University of Edinburgh

Department of Computer Science

James Clerk Maxwell Building
The King’s Buildings, Edinburgh

University of St Andrews
Department of Computational Science

North Haugh
St Andrews, Fife

A DBS Architecture
Supporting Coexisting
User Interfaces:
Description and Examples

PPR-6-83
Sept. 1983

&
Dy,

— e e—

A DBS ARCHITECTURE SUPPORTING COEXISTING
USER INTERFACES: DESCRIPTION AND EXAMPLES

BY

PEDRO E. HEPP

DATA CURATOR
DOCUMENTATION

15 August 1983

Copyright (C) 1983 Data Curator Group
Dept Computer Science University ot Edinburgh

Table of Contents

Table of Contents

1. introduction
2. The Database Architecture

2.1 Introduction

2.2 A Minimal Environment

The Name Handier

Tive Logical Storage Handle
C Query Evaluatl

2.5.1 The Intermediate Query Language (IQL)

The Update Handler

The Utilitias Component

The Optimizer Component

An Extended Environment

2.9.1 Name Handler

2.9.2 Storage Handier

2.10 Conclusions

3. ﬁmplerﬁemed Database Environment

3.1 Introduction

3.2 TABLES

3.2.1 TABLES Querles

3.2.2 TABLES Commands

RAQUEL

3.3.1 RAQUEL Queries

3.3.2 RAQUEL Commands

3.3.3 RAQUEL Updates
3.3.4 Protection, Constraints and Defaults

3.4 Report Generator

3.5 Conclusions

3.3

References

Ressarch Reporl Data Curator Report

CRE~NOOMdWW W —

15 August 1963

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 3-
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-5:
Figure 3-7:
Figure 3-8:
Figure 3-9:
Figure 3-10:
Figure 3-11;
Figure 3-12:
Figure 3-13:
Figure 3-14:

Research Report

List of Figures

User Interface Viaw of the Database
intarmediate Query Language: Query 1
An Extendad Architecture

Implemanted Databass Environment
University Database, Bachman Diagram
University Database, Ralational Description
TABLES Display of a Skelston Table
TABLES Join Query

Raquel: Project Operation Example
Raquel: Select Operation Example
Raquel: Madify Oparation Example
Raquel: Order Operation Example
Raquel: Extend Operation Example
Raquel: Group Operstion Example
Raquel: Joln Operation Example
Raguel: Outerjoin Operation Example
Ragual: Sel Operations Exampie

Dats Curator Report

15 August 1983

Introduction ’ 1

Chapter 1

Introduction

Database technology is already recognised and increasingly used in administering and
organising large bodies of data and as an aid in developing software. This document is based
on the author's research {Hepp 83] which considers the applicability of this technology in
smail but potentially expanding application environments with users of varying levels of
compset . A datab yst {DBS) architecture with the following main characteristics is
described in {Hepp 83]:

1. Rt Is based on a set of software components that facilitates the implementation
and evolution of a software development environment centered on a database.

2. % bl the impl tation of ditterent user Interfaces to provide adequate
perceptions of the information content of the database according to the user's
competence, familiarity with the system or the complexity of the processing
requirements.

3. It is oriented toward databases that require moderate resources ftrom the
computer system to starl an application. Personal or smali-group databases are
fikely to benelit most from this approach.

This document concenlrales on the description of the principal components of this
architecture, used to Implement several user interfaces. Three of these user interfaces are
described in this document: two relational query languages and a report generator. More
detail and other related topics can be found in [llepp 83], among them:

® an overview of some of the current relational database systems and their suitability
for small but potentially evolving applications.

® an analysis of current soltware engineering problems with empbhasis on rapid
protolyping, software components and (internal) database standards.

@ an analysis of the exltended refational model (RM/T) [Codd 73] and its suitability
as an {internal) database model. The supporting of functional query languages
such as Daplex [Shipman 81} and FQL [Buneman 82} by RM/T is also shown.

® an analysis of the language PS-algol as a tool for writing database soRtware.
PS-algol [Atkinson 83] was the implementation language used in this research,

Reszarch Reporl Data Curator Reporl 15 August 1983

Infroductlion 2

The availability of a languvage with persistent data capabliities such as in PS-aigol
has been an important tactor in reducing sotware production costs.

® an analysis of relational structures in PS-algot and their impact on space and time
parformance.

@ the resulls of observing and recording query languags usage of more than 160
users, over a period of more than two years. These results have influenced the

design of the usar imterfaces described in this document,

Rasearch Report Data Curator Report 15 Avugust 1983

The Database Archilecture 3

Chapter 2

The Database Architecture

2.1 introduction

Database soHware is typically large and theretore expensive to acquire and maintain.
However, it can be scaled down by properly identifying the levels ot functionality required for
smaller applications and by using adequale software development tools. it can then be
cost~elective for personal or small-group databases which do notl need all the functionality
generally associataed with jarge scale database software.

This chapter presents In some detail the set of components thal constitutes the database
architecture underlying the implemented user interfaces.

A key factor in diminishing software costs les in the ability to reuse software components by
the wser interfaces. This will require the identification of datab tasks that are
amenable to standardization. This can be achieved by providing an internal conceptual shema

{ICS), & common internal query language (iQL) and a common pool of data manipulation
routines, Al of them can be provided on an incremental basis. For example, the IQL may
be started with the three "basic' relational operations project, select and join, followed at a
fater stage by set operations, building up gradually a tully relational system. A similar
approach can be defined for the data manipulation routines and the ICS structures,

Having decided on the inlernal data model, which in this case is the relational model, the
tirst wser interface and the initial set of components can be designed as a prototype.

2.2 A Minimal Environment

Another advantage of impl ting a datab architecture as a set of components is to
make it possible to impl t these ponents concurrently, The ability to test the software

and lis coupling to other components while writing it, requires the definition of different

priorities in functionality. Some minimal set of functions that titute a rudi tary but
working system can be rapidly implemented, tested and then systematically modified and
expanded. The first versions of a system can be regarded as prototype systems.

Ressacch Report Data Cyrator Report 15 August 1983

The Database Archileciure 4

To achieve fast protolyping of the user interfaces it is desirable o design them under the
principla of minimum responsibilily, thal is, they should be relleved from as much processing
and decision making &s possible that may distract them #from their two main tasks of
presenting information to usars and collacting their requssts, The communication with the
database and the processing of requests is facilitated by providing components that accompiish
oach of the required tasks. For example, processing a query or ansuring the proper

installation of updatas should be done by specialised syst ponanis,

The principle of minimum responsibility requires though, good communications belween user
interfacas and the internal components. That is, there is an agreemen! on inlernal standards
that are undarstood by the systeam and to which the user interfaces transiaie their reguesis
and read the resyits,

To fachitate this communication it is desirable that user iInterfaces refer to objecis (relations
and attributeas) by name instead of by system provided identifiers, This wili also permit the
underlying system to change the Identiers if necessary {s.g. restructyring rofation) and
aiso allow users o define different name spaces for the same objects. Thys, @& first
component can be defined as a Name Handler.

2.3 The Name Handler

The Name Handler (MI{) serves as the central node of the system. it recs! ai g
from the user interfaces redirecting them to the propar components as specified in the
message. In that process, the NH performs a minimai compliation in transfating names to

internal identifiers. The existence of the NH isolates internal components from user
interfaces, simplifying the Internal references to objects by the use of Internal identifiers and
protecting the datab integrity by ensuring the proper establishment of data psths. For

example, sttempts to modify the databsse by the users may be first checked for consistency
and rigihts in a special purpose Update Handler, as directed by the Name Handiar,

User interface components may regard the NH as the sole database component, providing
all the required services, Mo other component may be visible to them. The database, as
seen from the user interface components consists of the elements shown in figure 2-1.
However, the possibility of having some user interfaces such s&s & performance analyser or
data restructurer accessing the system at other ievels, is retained.

For the Mame Handler to transiate names into internal identifiers and to ensure that the
objects referred to exist, it must have access to the Internal Conceptual Schems (IC3}
structures, The ICS consists of a set of relations and is therefore d and d
through the same data manipulation roulines as any other database relation. This uniform
access to both data and meta-dats reduces the total cost of software and shmplifies its
development and maintenance by avoiding the definition of a dedicated data description

fanguage.

From the many relations that can exist in the ICS, two of them appear as fundamenial and
ad as the “minimal™ structures of any iCS. These Iwo relations are the

i,

may be

Resaarch faport Data Curator Report 15 August 1983

The Database Architecture]

Figure 2-1: User Interface View of the Database

relations and the atiributes relations containing information about all the existing relations and
aitributes in the database. The attributes of each of these relations may vary and can be
defined initially under the principle of "minimality' and later extended as needed.

The relations reiation should contain at least the name for each of the retations in the
database (one tuple par relation). Other attributes may indicate sort order, protection,
degree, cardinality, etc.

The attributes relation has one tuple for each attribute in the database. The name of the
atlribute, the name of the relation owning the attribute and the attribute type or domain name
is required. If a domain name Is chosen, then another retation defining it should also be
provided. Other atiributes of this relati may indicate default valves, constraints, protection,
alc,

What information shou!d be added in the form of new atiributes to these relations or as new
relations in the ICS is the designer's decision,

2.4 The Loglical Storage Handler

The storage and relrieval of objects can be identified as a speciatised f t and therefore
left to a Storage Handler component. Given that the internal model is relational, it will be

necessary to create, deilete and manipulate objects of the model such as refations, attributes
and tuples.

it is supposed that the designers use a language such as PS-algol requiring therefore no
Physical Storage Handler component. Otherwise, a Physical Storage Handier manipulating
objects on butters and possibly a File Handler communicaling with the operaling system's 110
functions is necessary, The lowest layer of the example system is, hence, the Logical
Storage Handler (LSH), it is in charge of creating and maintaining relational structures as
commanded by the Name Handler. The psulation of all object manipulati in a dedicated

componant permits the experimentation with different relational structures to meet an adequate
compromise between space usage and processing efficiency.

Data Curator Report 15 August 1963

The Daiabase Architeciure %

it may aiso creata, on domand, indexes on relations. The initial funclionaity required from
tha LSH Is lo permit accass to Individual refations, atiributes and tuples. The Ffirst functions
to be implomented may be those constructing objects such as create refslion, create atirtbufe,
add tuple and of course, gef tuple. Destructive operations such as defefe rolation, delele
aftribute and delele tuple, etc. can be added on a second iteration.

2.5 The Common Query Evaluator

Given a Name Handler and a Logical Storage tlandier, the only component that may be
required to start a user interface is a Query Evaluator, R may be first restricted to simpie
queries and to limited and unchecked update capabilities.

The provision of a common Query Evaluator (QE} for a multi-language system requires the
definition of a common Intermediste Query Language (IQL) as discussed oariier, The QL
should be amenabie to computer processing and it is therefore not required for it to be
particularly userfriendly. With the internal data model being relational, it appears naturai to
deline a relstional fanguage, although other alternstives (e.g. FOL [Buneman 82]) may saiso
be tried, tn the database environment implemented for this research, the iGL in the form of a
relational nigebra was defined and implemented in a manner similar to the proposais by
Atkinson for an internal query fangusge for the distributed system Proteus [Atkinson 82]. &
is briefly presented in the next section, ’

2.5.1 The Intermediate Query Language (ML)

The IQL is proposed as a candidate internal dstabase standard, Its form has boen chosen lo
show the following characteristics:

1. A simpte subset of it can be implemented easily.
2. 1t is extensible lo meet new processing needs.
3. 1t is amenable to transformation and therefore an optimizer is feasibie.

4. it is machine independant and therefore queries can be transported to any
instaflation impfementing it.

The QL consists of a set of one and zero addraess instructions intended tor a hypotheticat
stack machine. Each instruction is denoted by a mnemonic word that may aiso indicate the
type of the instruction. Initially the types are one of boolean (b}, Integer (i), string (s) or
relation (r). Other possibte types are fioal (f), time (t), date (d}, monay (m}, etc. Each
instruction may be uniquely labelled by a word preceded by a dollar sign. There is a
raserved label $start which defines where to start evailuating the query,

As an example, consider a database having a relation "Person' with the attributes “Name®™,

“Sex" and “Address". The query 'List the name and sddress of alt females™ can be
exprassad in IQL as in figure 2-2. in most of the instryction mnemonics, it is the first letter

Research Report Data Curator Report 15 Avgust 1983

The Database Architeclure 7

Figure 2-2: intermediate Query Language: Query t

$start rload Person | load relation id onto stack
rselect S ! select tuples uvusing tabel S
rproject P ! project attributes using label P
rresuit t end ot main query body

$S sload “t* ! load string "f" onto stack
gatt Senx ! load (string) attribute valve
sequal ! compare top stack Iitems
bresult ! resvit is a boolean on stack

$P satt Name ! 1oad strinmg att Name on stack
satt Address | toad string att, Address on stack
end end of projection tist

(e.g. r,s,b) that denotes the type of the instruction. The example in tigure 2-2 shows the
anatomy of an QL request. Basically, it consists of & main body indicating the relational
operations invoived in the query, and a fabel associated with each of them that detine how to
process the opaeration,

The lext of an IQL query consists of & sequence of stat ts conventi fly one to a line,

There are essentially two levels of language, the relational and the scalar language., The
relational language defines operations on relations. The scalar language includes operations
for each of the scalar types defined,

2.6 The Update Handler

The Update Handler (or integrity subsystem) is in charge of ensuring the dalabase
conslst y by itoring update requests to detect integrity violations, it enforces the
integrity ruies (constraints) defined for the database by taking the appropriate actions if an
attempted violation is detected e.g. it may reject the operation, report and record the

violation or initiate automatic corrective actions [Eswaran 75]. it may also reject the
definition of a new ruie if this rule is violated by the current state of the database.

#f an update is made on a meta—data relation (e.g. adding a tuple to the “attributes"
refation, the Update Handler is in charge of triggering the corresponding procedures as
side-effects of the update (e.g. adding the new atlribute to the corresponding relation).
Triggers are a means of implementing the integrity rules by automatically executing special-
purpose procedures whenever a "trigger” event occurs {Date 83]. it is also important that
the rules are subject to queries and updates, as any other piece of information in the
database.

Date and Hammer and Mcleod classify integrily rules in two calegories: domain integrity
rules and relation integrity rules [Hammer 75, Date 83]. Domain rules describe a domain as
a set of atomic data objects and relation rules specity a properly or relationship that must
hold on or belween one or more reiations or subparts of ralations (tuples or attributes).

Research Repernd Data Curator Report 5 August 1983

The Databace Archileciure 8

Evary attribute has an underlying domain which Is a subsot of one of the base domains 8.g.
the set of all strings, the sat of all integers, etc. Domsin integrity rules are assoclated with
the definition of the domain which either explicitly or Implicitly specities all acceptable values
for the domain. Domain rules are considered in isolation i.e. independent of olher atiribute
values in the database.

In our implementation an altribute may be associated with a predicate that defines its
domain, For exampla, the attribute “age™ of a person can be assoclated wilth the predicate
(age >=0 AND age ¢= 150). The Update hsndlar ensures that every now value of this
atlribute satisties the predicate. For this purpose, the Update Handler mainlaing a “compiied™
varsion of the predicate, in the form of a query, that is sent to the Query Evaluat

together with a tuple holding the candidate attribute vaive. it the stack machine produces &
true™ valus, the atllribute is accepted. Another domain rule allowed is that of enforcing that
the values of an attribule in a relalion are "unique™ i.e no duplicale attribute vaives may
oxist,

Retation integrity ruins concern the admissibility of a given tupie as a candidate for Insertion
into a given relation, or the relationship between tuples of one relation and those of another,
In our implementation we saliow the delinition of refereniial Integrity rules spacifying that the
values of a given atlribute must also exist as & value in an atlribute of another (or the seme)
relation, For example, the valuas of the allribute “rel-name™ in the ICS "atiributes™ relation
must also exist as values of the "rel-name™ attribute in the ICS “relations"” refation,

The concentration of aHl integrity rules in one component, Instead of scattered across several
components makes these rulas easier lo maintain, extend and check,

2.7 The Utititles Component

During the implementation of the comp ts, it b clear that many hovsekeeping
routines can be shared among components, These routines can be incorporated in a Utilitios
component and some of them are:

a) WO (from/to a lerminal or an external fle): reading a query, reading data and
ensuring that it belongs to a given type e.g. reading/checking date or time type input.
Displaying help and error maessages, querying resulls, elc. Output to an external file of a
relation (in both formatted and untormatted modes). Loading a relation from an external file,
ate,

b) Data Type conversion and String handling: our imptementation stores alf dats as strings
and therefore requires some type conversion routines: integer to string, tims fo string, string
to integer, etc, as well as some string handling facilities such as extracling the first (next, or
any) symbol ol a string according lo the symbol delimitation rules (e.g. spaces, nawlinas,
tabs).

¢) VYector Handling: much of the data (e.g. tuples) is manipulated as string and pointer
vectors in our implementation. The following routines facilitate their handling:

Resaarch Raeport Data Curater Reporl 15 August 1993

The Database Architeciure 9

axilend.s.vector (*string vs; string s —-> *string)
given a vector of strings vs and a string s, it
appends s to vs (extending the vector by one element}
extend.p.vector (*patr vp: pntr p —> *pnlr)
as extend,s.vactor for pointer veclors.
copy.s.vector (*string a —> *string)
copy.p.vector {*pntr p —> *pntr)
shrink.s.vector {*string sv; int | —> *string):
given a vector of strings sv and an intaeger i, it
returns a smaller string vector without the i-th element,
shrink,p.vector (*pntr pv; int i —> *pntr}:
as shrink.s.vactor for pointer vectors,

d) Functions over names: given a name a component may need to check whether it is &
base relation, & query, a view, an altribute name, etc. in the case ol an allribute, it may
need to know its type, constraints, default vajve, position, etc. Ditferent routines handle
these requests.

2.8 The Optimlzer Component

As the volume of data grows and the processing requirements become more complex, a
system should include an Optimizer component that establish the fuati strategy of a
query. The objective is to relieve the users, especially casual users, from the need to know

any detail that would muke a query yield faster a result. in other words, the speed with
which a guery is evaluated should not depend critically on the way the query is formulated
{Halt 75]. An timizer will typically § the cost of evaluation of a query, due to

P

possibly different avaiuating strategies, according to a cost mode! and select the strategy with
minimal cost, The cost may be expressed in both cpu time and number of disk accesses.
Jarke and Koch have surveyed many query optimization strategies [Jarke B82].

Yao, Blasgen and Eswaran propose various methods of evalvating a query based on a
storage and access model of a relationali database {Yso 79, Biasgen 76]. The methods
inciude the use of Indexes on join attributes, use of indexes on select attributes, sorting
relations and different evaluation orders of the operations involved in the query. A number of
cost equations are given that consider various storage and access path parameters. The
methods are compared for various parameter values and the conclusion is that they can
effectively reduce the time of query evaluation. Blasgen and Eswaran indicate a global
strategy for an optimizer: first, given a query, determine the applicable methods from the
avatlabie access paths. Second, eliminate any obviously bad method and those failing lo pass
certain simple lests. Finally, evaluate the cost estimates for the remaining methods and
h the thod with mini cost. They conclude that optimization methods should take
into account existing access paths and their properties.

2.9 An Extended Environment

in the implemented environment reported in the next chapter, two internal query languages
are used. One is a higher level relational algebra, called RAQUEL (Relational Algebra Query
and Update Extensible Language), which is produced by the user interfaces. It is in fact one

Research Report Data Curator Report 15 August 1983

The Database Archilecturs 10

of the query languages offerad to the users. RAQUEL queries are passed to a common
Syntax Analyser componenl (through the Name Handier) which in turn produces the QL tres.
This second indirection, sithough introducing some overhead, simplifies the impiemantation of
user Intarfaces by leaving to the common Syntax Analyser the checking of most of the errors
introduced by users when defining a query, It is also considerably easier to gonerate & query
in this relational algebra than in 1Ot due to the higher procedurality and verbosity of QL.

The architecture fmplemented lor this research is shown in figure 2-3. Te simplify the
tigure, the use by all of the components of the Utilities component is not shown, nor iz the
use of the Error Handiar by the Name and Update Handiars shown.

Figure 2-3: An Extended Architecture

| Error | I
{ Handler | | Utiditties |
t O A
----- [b
c-> | Q.L | - mm s e e oo [
Lo L [
—————— b I
—————— 1 Pl
«-> | Q.L | €= mm s i
o2 | {
—————— | I
——————] I
¢-> | Q. L. |} ¢ s
to3 i
<-3x | Report | - e e e
| Generator|
———————————————————— ~-=-> | 8Syntax Analiyser |
] I bt
v v
| Update] ¢--> | Name | <=~ |} Query
| Handier | { Handler | §| Evaiuvator |
1 t

Research Report Data Curstar Report 15 August 1983

The Database Architecture 11

2.9.1 Name Handler

Before calling other p ts, 1 are checked for existence and then

transiated into intarnat identitiers. If they exist, then the requirad function is called, otherwise

4

the Error Handler is called. Other parameters are checked at each function, Some
use or roturn an object identifier (tuple id or relation id). TYhey are the identitiers of the
structure. In the case of tuples, a luple id is a reference to a (uple header structure
associated with the tuple. If the parameter does nol include id then a reference to the
structure itself is passed. In the case of tuples this is a reference to a vector of strings.

@ open database {database name): if a new database is opened, the necessary ICS
structures are created (e.g. relations and allributes relations), 1t also performs
seame {abie initializations to speed up the mapping from pames to internal
identitiers. At this point, some security mechanisms may be invoked to check the
access rights of the user to the datab . The par ters of the function may be
then extended to include a user identification and password.

@ close database (database name): called at the end of a session with a user
interface and only if the wuser decid to it any chang made to the
database. It cleans yp some tlemporal tables that may not persist. It is also
teasible to coftect final session statistics and restructure relations according to -
these statistics or upon explicit user request,

@ add tuple (relation name, tuple), delete tupie (relation name, tuple), modify
tuple (relation name, old tuple, new tuple): cails the Update Handler to check
protection, possible duplicati of tuples and integrity constraints. It the Update
Handler judges the operation as valid then the Storage Mandler is called to process
the operation. These, and other tunclions listed next, acting presently upon one
tuple only, could be easily extended to work on all or a specified number of

tuples,

» lind tuple (relation name, target tuple): the Storage Handler is called to find a
tuple matching alt the attribute values of the target tuple. This function may
additionally accept a parameter Indicating which attribute(s} ought to be
consider (ed) In the matching test, and al which tuple to start the test.

@ get tuple {reilation name, tuple id, which): which is any of first, last, next, or
previoys. The Storage Handler is called to get the required tuple,

» store structure (structure name, structure reference), get structure (structure
name), drop structure (structure name): a user interface may require from the
Name Handler to make persistent any structure that may be required in another
sossion. This is used in query languages to store views, snapshots, to leave &
message thatl is recalled automatically in the next session, elc.

@ compile {(query name, query string): the common Syntax Analyser is called to
compile the query and, if correct, translate it into a tree which is returned to the

calling interface.

o evaluate (query name, query tree): the object names in the query tree are
replaced by internal identifiers before the query is passed to the Quary Evaluator.

Research Report Dala Curator Report 15 August 1883

The Database Archileclure

o cardinality (relation name), dagres (reiation name), keys (relation name): the
Storage Handler maintains the cardinality and degree of each relstion in & vefation
header, The keys of a relalion are those attibutes that have the constraint unique.

@ create iIndex (relstion name, attribute name), delete index ({(relation name,
attribute name): Indoxes are currently limited to one atiribute and are Implemented
using the tables facilittes (B-trees [Comer 79]) of PS-sigoi,

2.9.2 Storage Handler

This cemponent parforms the fotlowing operations:

o add relation: an emply relation structure is created, returning the new refation
identifier,

» delele refation(retation id): the relation structure and associated indexes are
deleted.

o add altribute (relstion id, attribute type, attribute defauit; each atiribute has
associatad in its Storage structure a defaull value and & type that Is"mqulred by
the Query Evaluator,

» delele atlribute (relation Id, attribute Id): deletes the specified attribute.

@ add tuple (relation Id, tuple), delete tuple (relation id, tuple Id), repiace tuple
(relation id, old tuple id, new tuple}: “replace tuple” corresponds to the modify
tuple operation of the Mame Handler,

o find tupte (relation id, tuple), scan relation (relation id, tupie): the former
searches the relation for a tuple matching exactly the target tuple, the lalter
checks only the non-null altribule valves and is used by the Name and Update
Handlers only.

@ sort relation (relation id, sort spec): this function is used by the Name Handler
and Query Evsluvator. The sort specification provides the Identiers of the
participating allributes, the sort order and whether an ascending or descending
order is required.

@ build index (relation id, attribute id), deleta index (relation id, attribute id}: this
functions create a new index or destroy an exisling one.

o cardinality (refation id), degree (relation id): return the cardinality or degree of
the spacitied relation,

@ max width (relation id}: this function is used by the report generation facilities of
each user interfaca. It returns a vactor of integers where each elament indicates
the length of the largest allribute value, considering all tuples, for the
corresponding sttribute (atiribute vatues are stored as strings in this
implementation).

12

Raesaarch Report Data Curator Report 15 August 1983

The Database Architecture 13

2. 10 Conclusions

We presented in this chapler a series of componants that can be gradually designed,
implemented and testad. An important objective is to allow the users of the system to
influence the construction of the system throughout its development. This is achieved by
praviding increasingly complex prototypes that eveoive step by step into the final system. By
defining suitable levels of functionality for each component, their evolution and thatl of the
user interfaces can proceed in parallel, This was delined as the minimal tunctionality principle
which is applied at each implementation stage and serves both to organize the design and
implementation activities, providing a yard stick for each stage,

During our experiments in constructing database components we found that the rapid
provision of new user interfaces can be achieved by constructing the internal components so
that thaey allow the user interfaces to concentrate on their main tasks of collecting and
requesting information to and from the user. This was defined as the minimum responsibilily
principle for user interfaces.

One of the aspects that helps faster buliding of a database environment is the identitication
of those tasks that are considered essential, postponing the addition of those less important to
a later stage. Some of the traditiona! database tasks such as concurrency, recovery and
security have not been incorporated. The reasons for this are threefold. First, we oriented
our research toward personal or small-group databases where these tasks are less likely to
b critical, § d, if they do become critical they can be incorporated to the system at

a later stage, following the same principles outlined in this chapter. Third, some of them
{e.g. concurrency and recovery) may be provided by the underlying software used te build
the components {a.g. PS-algol will handle concurrency}.

These components, resulling from our implementation experiments, allowed us to construct
the datebase environment described in chapter 3 consisting of different user interfaces. An
important finding of these experiments was that the database software can be alfectively
divided Into separate but cooperating aclivities that can be gradually improved and extended.

Frosereh Reper Data Curator Report 15 Auvgust 1987

Implemented Database Environment 14

Chapter 3

Implemented Database Environment

3. 1 inlroduction

This chaptar describas part of the imp d datab anvir t, isting of three

user interfaces, buill upon the software components dscribed in the previous chapler, Aill the
user Interfaces constituting the environment shown in figure 3-1 use the same soi of database
components, as describad in chapter 2 and depiciled In figure 2-3,

Figure 3-1: Implemented Database Environment
| TABLES | | RAQUEL | | REPORT GENERATOR |
1 t 1
| i |
{ | i
| v v
'
~-~~-> | DATABASE COMPONENTS]
L

| DATABASE |

The user intarfacas consist of two relational query and updale languages, TABLES and
RAQUEL, and s Report Generalor. ANl of them may access the same database with the novef
feature that they use an enlirely consistent name space., RAQUEL has been used by & number
of undergradvate and postgraduate students during the 1982/1983 academic year. The other
intertaces have boen subject of demonstrations only so far. The whole set of interfaces
described in this chapter is expected lo be used by students in the coming academic vear.

Although many paople have used and commented on thaese interfaces, we regard tham, in
thelr present state, as a demonstration of the reusability of the proposed components rather

than complete user intarfacas, More deve! t is both ible and v Y.

p

Research Report Data Curator Report 15 August 1983

&

Implemented Database Environment 15

We have advocated a user oriented approach to database software engineering throughout
this thesis. For that reason, we considered that by observing the way query languages are
used we could improve their appeal to the users. The EDQUSE results influenced the design
of the TABLES and RAQUEL user interfaces In many ways. We had the opportunity to assess
this inH during a datab exarcise set to third year Computer Science students (using a
more primitive version of RAQUEL than the one presented in this chapter). Given a choice of
RDB (a functional/relational query language [Mikhil 82]), EFDM (a functional query language

[Kutkarni 83]), ASTRID (a relational algebra query language [Bell 80)), EDQUSE and
RAQUEL, out of 14 groups of three students each, and when TABLES was not available, one
chose RDB, one chose EDQUSE and 12 chose RAQUEL to do a variety of database projects.
In an earlier database exercise for a group of MSc students, the same languages were
ansiysed by them, deciding tinally to use RAQUEL for their project.

The user Intertaces are described in general in this chapter, using the database shown in
figures 3-2 and 3-3 for examples.

Figure 3-2: University Database. Bachman Diagram

------- Organise - Attend i
jTeacherj ¢<—-~~=-- >> |Coursej <¢---~>> |Student]|
T t
i |
{ Workfor = —ee-eeoooo Belong i
—————————————— > |Department| <~------~-

Figure 3-3: University Database. Relational Description

Teacher i t#:integer name:string,salary:integer
phone:integer,ext:integer

Course c#:integer, title:string

Student : sﬁ:enleger,name:slring,taculty:string

Department : d#i: integer,dname:string,head:string

Organise : t#:integer,cH:integer

Attend : ch:integer,s#:integer

Workfor t#:integer,dff:integer
di:integer,s#:Integer

Belong

TABLES is expectad to be used by casual users as well as by those requirying only limited
processing capabllities, RAQUEL is a relational algebra that uses a more elaborate mechanism
than TABLES to build queries and is fully relational. The Raport Generator is an enhanced
output facility from the one provided by default by all the query languages, It is also capable
of peforming some basic stalistics on relations as well as drawing histograms,

In the following presentation of the user Interfaces, which Is a summary of the manuals,
the words fable, column and row are sometimes substituted for refation, aftribute and tuple
respectively .

Researeh Data Curator Report 5 August 18838

implemented Database Environment 16

3.2 TABLES

TABLES is a scroen oriented query and update langusge, The design of the screen handier
has drawn heavily from EDQUSE [McDulf 80] which in turn has borrowed many ideas from
QBE' {Zloof 75]. TABDLFS is expacled to compete with EDQUSE in terms of being sasy-to-use.

TABLES models applications as a set of named tables (refations). Each table consists of &
sat of rows (tuples) and a number of named columns (atiributes). All vaives in a column
have the same type which can be one of intager (1}, string (s}, boolean (b}, time (t) or
date (d).

Every naew database crested through TABLES is provided with three tables. These are the
{ables, columns and help lables, The Hrst two are common to all relational query languagas
accessing this dalabase and contain information on table . ¥ B i
types, otc. The Ilatter is particutar to TABLES and provides a y and pi of is
usa. The fables and columns tablas constitute the TABLES conceplual schema and may be

queried and updated as any other database query, provided some assoclated constraints are
satisflad. This is a major diffarence from EDQUSE which provides no visible schema and
provides different machanisms for adding now tables and columns.

With respect to help facilities (EDQUSE has none), TADLES provides the heip table plug
short summary messages while forming queries, traversing or updating a tabie,

The following Is a layout of the fahbles table after a noew database has been created i.e no
usar croated table axist.

: 3 s s 1 v
_____________________________________ '
| columns | tabname=gs | dt,ac,dc 1
| nelp | n [o i
| tables | tabname=a | dt,ac,dc i
The first row is the table header and contains the column names, In the above table,

these are (abname. sortorder and protection. The next row indicates the column types which
in the above case is siring (Vs™) lor all columns. The subsequent rows contain colunn
valuas. The fourth row indicatas that there is a table whose name Is help and that it is not
sorted and has no protection.

The columns table contains the table name, column name, type, delaull, constraint and
position of ali columns of all tables in the database, Unlike EDQUSE, TABLES saliows the user
to define Integrity constraints associated with column valuas, protoection to tables, columns and
rows, default values and sorl order, The meaning and use of each of thess columns is
axplained in the presentation of RAQUEL,

In addition to the above structures, a user may deline views which are named queries that
parsist between TABLES sessions, The view mechanism is explained later. This facility doss
not exist in EQQUSE and may significantly enhance the wusability of the interface for users
defining large and repetilive quaries that may persist as “views™,

Research Report Data Curalor Report 15 August 1963

e

implemenied Databaze Environment i7

3.2.1 TABLES Queries

iike QBE butl uniike EODQUSE, TABLES queries have & name and can be used in building
further queries. This is an important advantage over EDQUSE in which a complicated query
cannot be broken into smaller gueries. Furthermore, we have obsarved that understanding
and managing queries becomes diHicuil if the query invoivas more tables than the screen can
hold at one time (5 tabies at most), With TABLES, a query can be systematically built out of
stmipler queries involving a screen fuli of lables osach time.

A query is formulated by placing ef its on a skeleton table displayed on the screen.
Three relalional operations are implemented: project, sefect and join (these are explained in
some detail)n saction 3.3.1). Projecting and selecting are achieved in the same way as in
EDQUSE or QBE,

in order to link information from two tables, EDQUSE and QBE use ‘‘example” elements that
are inserted in the columns participaling in the join. The analysis of EDQUSE query arrors
indicates a high rate of errors in queries on more than one tabla. This is mainly due to the
incorrect use of examplie elements. In an attempt {o improve that situstion, TABLES uses a
diiferent approach, The user does not insert exampie sfements but indicates the tables and
columnsg participating in the Join. TABLES checks that the columns have a matching type and
Inserts, between brackets, in each column participaling in the join, the name of the other
tabie,

The fellowing example (figures 3-4 and 3-5) liystrates the dialogue between the user and
TABLES to join the tabies “'Teacher and “'Organise”™ through the coiumns "t (which have
the same name but this need not to be so).

The wuser first asks TABLES to display the table "Teacher" (Command: getl Teacher).
TABLES displays & row with column names, followed by a row with column types, and an
“emply’”” row in which the user can insert efements. A cursor, shown In figure 3-4 as H
and placed {nitially on the first column, s used to traverse the table,

Figure 3—4: TABLES Display of a Skeleton Tabie

Teschar

The cursor can be moved to other columns or rows but must be positioned at column "t#"
when ktarting & join 1o indicate thal “t#™ is the column of the “Teacher" tablae participating in
the join,

The wuser thon indicat its inlention fo join the ‘'Teacher and ‘'Organise™ {ables
(Command: join). TABLES will ask for a table name ("Organise™) which is displayed. I will
then ask for the join column name of Organise ("i##”) and check that it exists and both

Research Report Data Cyralor Report 15 August 1983

Implemented QDalabase Environment 18

‘Implemented Dalabase Environment 19
columns have the same type ("s'). If the join is valid, TABLES will insert the table names

in the corresponding columns as in figure 3-5, @ find : as cfind but search In ali columns.

@ help : display names of commands that can be used in the travarse mode,

Figure 3-5: TABLES Join Query
@ jeft : move cursor to the column at the left, If any,
Teacher | t# | name | salary | phone | ext |
[i H i
[j-====- : ________ : g _____ i @ fight : move cursor to the column at the right, ¥ any,
|[#(Organise)| | § 1 I
Organise| t# | o8 | @ fop : move cursor to the first row in the tadble, re—displaying rows if nacessary.
| i |
—————————— Rl | @ Up : move cursor one row up, if any.
| (Teacher}| |

The following list describes the commands available tn TABLES when in cormunand mode:

The join aperation is thus closely guided and checked by TABLES and it Is explicitly Indicated @ @it : terminate TABLES session. The user decides whether to commit or not. I
the answer s positive, any updates performed during the current session wili be

appiied. Otherwise the database preserves the state it had before the start of the
session,

in the skeleton tables, This new approach has yet to be tested with users te assess s
offectivenass. An improvament to this method wouid be Lo insert not only the join table name
but also the join column name. Self-joins, or joins on more than one column would then be

more properly indicated. @ drop : a given “view" name is dropped from the views table.

@ help : dispiay the help table.
3.2.2 TABLES Commands
@ include : a given query name ig Inciuded as & view,

A TABLES session starts in command mode from which a number of commands can be @ load : bulk load of rows from an external file,

used, including some that will enter another mode, from which the user may return by

providing a "null" command (press RETURN key in resp to the d prompt). @ quarles : display the query names and the names of the tables inciuded in each
query.

To display a tabla on the screen, the user types the name of the table which is then

disptayed without any interposed evaluation. With EDQUSE, the user must define a query ® query: deflne a new query or edit an existing one. A query name must be given.

§# a query with that name exists, then some of the tables It inciudes (up to a
screen full) are displayed as skeleton tabies on the screen. The user may than
use the foliowing commands (listed in aiphabetical orderj, to complete the
since during a session, existing tables or query resuits may be re-displayed many times. specification of a query:

This limitation of EDQUSE may account for the large proportion of *“project only™ queries

over the table (possibly projecting alt columns), which is then analysed, evalvated and
displayed. The simpler approach used In TABLES may save a considerable amount of time

recorded. @ constant : define a constant elemant in the current column. The result
query must have in this column, values that maich the constant efement.
Once a table has been displayed, the user enters traverse mode. A cursor is positioned on {Fhis implements the “sefect” operation}.
the first row, first column of the table. The following commands describe those available in

TABLES when in the traversa mode. ® down : move the cursor to the next row down. Create a new “emply"” row

if necessary.
.
® bollom : move cursor to the last row of the table displaying new rows it o forget : the user is asked for a table name that will be excluded from this
necessary.

query. A guery may not have any tables isoiated i.e. not joined to the other
tables. To avoid that syntactic error, a tzbie which has been obtained by get

o gltind : (find value in column) search the table for a value in the current column , must be exciuded by forget It it is not needed.

that matches the given wvalve. Paosition the cursor in that row. if no wvalue is

found, teave the cursor at the botlom row. @ get : the user is asked for a table name whosae skeleton will be displayed on

the screen (if it is not already there) and the cursor positioned on its first
@ down : move cursor to the next row, il any. colsmn

o help : display ge with avai co ds for queries,

Research Report Data Curalor Report 1% August 1983
Research Report Data Curator Report 15 August 1983

Implemented Database Environment 20
© join : used to join tables, as described in the example in saction 3.2.1.
o kil : delete the element in front of the cursor, if any.

o laRt : move the cursor to the column at the teft, it any,

o next :

any.

move the cursor in tront of the next element in the current column, if
.

-]

print : insert a “p." element in the current column te indicate that this
column must be included in the resuit tabie,

o right : move the cursor to the column at the right, if any.

-]

tables : list the names of the tables participating in this query,

o up : move the cursor one row up. Stop before entering the row with column
types.

e =3, <,¢5>5, <> : similar to constant {(which defines equality), these
commands define the refationship that must exist between the given siement
and the coluinn values in this table, in the resuit table.

o A "blank™ response to the command prompt will tarminate the definition or
edition of this query and return to command levet,

® oulput : produce a formatled output file from the given table or query name.

@ Update : display a given table name and enter update mode. This mode allows the
use of all the commands defined for the traverse mode plus the Insertion and
detetion of rows and the modification of column vaives. Any update is applied
immediately i.e. what the user sees on the screen Is what is actually in the
database. The user is nol required to run a query on a table before updating it
{as in EDQUSE) but the named table is directly displayed. The most important
difference from EDQUSE is that in TABLES the update mechanism applies to any
table in the datsbase, including those constituting the schema (the tables and
columns tables). A new table is added to the database by adding a row to the
tables table. A similar procedure is used to add new coiumns,

® views : display current views and the names of the lables invoived In each view.

3.3 RAQUEL

RAQUEL is an interactive program with faciiities for querying, updating and manipulating a
database. It is a relational algebra and its design has been intuenced mainly by Astrid [Baell
80]. TABLES users may regard RAQUEL as the natural next step in terms of processing
power since both RAQUEL and TABLES can access the same database and both use a
consistent name space. Compared to TABLES, RAQUEL is more suitable for expert users,
aithough it has been successfully usad by non-experts, as indicated in the introduction. its
main advantage over TABLES relies on its greater processing capabilities. it is fully relational
and has grouping functions. 1t has uniform access to both data and meta-data.

Razaarch Report Data Curator Repor 18 Avgust 1963

implemented Database Environment 21

As in TABLES, a dstsbase s organised as & collection of named fables, three of which are
provided wilh every new database, these are the fables, columns and helpraquel tables,

The helpraquel fable contains information on the comunands and operations that can be
performed in RAQUEL,

Data Types and Type QOperations: the data types supported by RAQUEL are: integer (1),
string (s), booiean {b), time {t) and date (d).

The foflowing reiational operators may be used:
= ! equai to
¢ ¢ less than
<= : less than or aqual to
> i greater than
»= : greater than or equai lo
<3 : not equal to
The order tor strings is lexicographic, for booleans is “'F* ¢ *T*,
Integer operations:
+,—, % addition, subtraction, muitipiication,
/,vem dlvision, remalnder.
- sign inversion,
String operations:
in: Substring e.9. 'bc" in "abede™ yields true

++: Concatenation a.g. “abc™ ++ “de" yields “abcde™

Boolean operations:

and, or, not

MNotation: & name is an arbitrary length sequence of ietters , digits and the characters *#*
and *_™,

The syntax of the operations on tables Is expiained through examples and also using the
tollowing more formal notation:

@ all symbols are introduced as expressions where the left-hand side introduces a
name for @ symbol and the right-hand side defines the symbol,

@ non lerminal symbols (defined in terms of other symbols) are spocitied as
identifiars and terminals as string constants (between apostrophes).

® pnames to be defined by the user are stated between angle brackels,
@ alternatives are separated by a vertical bar,

@ a right-hand side expression may contain braces to delimit exprassions which can
occur zero or more times,

Exampie. positive numbers can be represenied as:

Aasearch Report Data Curator Report 15 August 1983

implemented Database Environment 22

number « digit | number digitt
digit P YO | ottt | c2° f v3c | ‘4
*5' | *6* | *7* | *8° | °"3°
alternatively a number may be defined as:
number ¢« digit { dligit }
3.3.1 RAQUEL Queries
A query Is defined through the command “‘query'. Queries are terminated by a fcol

and may be spread over severaf lines.

A query produces a temporary table i.e. it Is not included In the tables table and cannol
be updated. Note thal since a query detines a table, previous queries may be used when
defining further queries. This is very useful in building complex queries in terms of simplar
ones,

The operations are of type unary, operaling over one table or binary operaling over two
tables. One query dafinition may invoke many operations.

The ftavour of RAQUEL will be presemted in the following examples, *'C:" iz the RAQUEL
command prompt and the text at its right is entered by the user. ¥ the text starts with the
character “r* then it is a comment and Is not processed. A table (or a query resuit) Is
displayed by typing its name in response to the command prompt.

Unary Operators.

The Project operator forms a vertical t of an existing table. Redundant dupiicate rows
in the result table are removed. An example is shown in figure 3-6.

Flgure 3~6: Raquel: Project Operation Example

C: 1 project the tab and col)

C: 1 from the fables table producing a result

C: { table named tabcol:

C: query tabcol := lables projected to tabname, sostorder;
C: tabcoi

tabcol

| tabname | coltname |

| s I s

jomom oo fmo--m-oo - I

| columns | tatname=a | R
| helpraquel | n |

| tables | tabpame=a |

The syntax is;
project ¢ <table-name> proji-op col-0ist

prej-op < any abbrev. of word °projected®.
The word "to' is optlonal

Resaarch Reporl Datz Cyralor Reporl 8 Auguest 19493

implemenied Database Environmant 23

coi~tistl &« <ccolumn-name> (°,° <column-name> }

The Select oparation forms a new tabie by taking & horizontal subset of an existing table,
that is, ail rows of an existing tabie that satisfy & given condition. An example is shown in

figure 3-7.

Figure 3-7: HRaquel: Select Operation Example

C: { Produce a table named onlytab that contains

C: | Information about ali columns of the “tables™ tabie.

C: guery onlytab := columns selected on tabiiame = “tables”;
C: oniytab

onfytab:

®

Note that in the formulation of the query, "tabies™ iz & column vajue (not a column name as
tabname) of type string and therefore must be presented between quotes. Parenthasis may
be used to clarity evaluation order,

The syntax 8

i

select “ ctable-name> seflect-op expression

sefect-op “ any asbbreviation of the words
sefected®, °where’ or ‘'"with®',
The word 'on® (s optional

exproession « or-exp ‘or’ and~exp | and-exp

and-8xp « and-exp 'and' inegq-exp | ineg-exp

ineg-exp « add-exp Ineg-op add-exp | add-exp

inegq-op e tert | test o f tst | szt | t=0
ves | 'in” -

add-axp - gdd-exp asadd-op mublt-exp | mult-exp

add-op N R R T

muit-sxp — mult-~axp muitt-op ftactor | factor

muilt-op ~ ** 7 Crem’

faclor “ primary | sign primary

sighn “ et | oty Ypett

primary +~ atomic | °*(° exp ')°

atomic « const | iden

const ~ jnteger-const | bool-const
string-const

integer-const « digit {(digit]

digit “ ' | it} .. {f '9"’

bool-consgt « "7 | "F"

string-const '@* gtring "T°

string “ char {char}

char “ v | Pz 1 AT | 2z

A LI B

The Modily operator is used to modify column values in rows for which a given predicate is
true. The expression and (he column must have the same type. It is normally used in update
operations to madify an existing table but it may also used in quaeries, creating a result table,
as shown in the example of figure 3-8,

The syntax is:

Research Report Data Curator Report 15 August 1983

Implemented Database Environment 24

Figure 3-8: Raquel: Modify Operation Exampla

C: t Create a table modifying the extension number to 77
C: | for those teachers having extension number = *'0"
C: query new_ext := Teachar moditied on
it ext = O then ext := 77;
C: ! show the Teacher and the new_ext tables
C: Teacher

| t# | name | salary | phone | exit |

P | s | 1 i i

Rl R bl [-oo----- [-o=---- b----- |

[| Alticia | 35000 | 24 i e |

I 2 { Margarita | 24000 { 23] 21 |}

| 3 { Adriana [18000 | 22 | o i

C new_exlt

new__eoxt

| t# | name | salary | phone | ext |

|t I s [['

Rl R oo b------- I----- [

b | Aticia | 3so00¢0 | 24 i 17 |

{ 2 | Margarita | 24000 I 23 i 21 |

| 3 | Adriana } 18000 {j 22 | 77 |
modi fy “ ¢table-name> modif-op It-exp
modift~op ¢« any abbrev. of words °‘'modify"’ i

or 'moditied®, Word 'oen® Is optional

it-exp < 'it" expression °"then’ assign «
assign “ <column-name> ';=' expresslion

seo selegtl operation tor definition of expression,.

The Qrder operator is normally the last in a query definition. #t produces a resuit table
ordered by column values in either ding or d ding order. An example is shown in
figure 3-9,

Figure 3-9: Raquei: Order Operation Exampie

C: 1 produce a table with the teacher's name In ascending order
C: query neat ;= Teacher ordered on name = a;

C: neat

neat: *
| th | name | salary | phone | aext |

| | s [| | 1 |

R R il - I------- P----- |

| 3 | Adrianas | 18000 | 22 i o |

[| Aticia | 35000 i 24 i 0 |

| 2 { Margarita | 24000 | 223 § 21

Syntax:

Reseasch Report Dats Curator Report 15 August 1983

impltemented Database Environmeni 25
order “ «table-name> order-op ord-spec
ovd-specé e <¢ccolumn-name> °=° orvd
{.<column-nams> °"=° ord)
ordevr-ope any sabbrev, of word ‘ordered'.
The word ‘on’ 18 oplttonal,

ord “ ‘'a‘* | ‘'d°

The Extend operator is used to extend a table by appending a new column whose values are
dotermined by an exprassion. The <coi-flst> indicates which columns from the argument table
must be inciuded in the result table (as in the project oporator).

The expression can be formed using the same operators as with the select operator. The
type of the expression determines the type of the new column, An exampie is shown in
figure 3-10.

Syntax:
extaend “ ¢table-name> ext-op ext-exp
axt~-aop “— any abbrev. of word ‘extended’
the word 'to® ts optional
ext~exp & col-tlst ':' <new-cofi-name> ':=' axp
cofi-iiste <column-name> (',°’ <column-name> }

S58e selgct operation for definition of ‘exp"’

Figure 3-10: Raquel: Extend Operation Example

C: 1 produce a table similar to ''Teacher” with

C: | name and sajary of each teacher and a new

C: ! column showing its safary increased by 7 %

C: query new_salary := Teacher extended to
name, salary : new := saiary ¢ (salary / 100);

C: new_salary

new_safary:

The example in Hgure 3-10 shows thal the extend operator Is a combination of the project
and modify operators, but instead of modifying the values in an existing column, a new
column {s produced. As in all other operations, a query does not modify the values of the
tables involved in the query.

The Group operator {Gray 82] is used to partition the argument table into row groups such
that within each group all rows have the same value in the column{(s) indicated in tha coi-fist
and then to compute an expression over each group of rows. The expression should contain
aggregate functions from the following list:

group fumction axpression type
count -
sum {(expression) integer

Rasearch Report Data Curator Reporl 15 August 1983

Implemented Dalabase Environment 26

max (expression) integer
avg (expression) integer
min {(expression) tnteger
all (expression) boolean
any {(expression) bootlean

all and any are useful in forming quanlitied queries. all computes the boolean conjunction
for each group (the result is true if all members in the group are true) and any computes
thelr disjunction (which Is true if any is true).

Syntax:
group ¢ <tabjle-name> group-op group-exp
group—-op ¢ any abbrey of word 'group®.
The word 'on' is optional.
group-exp+ col-list ':° <new-col-name> *':;=° gxpr
cotl-list ¢« <column-name> (,<column-name>}
expr : expression as in selectl operation.
The col-list indicates the col to be ¢ idered lo form the row groups. <new-col-

name> is the name of the new column which wili contain the value of the group expression.
An example Is shown in figure 3-11,

Figure 3-11: Raquel: Group Operation Example

C: t Count the number of studanls in each facuity
C: query students_in_faculty := Student grouped on

faculty : tolal := count;

C: t display “Student” and "students_in_tacuity” tables
C: Student

Student

] s# | name [faculty |
R - ! '
R R e T T T S U '
s	Leonor	SCIENCE
6	Magdalena	ARTS
7	Veronica i ARTS	
8	Andrea	SCIENCE
9	Alejandra	SCIENCE

students_in_faculty
{ faculty | total |
S S
———————————————— ‘
| ARTS | 2 |
| SCIENCE | 3 1

in order to make it easier to updale the meta-data, a notalion for a lable constant was

introduced. It can be seen as a one-row table, with no name, and with the column types
delined by the column vatues. Examples are shown in the update operations of section
3.3.3.

Synlax:
const-exp « *{’ column-valva-list '}’

Rusearch Reporl Dala Curator Report 15 Augusi 1963

implemenied Database Environment 27

Binary Qperators,

The Join operation. If two tables have a common column type then they may be joined
over those coiumns., The result of the joln operation is a new table in which oach row is
tormed by joining together two rows, one from each of the argument tables, such that the
two rows concernod have the same valves in the common column.

The join column from the right-hand side argument table is not included In the resull table,
Dupiication of column names in this tabie are avoided by prefixing with "'#" the names of the
columns from the right~hand side table that aisc exist in the left-hand side table. An
alternative proceduyre, not yet tmplemented, {s to force & renaming before the join if the
tables have common coiumn names other than those participating in the join. An example is
shown (n figure 3-12,

Figure 3-12: Raquei: Join Operation Example

C: ! join the tables column and {abies by their common

C: | column f{abname.

C: query tab_col := tables joined through tabname = tabname columns;
C: tab_co!

{only part of the rasult table (tab_coi) is shown)

tabname f sortorder | pretection | colname

I s { s f s H

jom--m---oo- f-=-=-=----- foo-mmmm oo |=-----moeo-

] ¢columns | tabname=a | dv,ea,6da | position

| columns { tabname=a | dvr,as,da { constraint

Syntax

joln 4 <table-name > j~op j-exp <table-name>

fj-op & any abdbreviation of the word ‘'joined"’.
v

j~exp+e <ccoliumnpn-1> cofuvmn-2>

The Quter Joln operation is similar to join with the difference that for those rows in the
left~hand side argument table which do not have & matching row in the right-hand side table,
a dummy right-hand side row is created with defauit vall . An ple is shown in figure
3-13. The above exampie illusirates several aspects of the outerjoin operation. First, the
rasyit tabie has at least the cardinaiity (in this exampie the same) of the left-hand side table
%. Non-matching rows from this table are included in the resuit table z by appending default
values ('C' in our example) in the columns of the other table (e.g. (1,5,0) and (3,7,0}).
Second, the addition of non-matching rows applies to the left-hand side table only: it is a

z). Finally, tables x and y have identical column names. To aveld duplicate names in the
resuit table z, this table maintains the column names of tabie x, efiminating the join column
of table y and renaming the other column b to #b.

Syntax:

Razearch Report Data Curator Reporl 15 August 1963

Implemented Database Environment 28

Figure 3-13: Raquel: Outerjoin Operation Example

C: ! Consider the table z resulting from
C: | outerjoining the tables x and y.
C: query z :=x o) aza y

C: x
P
a b
i i
1 5
2 6
3 7
y: T Toeoe
a b
i [
2 9
8
z:
a | b | #b |
Sl Rl EEEEl
1§ 5 | o i
2 | & | 9 |
307 i 0 |

o-joine <
'

able-name> o-j-op j-exp <tab
0o-j-ope i tou

ame
| any abbrev., of word in

le-n
ter jo
see Joip operation for the detinition of j-aexp
N

The Set Union, Set Difference and Set Intersection operations are the normal sat
operations. The tables must have the same number of columns {same degree) and the type
of a column in one table must be identicel to the type of the corresponding column in the
other table. That is, the i-th coiumn in both tables must be of the same type.

The column names of the result table are inherited trom the column names of the left-hand
side table,

Syntax:

sat-expe <table-name> set-op <table-name>

set-op ¢ "+° | any abbrev. of word ‘union’
‘-~ | any abbrev. of word ‘'diftference’
'*.' | any abbrev. of word °"intersection"

An example, using the same x and y tables of figure 3~13 is shown in tigure 3-14.

Dala Curator Repost 15 August 1983

implemented Database Environment 23

Figura 3-14: Raquel: 3et Operations Example

C: guery setunion
C: query setditfe X -y
C: query setinter :=x . ¥y

=K+ Y

3.3.2 RAQUEL Commands

As in TABLES, RAQUEL provides a view mechanism, Views are used to provide a different
appreciation of the databsse than the one provided by default by RAQUEL. It can also be used
as an alternative naming system and as a means for maintalning the definiion of frequently
ysed querles.

Consider 2 quary that s often used throughout sessions. To avoid redefining it each
session, the query may be stored as & view, which will make it readily availabie in further
sessions,

The following list describes the RAQUEL commands:

@ inciude <qry> : include a given quary as a permanent view,

® drop ¢<views : delele an existing view.

® views : display current views.

® query : used for defining & query

@ updafe : vsed for defining an update

® foad <file> : add rows from external file <Hle> to an existing lable.
® dump <file> : dump content of a table Into external file <file>

® ouipul <file> : formatted output of a table to file <file>.

® «table—name> : dispiay a table on the terminai.

® queries : display queries and their definition,

® oxil : terminate session, The user js asked whether to commit or not. I(f the
answer I8 positive, any changes made to the database during the session will be
applied.

® koapr <lable name> : used to save a result lable as a snapshot. The table is
made persistent, allowing the Report Generator o use it.

@ dropr <tabie names : the persistence ot this table is not required any more, This
command is related to keepr.

Research Report Data Curator Report 15 Augusl 1983

Implemented Dalabase Environment 30

@ I : a command line starting with a ' character is not processed.

3.3.3 RAQUEL Updates

Adding Rows

Syntax:

update - <table-name> ':=' union-op table-anxp
union-ope '+ | any abbreviation of word ‘union®

lable—exp is any expression using table operations.
Example: add tables 'x' and ‘y' lo the database,
C: updale tables := union ("x”,"n","n"};

C: updale tables := union ("'y","n","n"};

In the above example the table constant notation (. .} was used as a table exprassion, in
the same form, new columns may be added to a table by updating the columns tabis,
Example: add two integer columns named "a' and 'b' , with default ‘25 and *~1°, to the '
table:

C: update columns := union {“x","a","i", 25", "},
C: update columns := union {x™, b, ", o=y tw),

Daleling Hows is symmotric to adding rows. The operation used ig sat difference.

¢

aa®

a
t

- e~

y
)
i

-
o0 x

<table~-names> ':="' d
P
- [

f-op
| any abbrev, word

&« [}
pe #
Modifving Rows The syntax is identical as for the query case. The difference ig that the
modification will affect a (permanent) table. Example: assume thal a table 'x* has in column
‘a’ valves that are < 0. Modify them to be equal to the sum of the values in columns ‘'b" and
e,
C: update x := modified on if a < O then a := bic;

Note that the modify operation is similar to the extend operation, the difference being that
extend creates a new column and modify modifies an existing one.

3.3.4 Protection, Constraints and Defavits

PROTECTION is delined at the table level (in the tables table). By defaull, a table is

unprotected (protection=""n"). The protection may be delined when creating a new table i, e,
adding a row to the tables table or by modifying a row in the lables table. A table can be

protected against the following events:

dt : delete table
ac¢ : add coifuvumn
dc : delete column
at : add row
dr : delete row
mr : modity row
Resaarch Report Dale Curalor Report 18 August 1982

implemented Dalabase Environmant 31

At the column level, a column can be defined as having one of three possible
CONSTRAINTS. RAQUEL will check that during & loading or update operation, the constraints
are not violated, It they are, the offending row will be neither updated nor icaded but the

oparation wiil continve.

® “unique”: the column value cannot be dupiicated in the same column in any other
vow in the table.

® /3in <table-name> . ccolumn.name> : Referantial integrity constraint. It specifies
that the cofumn values in this column must exist in some row, in the given column
of the given table (soe the columins tabie for exampies}.

@ <Prodicale> : any boolean expression that must yield true when adding a new
valve,

Example of predicate constraint when adding a column to the staff table:

C: { Add an ‘age® column to the "teacher” table,

C: | where © <= age <= 150

C: update columnsg := v [“Teacher™, “age", """, "25",
“(age>=0} and {age<=150)"};

DEFAULY values tor columns are defined when creating them. Al columns must have a
defayll value which wili be applied, if necessary, when updating a table (8.9, adding a vow
without knowing all column values nesded). in the previous example, the column age was
aglven the defauit vaive '25'. All existing rows in the table are avtomatically extended to
inciude this column value. If a default value is not supplied when defining a column, RAQUEL
provides one for each type: °G° for integers, the null string ** for strings, ‘false’ for booieans
and the current date and time for these types.

3. 4 Report Generator

The Report Genarator is an interactive program that can access the same databases vsed by
RAQUEL and TABLES. in addition to report generation facilities, this program aiso provides
some basic statistic capabliities. The user specifies which database table is to be used for
the report or the statistic snaiysis. Various commands, described below, may be used to
shape the report by modifying a set of defauit parameters. The effect of each of the
commands can be observed on the screen. This aiso applies to the statistic analysis.

Since the report and statistics facilities ought to be used by all query languages, we
decided to combine them In a single user interface that is described below. It is expected
that its functionality will be gradually extended and finally derive into two user interfaces. One
wouid be dedicated to report generation and the other to statistics and graphs. What is
described next is only a small step towards that aim.

The Report Generator responds to the following commands:
& tables : display the database tables names i.e those in the tsbles table. Othor

tables may exists in the database that can be wused for report generation e.q.
those stored using the command keepr in RAQUEL.

Research Report Data Curator Report 15 Avgust 1983

Implemented Database Environment 32

o lable <lable name> : delines a table for reporl generation or statistic analysis. All
further commands will apply to this table, until ther table d is ¥ g,

@ litle : defines the report titte. The user can provide a set of textlines that will be
inserted, alone, on the front page of the report.

@ frline <line number> : replaces report title line in current report title,

o plille : delines a page tille. Every page of the report may begin with a set of
textiines as delined by the user. Al pages, except the front page will carry the
same page title,

o fpling <line number> : replaces page title line in the current page title.

@ header : defines page headers. Every page can be assoclated with a different
page header that is printed before the page title. It consists of one line of text.

@ [hline <line number> : replaces & page header line,

chonly <column number> : print column value only when it changes, further
identical values are replaced by spaces,

@ chname <column number> : change specified column name In current table.

» chpage ccolumn number> : start a new page each time the column value

changes.

o display : display current table (report) on the screen. The table is formatted by
default, i.e. all columns have the same length and values are justified to the feft.

@ plenath <page length> : define page length in terms of number of rows in the
table. Each page ber will be indicated in the report,

® schar <new separator character> : change the current separator character,
Column values in the report are separated by spaces and a separator character,
which is by default equal to |” but may be changed on request,

® uchar <new underline character> : changes the current underline character. The
names of the columns (inserted on each new page) are separated from the table
rows by an “‘underline’ line. This underlining is also performed after the last row
of the table. The character for underlining is - by default but may be changed
on request,

® stalus : display slatus of report (table name, underline character, page length,

etc.).
e help : display the name and a short explanation of each of the available
commands.

@ exit : Hnishes report generation session.

The statistic facilities work on a sample conslituted by all the values of a column in the
cuyrrent table. These facilities are:

Research Report Data Curalor Report 15 Augisst 1983

implemented Datahase Environment 33

@ basic <column number> : generales "basic" stalistics using the specified column
{which must be of type integer) of the current table. The “basic" statistics are:
average, variance, range of sample, maximum, minimum and typical value.
Mumber of occurrences and percentage of sample are given where relevant (e.g.
the maximum vatue in the sampie, the number of times it occurred and the
parcentage of occurrence with respect to the size of the sample). These statistics
are given for the whole sample and for the sample without the maximum and

minimurn vaives.

@ histo <column number> : qenerales a histogram from the vatues of the specified
column.

@ graph : generates an output file for a graphic program. The graphic devices in the
department can by used through dedicated programs that require data and
parameters {s,g. graph title, units, etc.} in a particular format. This command
produces & file from the current table, with such a format,

3.5 Conciuslons

The software described above was designed, impiemented and tested incrementally. AHer
RAQUEL and the underlying components were implemenied, TABLES and the Report Generalor
were produced in less than one man/week each. We were able to achieve this because we
could concentrate on the user Interface. Ali the underlylng database soltware was provided by
the existing components used to implement the query languages.

All of the user Intarfaces were implemented using (re-using) some or all of the software
components described in chapter 2, All access the same data, using the same name space.
They provide difforent levels of functionality and usability to svit different noeds and
praferences. ANl the Interfaces described in this chapler provide ample room for
improvements and extensions and the underlying compornenis have proved to offer an ellective
basls for providing rapidly and economically new interfaces.

Our experiance has shown that there are two principal factors that contribute te the rapid
prototyping of database systems. One is the provision of appropriate impiementation toois,
particulariy a programming language such as PS-algol with persistence capabilities. The other
factor is the availability of adequate database sofiware components such as those proposed in
chapter 2. We balieve that the right choice of both significantly reduces costs and lime in
producing database tools, as demonstrated in this chapter.

Research Report Data Curator Report 15 August 1983

References

[Atkinson 82}

[Atkinson 83]

[Bell 80]

{Blasgen 76)

34

References

Atkinson, M. P, Gray,P.D.M and Hepp,P.E.

Proteus Working Paper E2.

Technicat Report, University of Edinburgh, Computer Science Department,
1982,

Atkinson,M.P et, al,

An Approach to Persistent Programming.,
1983,

To be published in The Computer Journal,

Ball, R.M A,

Automatic Generation of Programs tor Relrieving Information from Codasyi Dals
Bases.

PhD thesis, University of Aberdeen, 1980,

Blasgen, M. W. and Eswaran,K.P.

A Comparison Of Four Methods For The Evaluation Of Queries in A Relational
Data Base System.

Technical Report, 1BM Research Laboratory, San Jose, Calitornia, February,
1976.

RJ 1726 (25344),

8 82]

{Codd 79)

[Comer 79}

[Date 83]

[Eswaran 75]

{Gray 82]

[Hal 75}

Reacarch Repor}

B ,P. Frankel, R.E. and Nikhil, R.
An implementation Technique for Database Query Lenguages.
ACM Transactions on Database Systems 7(2):164-186, June, 1982,

Codd, E . F.
Extending the Database Relational Model to Capture More Meaning.
ACM Transactions on Dalabase Systems 4(4):3397-434, December, 1979.

Comer,D.
The Ubiquitous B-Tree.
ACM Computing Surveys 11(2):121-137, June, 1979.

Date,C.J.

The Systems Programming Series. Volume 2: An initroduction to Database
Systems.

Addison-Wesley, 1983,

Eswaran, X . P. and Chamberlin,D.D,
Functional Specifications of a Subsystem for Data Base integrity.
in 75t International Conference on Very Large Data Bases. September, 1975.

Gray, P .M. D,
The Group-B8y operation in Relational Algebra.
Technical Report, University of Aberdeen, Dept, of Computer Science, 1982,

Hall,P.A.V,

Optimisation of a Single Relational Expression in a Relational Data Base
System,

Technical Report, IBM UK Sclentitic Centre, June, 1975.

UKSC 0076,

Dala Curator Repord 15 Avgust 12€3

. .M. M, and MclLeod,D.J.
Semantic Integrity in a Relational Dala Base System.
in st International Conference on Very Large Dala Bases. September, 1975,

A Databage System Architecture Supporting Coexisting Query lLanguages and
Data Models,
PhD thesis, Department of Computer Science, University of Edinburgh, 1983,

Jarke,M. and Koch,J,

A Survey of Query Opfimization in Cenfralized Database Systems.

Technical Report, Center tor Research on information Systems, New York
Unlversity, November, 1982,

CRIS 44, GBA 82-73 (CR).

Kutkarni, K. G.
Extended Functlional Data Model - User Manual.
Technical Report, University Of Edinburgh. Computer Sclence Department,

Implemeantation of Query-By-Example.

Technical Report, Universily of Edinburgh, Computer Science Department,
May, 1980,

€384 Project Report.

Hetarsncen
{H 75]
{Hepp 83) Hepp, P.E.
[Jarke 82]
{Kulkarni 83}

1983,
{McDull 80] McDuff, A.D.
{Mikhil 82} Nikhil, R,

{Shipman 61]

{Yac 79}

{ Zioo# 75]

fRasearch Report

RDB - A Relational Database Management System.

Tachnicatl Report, Department of Computer Science and information Science,
Univarsity oh Paennsylvania, January, 7982,

User Manual,

Shipman,D.W.
The Functional Data Model and The Data Language Daplex,
ACM Transaclions on Database Systems 6{(1):140-173, March, 1981,

Yac, $.8,
Optimization of Query Evaluation Aigorithms.
ACM Transaciions on Database Syslems 4{2):133-157, June, 1979,

Zloot, M. M.
Query By Exampie.
in National Computer Conference, pagas 431-438. AFIPS, 1975,

Data Curator Report 15 August 1983

