orthogonal property of data, in that, in principle, any
data item may exist for an arbitrarily long time. For our purposes, we equate existence
with being potentially accessible by some programmer, or program operation. Thus the
idea is already familiar. The data associated with different procedure activations already
has variable persistence; that in the inpermost activations being most ¢{ransient, and that
in the global scope of the program being most persistent. The data in files and databases
bas been stored there in order that it may have longer persistence. The property of
persistence can therefore be thought of as a continuous variable describing one aspect of
that data.

2.1.2. The data objects and the principle of completeness

We first need to identify the objects to be manipulated. Candidate objects have been:
sets [Childs 68}, rings [Gray 67}, networks {[CODASYL 71]) and relations [Codd 70]. The
newer data models [Shipman 81, Hammer & McLeod 81, Codd 79] also imply candidate
objects. But the principle of data type completeness reminds us that the rules governing

1most query languages and data description languages fail to do this altogether

5

Atkinson et al.: Progress with Persistent Programming 10 February 1984

their manipulation should be consistent. The following examination of existing languages
will show that this principle has not been applied upiversally. Some data types }Tave
been allowed to have only persistent instances, others (those that already existed in a
sparent® language) have been allowed only transient instances. We intend to show that
adherence to he principle of data type completeness would lead to beiter database

programming languages.

2.1.3. The cost of not providing data type completeness for persistent dats
The failure to adhere to this principle has a high cost. Large parts o.f programs are
concerned with making the iransition between the two data wc.rlds {persistent and non-
persistent). The programmer has to organise a translation, ‘Whl(:h takes cc.>de and CPU
time. 1t has an even higher cost: a typical programining task requires that the

programmer understand something in the real world, and construct a model of it in the

program. As an example, consider the task of building a se‘t of pr?grams to a.?sisit in the
design of the combustion chamber in an internal combustion ex;gme. As’thls involves
chemmistry, thermodynamics, materials science, turbulent flm(.l iiynam-lcs, and the
modelling of complex shapes, it is not 2 trivial task. 1.’9#. .!t.ls typical 01'- many
programming tasks. Understanding the problem and modellmg it in fi program is h.ard
enough. Add the requirement that the data stored beiween design sessions has. to be in a
different form (a CODASYL database perhaps), and the programmer’s mtel.lectuz.ﬂ
difficulties are much increased. He has to relate the real system not only with his
program model, but also with the stored model. He also has to. implement sjnd
manipulate the mapping from stored model to program model. Thus instead of .havmg
to visualise only one mapping, he has to manage three, making his task approximately

three times as difficult.

Apart {rom this ineurring large learning and prograra design costs, it also hs?s very
severe maintensnce costs. It is easy for different programmers to visualise different
relationships between the two data. models. Consequently someone undertaking
maintenance may easily misunderstand and introduce deep errors into the software
- errors which may be manilested much later in corrupt persistent data.

To some extent the preseat interest in integrity comstrainis [Date 81] and their
centralisation [Nijssen 80] is an attempt to itreat the symptoms of this rather than the
cause. That approach will never cover all conceptual errors, since it s not feasible to
recognise 2ll potential errors, and record rules which prevent operations which may cause
such errors without preventing legitimate operations. Even were that intellectually
feasible, enforcing such a complete set of rules would not be 2 feasible engineering task.

Atkinson ef al.: Progress with Persistent Programming) 10 February 1984

A yet more fundamental objection to not adhering to the principle of data type
completeness can be identified. When someone builds 2 database it can be viewed as a
model of the real world [Kent 78]. Similarly when 2 useful program runs it can be
thought of as manipulating a real world model. For example, if 2 stress analysis program
is applied to am airframe, then the data structures modelling the airframe and the
loadings on that frame constitute a real world model. What is likely Lo be useful for one
modelling activity is likely to be useful for the other. We would expect that proven
modelling techniques in the programming languages (here called data type declarations
and abstract data types) would be useful in the database. Similarly, improved concepts
in modelling developed for databases would be useful in programming languages. There
is, therefore, a sound philosophical basis and good engineering ressoms for trying to
conflate, or at least reconcile, the development of these two arcas.

B s clearly wasteful if different code has to be writien and maintained to achieve the
same effects - in one case on persistent data, and, in the other, on transient data. We
believe that the language should be so defined that a procedure in it may be written
without knowing whether it will be supplied with persistent or transient data as the
actual values of its parameters. We call this persisfence independent programming and
believe all satisflactory languages will need to support persistence independence.

2.1.4. Summearising data type completeness

The evolution of database languages can be evaluated against this criteria of data type
completeness. We note a search for appropriate dats types, and see 2 progression
towards conmsistency in the treatment of these dais types particularly with respect fo
persistence. We expect cross-fertilisation of ideas on appropriate data types in both
directions, from language to data model, and from data model to programming language.

2.1.5. Introducing the conceptual store

Many languages make explicit the concept of a store in which to hold representations
of the manipulated objects. For example, Fortran introduces store in common blocks
and as variables. The Algols have a store associated with the nested activations of
scopes. PASCAL [Jensen & Wirth 75| and Algols8 [van Wijngaarden el al. 6] have
added another store, the HEAP which in one case is explicitly relinquished and in the
other is conventionally recovered by garbage collection {Actually this is pot strictly a

property of the language definition - see Tanenbaum [Tanepbaum 78] for an
explanation).

It is not essential that the language should have a notion of a store (and by implication
of representations). The applicative languages [Henderson 80, Darlington et al. 82} avoid

7

Atkinson et al.; Progress with Persistent Programming 10 February 1984

the whole comcept of a store. Notionally they have only va'»lue.s, the results of
expressions. This approach seems inappropriate for database applications. It d.oes n{ot
seern helpful to visualise recording the change to one person’s salary as the cl:eatlonlo .a
copy of the whole payroll, making a new record for that p.erson in passing. (dt t1s
interesting to note, however, that that was the model of pers;st.en? storage Whelfl‘ '1 a
processing depended on magnetic tapes.) The practical implementation ?f z}n applj.catll\fe
language must defect and avoid the copying of massive structures; this is not bm}x‘p e.
Storage may be used like a blackboard; so that other people can see what i’ou. ‘ave
written when you've written it (consider a reservation system). But wh‘en you "wrile on
the blackboard® in am applicative language, you get your own ne'w private blackboard.
Thus we reject the notion of not having a store. Both interpretations of the phrase (.iai:?
sharing are required: many users should be able to access .and see changes to a given
item of data, updating it within constraints, and many data iterns should be sble to refer

to a single instance of a data item, so that updates to il are reflected in all those

contexts.

What store should we have! Associated with the store are the properties of addressing
structures, accessibility and longevity of data, and concurrency ‘ of . access. The
abstraction of addressing structure in most languages is the identification of d.at,a by
variable names. Such names may lead to complex structures {atrays, collections of
records interconnected by pointers, etc). In the Algols, the scope in which those names
oceur dictates the longevity of the data: those in outer scopes lasting lo-nger than those
in inner scopes. The introduction of the heap, and of the reference f)r 901nter, allows the
longevity of the data to differ from the longevity of the scope in \.‘Vhlch 1t‘ was. created. If
we are already alert to the search for a consistent abstraction which %ncludes f,he
database’s store, we note that here is an existing range of persistence. The introduction
of the database extends that range, so that data may persist for longer than the
execution of one program. One can envisage this orthogonal property of data as‘ a
continuum from the most transient values constructed within individual instruction
executions in the CPU, to data held indefinitely as computer systems come and go. So
far, languages have provided data that has one range of persistence, and databases have

aimed at the other limit of the continuum.

An alternative view of this provision of persistence is to say that what is sought is an
adequate abstraction for the composite store of main memory and backing store device's
{predominantly dises). One existing abstraction is that of virtual memo%-y. This
abstracts over the properties of size and speed, but not that of longevity. The
introduction of mapped files [Organick 72] extended this abstraction into that of

Atkinson ef al.: Progress with Persistent Programming © 10 February 1984

persistence, by linking it with a persistent naming scheme (the filing system). This
extension is limited to a timescale where the program does not change to the extent of
changing its datastructure definitions - a well known problem in the database range of
persistence.

There is a need for a safe and easily understood concurrent use of store in a database
programming language. Influences worth considering in this search come from theory:
CCS [Milner 79, Milne & Milner 78] and CSP [Hoare 78] and from actual languages:
ADA [lchbiah et al. 79], concurrent Pascal [Brinch-Hansen 75|, OCCAM {Taylor &
Wilson 82] and ARGUS [Liskov, B. ¢f al. 83]. The first incorporation of these ideas into
linguistic concepts for database programming languages may be ADAPLEY [Computer
Corporation of America 83Jand ibe work reported on the plans for s successor fo
PABCAL/R based on modula-2 [Mall ef al. 83].

Databases have other notions of store - that differeat people looking at its contents will
see them diffevently, and will have different entitiements to operate on different parts of
the store. Most programming languages bave abrogated responsibility for COBCUTTency
and protection, leaving it to the operating system which controls data with less precision.
But programming languages are approaching that issue now, in the integration of the
program development environment and its tools for the assembly of modules into
systems, as well as in the module concept itself [Jones & Liskov 78, Lampson 83]. Later
examples show how functional abstraction can limit the operations available and provide
modified views of data. Again the plans devised by Joachim Schmids's group [Mall et al.
83} incorporate these needs.

2.1.6. Identifying the operations on the objects

It is pot helpful to talk of the operations in abstract terms, since they are different
depending on the objects they manipulate. The programming languages are
predominantly restricted to operations only on their basic data types (integer, reals,
strings, etc.} and tend to rely on procedural abstraction to provide operations on the
composite data items. In databases, bulk operations are considered useful. For example:
select, project, join, group-by for relations [Codd 70, Gray 82, Gray 81], the FOR
statement of DAPLEX [Shipman 81], the cascade delete in CODASYL [CODASYL 71,
the union, intersection and difference operations on sets etc. Well presented bulk

operations would be of benefit to most programmers even when working on transient
data.

Atkinson ef al.: Progress with Persistent Programming 10 February 1084

2.1.7. Identifying useful abstractions

Abstractions hide detail. The three already identified really do not cover the scope of
database work. Is the iransaction a good abstraction over operations? Do we have an
abstraction to cover the ways we identify, access and share data? As yet the required
abstractions for using persistent shared data have not become clear. Research is required

to identify and refine them.

3. AN ILLUSTRATIVE EXAMPLE

An example has to contain all the factors we wish to illustrate, but has ta be small
enough to fit in the paper and to be understood. In this case we wish to rework it from
a pumber of zpproaches, and to make it appear » plausible candidate for using a
programming language. Imevitably, therefore, it is contrived. To illustrate aspects of
persistent programming it has to be more complex thsn the rather simple examples often
used to illustrate programming languages. It is therefore necessary to explain the test

£ase.

Let us assume that there is a collection of data about people. For each person there is
a NAME, fhe SEX, date of birth {DOB), date of death {DOD), PATHER, MOTHER, SPOUSES
and CHILDREN., For example it could be represented by a structure corresponding to the
Bachmann diagram in figure 3-1. No assumptions are built in about social mores, but
the biological constraint that people have one father and one mother is honoured.

Figure 3-1: A Bachmann diagram of the example data

CALT
husband
Person Marriage
wife
dese ante
BirthLink

A possible representation of this data using relations is shown as figure 3-2. Underlining

10

Atkinson ef al.: Progress with Persistent Programming © 10 February 1984

Figure 3-2: A possible representation of the example data as relations
Person (P#:pn,name:s;sex:af;dob:ymd;dod:ymd)

Parent/Child (Parent:pn;child:pn)

Spouse (male:pn;female:pn,from:ymd;to:yud)

indicates the key of each relation. A possible representation using the DAPLEX style of
functional data model is shown in figure 3-3.

Figure 3-3: A possible representation of the example data in DAPLEX

DECLARE person () —> ENTITY

DECLARE nane(Parson) - STRING

DECLARE sox(Person) — STRING

DECLARE dob(Person) — DATE

DECLARFE dod(Person) — DATE

DECLARE father(Person) — Parson

DECLARE nother(Person) - Person

DECLARE child(Person) —2 Parson

DECLARE spouse(Person) —> Ferson

DECLARE fron(Person,Spouss(Person)) — DATE tDale marriage
DECLARE vo(Person,Spouse (Person)) - DATE tstaris & ends

Given this data examples which illustrate that there will be a continuing need for
programming interfaces are:

o investigale the relationship befween generation of antecedeni and date of
birth, where generation 18 counted from the most recent decendent known.

e investigate the variation in relationship between date-of-marriage of the
parents and the date-of-birth of the child.

Neither of these can be done directly in any user DML we know, though substantial
parts can be done in DAPLEX and in CODD [King 82]. Comparable actual
computations are well known to the authors in animal breeding research, horse racing
adminstration, bill of materials processing, parts explosions, and critical path analysis,
We can therefore consider them realistic, but they are over-complex for pedagogic
purposes. In fact they are rather simple compared with many engineering and scientific
uses of persistent data. The example used here is the determination of all the known
antecedents of a given individual. In faet, this can be done directly in DAPLEX as
shown in figure 3-4 which is assumed to operate on the data described in figure 3-3. We
will treat that query as needing a programming language.

11

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

Figure 3-4: A query in DAPLEX to print the antecedents of Janner Curnow

DEFINE parent(person) —> UNIORN (father (person) ,mother{person))
DEFINE antecedent(person) —» TRANSITIVE of perent(person)

FOR THE person SUCH THAT name {person) = ®Janner Curnos® DO
FOR EACH p IN antecedssts{person) DO {print (nsme(p)): print (dob(p))}

We are now in a position to define our standard test of database programming
languages. It consists of four paris communicating via a body of permanently stored

data. These are shown in figure 3-5.
Figure 2-5: A standard test for evaluating Database programming languages

1. Describe the data necessary lo represent the fomily trees of a sef of
people.

2. Demonstrale simple reivieval by priniing the names and dales of birth
of all the females. Besides indicating whether simple things can be
dons simply, this acts as en sniroduciion to many languages.

8. Demonsirate COMPUTED reirieval by enumerating the names and dales
of birth of the ancestors of Janner Curnow, as defined above (figure

8-4).

. Demonstrale updale by recording that Janner Curnow and Moyana
Trefusis have a daughier, io be called Morwenna Curnow, born 2o
Seplember 19582,

o

The final three lesis are lo be separafe programs which operate
independently. Ideally the first {wo should be consirained nof to change ihe
dala end the final one constrained to biologically reasonable births.

The simple retrieval (test case 2 of figure 3-5) might be coded in DAPLEX as shown in
figure 3-6.

Figure 3-8: Retrieval of all the females, coded in DAPLEX

FOR EACH p IN person SUCH THAT sex(p) = °F®
DO {print (name(p)); print (dob{p))}

12

Atkinson et al.: Progress with Persistent Programming © 10 February 1984

4. CALL INTERFACES TO PERSISTENT DATA

All high level languages have the ability to use a library of separately defined
procedures. The earliest attempts to provide 2 systematic mechanism for persistent data
simply involved providing such a library.

The intent was to:

s Make it easier to write programs (the programmer did not npeed to know
about the devices),

® Make it easier to move programs between machines (variations of the
environment were hidden within the library).

An evolution in these packages can be seen, and we identify a number of stages:

1. Backing store I/O: These provide the lowest level operations - opening and
closing files or tapes, reading or writing blocks.

9

2. Data structure transfer operations - An example was a system $o read/write
all {or slices of) Fortran and Algol80 arrays.

3. Software to provide operations on abstract models. An obvious example is
software to read/write records properly integrated info the language in the
case of COBOL but supplied by libraries in most cther languages.

4.1. Backing store operations

Why is there such a progression? The backing store I/O still left the programmer with
a great deal he must understand. I also tended to be device and machine specific. It
required considerable programming and system skills to arrange to save data structures
on disk. The data objects provided and manipulated were possibly an adequate model of
what could be done on magnetic tape, but ware an inadequate meds!l of the capabilities
of disk storage. There, references to data on other parts of the the disk could be stored
and exploited to advantage. But with this model, the programmer invented his own
scheme for representing and evaluating references. This was often idiosyneratic, making
software design, extension, and maintenance difficult, and leading to poor reliability.
The access and addressing capabilities of disks lead to more data sharing, so this
obscurity of use and lack of reliability became economically serious.

4.2. Data structure libraries

The data structure transfers were the first step im avoiding these problems. By
manipulating specified structures, the details of storage were hidden, and the
programmer ceased to be responsible for the representation and use of pointers. Taking

13

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

our design approach, we must consider what data object types were proposed. They

were:
o arrays from Fortran and Algol - chosen because the implementors cou.ld t.hen
avoid the problems of handing pointers and because engineering applications
processed data in arrays.

o associative structures - index sequential files, inverted files and trees chosen
because of the utility of associative access in data processing.

o serial structures - files, lists and multithreaded lists of records.

» and ring structures - chosen because they were useful in modelling hierarchies
and many-to-many relationships.

A puimber of surveys, though not explicitly expressing this viewpoint, report the state
of this search for the correct data types in the late 80s [Gray 67, Dodd 69, Atkinson 74].
Programming with these objects was still mot satisfactory, but it was a significant
improvement over programming with the 1/0 routines. The I/O routines were not the
subject of an example, as it would be obseured by volume and detail. An example of the
antecedants retrieval (task 3 of figure 3-5) against a ring structures collection of people is
given in figure 4-1. This is an arbitrary choice which mirrors the style of programming
used in RSP {Wiseman & Hiles 68] or ASP [Lang & Gray 68], as it might be called from
a language like BCPL [Richards & Whitby-Strevans 76].

Figure 4-1: Antecedants Retrieval using a Ring Structure Processor

let exampleRetrieval(Name) be §(

fet db = OpenDBfile(*Exanple®) |\mapping from OS names io program
let x = CetBaseNode(db) |1get name from which all else hangs
let y =Ring (x, 1) {iring with people on search for person
while dataPart(y, 1) # ¥ame do 11ig this he?

$(y := NextOnRing(y, 1) 11all people threaded on ring 1
ity=xdo . Viback where we started?
$(report(?person not found"); return $) $)
Ithere y refers to the node which represents the person whose
\|name is Nane and hence whose anlecedants are wanted
grites (*The Antecedants of ®); writes(Hame); writeDate (dataPart(y,2));
erites(®are*n”); PratAnte (3} %)
and ProtAnte(person) be $(
let p = Ring(person, 2)

11a recursive depth first scan of the iree
{parent ring threads as ring 24in a child
while p # person do |lare we back at the origir].a(ch::ld ?'
$(test Ringdark(p) then |1a parent is marked, a sibling isn'l
$(write(dataPart(p,1)); WriteDate(dataPart(p,2)); newline(); Prnthnte(p)
p := HextOnRing(p, 3) %) |iparent ring threads as ring 3 in parents
oF p := NextOpRing(p, 2) $) %)

14

Atkinson et al.: Progress with Persistent Programming 10 February 1984

In that example the reader has been spared much practical detail. The problem
inherent in this approach is the difficulty of visualising the data representation, yet the
necessity of doing so. For example, one needs to know that the ring of all people is the
first ring in every node, the complex rules identifying how the parent/child ring threads
nodes differently when it passes through them in different roles, the way a parent on a
ring is identified and the order in which the data is stored. The imaginary programmer
appears to have had this problem in mind when formulating his comments. The
representation he has imagined is illustrated in figure 4-2.

Figure 4-2: An instance of the structure being processed by figure 4-1

X - Pum—
BASE AR R SRt
|
Malcolmn Janna]
‘ 431013 760802]
\ !
- x L X I i
NN) S :
- L
- L
Val Tamzyn
440605 710516

The intrinsic cause of the problem is that the object types manipulated are not
embodied in the language. They are captured somewhere implicitly in the collection of
routines; Ring, dataPart, NeztOnRing, ete. The generic form of instances representing
a particular class of objects is nowhere described. This fundamentsl failure is manifest
in there being no way of naming the objects and their parts. {Using identifiers for the
constants only gives the impression of naming - the actual association of name and value
is at the mercy of the programmer.)

Consider the update operation which is shown in figure 4-3. Again much practical
detail has been omitted, such as checking the parents are alive, of opposite sex, and of
sensible age at the time. The problems of this implicit model are probably easily visible
- even in this very simple case. Note what happens if you insert a person on the wrong
ring for their role. This can be done just by mistyping a 2 for a 3. What will the
retrieval program do then? The fault would become visible only when someone tries to

15

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

Figure 4-3: Adding a new child example using a Ring Structure

jet exampleUpdate() be $(
let ab = OpenDBfile("Example”)

let x = GetBaseNode(db); StartTransactionOn(x)

let y = Ringlx, 1)

Jet Jc = FindPerson(y, °Janner Curnow®)

let ¥T = FindPerson(y, °Horvenna Trefusis®) .
let MC = CreateNode(®person®); addDataElement (MC, "Morwenna Curnow®)

sddDataElement (MC, 19820822); addDataElement (MC, true)

for i = 1 to 4 do addRing(¥C) 11 set up 4 emply rings
insertOnRing (¥C, 1, 7
insertOoRing (MC,2,Ring(JC, 3), true) {1record father

anless SameRing (Ring(¥C, 2), Ring(NT, 3)) do
insertOnRing (MC, 2, Ring(¥T, 3), true)
CommitTransactionOn(x) $)
traverse the data - possibly much later. But even without slips, the data designer hasn’t
anticipated remarriage ete. Nor is it easy to understand how to modify the structure

design to avoid this deficiency.

Such structures are the precursors of the object types that appear in later models. In
this case they appear in CODASYL, with the operations little changed,.but more
strongly typed, and with a reasonable naming convention. In RSP the persistent data
was that reachable from a node given as a parameter to the procedure,
CommiiTransactionOn, that translates data into the preserved form, and ret»urfled by
the procedure, OpenDBFile, which reads a structure from a file performing the inverse

translation.

A practical problem arose with parameters in most actual languages and packfxges.
The routine could only take arguments of specific types. Hence a plethora of variants
addRealDataFlement, addIntegerDataElement, ete., were uecessary2_ Results, such as
database pointer values, could not be returned from functions as they would not map
into the space for scalars. Consequently, awkward mechanisms such as pa..ssin‘g v.ectors
as parameters to hold results were necessary. One also has to return an indication of
success or failure. Although individually they are not fundamentally difficult problems,
the messy detail they introduce into programming made it quite clear that the library of
routines approach, and the languages as they existed were quite inadequate.

2111 uniyped languages.like BCPL they were necessary to inform the storage system of the data’s type
and size . .

16

Atkinson et al.: Progress with Persistent Programming © 10 February 1984

No explicit consideration was given to achieving persistence in these libraries. Some ad
hoc system which mapped to the filing system’s namirg conventions sufficed. Only a few
had the idea of transactions encapsulated in the library. Possibly there were utilities you
could run for recovery if your program or hardware blundered. But the fact that data
or new rings could be added to a node or removed at any time, meant that data
evolution, necessary with long term persistence, was achieved. (Today, that same effect
is achieved with schema editors and reorganisation.)

4.3. Abstract structure libraries

The problern with the data structure library was that it exposed too much detail,
particularly detail associated with representing the data on the machine. A simpler
model was sought. The most popular wag that based on sets. As an exaraple we take
Child’s Set Theoretic model [Childs 68]. This manipulated sets of tuples via 2 Fortran
call interface. The data retrieval example (test case 3 of figure 3-5) is shown in figure
4-4 after idealising and simplifying the interface, and assuming that the data is modelled
in sets similar to the relations in figure 3-2.

Figure 4-4: Example of a set theoretic like program to do the ancestors retrieval

SUBROUTINE PANT ()
REAL PERSON, PC, SOFAR, START

CALL OPENDB (®EXAMPLE")
CALL GETSET (*PERSON®,PERSON)
CALL GETSET (®PC®,PC)
CALL MTSET (PRESULT®,SOFAR)
CALL STRSEL (PC,2,X,START)
CALL PROJECT(START, {,START)
IF EMPTY (START) GOTO 200

1 CALL JOIN (START,1,PC,2,START)
CALL PROJECT(START,1,START)
iF EMPTY (START) GOTD 100
CALL UNION (START,SOFAR,SOFAR)
GOTO 1

100 CALL JOIN (START,i,PERSON,1,START)
CALL PROJECT (START,2,4)
CALL PRINT (START)
CALL DELSET (START)
STOP

This is biased towards the relational nomenclature, but is typical of the subroutine
library. The existence of many functions to map names (addresses) of one comceptual
store to the other has started appearing (the first four calls). Obscure parameters make
the interpretation of the program difficult, and leave some of the opportunities for

17

i i 1984
Atkinson et al.: Progress with Persistent Programming 10 February

undetected error of the previous example (the iutegelts identifyiil]g tuple elemextltsz. (ﬁ
hora of subroutines are necessary. Consider selection express.10n5 - o.ne wants to
- Or' for, say, 4 base types, with 6 comparators, and either with column and
ZZ;Z?:;?OS: colixmn 7and column giving 48 routines. But ITlachine efficiency wol;l:
suggest providing OR and AND on conditions - the complexity of paramdetersfnee:z
the; rises alarmingly. Transferring data from a set to the pr.ogram and per orr}r:a i
updates also requires large sets of subroutines. The net result is a very large packag

. difficult to implement, learn about and use.

Another problem not solved is to enforce consistenii in.t.erpretati(-)n of thcf da'tta: 'Irl::
can only be achieved by storing its description. Tlxls itself xteq%ures naming its fi C;.
The result is two independent name spaces - violating the principle of (:(‘)rresgom]klrvl té
In the programs it leads to an ever increaasing number of parameters and calls
perform name mappings. These obscure the program and defeat the programmer.

isi he call interface method

4'14;,5%?:&1122225 :hat these libraries constitute an exploration of potential higher lc;vel‘
data object types. They had undoubted value. But ﬂ.ley al-'e fundamentally tu(;srzun;::
a way of presenting persistent data; yet they are still being produced fas a1:Ck‘:)i;
management systems®, particularly on micros today. .The pr‘obiems are" a la °
consistent typing and a lack of consistent rules for introducing and .usmghntam“b.\
Conformity to whatever rules they had depende.d on the assumption that the
programmer wouldn’t make mistakes and wouldn't deliberately flout the rules.

The subsequent mechanisms avoid these problems, but in most cases at t.h’e expense of
flexibility in what data structures may be built and when they may be specified.

ED DML) .
5.Sfxr§i§:};§cuities of using the CALL interfaces desc‘ribed in the last sect'lon z;re
the verbosity and organisation of parameters. Another is th? lack o.f che(i{smgf ox;
cousistency between the stored data’s structure and th? p.r?gram s beh;.wxmjr. X 1h1ircsh
step, a description of the data must be stored. It is a significant evolutionary step wi

separates the DBMS from its predecessors.

With the stored data description, many new things become possible.‘ There 1? :';.placef
to associate privacy and monitoring controls with the data. 'I“h.ere .1s a pOSS.ll.)lllty ;)
defining constraints on the data - which is no more than rehmnfg its deﬁmftloﬁ. 1(;
programming language terms, the type is being refined; a type being a set of allowe

18

Atkinson ef el.: Progress with Persistent Programming 10 February 1984
operations and constraints that limit that set. There is a possibility of providing views,

and of separating the description of the mapping from program form to stored form into
many stages.

But, the experiences before this step have an influence. The data models still look like
the data object types manipulated via libraries. There is no reason why the languages
for describing the data, and those for manipulating it should become divorced. That
they did was a dead-end evolutionary experiment. Although an improvement over the
call interfaces, it has led to incompatible and incomprehensible relationships between

programs and databases. This is attributable to treating the surface issues rather than
their semantic foundation.

For the time being, let us agree that a persistent data description describing the
persistent data is mark of progress. How should it be used? It is infeasible to check each
subroutine call’s parameters against the description for two reasons:

e The applicability of the call depends on its context and the history of
operations. These are not easily discovered or recorded.

e The cost of performing the checks at every subroutine call is prohibitive.
With some systems, which conduct a moderate subset of the possible checks,

there is often 90% of CPU utilisation going on checking, and there are many
DBMS that are CPU limited.

So there is an engineering argument for deing something. The obvicus alternative is
for the compiler to utilise the data description and its knowledge of context and program
structure to do as much checking as possible at compile time. But, with the data
description and the programming language not being designed as a coherent whole, this
is very difficult. Many systems, therefore, adopted an intermediate position. Only some
of the potential checking is achieved. A preprocessor processes text which consists of a
mixture of program statements and DML statements. The DML statements are
identified by some marker. The preprocessor checks them and replaces them by code in
the host language, mostly declarations and library routine calls. The advantages are
that some checking has been done, and that the programmer has a convenient way of
writing the ®parameters®. Disadvantages are:

e The extra pass in program preparation

e The mixture of two languages

e The obscurity of error reports from the host language compilation and

18

Atkinson et al.: Progress with Persistent Programming 10 February 1984

execution

o The fact that the DBMS can’t take advantage of the incomplete set of checks
already made.

The last disadvantage is fundamental. A DBMS must protect the data. But a person
could write or modify the host language source himself, make errors or deliberately write
code which damages irreplaceable stored data. However improbable such an error may
be, the risk cannot be taken. The checks have to be made all over again.

We conclude that a safe and efficient DBMS must “know® about programs and keep
an autbenticated record of compilations of modules, and the assembly of modales into
programs. Fhus the program eonstruction system must become an integral part of the
DBMS. {There are other reasons for doing this; providing better program development

environments and improving execution efficiency.)

5.1. An example using an embedded language

Many systems now exist where the preprocessor has been replaced by a compiler which
has been extended to process the composite langusge. This alleviates some of the
problerns, though the form of the language, in particular the mixing of two
independently designed janguages, is still apparent. This is illustrated in the example
shown in figures 5-1 to 5-6. The Bachmann diagram in figure 3-1 shows the CODASYL
data structure assumed in these examples. Figure 5-1 shows the CODASYL schema
required for the example (task 1 of figure 3-5). Figure 5-2 shows the appropriate
SubSchema for producing the two queries {tasks 2 and 3 of figure 3-5). Figure 5-3 shows
the program for task 2, and figures 5-4 and 5-5 show the main program and 2 necessary
subroutine to compute the ancestors {task 3). The final figure in this sequence shows
how to record the birth (task 4 of figure 3-5).

The reader is invited to consider the general impression given by these programs.
Their size and lack of regular structure makes them difficult to tead. {(Remember that
simple problems were chosen, and that these programs were left incomplete and without
many comments.) The description of the data given in the first two figures is difficult to
relate to the programs given in the later figures. It is quite hard to see how the
algorithm for extracting the ancestors matches the given datastructure. Imagine that
you were a maintenance programimer, and hadn’t had the benefit of the discussion earlier
in the paper. Then you would find it essential to understand the relationship between

the data’s descriptionand the algorithm.

20

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

Figure 5-1: A CODASYL schema to re fami
present the family t

SCHEMA name is PEOPLE. o

AREA GENERATIONS.

AREA MARRIAGES.

DATABASENAME ruae; PICTURE A(40).

RECORD type PERSON;
Lwégil'll‘\i Srea GENERATIONS;

N mode is CALC o ;
DUPLICATES sre NOT al!o‘;led}jm USING rue:
02 NAYE; PICTURE A(<0);

02 SEX ; PICTURE A; CHECK =M>®, *F*;
o2 pop . DATE; 7
0z DD ; DATE.
RECORD ¢ype BIRTHLINK;
WITHIN area ceneraTIONs; LOCATION is VIA ANTE.

RECORD type uaRrIacE; LOCATION :
WITHIN area JARRIAGES; mode is VIA Pi;

02 FROM; DATE,;
02 TO; DATE.

SET pesc; OWNER pmsoy; MEMBER 1 ;
I\:{EMBERSHIP is MANDATORY AUTéT&LE%YC-
SELECTED by CURRENT of OWNER. o

SET awe; OWNER rperson; MEMBER BIRTHLINK;
MEMBERSHIF is MANDATORY AUTOMATIC;
S‘ELECTED by CALC USING rpraye. '

SET rw; OWNER pirson; MEMBER HARRIAGE;
MEMBERSHIP is MANDATORY AUTOMATIC;
§§LEC'IED by CURRENT of OWNER. ’

SET rw; OWNER rErson; MEMBER MARRIAGE;
MEMBERSHIP is MANDATORY AUTOMATIC:
SELECTED by CALC USING prsvE. i ’

Consider now each example in a little more detail. In doing this, we should try to

consider predominantly the relationship between language and data base model typified
h?re, a.nd try to surpress our observations on those considered independently (’ For a
discussion of Fortran see [Feldman 76} and of CODASYL see [Olle 78]). The s.ubschema
in figure 5-2 is being required to do two things:

i. Perform the accepted and logical role of a subschema, in identifying s logical
subset of the schema, and potentially some view and protection

transformatlgns. An example is the omission of the sets and records
concerned with marriage.

2. Perform a translation between the names, name formation rules and base

types to make those in the database useable in the language. This is not

21

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

Figure 6-2: A CODASYL subschema to represent the family tree
SUBSCHEMA rersy, (SCHEMA = °PEOPLE®).

ALIAS {AREA) GNRTH = °GENERATIONS®.
ALIAS (AREA) MRRGS = "MARRIAGES®.
ALIAS (RECORD) PRSH = *PERSON®.
ALIAS gRECORD) BL *BIRTHLINK® .

(L1

REALM GRTH

RECORD rasy
CHARACTER + 40 NAME
CHARACTER » 1 SEX
INTEGER =4 DUB, DOD

RECORD 8L

SET aute
SET DESC
END

Figure 5-3: A Fortran program to print all the fermales

PROGRAM FEMMES
INVOKE (SCHEMA = srrories, SUBSCHEMA = “PERSN®)
OPEN (AREA =cmmi, USAGE = RETRIEVAL)
¢ PETCH (FIRST. AREA = crti, RECORD = Prsy)
IF { DBSTAT = 2226) GOTG 200
i IF (SEX .EQ. *M*) GOTD 2
CALL PRNME(NAME)
CALL PRNDT{ DOB)
2 CONTINUE
2 FETCH (NEXT, AREA = o8, RECORD = prSN)
IF (DBSTAT .¥E. 2207)GOTO 1
FINISH(ALL)
STOP

k)

200

descriptive effort which serves any imtrinsically valuable purpose and it
introduces a translation which makes the systern harder to understand.
Examples are the use of the ALIAS statement and use of the INTEGER*4

type.

Consider the first program [ragment {figure 5-3). It shows some of the surface features
of its mixed ancestory. The different typography has been used to draw attention to the
fact that the DML sublanguage has a notion of reserved words whereas Fortran does not.
It uses keywords as the parameter passing mechanism, whereas Fortran has positional
parameters. It has its statements flagged with #t. These changes in convention inhibit
easy reading and programming. For example, could the second FETCH have been
labelled? More fundamentally, how does someone reading these programs recognise that

22

Atkinson et al.: Progress with Persistent Programming 10 February 1984

Figure 5-4: A Fortran and CODASYL DML program to print the ancestors

PROGRAM ANTE
INTEGER*2 CURGEN(3, 2, 1000)

INTEGER HWMNY, OLD, WEW

CHARACTER#40 WANT

DATA WANT/® Janner Curnow s/

¢ INVOKE (SCHEMA = °prorLE", SUBSCHEMA = *PERSN”)
s QOPEN (AREA = arty, USAGE = RETRIEVAL)

CALL COPY(WANT, NAME)
s FIND (RECORD = PrsSN)

HWHNY
oD

i
1
NEW =2
82 ACCEPT (CURRENCY = cumreex(1, owp, 1), RECORD = prSE)
CALL PRNME(WANT)
WRITE(1, 1001)
CALL WEXGEN(CURGEN, HWMNY, OLD, HE¥)
CALL SWAP(OLD, MEW)
IF(HWMNY .BE. 0) GOTO 1
¢ FINISH (ALL)
STOP

il

o

1001 FORMAT(®’s antecedents are :- ?/)
END

Figure 5-8: A Fortran subroutine used by the program in figure 5-4

SUBROUTINE NEXGEN(DBKYS, COUNT, IN, OUT)
¢ Given a generation of COUNT people in DBKYS(2, 1N, =) if puls the nexl older
¢ generalion in DBKYS(x, OUT, =) leaving the size of that generction in COUNT.
INTEGER#2 DBKYS(3, 2, 1000)
INTEGER COUNT, IH, QUT
INTEGER INCNT
INVOKE (SCHEMA = sprorLe®, SUBSCHEMA = *PERsy®)
INCHNT = COUNT
COUNT = O
DO 10 I = 1, INCNT
FIND (DBKEY = pekys(1, IF, 1))
IF (EMPTY, SET = ANTE) GOTO 10
FIND (FIRST , RECORD = L, SET = ame)
CONTIRUE
FETCH (OWNER , SET = pesc, SUPPRESSING = awte)
COUNT = COUNT + 1
ACCEPT (CURRENCY = pskvs (1, our, count), RECORD = PERSW)
CALL PRNME(NAME)
CALL PRNDT(DOB)
& FIND (NEXT, RECORD = L, SET = ante)
IF(DBSTAT .NE. 0307) GOTO 1
10 CORTIRUE
RETURN
END

o 3pOB

NAME has been properly introduced and initialised. For those not familiar with
23

Atkinson ef al.: Progress with Persistent Programming 10 February 19884

Pigure 5-8: A Fortran and CODASYL DML program to record a birth

PROGRAM ADDMC

CHARACTER#40 JC, uT, MC

DATA JC/®Janner Curnow %/,

¢ MT/"Moyanna Trefusis ?#/, MC/%Horwenna Curnow e/
s INVOKE (SCHEMA = *peorLE?, SUBSCHEMA = *PERSH®)
s OPEN (AREA = "ammv*, USAGE = EXCLUSIVE)

CALL COPY(JC, NAME)
3 FIND (ANY, RECORD = prsi)
IF(DBSTAT .NE. 0) GOTG 100
CALL COPY(MT, NAXE }
¢ FIND(ANY, RECORD = rrsH)
1F(DBSTAT .HE. 0) 6OTO 101
CALL COPY(*F®, SEX)
DOB = TODAY()
DOD = 0
2 STORE (RECORD = prSH)
CALL COPY(JC, NAME)
4 FIND (ANY, RECORD = prsy, SUPPRESS = awie)
3 STORE (RECORD =)
CALL COPY(HT, WAME)
z FIND (ANY, RECORD = rrsy, SUPPRESS = ante)
STORE (RECORD =58L)
¢ FINISH (ALL)
STOP

CODASYL, DBSTAT, and funny rumbers such as 2207, are used to inform the program
of the results of the last action. The peculiarity of the mechanism is a direct
consequence of the mismatch between language and database.

Taking ancther look at the program to list the antecedents (figures 5-4 and 5-5). we
can see the mismatch becoming more serious. The absence of constructed types in
Fortran like RECORD and SET means that it is hard for even a good programmer to
show the relationskip between his algorithm and the data structure in the database. But
lack of a good set facility in the language has led the programmer to code an algorithm

which is also wrong in at least two respects:

1. It searches the family tree by constructing seis of people corresponding to
each generation in the array CURGEN, alternate generations having the
second index 1 or 2. One only needs to go back 13 generations, or a little
over 200 years for humans to get an overflow of this representation. If that
happens, one suspects that the maintenance programmer would patch the
program so it checked COUNT didn't become greater than 1000, and/or
increase the size of CURGEN. This wouldn’t solve the problem as if we go
back to the time of Christ, each person would have ~2109 4 ncestors printed.

24

Atkinson ef al.: Progress with Persistent Programming " 10 February 1984

2. The ®sets® weren't in fact sets, so our apocryphal programmer, checks a
person isn’t in CURGEN before putting him in. But that doesn’t take care of
the problem either as people may have common ancestors different distances
up the tree on different branches.

The conclusion is that this program is basically wrong. Yet it isn’t apparent, from the
program or the data, and the problem is unlikely to show up on test data. When it does,
it will be difficult for the maintenance programmer to make the fundamental changes
necessary, because he will not have presented to him a description of the data and
algorithm which makes clear what is happening. Yet this is a version of 2 common
problem, described after being simplified to the point of triviality.

As a final demonstration, note that the update program in figure 5-8 inserts the two BL
records it creates into two sets each. You certainly can’t deduce that from the program,
and it would be quite hard given ali the information in Figures 51 through 5-6 to
convince yoursell that the correct parentage is recorded. Take up the challenge now,
before you read on.

Most database programming is done in contexts similar to this: PL1 4 5QL, COBOL +
CODASYL, COBOL + FORTRAN ete. It is litile wonder that it is error prone and
expensive. However, the investment in existing databases and programming languages is
so significant that research into improving this interface is undoubtably worthwhile.
Buneman has developed a technique that is appropriate for strongly typed languages
such as Pascal and Ada [Buneman ef al. 82] and continues to develop interfaces, for
example using the Zermelo-Frankel notations of KRC [Buneman & Davidson 83].

8. INTEGRATING PROGRAMMING LANGUAGES

Dissatisfied with just glueing predefined languages together, researchers have
attempted to extend programming languages with database facilities, in a way which is
consistent with the original design philosophy of the parent language. It is difficult to
delimit precisely where this group takes over from embedding languages, and it is
difficult to decide where such languages should be treated as totally new languages. We
consider here the languages which look like extensions of Pascal with relations:
Pascal/R [Schmidt 77, Schmidt 78], PLAIN [Wasserman ef al. 81}, RIGEL [Rowe &
Shoens 79}, THESEUS [Shopiro 78], and a language which looks like an extension to
ADA: ADAPLEX [Computer Corporation of America 83].

25

Atkinson et al.: Progress with Persistent Programming 10 February 1984

8.1. Paseal/R: a composition of Paseal and relations

Figure 8-1: Pascal/R datastructure declaration for a family tree

Type Pnun = integer;
Date = Record day:1..31; month:(Jan, Feb, ...): year:integer end;
PersonRec = Record po:Pnum; name:string; sex: (M, F); dob, dod:Date end:
BirthRec = Record parent, child: Prum end;
PersonRel = Relation <pn> OF PersonRec;
BirthRel = Relation <pareat, chiid> Of BirthRec;

Var People : DataBase person: PersonRsl; pc: BirthRel end;

For tutorial purposes, the language Pascal/R is considered further. We choose it
because it is both the earliest, and simplest of these languages and in many respects the
best. It has been implemented on the DEC System 10 computers and used both for
research and for large scale commercial applications. A suesessor to it, DBPL is under
construction for the DEC VAX computers [Mall ef al. 83] based on Modula-2 [Wirth 83].

Figure 6-1 shows a data structure which would represent our standard example {task 1
in figure 3-5). Compare this description of the date structure with that given in a
relational description language figure 3-2. You will notice that the end effect is very

¢ and pamed as well

similar, except that the types of the components have been identifi
as the instances, This is an advantage, in the semse that new wariables could be
introduced for use in the program with little extra effort. The notation Relation
constructs & relation type from the record type given, and at the same time gives a list of
fields of that relation which will serve as a unique identifier. The construct DataBase is
ased here to construct 2 new variable in the program, whose value is a database of two
relations, PERSON and PC. We note in passing that this is a very general mechanism for
describing a database, and that in principle the language could allow any datatype
within the DataBase construct. If it did, then the provision of persistence in Pascal/R
would be properly orthogonal, and the DataBase coustruct would serve to specily the
name, typé and naming system of data to have persistence. Probably for engineering
reasons and lack of resources, the Pascal/R team have only implemented this construct
for fields of type relation. They have also restricted the concept, allowing only one such
variagble per program, denying the programmer the chance of writing programs that
operate between databases. They have not permitted it to occur within a procedure, so
that it is not possible to provide a procedure library for use with a database without
requiring that the user learn unnecessary details about the database. The allowed ficlds
within a record that is to be formed into a relation are also restricted to simple types.
The system for naming and describing them, however, is entirely consistent with the
other notations of Pascal and can be used quite generally throughout the program.

26

Atkinson ef al.: Progress with Persistent Programming " 10 February 1984

Figure 8-2: Pascal/R program to print the females in the family tree.
Program femses(Peopls, Output):

Type Poun = integer:
Date = Record day: 1..31; month: (Jan, Feb, ...); year: integer end;
PersonRec = Record pn: Poum; nase: string; sex: (¥, F); dob, dod: Date end;
BirthRec = Record parent, child: Pnum end;
PersonRel = Relation <pn> OF PorsonRec;
BirthRel = Relation <parent, child> OFf BirthRec;

Var People : DataBase person:PersonRel; pc:BirthRel end;
{declaration of WriteDate and WriteName}
Begin
With people Do
Foreach p In person Do
ir p.sex = F Then
Begin writeName{ p.nane)}; WritsDate{ p.dob) end;
end.
Figure 6-2 shows such a Pascal/R program using these data types to print the list of

females {task 2 of figure 3-5}.

Note that in this program, the existing database is bound to the variable describing it
via a program parameter. Presumably, the system verifies that the description given in
the program and the description stored with the data are compatible, before executing
the program. This could in principle achieve the effects of both the subschema and the
INVOKE operation shown in the last set of examples. Pascal/R does not utilise this
opportunity, nor does it allow programs to operate on more than one database. The
iterator Foreach has been introduced to solve one of the problems that must be solved
in any language that introduces large scale types, such as relations, into a language
which hasn’t had them before. The problem is to make a transition from a group of
objects to an individual, without introducing s complicated selection rule. Schmidi
chose to introduce the new type as an extension of the idea of set [Schmidt 78], and the
Foreach operator then implements the axiom of choice. We note in passing that it is
consistent with the iterator suggested by Tennent [Tennent 77] for other Pascal data
types, such as arrays. Actually Schmidt hedges his bets a little, as he also provides an
interface rather like Pascal's operators on File structures. The program to enumerate
the females is simple to read, and can also be expressed using more of the relational
expressions provided by Pascal/R. A revised and abbreviated version which does this is

shown in figure 6-3.

The transformation of the former program into this program is straightforward, but
the effects of doing this are significant. For example, it has been possible to give the
subset to be printed a meaningful name, and the method of comstructing it is similar to
that of the relational calculus query languages. These have an advantage of being

27

Atkinson ef al.: Progress with Persistent Programining 10 February 1984

Figure 8-3: Another Pascal/R program to print the females.

Program feames(Peopla, Output);
Type Poun = integer; ... {The remaining type declarations)
Var People: DataBase person:PersonRel; pc:BirthRel end; females:PersonRel;
{declaralion of %riteDate and WriteNane}
Begin
With People Do
Begin
females := [Each p In person: p.sex = F};
Foreach p In fessles Do
4 Begin WriteNane(p.name); WriteDate(p.dob) end end
end.

concise, and allowing optimisation and sensible use of access structures.

The program in figure 6-4 demonstrates how Pascal/R might print the ancestors (task
3 figure 3-5).

Figure 8-4: A Pascal/R program to print the ancestors of Janner Curnow

Program Ancestors{ Peopls, Output);
{Declarations of types and People as in figure 6-2)
Var Temp, Generation, Ancestors:ParsonRel; p:ParsonRec;

Procedure NextGen(0ldGen: PersouRel; Yar YewGen: PersonRel);
{given @ generalion in 01dGen, ¢t calculates the next in HewGen}
With People Do
ewGen := [Each g In Person: Some b In pc: (q.pn = b.parent and
Some p In 01dGen: p.pn = b.child) }:

Begin
With People Do
Begin
Ancestors = []; Generation := [Fach p In Person: p.name='Janner Curnow’};
While Not eapty(Generation) Do
Begin

HextGen{ Generation, Temp); Ancestors :+ Temp; Gemeration := Temp end;
writeln('The ancestors of Janmer Curnow ara: ');
Foreach p In Ancestors Do

Begin writeName(p.name); ¥riteDate(p.dob) end end
end.
This program illustrates the value of being able to manipulate the same types of data
when they are temporary as when they are persistent. The introduction of the
ANCESTORS, GENERATION, and TEMP varisbles and their manipulation by assignment
and set union { :+) illusirate this. For the first time in our examples, the result does not
contain errors, as the variable ANCESTORS is treated as a set. The slightly revised
version of the tree scanning loop shown in figure using, in addition, set difference {-)
offers some improvements. If the data happened to erroneously contain cycles, this
program would still converge. If it contains people who are ancestors via more than one

28

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

Figure 8-5: A revised version of the tree searching loop

begin NextGen (Generation, Temp); Temp :- Ancestors; Generation := Temp;
Ancestors :+ Temp; end

path, these paths being of different length, it will only search their ancestors once,
whereas the earlier version would search once for each path by which they were reached.
For deep trees, such as the data structures that occur in parts explosions, and for animal
and plant breeding data where inbreeding is deliberate, the change should be a
significant improvement. The simplicity with which the programmer can write such
operations is impressive. It is likely to enable not osly more readable and correet
programs to be written, but also to make feasible global optimisations such as this last
modification. It is a sympiom of the difficulty of being completely consistent when
extending a language, that we could not write:
Generation := NextGen{Generation);

and hence avoid the introduction of the variable TEMP which does not contribute to the
clarity or efficiency of the program. It is a failure of the design principle of data type
completeness, which is inherited from the parent language Pascal. However, further
failures have been introduced by the Pascal/R team: the restriction on ficlds in relation
records and database variables, for example. These would actually prevent one from
having fields of type DATE in the PERSON records as we have.

For those who prefer the more explicit specification of the next generation the
procedure NEXTGEN could have been written as shown in figure 6-6.

Figure 8-8: Another rendition of a procedure to compute the next generation

Program Ancestors2(People, Output };
{Declaraiions of types and People a8 in figure 6-2}
Temp, Generation, Ancestors: ParsonRel;
Procedure NextGen(0ldGen: PsrsonRsel; Y ar HewGen: PersonRel)
{given a generaiion in 01ldGen, it calculales the next tn WewGen}
With People Do
Begin
HewGen := []; {An empty set of Ancestors}
Foreach p In 01dGen Do
Foreach b In pc Do
Foreach q In Person Do
If q.pn = b.parent And b.child = p.pn Then NewGen +: [ql;
end;
{The rest of the program}

It is interesting to note, that not only is the programmer {ree to express the algorithm in
this and many other possible ways, but that the Pascal/R team have managed the
considerable engineering feat of detecting most of the cases where such iteration can be
transformed into an expression which they can safely optimise {Jarke & Koch 82, Jarke

29

Atkinson et al.: Progress with Persistent Programming 10 February 1984

& Koch 83]. This is important as it allows the programiner a pecessary freedom.

These examples illustrate a conciseness, and a consistent and complete description of

the program and data, which is a major step forward. Similar examples might have been
constructed in PLAIN, RIGEL or THESEUS.

Finally consider the example in figure 6-7, which shows how a new birth might be
encoded.

Figure 8-7: Pascal/R program to record a birth
Program RecordBirth(Input, Output, People);

Type Pnum = integer;
D = Array [1..5] OF char; {NOTE}
PosInt = 0..1000000; {NOTE}
Dats = Reeord day:1..31; month:(Jan, Fob, ...); year:integer end;
Perzoniec = Record pn:Pnum; name:string; sex: (M, F): dob, dod:Date enci-
BirthRec = Record parent, child: Pnus end;) ' ‘ ’
UIDRec = Record nme:ID; {NOTE}
value:PosInt Fnd; {NOTE}
PersonRel = Relation <pa> OFf PersonRec:
BirthRel = Relation <pareat, child> OFf BirthRec:
UIDRsl = Relation <ane> OF UIDRac: (NOTE}
Var Psople : DataBase person: PersonRel; pe: BirthRel;
UIDs: UIDRel end; (NOTID
JCrel, MTrel: PersonRel; JCrec, MTrec: PersonRec; JCpn, MTpn Nextpn: Pnun;
PNrsl: UIDRel; PHrec: UlDrec; (NOTEY S
p: PersonRec;
Begin
With People Do
Begin

iCrel := {Each p In PersonRel: p.name = *Jamner Curnow’};
this(JCRel, JCrsc); JCpn := JCrac.pn; ’
¥irel := [Each p In PersonRel: p.nagme = "Moyans Trefusis’];
this (WTRel, WTrec); MTpn := MTrec.pn;

{Check consisiancy constrainils here}

{Gel last used pn, record one to be used) {NOTE}
PHrec := UIDs['PN '; {NOTE>
Hextpn := PHrec.valus; {NOTE}
Hextpn := Nextpn + 1; {NOTE)
UIDs :& [<PN °, Nextpm>]: {NOTE}

{Create and insert a record for the new baby}
person :+ [<Nextpm, "Horwenna Trefusis’, F, <22, Sep, 82>, Alive>]:
{Create links Lo parents and add those to the births relation}
p(ci i+ [<ICpn, Wextpn>, <HTpn, Nextpns]; emd
end.

‘Thls program does make clear how the birth is being recorded. However there are some
infelicities.

30

10 February 1984

Atkinson ef al.: Progress with Persistent Programming

For example, one would like the value of the last used identifier to be held in PEOPLE
in the following fashion:

Var People: DataBase person: PerscnRel; pc: BirthRel: Hextpn: integer end;

So that it may be used directly, and incremented directly, rather than via the
circumnlocutions highlighted in the program with NOTE comments. Similarly, it would
be desirable to be able to keep with the database definition as constant fields of PEOPLE,
the values to be used for ALIVE or any other such constants. Again we see the
importance of the principle of data type completeness. But at least Pascal/R improves
on Pascal in this respect by introducing a notation for the literals of more of its
datatypes; that is for records and relations. As Berry has remarked [Berry 81}, this
deficiency of Pascal was not shared by Algol68 [van Wijngaarden et af. 69].

8.1.1. Summary of Pascal/R

Within the confines already established by Pascal, Pascal/R achieves a consistent
treatment of type and of name spaces, so that the program and database have an
obvious relationship. The introduction of the new iterators and the relational calculus
expressions has significantly enhanced the power of the language for expressing typical
database operations. There is also a good interactive facility called DIALOG, which
enables guick ad hoc examination of the database. We consider this of importance to the
programmer. The two deficiencies that Pascal/R inherits from the Pascal philosophy are
a lack of data type completeness {for example only relations may be fields of a database
variable, only one such variable may occur per program and it may not occur within a
procedure) and the daiatypes available as domains in a relation are restricted to some of

the Pascal types.

8.2. The DAPLEX extension to ADA

The ADA extension, ADAPLEX, being developed at the Computer Corporation of
America {CCA), in Boston, brings in new ideas. The major impact is an attempt to
provide a much richer set of datatypes for modelling the persistent data. These are the
datatypes of the functional data model according to DAPLEX [Shipman 81} and include
the notions of sets, of any entity being a value, of functions whose resuits are single
entities {Single valued functions), of functions whose results are sets (Multi-valued
functions), and of type hierachies and property inheritance. More has already been said
about this data model in other chapters, so we concentrate here on the combination of
that model with ADA.

The task of combining 2 new concept with ADA is not straightforward, as there is a
limited understanding of how to implement ADA, and the language is already complex.

31

Atkinson el al.: Progress with Persistent Programming 10 February 1984
There are restrictions which prevented CCA from altering the language ADA in any
way, and the project was undertaken in combination with an ambitious project,
Multibase [Smith ef al. 80a, Smith et al. 80b], to build a heterogencous distributed
database system. Thus we look here at only one aspect of a very large scale project. To
do this, we consider first how DAPLEX is introduced into ADA.

Instead of using the existing record types in ADA, a new type ENTITY is introduced,
with a notation similar to that for records, rather than the notation used by DAPLEX.
Any ADA module that operates on the persistent data manipulates these entities, and
the values within them. Preparatory to doing this, 1t must declare the entity types it
will use, and the relationships, among their types. The idea of a set is introduced in a
limited way. Seis would be generally useful, but they can only appear in the context of
an atomic statement, and types constructed using set of cannot be passed as
parameters, or as results, and cannot appear in arrays or records. Though
understandable because of the constraints on CCA, we find this lack of data L\'};e
completeness irritating. Even mere irritating is the fact that one canuot write gen;,ric
operations, such as union, over sets.

Figure 8-8: The data structure definition in ADAPLEX for the family tree
database Genealogy is)
type GENDER is (M,F);
type MONTH is (JAN, FEB, MAR ...);
type PERSON; --Needed for recursive definition
type PERSON is emtify
Name : STRING(1..20);:
Sex . GENDER;
Dob_day : INTEGER range i..31;
Deb_month : MONTH;
Dob_year: INTEGER;
Hother : PERSON withnull;
Father : PERSON withnull;
Children : set of PERSON;
end entity;
unique Nane within PERSON;
end Gsnealogy

We should now look at a few examples of how we believe ADAPLEX programs may
look when the language is available. The first figure {6-8) accomplishes the task of
describing the data structure to represent parentage (task 1 of figure 3-5). Note that a
database as declared in this example is similar to an ADA module. This is a promising
approach as, if taken to its logical conclusion, it will introduce names for database
components in exactly the same way as they are introduced for program components.

32

Atkinson et al.: Progress with Persistent Programming 10 February 1984

Another language construct in ADA, which they might have made a database equivalent
10, is the task. This might have been sensible, as many iasks require concurrent access
to a database, which would match with ADA’s inter-task structure. As in Pascal/R, the
allowed values within an entity are restricted, here to scalar types, strings, other
entities, and sets of these. In particular, dates once again could not be modelled with
their structure, and individual ficlds associated by naming convention have been used. It
seems strange to have to think of the elements like SEX, MOTHER, etc., as functions when
they look like traditional fields, but the difference shows only in the way the semantics
are organised and explained. Thus the fields NAME through FATHER introduce single
valued lanctions (Shipman's single arrow —), and the field CHILDREN introduces a
raultivalued function. The withnull construct allows those fields an undefined value

when the parenis are not known.

Figure 8-9: ADAPLEX program to list the females

with Genealogy;
uae Genealogy;
Print Females: stomic
for each P in PERSON where Sex(P) = F by Neme(P) loop
PUT(Name (P)); PUT(Dob_day(P)); PUT(%/%); PUT(Dob month(P));
PUT("/®); PUT(Dob_year(P)); NEW_LINE;
end loop;
end atomic;

Given this data structure, the program shown in figure 6-9 will print the list of females.
The extent attribute of an entity class name gives access to a set of all the instances of
that entity class, bowever, it is implicit after in in the for each statement. for each
bas a similar role to that which it plays in Pascal/R, providing iteration over the set.
The by coastruet here allows the programmer to specify a sort order in which he wants
the elements of the set presented. This is of practical value, and is neatly incorporated
into the loop statement. The atomie construct is also new. It performs two roles: it
identifies the paris of programs where the new constructs introduced as accessories to
standard ADA may appear. It also, when updates are coded, delimits the units of
transaction. This sort of construct is obviously necessary in any complete database
language. It allows the runtime system to organise comcurrency control, as any
statement which references the database must be within an atomic statement, and it

allows commitment or rollback of transactions to be organised.

The program shown as figure 6-10 shows how the ancestors may be printed {task 3
figure 3-5). Three set variables Generin, NeztGen, and Anceslors are introduced, to
hold the generation currently being considered, the parents of that generation, and the
total set of ancestors located so far, respectively. The algorithm used is similar to the

33

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

Figure 6-10: ADAPLEX program to print the ancestors

with Genealogy;
use Gonealogy,
Compute_Ancestors:

declare o (
Genertn, HextGen, Ancestors : set of PERSON; -~ Initialized to emply

atomic .
include (P in PERSON'EXTENT where Hame(P) = ®Janner Curnow®} into Genertn;
while cenertn is not empty loop

include Genertn into Ancestors;
tnclude Mother (Censrin) inmto HextGen;
include Father(Genertn) Imto NextGen;
exclude Genervn from Genertn; --emply the set;
include NextGen into Genertn; .
exclude NextGen froim NextGen; -~ditlo
end loop;
for each P in Ancestors loop
PUT (Hans (P)); PUT(Dob_day(P)); PUT(Dob_month(P)); ...; WEW _LINE;

end loop;

end stomic;
basic one used for Pascal/R (figure 6-4), but it was necessary to flatten the recursion into
an iteration as it does not appear possible to pass the sets as parameters of procedures.
This is an alarming shortfall from the principle of dala type compleleness, and though
the consequences aren’t serious here, this deficiency conld result in very unstructured
and obscure code. By a similar omission, 1t was not possible to simply assign new values
10 set variables except by the device of arranging that the destination set be empty, and
then by imeluding the new set into it, which performs a set union. It seems that the
designers of the language did not accept that people would want to program with the
dats. types they were allowed to store in the database. Similarly we would have

preferred to write

Genertn = {}
rather than the less obvious

exclude Genertn from Genertn
but this is explicitly dissallowed in the reference manual [Computer Corporation of
America 83] page 14 of section 2. There are two reasons given for this omission. The
ADA philosophy frowns on criptic symbols such as -+ for set union. That problem can
be overcome by using words such as becomes and without. The assignment statement

is considered dangerous, as in

PERSON'EXTENT becomes empty ‘
which might delete the whole of the database. This argument is false, as there will
always be many ways in which a programmer can destroy a database in any language

34

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

which is powerful enough to be useful; making the language more inconvenient only
inereases the chance of doing it accidently.

Figure 8-11: ADAPLEX program %o record a birth

with Genealogy;
use Genealogy;
Add_Person:
declare
Child: PERSON;
atomie
Child := mew PERSON
(Father = {P in PERSON where Name(P) = ®Janner Curnow®},
¥other =% {P im PERSON where Namo(F) = "Noyans Trefusis®},
Name == "Morwenna Trefusis®,
Dob_day == 22, Dob_month = SEP, Dob_year = 1982,
Sex == F, Children ={});
include child into Children(Father(Child));
include Child into Children(Hother(Child));
exception
when FULL_ENTITY =»
PUT("*Can’t find parents®);
when UNIQUENESS CONSTRAINT =>
PUT("Duplicate child’s name®);
end;
end atomic;

The figure 6-11 iliustrates how to program the update task. Again we see set selections
from the extent of a class. The example program creates a new entity of type person
whick will be automatically included in the extent of person. It has to be explicitly
included in the sets representing the children of each parent. It uses the exception
mechanism to abbort the transaction if the dats is inconsistent.

8.2.1. Summary of ADAPLEX

Both these integrated languages {(Pascal/R and Adaplex) have much in common. They
both show a very counsiderable improvement in the clarity of programs, and in the power
available from quite concise notations. However, the ADAPLEX endeavour seems to
suffer from even less consistent treatmeni of data types than Pascal/R. This is
unfortunate, as basing the data model on functions, which are already a concept in the
programming languages, should have led to a consistent treatment of the persistent and
transient data. It is not the ideas of DAPLEX that lead to this shortcoming, but the
poor treatment of functions in ADA. As functions are not even permitted as parameters
in ADA, let alone treated as first class data objects, it is not surprising that ADAPLEX
has had to construct an independent set of concepts. The maintenance rules of ADA
then prevent those concepts from pervading the whole language. It is surprising that the

35

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

ADA design team [Ichbiah et al. 79] did not consider the issue of how to program with
persistent data, since the use of stored data is so pervasive. CCA in tackling this issue
have taken up the important challenge of trying to repair this shortcoming, » step which
requires both vision and courage. So, one must admire ADAPLEX as an engineering
feat. It is not through lack of design effort that ADAPLEX is as it is. The majority of
decisions in its design are justified, given our current understanding of how to implement
persistence, by the need to engineer a system that will perform adequately with large
distributed bodies of data. At present, the implementation effort is concentrated oun an
interactive subset, together with Multibase and & database handler in ADA.

At least one other attempt is being made to construct s persistent programming facility
for ADA [Horowitz & Kemper 83, in this case by the addition of relations.

7. PERSISTENT PROCRAMMING LANGUAGES

In a series of experiments, the persistent programming group at the universitics of
Edinburgh and St Andrews in Scotland have been trying to develop a consistent
treatment of persistence [Atkinson 78, Atkinsen ef al. 81, Atkinson el al. 83a, Atkinson
et al. 83b, Atkinson et al. 83¢c, Cockshott et al. 83]. Their motives include:

e An attempt to demonstrate the value of giving high priority to the pr'incip]e
of data type completeness, particularly as apphied to a data item’s right to
persist, which is defined to be independent of data type.

o An attempt to demonsirate that the fradifional data model based on types
which are easy to engimeer In a computer, (ie records, arrays and references)
can form an adequate data model for data outside as well as within programs.

s An attempt to demonsirale that functions can be first class data objects
persistent languages with assignment, and that such functions can provide
many of the traditional database mechanisms.

As a consequence of a rather different target, no new, higher level {bulk) data types are
introduced into the language directly. As the following examples show, this has the
advantage of Ilexibility and the commensurate cost of a requirement for rather detailed

programming.

7.0.1. Other work on providing persistence
A similar project, adding persistence to ML, was undertaken at Pisa as the language

ELLE [Albauo 82). ELLE has developed into Galileo, discussed in the next section.

o

Atkinson el al.: Progress with Persistent Programming 10 February 1984

APL [Falkoff & Iverson 73] and LISP (or rather derivatives like INTERLISP
[Teitelman 75)) have had a form of orthogonal persistent data for some time. This form
is in fact used by other applicative languages. It consists of a mechanism to save and
restore the current workspace. The shoricomings of this approach we have related
elsewhere [Cockshott ef al. 83]. Problems of scale, lack of a transaction mechanism, and
lack of adequate mechanism for the independent development of program and data are
the chief problems. We note that it is in the mechanism of saving and restoring the
workspace, usually to and from some specified file, that the purely applicative language
proponents actually implement the updates we consider essential, ie they do it manually
with the aid of the operating system.

Recently others have considered applying the approach to languages with assignment
in various ways. Brooker [Brooker 82] has proposed an extension of BCFL. This
introduces a particular data model through a procedural interface. Another persistent
extension of BCPL has been implemented in Cambridge {Gregains & Wiseman 84]. Here
the implementation is limited by the low level nature of BCPL. Consequently the
programmer still has much responsibility for the correctness of structure representation,
which must surely be especially unsafe with persistent data. Similarly it is not possible
to operate with more than one database at once. Apother attempt at designing a new
language with orthogonal persistence is given in [Cormack 83]. This uses an explicit
specification of the persistence of objects. Hall has suggested an extension to ADA to

provide orthogonal persistence [Hall 83].

7.1. PS-algol applied to the family tree

In presenting PS-algol, the power of functions to provide a view of the initial definition
will be presented first, then the update problem and [linally the query tasks will be
coded.

7.1.1. Data definition in PS-aigol

The program in figure 7-1 shows how a comprehensive data structure for the family
data might be defined. The structure construct defines a record class. The pntr
construct defines a type which ranges over tokens for all the existing instances of those
classes and the special token nil. An asterisk preceding a type denotes the type which is
all vectors of that type. Note that pointers are mot constrained to have members of a
particular class as a referend, so that the programmer has had to use comments to make
his intentions clear. The structure class population has been introduced to demonstrate
that sophisticated index structures may be built. The definition is not explicitly
transferred to a database by a programmer, but as a programmer uses data in programs,

37

Atkinson ef al.: Progress with Persistent Programming 10 February 1984
Figure 7-1: A PS-algol data structure for the family trees

structure date(int day,month,year)
structure person(

int pn; tguaranteed unique
string nenme; tpergong name
bool sex; t females are true
patr dob, tto date (of birth)
dod, tio dale {of death)
mother, tio a person record
father; tto a person record
«pntr kids, tlo person records
spouses) tlo marriage records
structure marriage(
paotr busband, tto @ person record
wife, tio a pergon record
began, tlo a date record
ended) tto a date record or nil
structure population(
pntr TbyH, tto a table person records indered on pn values
TbyNre, 1pop. by lustname concalennaied with decade
TbySnd) tsaine population indexed on sound of lasl name

1Assume a number of independent populations accessed from the main fable.

the corresponding definitions migrate to the database, so that a description of all the
data in the database is acereted there.

Figuare 7-2: A PS-algol program to set up a new empty population

structure population{pnér TbyN, TbhyMme, TbySnd)
fet pesople = open.database(“people®, °Lunga®, “write®)
if people I8 error.record do {grumble(); abort}
let needName := true
while needlane do

{write °'nSupply population name®; let poplme = read.a.line()

et 014 = s.1lookup{popime, peopls)

if o1d # mil then write *‘nNano in vse {°, popme,®] try another®

else neediame := false)
et newPop = population(table(}, tabls(), tablse())
s.enter (popme, people, newPop); commit() tpregerve the population structure

It is obviously possible for such a structure to be used in an undisciplined way, but by
using the properties of algol scopes and functions as data objects it is possible for one
programmer to provide a set of procedures which are the only operations on the data
available to the less trusted users. These procedures perform the role of views, but the
transformations are such that they are better thought of as an abstract data type. Their
use may make it feasible to enforce consistency constraints or any other policy as well as
present a more convenient view. Figure 7-2 shows a fragment of a program building

38

Atkinson et al.: Progress with Persistent Programming 10 February 1984
such an abstract type. It is a program to set up an empty population. The first time it
is'run on a new database, the database will acquire the description of the population
class as it saves the first instance of the class. The final statement ensures that
instance's persistence, as it enters a reference to it in the root table, and all data
reachable from that table is preserved with this database. The fact the programmer is
working with a database is not obtrusive in these examples.

Figure 7-3 is a fragment of a program which sets up and stores in the database the
functions on people. The function {0 enter a mew person is the only one shown. Note
that as it is defined, it refers to other items in its static lexical environment, and in order
that the function will execute properly when it is subsequently retrieved from a database,
the system has to ensure all these are stored too. This resulis in all the subsidiary
functions and all the type definitions it references being stored. Note too that it refers to
the variable lasfPN in which it records a counter used as a source of identifiers for
people. This is declared and incremented just like any other integer. Contrast this with
the arrangements necessary in Pascal/R (Figure 6-7). Similarly, constants, such as alive,
NoKid, etc., have been recorded in this way. Thus all the associated data and
description is stored together and the arrangements for its storage are implicit. But the
programimer has left subsequent users only with access to the AkPerson procedure {and
other similar procedures, we imagine) so that all these other facts are suitably hidden
and protected. [or example, it is not possible for someone to decrement lastPN. This is
a powerful view and protection mechanism; it also provides a program and procedure
Iibrary, and linking mechanism without introducing extra concepts. This is an
immediate and satisfaciory consequence of making procedures first class data objects in
the database. The procedure defined ensures the family tree is a laitice {no cycles) and
that the births are biologically feasible, and that all people are in all three index
siructures. Note that two of these have been tailored to hold duplicates.

7.1.2. Bullding views on views

The preceding example produced an abstract data type to create people and insert
them into the family tree in one operation. This ensured integrity in the sense that
indexes and pointers would be consistent. [t required the programmer to identify the
parents by pointer values. Many programmers, we imagine, would have to deal with
identifying the parents by name. Further, since the identification of parents may be
critical to correctness, we may wish to impose a consistent procedure for resolving
ambiguities and for persuading the user to actually provide this data. The program
fragment in figure 7-4 shows such a refined view being constructed in terms of the
preceding one. Note how a new operation to set the current population has been
introduced, to accomodate programmers who will work in the context of one population

39

Atkinson et al.: Progress with Persistent Programming 10 February 1984

Figure 7-3: PS-algol program to store a new person procedure in the database

structure population(pntr TbyN, TbyMme, TbySnd)

structure date(int day, month, year)

structure person(int pn:; string name; bool sex; pntr dob, mother, father;
spatr kids, spouses)

let keyline = proe(string Ann; pntr Adob — string)
{let decade = substring(iformat(Adob(year)), 2. 2)
let last.name = after.last.space(Anm); decade ++ last.name}
let keySnd = proc(string Anm — string); soundex(aftsr.lesb.space(Anm))
structure seme. key(pntr a.persa, another.psrsn)
let MultiEnt = proc(string key; pmir tab, val)
{let so.far = s.lookup(key, Apop(Tad)); let new.entry := val
if so.far # nil do nev.entry := same.key(val, so.far)
s.enter(key, tab, new. entry)}
let Nokid = vector 1::1 of mil; let single = NoKid: let alive = mil
et xid.of = proc(pntr parent, child)

{if parent # nil do tparent known?
§f parent(kids) = NoKid then 1 first kid
parent(kids) := 61 of pnér [child]
else

{ let xidlo = 1 + upb(parent(kids)); let had.kids = parent(kids)
parent{kids) := vector 1::kidNo of child
for i = 1 to kidlo do parent(kids, i) := had.kids(i)}}

let is.psrson = proc(pmnér X — bool); if X = nil then true else X is person
et poscible = proc(pnir X, Y, the.dob — beob
ig.person(X) and is.person(y) and opposite.sex(X, Y) and
compatible.age(X, the.dob) amd compatible.ags(Y, the.dob)
fet db=open.database("people®, *Lunga®, ®write®);
i db i3 error.record do {grumble(); abori}
let lastPE := 0 trecord of last used person number
fet MxPerson = proc(pmntr Apop; string Anams: bool Asex; pmtr Apa, Ama, Adob)
{If not possible(ina, Apa, hdod) do {write *’nParents unacceptedble®; abori}
lastPH := lastPN + 1 tensure no fwo people have same PH
let ThePrsn = person(lastPH, Arame, Asex, Adob, alive, Apa, Ama, NoKid, single)
i.enter (1astPN, Apop(TbyN), ThePrsn)
let xey = keyNme{Aname, Adob) tnow compule inder on name & DOB
HMultiEnt (key, Apop(TbyNme), ThePrsn)
MultiEnt(keySnd{Aname), Apop(TbySnd), ThePrsn}
kid.of (Ama, ThePrsn); kid.of(Apa, ThePrsn)}
structure person.proc(t for person maker
proc (pntr, string, bool, ipopulation of person , name, sex
pntr, patr, pntr) pproc) tdad,mum,dob
s.enter (*MakePerson® ++ mppw, db, person.proc(¥kPerson))
tmake the rest of the operations
commit ()

for a succession of operations.

40

explicitly used is that which gives the required abstract type as a set of procedures.

Atkinson et al.: Progress with Persistent Programming 10 February 1984

Figure 7-4: A different view {abstract data type) is established

structure person.proc(proc(pntr, string, bool, patr, pntr, pnir)pproc)
structure population{pntr TbyN, TbyMme, TbySnd):
structure date(int day, month, year)

let db = open.database(®people®, "Lunga®, ®write®);
if db is error.record do {grumble(); abort}

let new.person = s.lookup(®Make.a.Person® ++ mppw, db) (MkPerson)
let lookupName = s.lookup(*LookUpName®, db){lun)

let curTbyN := nil: let curToyime := mil; let curTbySnd := mii
let popul := mil
let GetPerson = proc(string nom — pntr)
{et p := mil 1 for unknown people
if nom # ** do
begin
rask for DOB, consull soundex elc
end else ... ; p}
et set.pop(string popName)
{let population := s.lookup(popHame, db); if population = mil do ...
popul := population; curTbyH := popul(TbyH}: curTbyNme := popul (Tbylme};
curTbySnd := popul(TbySnd)}
let record.pirth = proe(string nual, dadd, Kid¥; bool KidSex; pntr XidDoB)
{let Mum := GetPerson(mual); et Dad := GetPerson{dadN)
MkPerson(popul, KidH, KidSex, Mum, Dad, KidDoB)}
structure person(int pn; string name; bool sex;
patr dob,mother,Zather; *pntr kids,spouses)
let app.to.pop{ proc(siring ¥azme; pntr p)in)
{ let 1p = proc(int PX; patr T, £ — boel)
{let Her = i.lockup(P¥, T); fn{Her(name), Her); $rue}
let ¢ = i.scan(curTbyy, mil, 1p)}
structure ppstr(proc(string, string, string, bool, pntrdry;
proc(string)sp, proc(proc(string, pnair)atp; ...)
s.enter(®pplePak?®, db, ppstr(record.birth, set.pop, app.to.pop, ...)); commit(}

7.1.3. Performing an update

Given the view constructed above, the program to record the birth specified in our

standard test case (test 4 of figure &-5) is shown in figure 7-5. Note that in this program
the structures used in the database are not made visible - the only structure being

3

3The structure for dates could also have been hidden as an abstract type, so that this programmer did

not know whether they were held as a record or packed in an integer.

41

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

Figure 7-5: record birth of Morwenna Trefusis

structure ppstr(proc(string, string, string, bool, pntr)ry;
proc(string)sp, proe(proc(string, pnir)latp, ...)

structure date(int day, month, year)

let people = open.database("people®, “Io", sgrite?)

if people is error.record do {grumble(); abort}

let female = true; let male = false

let pplePak = 5.lookup(®pplePak?®, people)

let setpop = pplePak(sp); let record.birth = pplePak(rd)

sstpop (*Flushing®)

record.birth(®Moyana Trefusis®, ®Janner Curnow®, "Morwenna Trefusis®,
fepale, date(22,9,82))

conait()

7.1.4. Performing retrievals with PS-algol

Figure 7-6: A PS-algol program to print the females in a population

structure ppstr{proc(string,string,string.bool.pntr)ro, proc(string)sp;
proc(proc(string, pntr)latp, ...)

et people = open.database(®peopls®, °Jura®, sread®)

if people is error.record do {grumble(); abort}

let female = true: let male = false; let pplePak = s.lookup(®pplaPak®, people)

let setpop = pplePak(sp); let AppToPop = pplePak(atp)

setpop (*Flushing®)
let print.female = proc(string ¥, pntr P)

{if p(sex)=femaie do {print.name(N); print.date(dob(P)}}}
AppTcPop (print.female)

Similarly, the simple retrieval of all the females can be coded in PS-algol as shown in
figure 7-6. PS-algol provides a mechanism for iteration over its "bulk® objects, tables,
by providing a procedure that will apply another procedure to every entry in the table
(or until the applied procedure returns false). This is utilised here to apply a female-
printing function print. female.

In order to print the ancestors, it has been necessary to construct, in the PS-algol
program shown in figure 7-7, a representation of two sets: the ancestors found so far, and
the generation currently being considered. This has been done using the table construct,
with one table called Ancs and a series of tables kids, Kids, and parents representing
successive generations under consideration. The procedure NextGen is defined to find
all the parents of a given generation.

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

Figure 7-7: A PS-algol program to list the antecedents of Janner Curnow

" structure ppstr(proc(string, string, string, bool, patr)ry;

proc(string)sp, proc(proc(string, pntr))atp, ...)

structure person(int pn; string name; bool sex; pntr dob, mother, father;
spntr kids, spouses)

let people = open.database("people®, ®Jura®, °read®)

if people is error.record do {grumble(): abort}

let female = true; let male = Palse; let pplePak = s.lookup{*pplePak®, people)

let setpop = pplePak(sp): let AppToPop = pplePak(atp); let GetPerson = pplePak(gp)

setpop (Flushing)
let JC = GetPerson(®Janner Curnow®)
et Ancs = table(); let xids := table() tuse set property of tubles
i.enter(JC(pn), kids, JC); let count := 1 tinitial set
let NextGen = proec(pntr Kids — pntr)
{let parents = table() 1Emply set. Nexl generalion
let collect = proc(int PE; pnir P) trecord 1 f never seen be fore
{let Him = i.lcokup(PN, Ancs)
if Hin = nil do iscanned already?
{i.enter(PN, Ancs, P); i.enter (PN, parents, P)}}
let get.new.parents = proc(int P¥; pater T, E — bool)
{let Her = i.lookup{(PH, T); let Ma = Her(mother); collect(Ma(pn}, Ma)
let Dad = Her(father); collect(Dad(pn), Dad); true}
let ¢ = i.scan(Kids, mil, get.new.parents); parents}
let count := 0
while count # 0 do { kids := NewGen(kids); count := cardinality(kids) }
let pp = proe(int P¥; patr T, E — boob) iprint each resulting ancestor
{ print.nams(Him); print.date{dodb(Him)); true }
write ®’nThe ancestors of Janner Curnow are:®
let ¢ = i.scan(Ancs, mil, pp); write " nexxx'n®

7.2. Summary and analysis of PS-algol

It appears that PS-algol is the only implemented language that provides persistence
uniformly at present. That is, it is the only strongly typed procedural language that
adheres without exception to the principle of data type completeness, allowing data of
any type to have any persistence. The preceding examples show that this results in
flexibility in the structures that can be constructed and in the operations that can be
associated with them. Two important questions remain to be resolved in the context of
this research:

1. Can the total systems constructed using this approach perform efficiently?

2. Will the approach work with other languages based on different type
systems?

43

Atkinson et al.: Progress with Persistent Programming 10 February 1984

Both of these questions are still open, requiring more research. Some of the results show
that the performance of these systems is potentially good, in particular that there are
advantages to the lazy migration of data and meta data employed. However, with some
program runs, poor performance results from having to maintain two address spaces and
their relationship. This problemn can be overcome using new computer architectures
which operate with one (persistent and very large) address space. An unresolved aspect
of obtaining efficiency is the incorporation of more concurrency into this language and
its implementation. The attempts to define languages with concurrent facilities should
provide much that is needed here.

The need to provide persistence in the context of other type systems is both a practical
need and a goal in research. The PS-algol system exploits the open-ended polymorphism
that the patr type in PS-algol gives. With the language ML, which has an elegant form
of polymorphism, this wouald not be possible, since the polymorphism is restricted to the
set of previously known types. However, our interfaces to the database have to operate
with all types which may be introduced in the future. We need to develop a new type
system, so that higher level types can be introduced and denoted succinctly. One of the
problems with the flexibility in PS-algol is that, in contrast to a system with higher level
types, programs can require much detail. To obtain the higher level types without losing
the flexibility is therefore an obvious goal. For example, at present we can define a set
of procedures in PS-algol which give all the operations of the relational data model.
What we would like to do is to define a flavour of that model as a type; relational
structures and databases would just be instances of that type.

It would appear that the value of data type completeness is well demonstrated by PS-
algol, as is the value of making procedures first class objects in the language. There are
surely a class of problems, such as CAD and Engineering, for which the data type system
of PS-algol is preferable to the more restrictive, predefined higher level data models.
The question remains: is it conceptually and engineeringly feasible to get the best of both
worlds?

8. CONCEPTUAL PROGRAMMING LANGUAGES

A class of languages has been developed which attempt to provide ®natural® ways of
describing and operating on data. That is, the constructs and operations closely mirror
the concepts we use when thinking, as they are evinced in natural language. These
languages have two sources: the languages developed by the Artificial Intelligence
research community, and those developed by the Conceptual Data Modelling research
workers who base their ideas on Semantic Networks. A good survey of such languages is

44

Atkinson et al.: Progress with Persistent Programming 10 February 1984
given by Borgida [Borgida, A. 83].

Typical of these languages are Taxis [Borgida & Wong, H.ICT. 81, Borgida
82, Mylopoulos ef al. 80, Mylopoulos & Wong 80] and Galileo [Albano & Orsini
83, Albano 83, Albano et al. 83a, Albano el al. 83b]. For the purpose of exposing the
principles of such languages we present examples in Galileo as it 1s defined in the last
reference®. Galileo takes many of its constructs from ML, which is discussed in the next

section.

8.1. The family tree example in Galileo

Figure 8-1: Definition in Galileo of an Abstract Type for *dates®
type date > <optional (year: nuz and month: nua and dzy: num)>
with
newDate (y, m, d) := if validDate (y, m, d) then

okDate (<(year := y and month := m and day := d)>)
else failwith "nevdate:invalig®
and
newUnknovnDate := mkData (<mil>)
and
bsfore (di: date, d2: date) := ...check if dlis before d2...

drop nkDats

To investigale the standard problems (given in figure 3-5), consider first the
representation of a date in Galileo. As in PS-algol, data structures and the operations on
them are introduced together. Figure 8-1 shows this for dates which have values of two
types: unknown values and those constructed from three numbers. Dropping the
standard constructor for dates (mkDale) prevents programmers from constructing invalid
dates. This leaves the two funciions newDate and newUnknownDate, deciared in the

scope of date, as the only available date constructors.”

8.1.1. A data structure for family trees in Galileo
Within the scope of figure 81, the declarations of fignre 8-2 would construct an
abstract data type for family trees. Here a class Persons together with a representation

4w’nich has been submitted for publication in the ACM Transactions on DataBBase Systems.

5i:ype introduces a type declaration, and introduces another declaration at the same level whereas
with starts the next declaration as the first declaration in an inner scope. Note that the record structure
of the known option of date is a scope holding three names paired with three integer values. The
construct fallwith raises an exception, with the string that follows as its value.

45

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

Figure 8-2: A Galileo definition of an abstract type for family trees

FamilyTree := (rec Persons class
(Person «+ (name: string and d0fB: var date
and d0fD: var date and parents: var seq Person
ext father := derived
tirst(all p in &t parents of this with p alsoln ¥ales)
if fails failwith °father:unknown®
and mother := derived
first(all p in at parents of this with p alsoln Females)
if fails failwith °mother:unknown®
and kids := derived all p in Persons with this into at parents of p)
with
newPerson(n: string, db, dd: date, par: Seq Person) :=
if length (par) > 2 then failwith "nevPerson:toolanyParents®
else if length (all p in par with p alsoln Males) > 1 then
failwith “newPerson:tooManyFathers®
else if iength (all p in par with p alsoln Ferales) > 1 then
failwith ®newPerson:tooManyMothers®
else if length (all p in par with before(db,dors of p)) > 1 then
failwith °newPerson:bornBeforeParent®
else if before (dd, db) then failwith "newPerson:deathBeforeBirth®
. other validity checks ...
else nkPerson(n, Var db, var dd, Var par)
. other operators ...
drop akPerson)
key (Nane)
and Males partition of Persons with Females class ¥ale > is Person
and Femzles partition of Persons with Males class Female +» is Person)

for individuals of that class are introduced® . The explicit separation of the name for the
extent of a type (Persons, Males and Females in this case} from the name for the type
{Person, Male and Female), is a considerable improvement over DAPLEX.” The series
of tests shown check the validity and compatibility of the data associated with a person,
raising a named exception if any invalidity is detected. This is similar to the abstract
type protection in PS-algol. An alternative mechanism, specified by assert
< predicale>>, associates checks with the abstract type. The advantage is that they are
then not explicitly included in the definition of each operation, but they then may be
more difficult to understand when the checks fail, making it more difficult to program
recovery. It is, however, clearer what checks apply, and there is no risk that they may

Grec {short for recursive) allows the name that is about to be declared to be used ip its own definition.

7var designates a reference component, so that its value may be replaced by assignment, other values
are held constant. PS-algol has the same features with a different notation. at performs the dereference
operation obtaining the contents of such 2 variable. The bulk data objects are sequences, thinly disguised
ML lists. The sll construct shown constructs a new sequence of the elements satisfying the predicate from
the given sequence (classes are defined to be sequences). The alsoln operator is the set membership test.

46

Atkinson et al.: Progress with Persistent Programming 10 February 1984

be omitted in certain operations. The two classes Males and Females are constructed as
a partition of Persons, with the property that all members of these classes are also
members of Persons and the property that the intersection is empty. Unlike ADAPLEX,
but like DAPLEX, a member of Persons does not have be a member of either subclass.
The types Male and Female are subtypes of Person inheriting that type’s properties;
they could also have new properties.

Unlike the treatment in PS-algol, the parents have been represented as a sequence, and
the kids are not explicitly recorded. The functions to obtain faiher, mother and kids
then extend the scope, introducing derived felds reminiscent of DAPLEX, bui not
requiring any special linguistic concept.

8.1.2. Retrieving data in Galileo

In the context of the definitions given in figure 8-2, the program teo print the list of
females is trivial, as is shown by figure &3. Like ML, Galileo is an interactive language,
and the value of the last expression will be printed. In this case, the expression is a
sequence constructed from the subclass Femnales.

Figure 8-3: A Galileo program to print the names of the females
for p in Females loop name of p

This is as concise® and understandable as comventional query languages, but the full
power of the type system and computational model of ML is also available.

Figure 8-4: A Galileo program to retrieve the ancestors of Janner Curnow
ancs(p: Person) :=
use rec trans (y, visiteds) :=
if y into visiteds then visiteds
else collect (at parents of y, [y] append visiteds)
and collect(l,visiteds) :=
if emptyseq 1 then visiteds
else collect (rest (1), trams (first (1), visiteds))
in
trans(p, [1);
ancs (get Person with name = Janner Curnow®)

A simple recursive function using the sequences as sets (imto facilitates this by
providing a test of set membership) can be constructed to compute any transitive closure
over any lattice. A slightly more specific function trans is used in figure &4 to collect
all the ancestors. {rans terminates recursion if the person has been seen before (is in

8In fact Galileo allows the contracted form: for Females loop name

47

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

visiteds) and otherwise uses collect to apply itself to all the parents (if any) found,
having inserted them into visiteds first. The get construct guarentees that exactly one
valid instance is selected from the (implicitly) specified extent. The code to actually
print the set of ancestors has been omitted, so some default printing of the sequence
would therefore take place.

8.1.3. Update in Galileo

Figure 8-6: A Galileo program to record a birth
use p := get Person With name = “Janner Curnov® if {ails failwith *PaUnknown®
and » := get Person with name = “Moyana Trefusis® if fails failwith *MaUnknown®
ext ¥orwvenna := newParson("Morwenna Trefusis®, newDate (1983, 11, 1),
newlnknownDate, (p; nl)
in
inFemales (Morwenna, Morwenna)

‘The snippet of program, again assumed to be in the scope of earlier declarations, shown
in figure 8-5 demonstrates how the standard update might be coded. We already have
an update operation defined which checks constraints and which cannct be bypassed.
Locating the parents is here assumed to be simple, using the get statement already
introduced.

8.2. Analysis of the Conceptual Programmming languages

Prior to the definition of Galileo, it was clear that the languages in this class were
difficult to formulate. Those associated with SDM [Hammer & MeLeod 81) and Taxis
introduced many good ideas, each individually useful and reasonable to define
intuitively. However, as soon as the interaction between the various ideas were
considered, they became difficult to understand and even harder to formulate precisely.
This would have inhibited useful implementations, and probably have led to many
surprises when such languages were used. Galileo has made good progress in overcoming
this problem without abandoning the conceptual modelling construets. This has been
achieved by building on two standard programming language concepts: polymorphic
types and environments. Both have been precisely formalised and powerfully reallised in
ML, and Galileo inherits and carefully extends their form. A certain comfort can be
gained from the precise specification of these ideas and hence of the full semantics of
Galileo. The design work continues at the University of Pisa, and the implementation is
being undertaken by various Italian companies.

There is no evidence, in the examples, nor in the preceding discussion, of the
arrangements for providing persistence. As the language treats persistence as an
orthoganal property of data, it is not necessary to make this obtrusive. Again the

48

Atkinson el al.: Progress with Persistent Programming 10 February 1984

advantage of the principle of data type completeness is apparent. The definitions which
reside in a standard global scope are those which persist. As they will normally be the
definition of a hierachy of abstract type and module definitions, the name space and the
data space are quite general "databases® of instances of Galileo’s types. The extensive
set of environment operators9 allow a sophisticated space of bindings to be constructed
and used. It is not clear that the necessary rebinding arrangements are there to permit
repair of program when data already populates the database. The design of atomic
transactions, authorisation, and concurrency is not yet complete. It is not clear that
independently constructed bodies of data can ever be used together, though this is often
a requirement. But certainly the language allows concise and precise specification of
data structure and algorithm in a natural way and these are properly bound together.

9The environment operators of Galileo are:

1. Id ;= term introduces a binding between a name id and o type or value.

2. A and B introduces the bindings of both A and B but each may not use the other.

@

A ext B define B using the environment A then introduce the bindings of B and those of A
that have not been redefined.

rec A allow the bindings of A to be used in the definition of A then introduce A.

s

o

. type A introduce only the bindings in A which bind names to types.

&

A drop 1d introduce the bindings of A without the binding introduced by Id.

-2

. A take Id introduces only the binding associating Id from A.

. A rename Id by Newld iniroduces the bindings of A ercept that the one concerning Id ia
renamed.

o

=2

.type Id <=> Type introduces a new type Id fsomorphic with Type and two transfer
Junctions mkld and repld into the environment

10. type Id <-> Type as for <=>> ezcept that the operators on Type are available on Id.

1

—

. uge Binding ezfends the global environment with Binding
12. enter 1d arrange that subsequent evaluation takes place within the environment bound to 1d.
13. quit move back to the global environment

14. A with B constructs the bindings in B in the contezxt of A and exports the bindings of B
and the type bindings only of A.
This should be contrasted with a typical algol like language which has the equivalent of just two

environment operators. One does wonder whether quite s0 much variety is necessary.

49

Atkinson et al.: Progress with Persistent Programming 10 February 1984

8. APPLICATIVE PROGRAMMING DEVELOPMENTS

There are many candidate languages that do not explicitly aim to develop persistent
programming, but which are contributing ideas that may be influential to the
development of persistent programming. In the last section, the influence of ML on
Galileo was evident. KRC [Turner, D.A. 81] has influenced Buneman's development of
FQL [Buneman & Davidson 83, Nikhil 82, Nikhil 84]. PROLOG, as it uses the same
construct for data and rules, has some atiractive properties when persistent
programming is considered.

9.1. Developing ML

The neat and well defined type system of ML [Gordon el al. 79] was an important
contribution to Galileo. Recently there have been significant improvements in the
language’s notation: introducing patterns from Hope [Burstall ef al. 80]. This began with
a much improved implementation of ML on the VAX [Cardelli 83a). It has continued
with 2 redesign of the language to define standard ML [Cardelli 83b, Milner 83].

8.1.1. Examples in standard ML

The first two examples are intended fo illustrate the power of polymorphism. They
allow the construction of sets of anything and lattices of anything'® . Note that when a
lattice is parameterised, the sets used to comstruct it are automatically parameterised
with the same type. Figure 9-1 sets up an abstract type for sets represented as lists.
Figure 9-2 then defines an abstract type for a lattice and a transitive closure operation
using these sets over it. By suitably parameterising these abstract types, they may be
used to represent our family tree. Note that infix operators were defined for sets, so that
operations of the form chown in figure 8-3 are then possible. The abstract type hides the
implementation so that later it may be replaced by a more efficient one. Both
applicative and procedural style code are illustrated in figure 8-1. patterns are used to
decompose structures and the functions are defined for specific cases and then for the

remaining more general case.

Given these definitions, with people being represented by a tuple of type
string®bool®date®date for name, sex, date of birth and date of death respectively, the
set of females may be printed by the code in figure 9-4 and the set of ancestors by the
code in figure 9-5.

wAct-ua!ly not quite anything, as a set of instances of ar abstract type canoot be constructed as
equality is used in the set definitions and is not defined automatically for abstract types. Am abstract
type parameterised with the equality function could be written, so that these sets could be constructed,
but then the simple syntax of infix operators would not be achieved.

50

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

Figure 9-13 An abstract ML type for sets

infix contains; infix member; infix union; infix insertedinto;
infix vithout; infix subset; infix superset; infix suchthat;
abstype « set = set of o list
with val EmptySet = set nil
and rec mkSet x = set [x] {given an element make a set of if}
and empty (set %) = null x {test for the emptly sel}
and choice (set []) = escape *can’t chooss from the empby set®
| choice (set(x :: X)) = x, (set X)
and x member (set mil) = false
| x member (set {y :: Y)) = (x = y) oF (x member {set Y))
and (sst nil) contains (set mil) = true
| (sst {x :: _)) contains (set mil) = true
| (set ;i) contains {set (x :: 1)) = Talse
| S contains (set (y :: Y)) = (3 member S) & (S contains (set Y))
and X subset Y = Y contains X
and X supsrset Y = X contains Y
and x insertedinto (set ¥) = set (if x member (set 1) them Y else x :: V)
and ListToSet [] = set [} {construct a set from a lisl of elernenis)
| ListToSet (x :: X) = x imsertedinto ListToSet X
and (setv nil) union Y = ¥
| (set (x :: X)) upion Y = x insertedinto (set X union Y)
and (set mil) suchthat pred = set mil
| (set (x :: X)) suchthat pred = if pred(x) then
% insertedinto ((set X) suchthat pred)
else (set X) suchthat pred

and X without (set mil) = X {set di fference}
| {set X) without ¥ = {demonsirate nonapplicalive ML}
fet val res = refl (sst [1) and todo = ref X

in
(while not (null (itodo)) do
let val first :: rest = {ltodo)
in
(if not (first nember Y) then res := first insertedinto (Ires)
eise res := lres;
todo := rest) end;
tres) end
and MapSet ((set mil),) = set mil
| HapSet ((set (x :: X)), 1) = (£ x) insertedinto (MapSet ((set X), 1))
and AppToSst ((set miD), 1) = O
| AppToSet ((set (x :: X)), f) = (£ x; AppToSet ((set X}, f))
end;

9.2. Analysis of Applicative languages

Space has precluded the examination of many interesting languages. ML, which, as
was demonstrated, is not always applicative, represents an example of a good modern
language. The abstract types and modules (not illustrated) provide a good deal of
extensibility. New higher level types such as set and lattice can now be defined quite

51

Atkinson ef el.: Progress with Persistent Programming 10 February 1984

Figure 9-2: An abstract data type for apy lattice

abstype rec « lattice = lattice of (x * ({a lattice) set))
with val lattice NodeInfo (Id, _) = Id
and latbtice NodeAncestors (__, Ancs) = Ancs
and transitive Startiiode =
let val rec trans ToVisit HaveFound =
il empty Tovisit then HaveFound
else
Jet. val (lattics (ThisOne, NextLot)), rest = choice ToVisit
in
trans (rest union NextLot) (ThisOns insertadinto HaveFound) end
in
trans (mkSet StartWode) EmptySet emd emd;
Figure 9-3: Examples of using the abstract type for sets in ML
wval A = nkSet ®a®; {a set of strings, 1 element “a”}
wval AB = "b* insertedinto A; {consgtruct a new set of two strings}
val ¢ = akSet "c?; {a set of one siring *c*}
wal ABC = AB union C; {set of 8 strings ®a®, ®b®, “c}
23" member C, "a® member AB, AB superset &, AB superset ABC;
{The preceding expression refurns false, true, true, false)
val ¥ = ListToSet [i; 2; 3; 5; 7; 11] {a set of integers}
val HailStons = ListToSet [1,0,1; 2,1,2; 3,7,18; 7,16,52)
{A set of infeger triplets)
Figure 8-4: ML program to print the list of females
val femals (, sex, _, _) = sex;
val PrintNeme (name, , _,) = (output(terminal, "\L®); output(terminal, name));

AippToSet ((People suchthat female), PrintHame);

Figure 8-6: Printing a list of the ancestors in MLk

val JC, _ = choice (people suchthat fun (mame, _, _, _).name = ®Janner Curnow®);

AppToSet {((transitive JC), PrintHane);
succinctly. But this power of definition is limited. The definitions above will only work
for sets of objects of concreie type. So If we defined person as an abstract type, which
we naturally would do, then we could nol construct a set of persons with the above
definition. The reason for this is that equality, used in the member definition (see figure
9-1), is not defined for abstract types. Because of this, future versions of the ML
compiler may disallow such a definition. To overcome this one has to parameterise all
the set operations with eq: @ * o« — boel to be used for equality tests. This becomes
more verbose and loses the infix notation. It is perhaps just the tip of the iceberg.
There are many higher order types, such as relations, which ome can’t readily define
succinetly in ML, despite its polymorphism. One might define a relation as a set of
tuples, but the general type relation allows any tuple type and size. When relational
operations, such as join are applied, there are type rules to be enforced, not describable

52

Atkinson et al.: Progress with Persistent Programming 10 February 1984

in ML. Achieving the ability to define such types and their operators remains an active
area of research.

ML has contributed a powerful model of polymorphism and an extremely clever
compilation mechanism to ensure that all type checking is static. It is possible that to
get all the flexibility we need for higher level types we will have to allow some checking
to be postponed. Incremental compilation is used to provide efficient interactive
operation. Thus if ML had persistence, the query language roles from trivial to
sophisticated queries would already be met by the language itsell.

ML has made explicit a number of environment manipuiztions, and the programmer is
aware of the bindings he creates and when and where they are available. As we progress
to persistent languages, it seems certain that we will want such 2 conciousness of the
environment in which code is writien. We will also want operators which extend ML's
sel of environment operations to allow environment modification. Otherwise, populated
databases cannot be modified to meet revised needs.

A particular strength of ML is the very small number of primitive concepis which
underlie the language: a smali number of base types, functions and tuples, environment
manipulation and patterns. All other aspects of the language are explained in terms of
these. It is a sign of progress that the language has become so much more simple, and
yet powerful and precisely defined. It is necessary that such a patfern influences
persistent language design.

KRC [Turner, D.A. 81] introduced new programming power, in permitting succinct
expressions defining computation on infinite sets {or more precisely sequences). Can this
be combined with the sirengths of ML? Prolog allows the iraplicit definition of search
strategies {its other properties, based on patterns are largely in ML) and allows these to
be used in any direction and generality, with the possibility of backtracking. Would this
be useful or confusing with very large volumes of data? Certainly queries can be
expressed very succinctly, but the implications of an update and the combinatorial
effects in a search may be difficult to understand. This may be the reason why the
Prolog programmer appears to have to know how Prolog is evaluated [Colmerauer 83].

The search for more powerful constructs [Cardelli 84] and more powerful computation
mechanisms [Ait-Kaci 83] continues, and will hopefully always inform language design.

53

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

16. CONCLUSION

The sequence of languages presented give clear evidence of progress. In analysing each
language the reader has been asked to step outside his normal use of a programming
language - to lock at parts of a language without concern for the whole, to look at the
language without being put off by the unfamiliarity of ils notation, to try to suppress the
effect that the languages that are like those one has already used, appear more natural
than those that introduce radical concepts, and to try to consider general usage while
looking at examples based on only one simplified task. This is difficult, and as authors
we are not immune to these problems. But the value of previous understanding and
experience is not negligible. Consequently we should preserve this value if there are not
greater gains to be made from accepting change.

The initial ®languages® were standard programming languages with collections of
routines that could be called. These collections of routines became progressively more
formalised and consistent, and possibly more powerful. To use them they were
embedded in the host language with 2 notation that suited them, but which was
unrelated to the notation of the host language. This reduced the labour of using them,
but did not reduce the conceptual difficuliles arising from different name spaces,
different notations, and different type regimes. It did not permit any check that the
programmer was behaving consistently as he wrote a program. The program could not
be undersfood from just the program text.

The integrated languages made inroads into this problem, but only when all the data
structures that crossed the database to program interface were those to which the
implementor had givea a full range of persistence. The problem remained of the
programmer having to explicitly manage the relationship between two representations
for all other data. But in these languages notation was consistent, type checking rules
could be applied and programs carried with them enough information that they could be
understood without recourse to other texts.

The persistent programming languages have made that treatment consistent for all
data of all types. This means that the programmer is not constrained by the
preconceptions of the implementor about what data is useful in a database. The
management of representation translation is no longer necessary. An important step
here was tc make the function a data object which then had the usual rights to
persistence. This allows program and data to remain bound together and for
sophisticated data hiding and mappings to be implemented. It would be a significant
component of a general and flexible protection mechanism. These languages do not yet

54

Atkinson et al.: Progress with Persistent Programming 10 February 1084

have a succinet notation for higher level data types, nor do they yet provide well for
COnCuUTrency.

In the search for better data types we look at the concepiual programming languages.
The progress with this research has led to a number of language proposals and partial
implementations. There is a consensus that classes of objects and type hierarchies are
useful. But there is not yet a consensus over the choice between sets and sequences or
whether both need be provided. The language Galileo was considered a good
representative, as it has the properties of 2 good programming language with abstract
types and modules. It allows all dala to be persistent and uses the module as the unit of
persistence. It, too, takes adventage of the power of persistent functioms. It is
substantially based on the mostly applicative language ML. This 1s 2 demonstration that
the data base communiiy is being influenced by the programming language community.
This is definitely progress. The inverse influence is also needed. Ultimately these two
research communities should merge. Al large scale systems, and hence most
programming, involves persistent data. Consequently, programming language design
should meet the need for persistent data. All databases need programs o be written and
run against them. Hence, the database community needs good language design.
Ultimately, all database concepts will be embedded within the semantics and notation of
the programming language and will rarely be consciously used. That, perhaps, is the
goal of persistent programming research. The analogy with the management of heap
space is obvious. In more primitive languages, the programmer is responsible for heap
management, and uses it explicitly. In a modern langauge like ML or PS-algol, one is
rarely aware when ore is constructing an object on the heap.

A glance at the welter of current programming language research {much of it is in
applicative and logic languages at preseni but could be elsewhere) shows that there are
still unsolved problems to challenge and new ideas to assimilate. The language ML
shows that the idea of environments and environment manipulation is important. But
does it go far emough? Should environments be nameable first class objects in a
persistent language? This would meet some of the needs for identifying and changing
persistent definitions. ML showed how a language can be built from a parsimonious use
of concepts to be very general and powerful. But it does not yet allow us to define our
own high level types that are popular for databases. Can the ideas of polymorphism be
extended to this level? If not, then we should find some other way of reaching a state
where we can just declare the data types that correspond to our data models, possibly by
accepting some run time type/consistency checking. Until we do that, we will find our
persistent languages both over-complex and restrictive, and our research into types and

55

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

data models will be speculative rather than based on sound experimental technique, as
we will not be able to afford the implementations necessary for those experiments.

ML is interactive, and incrementally checked and compiled. It is certain that future
persistent languages must have this property, so that query languages ccase to be a
special case.

The importance of consistency has been frequently observed. The general applicability
of rules in both PS-algol and ML give these languages considerable power, and make
them easy to understand, learn and use. Of particular importance to the design of
persistent programming languages is the orthogonal availability of persistence. It should
be accepted that, in all persistent programming langvages, the principle of data type
completeness will be adhered to, sc that data of any type may be persistent or transient.
If this proves hard to achieve, either to obtain performance or because it conflicts with
our preconceptions about first normal form relefions, then it should stimulate research.
The principle should pnot be abandoned. PS-algol has demonstrated it can be
implemented and Galileo has demonstrated that it can be formally deseribed.

11. Acknowledgements
The work was supported by a number of grants from the British Science and
Engineering Research Council and from ICL.

The presentation and content has benefitted from many discussions with colleagues and
students in Edinburgh and Philadelphia. The underlying themes have been refined in
discussion with Peter Buneman, who has made many helpful suggestions particularly the
Adaplex examples. Steve Fox, of CCA, kindly read and redesigned those examples.
Rishiyur Nikhil contributed initial examples for Galileo and helped {orm those for ML.
He, Larry Krablin and Luca Cardeli also read a draft and made a large number of
suggestions for improvement. Discussions with Mark Reinhold and Sharon Perl
contributed to the language examples. Renzo Orsini and Alex Borgida suggested
improvements to the section on conceptual languages. Peter Gray assisted with the
Fortran/ CODASYL examples.

References
[Ait-Kaci 83] Ait-Kaci, H.
Outline of u calculus of type subsumptions.
Technical Report CIS-83-34, Dept of Computer and Information
Science, The Moore School of Electrical Engineering, University of
Pennsylvania, December, 1983.

56

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

[Albano 82 Albano, A., Occhiuto, M.E. and Orsini, R.
A uniform management of persistent and complex data in programming
languages.
In Atkinson, M.P. {editor), Pergammon in folech Stale of the Art
Report, Series 9, Number 4: Deiabuse, pages 321-344. Pergammon
Infotech, Maidenhead, England, 1942.

[Albano 83] Albano, A.
Type Hierachies and Semantic Data Models.
ACM SIGPLAN Notices 18(6):178-186, June, 1883,
Presented at the Symposium on Programming Language Issues in
Software Systems, San Francisco, California June 27-20 1083.

|Albano & Orsini 83
: Albapo, 1. and Orsini, R.
Dialogo: An interactive environment for Conceptual Design in Galileo.
In Ceri, S. {editor), Methodology and Tools for Database Design, pages
229-253. North Holland, Amsterdam, 1983.

[Albano et al. 83a)
Albano A., Capaccioli, M., Occhiuto, M.E. and Orsini, R.
A modularisation mechanism for conceptual modelling.
In Proceedings of the ninth international con ference on Very Large
Data Buses. October, 1983.

[Albano ef al. 83b]
Albano, A., Cardelli, L. and Orsini, R.
Galileo: A Strongly Typed Interactive Conceptual Language.
Technical Report 83-11271-2, Bell Laboratories, Murray Hill, New
Jersey, July, 1983.
Submitted to ACM transactions on Database Systems.

[Atkinson 74] Atkinson, M.P.
Survey of current research topics in Data-structures for CAD.
National Computer Centre, Manchester, England, 1974, pages 203-217
and 297-303.

[Atkinson 78] Atkinson, M. P.
Programming languages and databases.
In S. B. Yao (editor), The fourth international con ference on Very
Large Data Bases,Berlin, West Germany, pages 408-419.
September, 1978.

57

Atkinson et al.: Progress with Persistent Programming 10 February 1884

[Atkinson ef al. 81]
Atkinson,M.P.,Chisholm,K.J. and Cockshott, W.P.
PS-algol: an Algol with a Persistent Heap.
ACM SIGPLAN Notices 17{7), July, 1981.
Also available as Tecnical Report CSR-94-81, Computer Science
Department, University of Edinburgh.

[Atkinson ef af. 83a}
Atkinson, M.P., Chisholm, K.J., Cockshott, W.P. and Marshall, R.M.
Algorithms for a Persistent Heap.
So ftware Practice and Fzperience 13{T), March, 1983.

[Atkinson el ol. 83b]
Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. and
Morrison, R.
An Approach to Persistent Programming.
Computer Journal 26{4), Movember, 1983.

[Atkinson el af. 83c]
Atkinson, M.P., Chisholm, K.J. and Cockshott, W.P.
CMS-A Chunk Management System.
So fiware-Practice and FExperience 13:273-285, 1983.
Also available as Technical Report USR-110-82, Computer Science
Department, University of Edinburgh.

[Berry 81) Berry, D.M.
Remarks on R.D. Tennant’'s Langusge Design Methods Based on
Semantic Principles: Algol-68, a Language Designed using
Semantic Principles.
Acta Informalica 15:83-98, 1981.

[Borgida 82] Borgida, A.
Features of Conceptual Models for Information Systems - a survey.
In Proceedings of the 1s8 AUC Con ference, Medellin, COLOMBIA.
September, 1982.
Also available as a Technical Note from Department of Computer
Science, Rutgers University.

[Borgida & Wong, HK.T. 81]
Borgida, A. and Wong, HK.T.
Data models and data manipulation languages: complementary
semantics and proof theory.
In The seventh international con ference on Very Large Data Bases,
Cannes, France, pages 260-271. September, 1981.

Atkinson et al.: Progress with Persistent Programming 10 February 1984

[Borgida, A. 83] Borgida, A.
Features of Languages for Conceptual In formation Sysiem
Development.
Technical Report, Department of Computer Science, Rutgers
University, Hill Center, Rutgers University, New Brunswick, New
Jersey 08003, USA, 1983.

[Brinch-Hansen 75]
Brinch-Hapsen, P.
The programming language Concurrent Pascal.
IEEE transactions on sofltware engineering :199-207, June, 1975.
Also appears in Horowitz 1983 pages 264-272.

[Brooker 82] Brooker, R.A.
A 'Database’ Subsystem for BCPL.
The Computer Journal 25{4):448-464, 1982.

[Buneman & Davidson 83]
Buneman, P. and Davidson, S.
Database Research at the University of Pennsylvania.
In Proceedings of the Digital Equipment Corporation workshop on
Databases: Boston. April, 1683.

[Buneman ef al. 82
Buneman, P., Herschberg, J. and Root, D.
A CODASYL interface for Pascal and Ada.
In Proceedings of the second British National con ference on
Databases: Bristol, England. July, 1982.

[Burstall et al. 80]
Burstall, R.M., MacQueen, D.B., and Sannella, D.T.
HOPE: An Ezperimental Applicative Language.
Technical Report CSR-62-80, University Of Edinburgh, 1680.

[Cardelli 83a] Cardelli, L.
The Functional Abstract Machine.
Technical Report, Bell Laboratories, Murray Hill, New Jersey 07974,
March, 1983,

[Cardelli 83b] Cardellj, L.
ML under UNIX: pose 3.
Technical Report, Bell Laboratories, Murray Hill, New Jersey 07974,
November, 1983.

[Cardelli 84] Cardelli, L.
A semantics of Multiple Type Inheritance.
privaie communication , 1984.

59

Atkinson et al.: Progress with Persistent Programming 10 February 1984

[Childs 68] Childs, D.L.
Description of Set Theoretic data structure.
proceedings of the AFIPS FJCOC 33, part 1:557-564, december, 1968.

[Cockshott ef al. 83
Cockshott, W. P, Atkinson, M. P., Chisholm, K. J., Bailey, P. J. and
Morrison, R.
The persistent object management system.
So flware Practice and Lzperience 14, 1983,
Also as Technical Report PPR-1-83, Computer Science Department,
University of Edinburgh.

[CODASYL 71] Codasyl Committee on Data System Languages.
CODASYL Dala Base Tosk Group Repori.
Techuical Report, ACM, 1971.

[Codd 70] Codd, EF.
A Relational Model for Large Shared Databanks.
Communications ACM 13(6):377-387, 1970.

[Codd 79] Codd,EF.
Extending the Relational Model of Data to Capture More Meaning.
ACRKS Transaclions on Dalabase Syatems 4{4}, December, 197¢.

[{Cole & Morrison 82
Cole, A.J. and Morrizon, R.
An Introduction To Programming With S-algol.
Cambridge University Press, 1082.

[Colmerauer 83] Colmerauer, A.
Prolog in 10 figures.
In Proceedings of the eigth international joint con ference on aerti ficial
intelligence, Karlsruhe, West Germaeny, pages 487-499. August,
1983.

[Computer Corporation of America 83]
Smith, J.M., Fox, S and Landers, T.
ADAPLEX: Rationale and Reference Manual
second edition, Computer Corporation of America, Four Cambridge
Center, Cambridge, Massachusetts 02142, 1983.

[Cormack 83] Cormack, G.V.
Extensions to Static Scoping.
ACM SIGPLAN Notices 18(6):187-191, June, 83.
presented at The SIGPLAN '83 symposium on programming language
issues in software systems, San Francisco, California.

60

Atkinson et al.: Progress with Persistent Programming 10 February 1984

[Darlington et al. 82]
Darlington, J., Henderson, P., and Turner, D.A.
Functional programming and its applications.
Cambridge University Press, Cambridge, England, 1982.

[Date 81] Date, C.J.
Referential Integrity.
In The gseventh international con ference on Very Large Dale Bases,
Cannes, France. VYLDB, 1981.

[Dodd 69} Dodd, G. D.
Elements of data management systems.
Association of Computing Machinery Computing Surveys 1:117-133,
June, 1969.

[Falkoff & Iverson 73]
Falkoff, A.D. and Iverson, K.E.
The design of APL.
IBM Journal of Research and Development 107:324-334, July, 1973

[Feldman 76] Feldman, S.I
A FORTRANer's lament: Comments on the draft proposed ANS
Fortran Standard.
ACMSIGPLAN 11:25-34, December, 1876.

[Gordon et al. 79]
Gordon, M. J., Milner, A. J. R. G., and Wadsworth, C. P.
Lecture Notes in Compuler Secience. Volume 78: Edinburgh LCF.
Springer-Verlag, 1979.

[Gray 67] Gray, J.C.
Compound data structures {or computer aided design: a survey.
In Proceedings 22nd Anniversary Con ference of the ACM, pages
355-365. Association of Computing Machinery, 1967,

[Gray 81] Gray, PM.D.
Use of automatic programming and simulation to facilitate operations
on CODASYL databases.
In M. P. Atkinson {editor), Dalabage, pages 345-368. Pergamon
Infotech, 1981.

[Gray 82] Gray, PM.D.
The Group-By operation in Relational Algebra.
Technical Report, University of Aberdeen. Dept. of Computer Science,
1982.

61

Atkinson et al.: Progress with Persistent Programming 10 February 1984

[Gregains & Wiseman 84}
Gregains, A. and Wiseman, N.E.
A persistent heap for BCPL.
Software Practice and Erperience to be published, 1984.

[Hall 83} Hall, P.AV.
A persistent version of ADA.
ADA letlers T, 1983.

[Hammer & Mcleod 81
Hammer, M. and McLeod, D.
Database Description with SDM: A Semantic Database Model.
ACM transactions on Database Systems 6(3}, Sept, 1981.

[Henderson 86] Henderson, P.
Functional Programming Application and Implementaiion.
Prentice Hall, New Jersey, Englewood Cliffs, 1580.

[Hoare 73] Hoare, C.AR.
Hints on Prograrnming Language Design.
Technical Report CS-73-403, Stanford University, Computer Science
Department, December, 1973,

[Hoare 78] Hoare, C.AR.
Cominunicating Sequential Processes.
Communicaitons of the ACM 21{8):666-677, August, 1978.
also in Horowitz 1983 pages 306-318.

{Horowitz & Kemper 83]
Horowite, E. and Kemper, A.
AdaFel: A relational Exiension of Ada.
Technical Report TR-83-218, University of Southern California,
Department of Computing Science, Los Angeles, California, USA,
November, 1883,

[Ichbiah et ai. 78]
Ichbiah et al..
Rationale of the Design of the Programming Language Ada.
ACM Sigplan Notices 14(6), 1979.

[Jarke & Koch 82]
Jarke,M. and Koch,J.
A Survey of Query Optimization in Centralized Datebase Systems.
Technical Report, Center for Research on Information Systems, New
York University, November, 1982.
CRIS 44, GBA 82-73 (CR).

62

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

[Jarke & Koch 83]

Jarke, M. and Koch, J.

Range nesting: a fast method to evaluate quantified queries.

In Proceedings of the ACM SIGMOD iniernational con ference on
Management of Data, San Jose, Cali fornia. Association of
Computing Machinery, May, 1983.

Also as a technical report from: the Center for Research on Information
Systems, New York University CRIS 49, GBA 83-25 {(CR).

[Jensen & Wirth 75]
Jensen, K. and Wirth, N.
PASCAL user manual and report.
Springer-Verlag, Berlin, 1975.

[Jones & Liskov 78]
Jones, A.K. & Liskov, B.H.
A language extension for expressing constrainis on Data Access.
Communications of the ACM 21(5):358-367, May, 1978.

[Kent 78] Kent, W.
Data and Reality.
North-Holland, 1978.

[King 82} King, T.J.
The use of a relational database management system to store historical
records.
In M.P. Atkinson {editor), Stafe of the Art Report Dalabase series 9
Number 8, pages 425-434. Pergammon-Infotech, Maidenhead,
England, 1982.

[Lampson 83] Lampson, B.W.
A X caleulus of types.
Private communication , 1983.

[Lang & Gray 68]
Lang, C.A. & Gray, J.C.
ASP - a ring implemented associative structure package.
Communications of the ACM 11(8):550-555, August, 1968.

[Liskov, B. et al. 83]
Liskov,B., Herlihy, M., Johnson, P., Leavens, G., Scheifler, R. and
Weihl, W.
Preliminary ARGUS re ference manual.
Technical Report Memo 39, Programming Methodology Group,
Massachusetts Institute of Technology, Laboratory for Computer
Science, Cambridge, Massachusetts 02139, USA, October, 1983.

63

Atkinson ef al.: Progress with Persistent Programming 16 February 1984
Atkinson el al.: Progress with Persistent Programming 10 February 1984
[Mall ef al. 83] Mall, M., Schmidt, J.W. and Reimer, M.
Data Selection, Sharing, and Access Control in a Relational Scenario. [Nikhil 84] Nikhil, R.
In Brodie, M.L., Mylopoulos, J.L. and Schmidt, J.W. {editors), An Incremental, Strongly Typed Applicative Programming System for
Perspectives on Conceptual Modelling, . Springer-Verlag, Berlin Daiabases.
Heidelberg New York, 1983. PhD thesis, University of Pennsylvania, Department of Computing and
Presented at the Symposium on Conceptual Modelling: Perspectives Information Science, 1984.
from Artificial hltel!igence, Databases and Programming Languages, [Olle 78] Olle. T. W
Intervale, New Hampshire, June 1982. The ’CODASYL approach to Data Base Management.
[Milne & Milner 79] Wiley Iutersience, New York, 1978.
I\f‘hlne, G- and Milner, &. ; [Organick 72] Organick, E.L
Concurrent processes and their syntax. The MULTIC'S Sustem
Journal of the ACM 26(2):302-32%, April, 1979. ; § oY ’

MIT Press, Cambridge, Massachusetts, 1972,
[Milner 79] Milner, R.

Floweraphs and flow algebras.

Journal of the ACM 26(4):794-818, October, 1979,

[Parnas 72 Parnas, D.L.
A Technique for Software Module Specification With Examples.
Communications of the ACM 15(5):330-336, May, 1972.

[Richard & Ledgard 77)
Richard, F. and Ledgard, H.

. it . A Reminder {for Language Designers.
Science, James Clerk Maxwell Building, The King's buildings, e e Yo{19). 7 . -
Edinburgh EHS 3HD, Scotland, November, 1983, ACM SIGPLAN nolices 12(12):73-82, December, 1977,

[Milner 83 filner, R.
A proposal for standard ML.
Technical Report, University of Edinburgh, Department of Computer

[Richards & Whitby-Strevans 78]
Richards, M. and Whithy-Strevans, C.
BCPL-the language and its compiler.
Cambridge University Press, Cambridge, England, 1976.

{Mylopoulos & Wong 80}
Mylopoulos, J. and Wong, HK.T.
Some features of the Taxis data model.
{n The gizth internalional con ference on Very Large Dala Bases,
Montreal, Canada. November, 1980. [Rowe 80] Rowe, L.A.
Re ference Manual for the programming language RIGEL.
Technical Report, University of California at Berkeley, Depariment of
Electrical Engineering, 1680.

[Mylopoulos et al. 80]
Mylopoulos, J., Bernstein, P.A. and Wong, HK.T.
A Language Facility for Designing Database Intensive Applications.
ACM Transactions on Dalabase Systems 5{2), June, 1980. [Rowe & Shoens 79]

. .. Rowe, L. and Shoens, K.

[Nijssen 80} Nijssen, G.M. Data Abstraction, Views and Updates in RIGEL.

Database Semantics. ;
. o In Proceedings of ACM SIGMOD International Con ference on
; I j . .

In Atkinson,M. {editor}, In fotech State of the Art Report on Database, Management of Data, pages 71-81. ACM-SIGMOD, 1979.

. Infotech, 1980.
iy - Schinidt 77] Schmidt, J.W.
2 . [)
(Nikhil 82] Nikhil, R. Some High Level Language Constructs for Data of Type Relation.

RDE - A Eelational Database Management System. : .) .
Technical Report, Department of Computer Science and Information AC;‘&{”"“MC“O"S on Database Systems 2(3):247-281, September,
4,

Science, University oh Pennsylvania, January, 1982.
User Manual. [Schmidt 78] Schmidt, J.W.
Type Concepts for Database Definition.
In Shneiderman, B. (editor), Databases: Improving Usabilily and
Responsiveness, . Academic Press, 1978,

64
65

Atkinson ef gl.: Progress with Persistent Programming 10 February 1984

[Shipman 81] Shipman, D.W.
The Functional Data Model and the Data Language DAPLEX.
ACM Transactions on Database Systems 6(1):140-173, March, 1981.

[Shopiro 79] Shopiro, JE.
THESEUS - A Programming Language for Relational Databases.
ACM Transactions on Database Systems 4(4), December, 1979

[Smith et al. 80a]Smith, J.M. et al..
AMulitbase--fnlegrating Heterogeneous Distributed Data Bases.
Technical Report, Computer Corporation of America, November, 1980.

[Smith et al. 80b]
Smith,J.M., Bernstein,P.A., ef al..
Basic Architecture of Mullibase.
Technical Report, Computer Corporationof America, November, 1930,

[Stonebraker ef al. 76]
Stonebraker, M., Wong, E., Kreps, P., and Held, G.
The Design and Implementation of INGRES.
ACM transactions on Database Systems 1{3):189-222, September,
1976.

{Strachey 67] Strachey, C.
Fundamental Concepls in Programming Languages.
Oxford University, 1967.

{Tanenbaum 78] Tanenbaum, A.S.
A comparison of Pascal and Algol68.
The Compuier Journal 21{4):316-323, November, 1978.

[Taylor & Wilson 82]
Taylor, R. and Wilson, P.
OCCAM a new language for parallel processing systems.
Electronics {11}, November, 1982.

[Teitelman 75] Teitelman, W.
INTERLISP Reference Manual.
Technical Report, Xerox Palo Alto Research Center, Palo Alto
California, USA, 1975.

[Teunent 77 Tennent, R.D.
Language Design Methods Based on Semantic Principles.
Acta In formatice 8:97-112, 1977.

66

Atkinson ef al.: Progress with Persistent Programming 10 February 1984

[Turner, D.A. 81]
Turner, D.A.
The Semantic Elegance of Applicative Languages.
In Proceedings 1981 con ference on Functional Programming
Languages & Compuler Archilecture, Portsmith, New Hampshire.,
pages 18-22. October, 1981.

[van Wijngaarden et al. 69}
van Wijngaarden, A. et al..
Report on the Algorithmic Language Algol 68.
Numerische Mathematik 14:79-218, 1969.

[Wasserman et al. 81]
Wasserman, AL, Shertz, D.D., Kersten, M.L., Reit, R.P., and van de
Dippe, M.D.
Revised Report on the Programming Language PLAIN.
ACM SIGPLAN Notices , 1981.

[Wirth 74} Wirth, N.
On the Design of Progremming Languages.
North-Holland, Amsterdam, 1974, pages 386-393.
[Wirth 83 Wirth, N.
Tezts and Monographs tn Compuler Science: Programming in
Modula-2: Second Fdiiion.
Springer-Verlag, Berlin, 1983.

[Wisernan & Hiles 68]
Wiseman, N.E. and Hiles, J.0.
A ring structure processor for a small computer,
The Computer Journal 10{4}:338-346, February, 1968.

67

