University of Glasgow
Department of Computing Science

Lilybank Gardens
Glasgow G12 8QQ

University of St. Andrews
Department of Computational Science

North Haugh
St Andrews KY16 9SS

EFDM - User Manual
Second Edition

Krishna G. Kulkarni

Persistent Programming
Research Report 7
September 1983

PREFACE

This second edition of the EFDM User Manual varies only slightly from
the first in that a number of small errors in the examples have been rectified.

EXTENDED FUNCTIONAL DATA
MODEL

USER MANUAL

K. G. Kulkarni

Department of Computer Science,
University of Edinburgh,
Mayfield Rd.
Edinburgh EH9 3JZ

PERSISTENT PROGRAMMING
RESEARCH REPORT 7

SEPTEMBER 1983

Table of Contents

—d

. Introduction
. How to Get Started
. Data Definition
3.1 Function Specification
3.2 Constraint Specification
3.3 Removal of Functions and Constraints
3.4 Metadata
4. Data Retrieval
4.1 Operators
4.1.1 Relational Operators
4.1.2 Boolean Operators
4.1.3 Arithmetic Operators
4.1.4 String Operators
4.1.5 Set Operators
4.1.6 the Operators
4.1.7 Boolean Operators
4.2 Aggregation Functions
4.3 Packaged Queries
4.4 Outputting the Results
5. Derived Functions
6. Database Updating
6.1 Creating a New Entity
6.2 Assigning or Modifying Function Values
6.3 Extending the Set of Types of an Entity
6.4 Reducing the Set of Types of an Entity
6.5 Entity Deletion
7. User Views
8. Bulk Loading of a Functional Database

w N

Appendix
A.System Specification of EFDM Implementation

© N NG -

11
12
12
13
13
13
14
14

14.

15
15
16
17
19
19
19
21
21
22
23
25

1. Introduction

This manual describes the use of the Extended Functional Data Model (EFDM)
system. EFDM is a descendent of the functional data model (FDM) and the associated
data language, DAPLEX, proposed by Shipman (SHIP81) with some significant
extensions and modifications.

FDM models the real-world information as sets of entities and of functions mapping
entities to entities. An entity is some form of token identifying a unique object in the
database and usually representing a unique object in the real world. For example, FDM
models a student in the real world by a unique student entity in the database. Entities
are classified into a number of entity types so that every entity belongs to at least one
entity type.

A function maps a given entity into a set of target entities. For example, a function
courseof may map a particular student entity to a set of course entities. FDM treats
values like integers and strings also as entities, except that such entities have a
pre-defined lexicographic representation. Because of this, properties (or attributes) and
relationships can both be modelled uniformly as functions mapping entities to entities.

Entity orientation is what distinguishes this data model from other name-based
models like relational or record-based data models. Unlike these models, FDM makes
an explicit distinction between entities and their external name(s), i.e. more than one
entity may have the same set of external names and still be internally distinguishable.
For example, if the Christian name and surname are the only information stored about
each person, FDM can distinguish between two persons who have the same Christian
name and surname while relational or record-based models cannot. This is possible in
FDM because it creates two distinct entities corresponding to the two different persons in
the real world.

Thus, each entity in the database is created by an explicit ‘create’ action, signifying
the start of interest in the corresponding real-world object for which it serves as the
representative. After an entity is created, the values for the functions applicable to it are

2
assigned by an explicit action, and the changes in properties of the corresponding
real-world object with time are reflected by modifying the function values. Finally, when
the interest in a certain real-world object ceases, the corresponding entity is removed
from the database by an explicit 'delete’ operation. Thus entities by themselves cannot
be printed, only functions yielding lexical entities like strings or integers can be printed.

Figure 1-1 lists the set of functions used to model a simple student database
expressed using the data definition statements of EFDM. The single arrow used in
these function definitions indicates that the function is single-valued, i.e. the function
application always returns a single entity and the double arrow indicates that the
function is multi-valued, i.e. the function application returns a set of entities. The
argument part of a function definition indicates the type(s) of argument entities and the
result part indicates the type of result entities.

declare person () ->> entity
declare student () ->> person
declare staff () ->> person
declare course () ->> entity
declare event () ->> entity
declare tutorial () ->> event
declare lecture () ->> event
declare cname (person) -> string
declare sname (person) -> string
declare sex (person) -> string
declare course (student) ->> course
declare tutorial (student) -> tutorial
declare grade (student, course) -> string
declare course (staff) ->> course
declare room (staff) -> string
declare phone (staff) -> integer
declare title (course) -> string
declare lecture (course) ->> leclure
declare day {event) -> string
declare time (event) -> Integer
declare site (event) -> string
declare room (event) -> string
declare staff (tutorial) -> staff
define tutor (student) - staff { tutorial (student))

Figure 1-1: Functional Schema for a Student Database.

3
By convention, zero-argument functions define entity types. For example, consider
the person() function shown above. Since there are no arguments, this function has
only one possible result set. We use this fact to say that all members of this set have a
distinct type, i.e. it defines the person entity type. Further, the set of person entitles
returned by the person() function above is a subset of the set of entity entities. We use
this fact to say that each entity type in this model acts as a subtype of its result type. This

leads to the hierarchical organisation of entity types so that they are all subtypes of the
type entity.

An entity type can have any number of subtypes. For example, both staff and
student are subtypes of persontype. An important consequence of this type hierarchy is
that a subtype inherits all the functions defined over all of its supertypes. This follows
from the fact that a student entity is necessavrily a person entity as well and hence all the
functions applicable to person entities are applicable to student entities. Also,
extensions of different entity types can overlap. For example, a student entity can
simultaneously be a staff entity as well. The notion of role (see section 4) is used to
determine the type of an entity during evaluation.

As described earlier, functions with arguments mode! both attributes and
relationships. For example, while the cname(person) function models an attribute of
person entities, the course(student) function models the relationship between student
and course entities. Functions in this model can have more than one argument. For
example, the grade function above establishes a mapping from each student- course
pair to a string entity.

string and integer are pre-defined entity types provided by the system. They are
special in that they have an established method of lexicographically representing the
instances of these types. The actual set of such built-in types is analogous to the base

types in a programming language. Other such useful types are boolean, real, time,
date etc.

A function introduced by declare is called a base function and is represented by
physically storing a table of arguments and results. For example, cname(person)

4
function relating a person to his Christian name. A function introduced by define is
called a derived function and is represented by an algorithm to compute its result. For
example, the result of futor(student) function above is calculated by evaluating the
expression staff(tutorial(student)) for the given student entity.

The model allows overloading of function names. For example, though the
functions course(), course(student) and course(staff) all have the same name, they are
distinguished by their internal names. The internal name of a function is generated by
enclosing in square brackets the external function name and the argument types over
which it is specified.

2. How to Get Started

EFDM provides an interactive user interface. (See Appendix A for the complete
syntax.) On initiating the system, EFDM prompts the user for a database name. Ifa
database with the specified name does not exist, the system creates an empty database
for the user. After the database is opened successfully, EFDM responds with the
prompt:

View:

If the user wants to enter the global view, the response should be
global

I, on the other hand, the user wants to enter a named view of the database (see section
7), he should type the name of the view in response. (If the view corresponding to the
user-specified name does not exist, an error message is displayed and the session is
terminated.) After the view is established successfully, the system responds with the
prompt

command:

If the user is in the global view, he can then type in a FDM command starting with
- declare or define to add a new function or entity type.
- for each to retrieve and display data from the database.
- for a new to create a new entity.
- let, include, exclude to assign/modify function values.
- delete to delete an existing entity.
- program to define names queries. .
- print to output results on to screen.
- output to output results of named queries on to files.
- constraint to specify a constraint.
- view to define a view.
- drop to drop an exisiting function, an entity type,
a named query, a constraint, or a view definition.
- load to create a database from data stored in files.

6
If the user is in any other view, he is restricted to a subset of the above commands.
For example, he cannot make any database updates nor declare any base functions
(see section 7). The following system conventions must be noted:

1. Ali statements must be terminated by a semi-colon (;).

2. Each statement is parsed as it is input and if a syntax error is encountered at
any stage, all the input is abandoned and the system returns to command
mode after displaying the relevant error message.

3. If the statement is syntactically correct, it is executed immediately and if it
contains the print instruction, the result values, if any, are displayed on the
terminal. The system returns to command mode after executing the
statement.

4. The interactive session can be terminated by inputting a full-stop in response
to command:. The whole session is treated as one transaction and all
updates done during the session get stored in the database only if the users
reply affirmatively to the prompt : commit transaction?

The following language notations must also be noted:

1. Data types: The language provides a built-in entity type entity and
supports primitive types of integer, string, boolean.

2. Names: A name (identifier) consists of a letter followed by any number of
dots, letters or digits.

3. Literals: Three forms of literals are provided, i.e. integer literals, string
literals, and boolean literals. An integer literal is one or more digits. A string
literal is any sequence of characters enclosed by double quotes. true and
false are the only two boolean literals allowed.

4. Tokens may be separated by an arbitrary number of spaces, new lines, or
comments. Comments are arbitrary text enclosed in square brackets [).
Upper and lower cases are equivalent.

3. Data Definition

3.1 Function Specification

declare (define) statement is used to enter a new base (derived) function or
entity type definition. A new function can be declared at any time during an interactive
session. The arguments, if any, of the function declaration must correspond to entity type
identifiers. For base functions, the result should also correspond to an entity type
identifier. (The different mechanisms for defining derived functions are discussed in
section 5.)

No forward or recursive function definition is allowed for base functions, i.e.
functions (and hence entity types) must be declared before they are used and a function
cannot be declared using itself.

To avoid inconsistencies, the users are helped to ensure that the same real world
fact is not described by more than one base function. For example, assume that there
exists a base function

student (course) ->> student
establishing a relationship between student and course entity types. Suppose we now
want to add another function

course (student) ->> course
which establishes another relationship between student and course entity types. If,in
reality, this new function is the inverse of the old function, adding it as a base function will
mean that the same fact is represented by two independently updatable functions, and
this will surely lead to inconsistencies in the database. However, it can be added safely
as a derived function. On the other hand, the new function may be corresponding to a
new fact, say, relating to the majors taken by a student, in which cass, it is to be added as
a base function. As there is no way for the system to infer what is intended, whenever
addition of a new one-argument base function is requested, the system will display all
the existing base functions between the argument and result types and some that can be
derived using function inversion and composition. The user is consulted to check if the
function addition should proceed.

3.2 Constraint Specification

Constraints are specified using the constraint command. Each constraint must be
identified by a unique name. Prior to accepting a constraint specification, a check is
made to ensure that the existing data satisfies it. If this check fails, the request is aborted

and the user informed of the action.

Currently, EFDM supports the following kinds of constraints:

1) The constraint that the sex (person)} function must be defined for every person
entity can be specified as follows:

constraint ¢1 on sex (person) -> total;

2) The constraint that the value for the sex (person) function for a given entity
can be assigned only at the time it is created and this value cannot be
changed throughout the life time of that entity can be specified as follows:

constraint c2 on sex (person) -> fixed;

3) The constraint that the values for cname (person) and sname (person)
functions for a given entity together act as unique designators of that entity
can be specified as follows:

constraint c3 on cname (person), sname (person) -> unique;

4) The constraint that no student entity can be a staff entity as well can be
specified as follows:
constraint c4 on student, staff -> disjoint;

5) The constraint that the grade (student, course) function is defined for only
those student-course pairs such that the course entity is a member of the set
returned by the application of course (student) function to the given student
entity can be specified as follows:

constraint c5 on the grade (student, course) ->
some c in course (student) has ¢ = course;

(For the explanation of some quantifier, see section 4.)

9
3.3 Removal of Functions and Constraints

Functions can be removed using drop command. For example,
drop course (student);
is a request for dropping the course(student) function.

Removing a function definition removes ali the values associated with that function
as well as all the other function definitions which depend on it. However, before
carrying out this operation, the system displays a list of functions that will be dropped by
the action and seeks confirmation from the user whether to go ahead or not.

Constraints can also be dropped with the drop command. For example, the
following command
drop ct;
removes the constraint c1.

3.4 Metadata

The metadata of the schema corresponding to an application is held in a set of
EFDM functions shown in figure 3-1. These functions are automatically populated and
modified when declare, define or drop statements are processed. Only the
document function may be explicitly updated by the user.

The contents of these functions can be retrieved with the usual retrieval statements.
For example, to find out the textual description of all existing function declarations, the
following statement can be made use of:
for each fin function
print text (f)
So a user may use such queries to discover the form of a database. To facilitate this the
functions given in figure 3-2 are defined.

function () ->>
name (function) ->
nargs {(function) ->

arguments (function) ->>

result (function) ->
type (function) >
status (function) ->
text (function) ->

document (function) ->

constraints () ->>
name {constraint) ->
text (constraint) ->

10

entity -- contains a set of entities corresponding to the functions

string -- the name of the function

integer -- the number of arguments the function has

function --list of those functions

function -- and the resuit function

string -- whether the function is single-valued or multi-valued

string -- whether the function is base or derived or system-
defined

string -- the text of the function definition

string -- documentation associated with that function

entity -- contains a set of entities corresponding to the
constraints

string -- name of the constraint

string -- text of the constraint declaration

Figure 3-1: The functions to hold the meta data of a schema

entitytype()
supertype(entitytype)
supertypes(entitytype)
subtype(entitytype)
subtypes(entitytype)
fnsover{entitytype)

fnsyielding (entitytype)

fin function such that nargs {f) = 0

result (entitytype)

transitive of supertype (entitytype)

e in entitytype such that resuit (e) = entitytype

transitive of subtype (entitytype)

f in function such that nargs(f) = 0 and some e
in arguments(f) has (e = entitytype or some
e1 In supertypes(entitytype) has e = e1)

fin function such that nargs (f) " = 0 and
result(f) = entitytype

Figure 3-2: The derived functions for querying meta data

11
4. Data Retrieval
for-loop statements and expressions are the basic constructs for data retrieval. For
example, consider the following query:

(Q1.) Find the Christian and surname of all students.
This is formulated as follows:

for each s in student
print cname(s), sname(s);

Here, the variable s is successively bound to the instances of student entity type. The
print statement is used to output the results.

Expressions consist of names, literals, and operators. Every expression has a
value and a role. The expression value is the set of entities returned by evaluating the
expression. An expression which evaluates to a set is called set expression while that
which evaluates to a single entity is called singleton expression. The expression role is
the entity type under which these entities are to be interpreted.

Every set expression has to be associated with a reference variable using the in
operator. This can be any meaningful name chosen by the user. Variables, once
declared, remain in scope throughout the statement.

A set expression can involve a boolean predicate. For example, consider the
following query:

(Q2.) Find the Christian and surname of all female students.
for each s in student such that

sex(s) ="
print cname(s), snames(s);

Here only those student entities for which the boolean expression following such that
evaluates to true are included in the result of the set expression.

Quantifiers can be made use of to specify predicates. For example, consider the
following query:

12
(Q3.) Find the Christian and surname of all the students taking the IS1 course.
for each s in student such that
some c in course(s) has

title(c) = "IS1"
print cname(s), sname(s);

In this query, the expression following such that evaluates to true if at least one ¢ in
course(s) meets the title(c) = "IS1" test. Other such quantifiers are all, no, at least, at
most, or exactly (the last three quantifiers must be followed by an integer-valued

singleton expression).

In general, each argument for a function application can be either a set expression
or a singleton expression. When the argument is a set expression, the result of the
function application is obtained by iteratively applying the function to each member of the

argument set and taking the union of results. For example, consider the following query:
(Q4.) List all the courses taken by female students.

for each c in course (s in student such that sex(s) = "f")
print title (c);

Here, the result of the set expression is calculated by taking the union of sets of course
entities returned by applying the function course(student) to each member of the

argument set.

4.1 Operators

4.1.1 Relational Operators

An entity compared with another entity evaluates to a boolean result. The

following comparison operators are allowed:

< less than

<= less than or equal to

> greater than

>= greater than or equal to
= equal to

"= not equal to

13
= and "= are defined on all entity types. <, <=, > and >= are defined on integer and
string types only. The entities to be compared must be of compatible type, i.e. types
which are either the same or related by a subtype-supertype relationship.

4.1.2 Boolean Operators

There is one unary operator not, and two binary operators and and or defined on
entities of type boolean. They have the usual meaning. The order of evaluation is
from left to right and based on the precedence rule

not

and
or

4.1.3 Arithmetic Operators

Arithmetic may be performed on entities of type integer. The operators are

+ for addition

- for subtraction

* for multiplication
/ for division

rem for remainder

The order of evaluation is from left to right and based on the precedence rule
*/rem

+ -

i.e. the operations x, /, rem are always evaluated before + and -. However, if the
operators are of the same precedence then the expression is evaluated left to right.
Brackets may be used to override the precedence of the operator.

4.1.4 String Operators

Currently, only one operator ++ is defined on entities of type string. I
concatenates the two operand strings to form a new string.

14
4.1.5 Set Operators

The following binary operators are applicable to combine set expressions:

union for set union
intersection for set intersection
difference for set difference

The order of evaluation is from left to right. The type of expressions involved must be the

same.

4.1.6 the Operator

The the operator applied to a set expression returns a single entity if the result set
has the cardinality of 1, otherwise an error condition is raised. For example, consider

the following query:
(Q5.) Find the courses taught by Hamish Dewar.

for the s in staff such that
cname(s) = "Hamish" and
sname(s) = "Dewar”

for each c in course(s)
print title (c);

The above formulation expresses the fact that only one staff entity in the database is

expected to have the Christian name "Hamish" and surname "Dewar".

4.1.7 as Operator

This operator is useful to explicitly specify the type of an entity during an expression

evaluation. For example, consider the following query:

(Q6.) Find the names of those students who are taking a course which they
teach.

for each s in student such that
some c¢ in course(s) has

some c1 in course (s as staff) has
c=cl

print cname(s);

15
4.2 Aggregation Functions

Aggregation functions include average, total, count, maximum, minimum.

The count function applied to a set expression returns the cardinality of the result
set in integer form. For example, consider the following:

(Q7.) Find the number of courses taken by Angela Pearson.

for the s in student such that
cname(s) = "Angela" and
sname(s) = "Pearson”

print count (c in course(s));

The maximum and minimum functions applied to an integer-valued set expression
return the maxiumum and minimum values, respectively, of the result set. For example,
consider the following query:

(Q8.) Find the maximum tutorial group size.
print maximum(i in students (t in tutorial));

The average and total functions applied to an integer-valued multiset expression
return the average and total, respectively, of the result multiset. (A multisetor a bagis a
set which may contain duplicate elements.) A multiset expression is formed using the
over operator, which takes a set specification and an expression defined over members
of that set. For example, consider the following request:

(Q9.) Find the average tutorial group size.
print average (over t in tutorial count (s in students (t))

4.3 Packaged Queries
A query can be named by preceding the query statement with

program programidis

For example, the following statement:

16
program females is
for each p in person such that sex (p) = "f"
print cname (p), sname (p);

assigns the name females to the corresponding query. Such a named query can be

executed any time by typing its name in response to the system prompt.

The information about currently defined queries is held in pre-defined EFDM

structures. These are shown in figure 4-1.

query () ->> entity
name (query) -> string
text (query) -> string

Figure 4-1: The functions to hold meta data for queries.

These can be queried using the above data retrieval facilities. For example, to list

all the existing query definitions, we can use

for each q in query
print text (q),

Any existing query can be removed using the drop statement. For éxample, the
following statement,
drop females;

removes the above query definition.

4.4 Outputting the Results

The print statement is used to output the results. The results of both interactive

and packaged queries normally appear on the screen.

There is also a facility to output the results of a packaged query to a named file.
For example, the following statement
output females fem.dat;
executes the query named females, creates a file with the name fem.dat if it is not

already created, and directs the output to that file instead of the screen.

17
5. Derived Functions

The define command is used to enter a derived function. Derived functions can
be defined using expressions. For example, consider the function fufor(student) as
defined in the schema of figure 1-1:

define tutor(student) -> staff(tutorial (student))
which returns a staff entity for a given student entity by evaluating the defining
expression.

In the above example, the argument of the function implicitly declares a variable
with the same name for use during evaluation. In case of ambiguity, variables can be
associated with the arguments using in. For example, the following derived entity type

define female () ->> p in person such that sex (p) = "f";
defines a subtype of type person , which returns those person entities meeting the
qualification. It is to be noted that the use of set expressions involving set operators is
currently not allowed for defining new entity types.

EFDM allows recursion for defining derived functions. For example, consider the
following familiar bill of materials example:
declare part () ->> entity

declare subpart (part) ->> part;
declare incremental.cost(part) -> integer;

The derived function to provide the total cost of manufacture for a part is defined using
recursion as follows:

define total.cost(part} -> incremental.cost(part) +
total (over p in subpart (part) total.cost(p));

Additionally, the following spécial operators are provided for defining derived
functions:

Inverse of :

If we are interested in finding out the set of students taking a given course using the
course(student) function, we can define a derived function as follows:

18
define students(course) ->> s in student such that
some c¢ in course(s) has
C = course

EFDM provides a special operator inverse of to simplify the derivation of the
above function. Using this operator, the above function can be defined as

define students(course) ->> inverse of course(student)

inverse functions can be defined for one-argument functions only. A single valued
function may have the inverse function which is single- or multi-valued. Similarly, a
multi-valued function may have a single- or multi-valued function as its inverse.

transitive of :

Corresponding to the bill of materials example mentioned above, consider the
following derived function
define subparts(part) ->> transitive of p in subpart(part)
This function returns the set containing the subparts of a given part, the subparns of
subparts, subparts of subparts of subparts etc.

The transitive of operator can be used to define one-argument functions only.
The argument and the result of such a function must be of identical type.

compound of :

The compound of operator is used to define new entity types only. This operator
creates derived entities corresponding to the elements of the cartesian product of its
operands. For example, the following derived entity type,

define enrolment () ->> compound of s in student, ¢ in course (s)
returns entities of enrolment type. The new type being defined will be a subtype of
entity and will include one entity for each student-course tuple. In addition, the system
implicitly defines the two functions

student(enrolment) -> student

course (enrolment) -> course
which return the student and course entities for each enrolment entity.

19
6. Database Updating

Using the update operations of EFDM, the users can create or delete an entity,
assign or modify function values, and extend or reduce the set of types for an existing
entity. Currently, updating the database through derived functions is not supported.
Also, as there is no notion of transactions, checking for constraint violations following an

update action is also not supported.

6.1 Creating a new entity

A new entity is created using a new expression. For example,

a new p in person
creates a new person entity and associated it with the variable p. When a new entity
belonging to a certain entity type is created, all the supertypes of that entity type get
populated simultaneously with that new entity. For example,

a new s in student
creates a new entity which is included in the extension of both student and person entity
types.

To assign values for the functions applicable to the newly created entity, the for
statement along with the let statement (see section 6.2) may be made use of. It is not
necessary to populate all the functions applicable to the newly created entity at the time
of creation itself. This is because the functions in EFDM are assumed to be partial by
default. All unassigned single-valued functions will be initialised with a special entity
'UNDEFINED" and all unassigned multi-valued functions will be initialised with the empty
set. However, to be able to assign values at a later time, care should be taken to see

that the newly created entity can be uniquely identified.
6.2 Assigning or modifying function values
let, include, and exclude statements are used for this purpose. The let

statement replaces the existing function value, if any, by the new value. Otherwise, it

assigns the specified value as the result for the given set of arguments. The include

20
statement exiends the existing result set of a multi-valued function for the given

arguments and the exclude statement does the opposite. For example, consider the

following requests:

(U1.) Create a new student entity and assign Christian name as Moyana and
surname as Johns.
for a new s in student

let cname (s) = "Moyana”
let sname (s) = "Johns";

creates a new student entity and assigns the specified values to the functions applicable

to that entity.

(U2.) For the student with Christian name 'Moyana' and surname 'Johns’, change
her current course assignment to CS1 and CS2 courses.

for the s in student such that

cname(s) = "Moyana" and sname(s) = "Johns"

let course(s) = ¢ in (the c1 in course such that
title (c1) = "CS1", the c2 in course
such that title (c2) = "CS2");

(U3.) For the student with Christian name 'Moyana' and surname ‘Johns', add the

course 1S1 to her current course assignments

for the s in student such that
cname(s) = "Moyana" and sname(s) = "Johns"
include course (s) = ¢ in (the c1 in course
such that title (c1) = "CS1");

{U4.) For the student with Christian name 'Moyana' and surname 'Johns', drop the

course CS1 from her current course assignment

for the s in student such that
cname(s) = "Moyana" and sname(s) = "Johns"
exclude course (s) = ¢ in (the c1 in course
such that title (c1) = "CS1");

21
The following points should be noted:

1. The type of the expression in the right-hand side of the = sign must be the same
as the type of the left-hand side function.

2. The expression must evaluate to a singleton for single-valued functions and to
a set for multi-valued functions.

3. The inclusion of an already existing element into a set has no net effect.

4. The exclusion of a non-existant element from a set has no net effect.

6.3 Extending the set of types of an entity.

The syntax for including an existing entity into the extension of a specified entity
type is the same as that used to include entities into multi-valued function extensions.
For example, to include a student with Christian name 'Moyana' and surname 'Johns'
into stafftype, we use

include staff = 51 in (the s) in student such that
cname (s1) = "Moyana™ and sname (s1) = "Johns")

Inclusion of an entity in the extension of its own type or any of its supertypes has no
net effect.

6.4 Reducing the set of types of an entity.

The syntax for this case also is the same as that used to exclude entities from the
multi-valued function extensions. For example, to exclude the staff with Christian name
‘Moyana' and surname 'Johns' from the staff type, we use

exclude staff = s1 in (the s1 in staff such that
cname (s1) = "Moyana" and sname (s1) = "Johns")

22
Excluding an entity from the extension of a type results in removing its reference from the
extensions of all subtypes of that type, if any, and from all functions in which it is
participating either as an argument or result. Hence, before carrying out the operation, a
list of these implicit updates is displayed and the user is asked to confirm the request.

It is to be noted that reducing the set of types of an entity does not result in the
removal of entity from the database as long as the set of types is non-empty. For
example, the above operation only removes the specified entity from the staff type, while
the entity itself continues to exist in the database as a person and possibly as a student
entity.

6.5 Entity Deletion

The delete statement is used to remove a specified entity from the database. This
also causes a cascade deletion of all functions which reference this entity, again
consulting the user before the cascade proceeds. For example, to delete a student with
Christian name 'Moyana' and surname 'Johns' from the database, we use

delete the s in student such that
cname(s) = "Moyana" and sname(s) = "Johns";

The difference between this statement and the exclude statement above is that
while exclude removes a specified entity from the specified type and its subtypes,
delete removes a specified entity from the extensions of all its types.

23
7. User Views

EFDM provides a view mechanism which, while providing a different perspective of
the global information, also acts as an authorisation mechanism. Using this mechanism,
a central database administrator, who has access to the entire database, can define

different overlapping user views. The underlying assumptions of this mechanisms are:

1) There exists a global view from which all user views are derived. That is, we
assume the structure and contents of this global view are arrived at by integrating the
different application views to one common community view. Hence, the global view
encompasses all the information required by all the users. It certain information
required by a user is not in his view, he must request a central authority (database
administrator) to include it in his view, who will, in turn, examine whether the information
requested by him is already available in the global view and if not, he will take steps to

include it in the global view and then include it in the user's view.

2) The users of a certain view are restricted to the names available in the
namespace of that view; they have no access to either the global name space or the

namespaces of other views.

Views are defined using deduce statements. For example, for the student

database of figure 1-1, we can define a view called malestudents as
view malestudents is

deduce male () ->> entity using s in student
such that sex(s) = "m";
deduce name(male) -> string using cname/sname(s);
end;

All functions introduced by deduce are treated as derived functions. Notice that
deduce is used to define view functions instead of define. This is because view
function definitions involve change of name space; names before the using keyword
define the namespace of the view being defined whereas names after using keyword

refer to names in the current namespace. Every view definition automatically creates a

24
different name space, which is completely independent of the global name space as well
as the name spaces of other views.

Views can be dropped with the
drop viewname

command.

The information about currently defined views is held in pre-defined EFDM
structures. These are shown in figure 7-1.

view () ->> entity
name (view) -> string
text (view) ->> string

Figure 7-1: The functions to hold the meta data for views

7.1 Operations from Views

Once within a view, users can pose the usual EFDM requests to carry out the
database operations using the names available in their name space. Each query
statement issued from a user view is translated into a corresponding query on the global
name space by recursively applying the view definition mapping.

Since all the functions in a view are treated as derived functions, updating through
view functions is currently not allowed. The only schema changes that are allowed from
a view are either defining derived functions from the set of functions they are allowed to
have access to or dropping the derived functions they have created. This means that
the individual users are not allowed to introduce any base functions or stored data of
their own.

25
8. Bulk Loading of a Functional Data Base

The load command is provided to load function definitions and function values
stored in files. On entering this command, the user is prompted for the names of two
files, one containing the function declaration statements (schema file), and the other
containing the function values (data file).

A series of declare, define or program statements, each terminated with a
semicolon constitute the schema file. Note, however, that for the purpose of using this
command, it is necessary for each entity type to have a single-valued key function (with
'integer’ or 'string’ as its result) whose values uniquely distinguish the entities
belonging to that type. We will assume that the following functions are defined for this
purpose: personno for person type, studentno for student type, staffno for staff type,
courseno for course type, each having integer type as result. The last statement of the
schema file must be a full stop (.).

The data file should be organised as a set of tables. Each table must be qualified
as either E-table or A-table. Each entry in an E-table results in creating a new entity and
assigning values for some specified functions applicable to that entity. In contrast, each
entry in an A-table either assigns or modifies the function value for an existing entity,
identified by its key function value. End of all data is indicated by an*.

The name of an E-table must correspond to the name of an entity type specified in
the schema. Each column header of an E-table must correspond to the name of a
single-valued, one-argument function defined on that entity type or any of its supertypes
which yields entities of primitive types like string, integer etc. Any number of such
columns may be present in an E-table. The format for an E-Table is as follows: Its
name is followed (after a space) by E to indicate the nature of the table. The different
column headers must be separated by spaces, and followed by an * to indicate the end
of the list of headers. There then follow rows of values (strings, integers etc.); each row
conveys information about the values of the various functions of a new entity, identified
by the value of the key function. After the rows, an * denotes the end of the table.

26
For example, E-tables corresponding to student and staff types of the database

shown in Fig. 1-1 appear as shown below:

student E

studentno cname sname sex *
1 Angela Pearson f

: R - R

staff E

staffno chame sname sex *
1 Malcolm Atkinson m

The name of an A-table must correspond to the name of a function with one or
more arguments. The column headers for an A-table correspond to the key functions of
each of the arguments of the function in the order of the argument position. The last
column header corresponds to the key function of the result type if it is an user-defined
type or the primitive type names like 'string’, 'integer' etc. otherwise. The format for an
A-Table is as follows: Its name is followed (after a space) by A to indicate the nature of
the table. The different column headers must be separated by spaces, and followed by
an * to indicate the end of the list of headers. There then follow rows of values (strings,
integers etc.); each row conveys the information about the association between two or
more existing entities identified by the values for the corresponding key functions. After
the rows of values, an * denotes the end of the table.

For example, A-Tables corresponding to course(student) and grade(student,
course) functions appear as shown below:

course A

studentno (student) courseno {course) *

1

1 2

grade A

studentno (student) courseno (course) string *

1 1 A

1 2 B
Reference

SHIP81 Shipman D.W. "The Functional Model and the Data Language DAPLEX"
ACM Transactions on Data Base Systems vol. 6 no. 1, March 1981.

27
Appendix A: Syntax Specification of EFDM Implementation

command = imperative |
declare funspec ("->" | "->>") typeid |
define funspec ("->" | "->>") fundef|
constraint identifier on funlist ->
(total | fixed | unique | disjoint | singleton) |
program programid is imperative |
output programid fileid |
view viewid is
(deduce funcspec ("->"|"->>") typeid using fundef) end.
drop (funspec|programid|viewid) |
load |
programid.

imperative = for each set imperative | for singleton imperative |
update | print stuple

set = vblid in set![such that predicate] [as typeid)

set1 = mvfuncall | typeid | "(" stuple ")" |

"(" set ((union | intersection | difference) set) ")"

singleton = exp1 [or exp1]

expl = exp2 [and exp2)

exp2 =[not] exp3

exp3 = exp4 [compop exp4]

exp4 = [prefixjexp5 (addop exp5)

exp5 = exp6 [mulop expé]

exp6 = exp7 [as typeid]

exp7 = constant | vblid| svfuncall| aggcall | the set| a new typeid |

quant set (has | have) predicate | "(" singleton™")"

svfuncall = funcid "(" stuple ")"

mvifuncall = funcid “(" mtuple ")"

stuple = singleton ["," singleton |

mtuple = expr{ ", expr]

28
expr= set| singleton
aggcall = (count|max|min)"(" set")"|
(total | average) "(" over mtuple singleton")"
update = let funcall"=" expr | include (funcall| typeid) "=" set |
exclude (funcall | typeid) "=" set | delete singleton
funcall = funcid"(" stuple ")"
fundef = (expr | inverse of funcspec | transitive of expr| compund of tuple)
funcspec = funcid"(" [arglist] ")"
arglist =typeid ["," typeid]
funlist = (typeid | fumcid"(" arglist™)") { "," (typeid | funcid"(" arglist")") }
compop =">" | "<" | "=" | ">=" | "<=" | "~"
guant = some | all | not | (at (least | most) | exactly) integer
integer = singleton
predicate = singleton
constant = int| str| bool
int = digit[digit]
str=""" character [character] "™
bool = true | false
vblid = identifier
typeid = identifier
funcid = identifier
programid = identifier
viewid = identifier
identifier = letter { (letter| digit|"." }]
prefix="+"|""
addop = "+" | "-" |"++"
mulop ="*"{"/" | "rem"

Note: Bold-face words and non-alphanumeric symbols enclosed in quote marks
represent terminals. Lower case italic words represent syntactic categories. Square
brackets denote optionality. Grouping is expressed by parentheses, i.e. (a | b) ¢ stands
forac|bc.

Bibliography

Copies of documents in this list may be obtained by writing to:

The Secretary,
Persistent Programming Research Group,
Department of Computing Science,
University of Glasgow,
Glasgow G12 8QQ
Scotland.

or
The Secretary,
Persistent Programming Research Group,
Department of Computational Science,
University of St. Andrews,
North Haugh,
St. Andrews KY16 9SS
Scotland.

Books

Davie, A.J.T. & Morrison, R.
"Recursive Descent Compiling”, Ellis-Horwood Press (1981).

Atkinson, M.P. (ed.)
"Databases", Pergammon Infotech State of the Art Report, Series 9, No.8, January 1982.
(535 pages).

Cole, A.J. & Morrison, R.
"An introduction to programming with S-algol”, Cambridge University Press, Cambridge,
England, 1982.

Stocker, P.M., Atkinson, M.P. & Grey, P.M.D. (eds.)
“Databases - Role and Structure”, Cambridge University Press, Cambridge, England, 1934.

Published Papers

Morrison, R.
“A method of implementing procedure entry .and exit in block structured high level
languages". Software, Practice and Experience 7, 5 (July 1977), 535-537.

Morrison, R. & Podolski, Z.
"The Graffiti graphics system”, Proc. of the DECUS conference, Bath (April 1978), 5-10.

Atkinson, M.P.
“A note on the application of differential files to computer aided design”, ACM SIGDA

newsletter Summer 1978.

Atkinson, M.P. . .
"Programming Languages and Databases", Proceedings of the 4th International Conference
on Very Large Data Bases, Berlin, (Ed. S.P. Yao), IEEE, Sept. 78, 408-419. (A revised
version of this is available from the University of Edinburgh Department of Computer
Science (EUCS) as CSR-26-78).

Atkinson, M.P. o)
"Progress in documentation: Database management systems in library automation and
information retrieval”, Journal of Documentation Vol.35, No.1, March 1979, 49-91.
Auvailable as EUCS departmental report CSR-43-79.

Gunn, H.LE. & Morrison, R. i .
“On the implementation of constants", Information Processing Letters 9, 1 (July 1979), 1-4.

Atkinson, M.P.)
"Data management for interactive graphics", Proceedings of the Infotech State of the Art
Conference, October 1979. Available as EUCS departmental report CSR-51-80.

Atkinson, M.P. (ed.))
"Data design", Infotech State of the Art Report, Series 7, No.4, May 1980.

Morrison, R.) i
"Low cost computer graphics for micro computers”, Software Practice and Experience, 12,
1981, 767-776.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.)
"PS-algol: An Algol with a Persistent Heap”, ACM SIGPLAN Notices Vol.17, No. 7, (July
1981) 24-31. Also as EUCS Departmental Report CSR-94-81.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.]
"Nepal - the New Edinburgh Persistent Algorithmic Language", in Database, Pergammon
Infotech State of the Art Report, Series 9, No.8, 299-318 (January 1982) - also as EUCS
Departmental Report CSR-90-81.

Morrison, R. .
"S-algol: a simple algol", Computer Bulletin 1I/31 (March 1982).

Morrison, R.]
"The string as a simple data type", Sigplan Notices, Vol.17,3, 46-52, 1982.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Progress with Persistent Programming"”, presented at CREST course UEA, September
1982, revised in "Databases - Role and Structure”, see PPRR-8-84.

Morrison, R.)
"Towards simpler programming languages: S-algol”, IUCC Bulletin 4, 3 (October 1982),
130-133.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"Problems with persistent programming languages", presented at the Workshop on
programming languages and database systems, University of Pennsylvania. October 1982.
Circulated (revised) in the Workshop proceedings 1983, see PPRR-2-83.

Atkinson, M.P.)) i »
"Data management”, in Encyclopedia of Computer Science and Engineering 2nd Edition,
Ralston & Meek (editors) January 1983. van Nostrand Reinhold.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.)
"Algorithms for a Persistent Heap", Software Practice and Experience, Vol.13, No.3,
259-272 (March 1983). Also as EUCS Departmental Report CSR-109-82.

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P.
"CMS - A chunk management system”, Software Practice and Experience, Vol.13, No.3
(March 1983), 273-285. Also as EUCS Departmental Report CSR-110-82.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"Current progress with persistent programming”, presented at the DEC workshop on
Programming Languages and Databases, Boston, April 1983.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.

"An approach to persistent programming”, The Computer Journal, 1983, Vol.26, No.4,
360-365 - see PPRR-2-83.

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P. & Morrison, R.
"PS-algol a language for persistent programming”, 10th Australian Computer Conference,
Melbourne, Sept. 1983, 70-79 - see PPRR-2-83.

Morrison, R., Weatherill, M., Podolski, Z. & Bailey, P.J.
"High level language support for 3-dimension graphics”, Eurographics Conference Zagreb,
North Holand, 7-17, Sept. 1983. (ed. P.J.W. ten Hagen).

Cockshott, W.P., Atkinson, M.P., Chisholm, K.J., Bailey, P.J. & Morrison, R.

"POMS : a persistent object management system", Software Practice and Exerience, Vol.14,
No.1, 49-71, January 1984.

Kulkarni, K.G. & Atkinson, M.P.
"Experimenting with the Functional Data Model”, in Databases - Role and Structure,
Cambridge University Press, Cambridge, England, 1984.

Atkinson, M.P. & Morrison, R.
"Persistent First Class Procedures are Enough”, Foundations of Software Technology and
Theoretical Computer Science (ed. M. Joseph & R. Shyamasundar) Lecture Notes in
Computer Science 181, Springer Verlag, Berlin (1984).

Atkinson, M.P., Bocca, J.B., Elsey, T.J., Fiddian, N.1., Flower, M., Gray, P.M.D.
Gray, W.A., Hepp, P.E., Johnson, R.G., Milne, W., Norrie, M.C., Omololu,
A.O,, Oxborrow, E.A., Shave, MJR., Smith, A.M,, Stocker, P.M. & Walker, J.
"The Proteus distributed database system", proceedings of the third British National
Conference on Databases, (ed. J. Longstaff), BCS Workshop Series, Cambridge University
Press, Cambridge, England, (July 1984).

Atkinson, M.P. & Morrison, R.

"Procedures as persistent data objects”, ACM TOPLAS 7, 4, 539-559, (Oct. 1985) - see
PPRR-9-84.

Morrison, R.,Bailey, P.J,, Dearle, A., Brown, P. & Atkinson, M.P.
"The persistent store as an enabling technology for integrated support environments", 8th
International Conference on Software Engineering, Imperial College, London (August
1985), 166-172 - see PPRR-15-85.

Atkinson, M.P. & Morrison, R.
"Types, bindings and parameters in a persistent environment", proceedings of Data Types
and Persistence Workshop, Appin, August 1985, 1-24 - see PPRR-16-85.

Davie, AJ.T.

"Conditional declarations and pattern matching", proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 278-283 - see PPRR-16-85.

Krablin, G.L.
"Building flexible multilevel transactions in a distributed persistent environment, proceedings
of Data Types and Persistence Workshop, Appin, August 1985, 86-117 - see PPRR-16-85.

Buneman, O.P.
"Data types for data base programming", proceedings of Data Types and Persistence
Workshop, Appin, August 1985, 291-303 - see PPRR-16-85.

Cockshott, W.P.
"Addressing mechanisms and persistent programming”, proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 363-383 - see PPRR-16-85.

Norrie, M.C.
"PS-algol: A user perspective”, proceedings of Data Types and Persistence Workshop,
Appin, August 1985, 399-410 - see PPRR-16-85.

Owoso, G.O.
“On the need for a Flexible Type System in Persistent Programming Languages",
proceedings of Data Types and Persistence Workshop, Appin, August 1985, 423-438 - see
PPRR-16-85.

Morrison, R., Brown, A L., Bailey, P.J.,, Davie, A.J.T. & Dearle, A.
"A persistent graphics facility for the ICL PERQ", Software Practice and Experience,
Vol.14, No.3, (1986) - see PPRR-10-84.

Atkinson, M.P. and Morrison R.
"Integrated Persistent Programming Systems”, proceedings of the 19th Annual Hawaii
International Conference on Systemn Sciences, January 7-10, 1986 (ed. B. D. Shriver), vol
IIA, Software, 842-854, Western Periodicals Co., 1300 Rayman St., North Hollywood,
Calif. 91605, USA - see PPRR-19-85.

Atkinson, ML.P., Morrison, R. and Pratten, G.D.
"A Persistent Information Space Architecture”, proceedings of the 9th Australian Computing
Science Conference, January, 1986 - see PPRR-21-85.

Kulkarni, K.G. & Atkinson, M.P.
"EFDM : Extended Functional Data Model", The Computer Journal, Vol.29, No.1, (1986)
38-45.

Buneman, O.P. & Atkinson, M.P.
"Inheritance and Persistence in Database Programming Languages"; proceedings ACM
SIGMOD Conference 1986, Washington, USA May 1986 - see PPRR-22-86.

Morrison R., Dearle, A., Brown, A. & Atkinson M.P.; "An integrated graphics programming
environment”, Computer Graphics Forum, Vol. 5, No. 2, June 1986, 147-157 - see
PPRR-14-86.

Atkinson, M.G., Morrison, R. & Pratten G.D.
"Designing a Persistent Information Space Architecture", proceedings of Information
Processing 1986, Dublin, September 1986, (ed. H.J. Kugler), 115-119, North Holland
Press.

Brown, A.L. & Dearle, A.
"Implementation Issuses in Persistent Graphics”, University Computing, Vol. 8, NO. 2,
(Summer 1986) - see PPRR-23-86.

Kulkarni, K.G. & Atkinson, M. P.
"Implementing an Extended Functional Data Model Using PS-algol”, Software - Practise and
Experience, Vol. 17(3), 171-185 (March 1987)

Cooper, R.L. & Atkinson, M.P.
"The Advantages of a Unified Treatment of Data", Software Tool 87: Improving Tools,
Advance Computing Series, 8, 89-96, Online Publications, June 1987.

Internal Reports

Morrison, R.
"S-Algol language reference manual”, University of St Andrews CS-79-1, 1979,

Bailey, P.J., Maritz, P. & Morrison, R.
“The S-algol abstract machine", University of St Andrews CS-80-2, 1980.

Atkinson, M.P., Hepp, P.E., Ivanov, H., McDuff, A., Proctor, R. & Wilson, A.G.

"EDQUSE reference manual®, Department of Computer Science, University of Edinburgh,
September 1981.

Hepp, P.E. and Norrie, M.C.

"RAQUEL: User Manual", Department of Computer Science Report CSR-188-85
University of Edinburgh.

’

Norrie, M.C.

"The Edinburgh Node of the Proteus Distributed Database System”, Department of
Computer Science Report CSR-191-85, University of Edinburgh.

Theses

The following theses, for the degree of Ph. D. unless otherwise stated, have been produced
by members of the group and are available from the address already given,

W.P. Cockshott
Orthogonal Persistence, University of Edinburgh, February 1983.

K.G. Kulkarni

Evaluation of Functional Data Models for Database Design and Use Uni ity of
Edinburgh, 1983. =4 , University o

P.E. Hepp

A DBS Architecture Supporting Coexisting Query Languages and Data Models, Universi
of Edinburgh, 1983. Y aneua o Tmenty

G.D.M.. Ross
Virtual Files: A Framework for Experimental Design, University of Edinburgh, 1983.

G.0. Owoso

Data Description and Manipulation in Persistent Programmin Languages, University of
Edinburgh, 1984, & g Languages, University o

I. Livingstone

Graphical Manipulation in Programming Languages: Some Experiments, M.Sc., University
of Glasgow, 1987

Persistent Programming Research Reports

This series was started in May 1983. The following list gives those which have been

produced at 9th July 1986.
the addresses already given.

PPRR-1-83

Copies of documents in this list may be obtained by writing to

The Persistent Object Management System -

Atkinson,M.P., Chisholm, K.J. and Cockshott, W.P. £1.00

PPRR-2-83

PS-algol Papers: a collection of related papers on PS-algol -

Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm, ‘
K.J. and Morrison, R. £2.00

PPRR-4-83

The PS-algol reference manual -

Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm,

K.J. and Morrison, R

PPRR-5-83

Presently no longer available

Experimenting with the Functional Data Model -

Atkinson, M.P. and Kulkarni, K.G. £1.00

PPRR-6-83

A DBS Architecture supporting coexisting user interfaces:

Description and Examples -

Hepp, P.E.
PPRR-7-83

PPRR-8-84

£1.00

EFDM - User Manual -
K.G.Kulkarni

£1.00

Progress with Persistent Programming -

Atkinson,M.P., Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £2.00

PPRR-9-84

Procedures as Persistent Data Objects -

Atkinson, M.P_,Bailey, P., Cockshott, W.P., Chisholm,
K.J. and Morrison, R. £1.00

PPRR-10-84 A Persistent Graphics Facility for the ICL PERQ -
Morrison, R., Brown, A L., Bailey, P.J., Davie, A.J.T.

and Dearle, A.

£1.00

PPRR-11-85 PS-algol Abstract Machine Manual £1.00

PPRR-12-87 PS-algol Reference Manual - fourth edition £2.00

PPRR-13-85 CPOMS - A Revised Version of The Persistent Object
Management System in C -
Brown, A.L. and Cockshott, W.P., £2.00

PPRR-14-86 An Integrated Graphics Programming Environment - second

edition -

Morrison, R., Brown, A.L., Dearle, A. and Atkinson, M.P. £1.00

PPRR-15-85 The Persistent Store as an Enabling Technology for an
Integrated Project Support Environment -
Morrison, R., Dearle, A, Bailey, P.J., Brown, A L. and
Atkinson, M.P. £1.00

PPRR-16-85

PPRR-17-85

PPRR-18-85

PPRR-19-85

PPRR-20-85

PPRR-21-85

PPRR-22-86

PPRR-23-86

PPRR-24-86

PPRR-25-87

PPRR-26-86

PPRR-27-87

PPRR-28-86b

PPRR-29-86

PPRR-30-86

PPRR-31-86

PPRR-32-87

PPRR-33-87

Proceedings of the Persistence and Data Types Workshop,
Appin, August 1985 -
ed. Atkinson, M.P., Buneman, O.P. and Morrison, R.

Database Programming Language Design -
Atkinson, M.P. and Buneman, O.P.

The Persistent Store Machine -
Cockshott, W.P.

Integrated Persistent Programming Systems -
Atkinson, M.P. and Morrison, R.

Building a Microcomputer with Associative Virtual Memory -
Cockshott, W.P.

A Persistent Information Space Architecture -
Atkinson, M.P., Morrison, R. and Pratten, G.D.

Inheritance and Persistence in Database Programming
Languages -
Buneman, O.P. and Atkinson, M.P.

Implementation Issues in Persistent Graphics -
Brown, A.L. and Dearle, A.

Using a Persistent Environment to Maintain a Bibliographic
Database -
Cooper, R.L., Atkinson, M.P. & Blott, S.M.

Applications Programming in PS-algol -
Cooper, R.L.

Exception Handling in a Persistent Programming Language -
Philbrow, P & Atkinson M.P.

A Context Sensitive Addressing Model -
Hurst, A.J.

A Domain Theoretic Approach to Higher-Order Relations -
Buneman, O.P. & Ochari, A.

A Persistent Store Garbage Collector with Statistical Facilities -
Campin, J. & Atkinson, M.P

Data Types for Data Base Programming -
Buneman, O.P.

An Introduction to PS-algol Programming -
Carrick, R., Cole, A.J. & Morrison, R.

Polymorphism, Persistence and Software Reuse in a
Strongly Typed Object Oriented Environment -
Morrison, R, Brown, A, Connor, R and Dearle, A

Safe Browsing in a Strongly Typed Persistent Environment -
Dearle, A and Brown, A.L.

£15.00

£3.00

£2.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

PPRR-34-87

PPRR-35-87

PPRR-36-87

PPRR-37-87

PPRR-38-87

PPRR-39-87

PPRR-40-87

PPRR-41-87

PPRR-42-87

PPRR-43-87

Constructing Database Systems in a Persistent Environment -
Cooper, R.L., Atkinson, M.P., Dearle, A. and
Abderrahmane, D.

A Persistent Architecture Intermediate Language -
Dearle, A.

Persistent Information Architectures -
Atkinson, M.P., Morrison R. & Pratten, G.D.

PS-algol Machine Monitoring -
Loboz, Z.

Flexible Incremental Bindings in a Persistent Object Store -
Morrison, R., Atkinson, M.P. and Dearle, A.

Polymorphic Persistent Processes -
Morrison, R., Barter, C.J., Brown, A.L., Carrick, R.,
Connor, R., Dearle, A., Hurst, A.J.and Livesey, M.J.

Andrew, Unix and Educational Computing -
Hansen, W. J.

Factors that Affect Reading and Writing with Personal
Computers and Workstations -
Hansen, W. J. and Haas, C.

A Practical Algebra for Substring Expressions -
Hansen, W. J.

The NESS Reference Manual -
Hansen, W. J.

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

£1.00

