University of Edinburgh

Department of Computer Science

James Clerk Maxwell Building
The King’s Buildings, Edinburgh

University of St Andrews
Department of Computational Science

I mn

[k

North Haugh
St Andrews, Fife

Experimenting with
the Functional Data Model

R~ do
PPR-5-83
= September, 1983 |

EXPERIMENTING WITH THE FUNCTIONAL DATA MODEL

M. P. Atkinson and K. G. Kulkarnl

Department of Computer Science
University Of Edinburgh,
Mayfield Road.
Edinburgh EH9 3JZ

PERSISTENT PROGRAMMING
RESEARCH REFPORT 5

SEPTEMBER 1983

1. introduction

The idea of viewing an Information system as a collection of functions appears in
many proposals of data models [5. 15, 19, 298], each of them termed as the
functional data modei. As early as 1974. Foiinus et. al {10] had suggested adopting
the functional approach to information systems because requests for answers, whethar made
fo & processing program or & sftored data base, are essenlially requests for a value of a Iuncllr;n, given
various argument vafues and went on to observe that this approach makes it possible to

- provide various kinds of virtval information 1. 0. . the information that is not

physically stored in the database. but is nonetheless accessible through a
combination of algorithms and stored data.

- accomodate complex, procedural interrelationships among data ltems in
addition to static and grouping relationships that are accomodated by the
conventional data models.

- Incorporate some kind of inferential ability In the system. |.e.. the ablility to
infer a certaln fact from some existing facts.

Kent {171 also recognises the fact that the functional approach makes It possible
10 equale data in the system wilh whal can be extracted, rather than what is physically stored. I is the
funclional daia model proposed by Shipman (29] which exploits these benelits ol the
functional approach to a significant extent and this is the model we took as our

starting point.

Shipman’s proposais aiso contain a high level. integrated data definition and data
manlpulation language. DAPLEX. DAPLEX supports query formulation based on set
and function operators as well as update operatlons in which the abstract entities and
not a group of values act as units of update. DAPLEX Is the subject of the ADAPLEX
experimeant (341 which alms at embedding a darivative of DAPLEX in ADA {16).
DAPLEX is also the common high level query language in.a heteroganeous distribulad
databasse system MULTIBASE proposed by Smith et al. [32].

Rather than depend on embbedding DAPLEX in a compile--and-run procedurat
tanguage for a working system. we chose to build a self-containod system with an
intaractive user interface based on the DAPLEX language. This interface allows for
interactive creation, retrieval, and modificalion of both meta~dala and data in the
databases Based on the preliminary experlance gained. a number of modifications
to both the data model and the database language have been made. We present

praposais for continuing this evolution to accomadate varsions. expariments. control

of persistence, access control and federalions uslng one consistent Hnguistic
consiruct.

Wa first present a brie! dascription of the model In Sectlon 2 and discuss our
reasons for choosing to work with this model in Seclion 3. Section 4 discusses the
logical design of our varlant of the functionai dala modal with emphasis on the

- management of operailons on meta-data and the conirol of name spaces as an
authorisatlon and view mechanlsm. Section 5 speculaies on the offecis of allowing
views 1o store data within themseives. Seclion 6 discusses iangvage issues while
Section 7 describes our implementailon strategy based on a persistont algorithmic
tanguage PS$-afgol {21,

2. Functionai Data Model

A good exposition of the Functional Data Modal (FDM) is glven by Shipman [29].
Kulkarnl {20] provides a detalled discussion of thls and other proposals of FDM.
Brisfly the data consists of a set of entittes. and of functions relating the antities.
The entltles have types which are arranged In a type hierarchy, so that they are all
subtypes of the type enlity. Certain types are provided Initially. distingulshed by
having a lexicagraphic representation. For example string. A function may be single-
valued or muiti-valued. {.e.. the result of a function is a set. The model aiso allows
multi-argument functions and these provide a convenlent means to establish
relationships Invoiving entities belonging to more than iwo entily types without

introducing artificial entities.

An example to represent a class of students and associaled entities is given in
fig. 1. Note declare or deflne introduces a new function. which If it has no
arguments is a new enlity type with the result type as ils superlype. Those with
arguments model propertles of their arguments, by defining a result entity which is
the value of that property. Sublypes iInherit propertias of their supertypes. Single
arrow -> implies the function is slnglé—valued, and double arrow ->> implies it is
muitivalued. A funclion introduced by declare Is called a base funclion and is
ropresenied by physically storing a tabte of arguments and resuits. For example, a
function relating persons and their names. A function introduced by define Is called

a derived function and Is representaed by an algorithm lo'compule Its result.

declare person() - entity

declare student() ~>> person

declare staff() —->> person

declare course() ->> antity

deaclare tutorial() =>> antity

deciare name(person) ~> string

declare sex(person) -> string

deciare course(student) -¥> course

declare (tutorial(student) —-> tutorial

daclare grade(student, course) —> slring

deciare statf(course) -> statt

declare statf(tutorial -> staff

define fteclurer(student) —>> staff(course(student })
define tutor(student) => gtaff(tutorial (student))

Fig. 1. Data Dascription of Student Dalabase

3. Why Choose the Functlonal Data Mode!?

We had essentially two reasons for implementing the functional data model. The
first reason was to evaluate the model itsell and the second was to establish a flexible

database design anvironment for which we considered FDM the best candladate.

3.1 Properties of tha Model

As to lha data model. wa wore allractad by the following feaiures of the FDM:

(1) N is simple to understand and use.

It is well known thatl the existing dala models fall 10 capiure a substantial portion
of the information assoclated with an application environment 113, 17. 18]. Because
of this reason. data modalling has been one of the major themes of database
research for more than ten years. As a result. a number of new semantic data models
1. 5. 7. 8, 12, 25, 27, 29. 31. 33lhave been proposed. Whlle some of these
models suller Irom excessive complexity. some others are incomplete In the sense
that they do not describe the sel of operations on the data struciures they model.
This was probably the reason why so few of them were subject to the test of
implementation. Consequently reports of work on the tools for designing or
maintaining the databases based on these modeis is almost non-existant. it is
difficult to delermine the efficacy ol a data modsel without using it for a range of
applicatlons and to do this. the model must be implemeanted. Simplicity is attractive
to the Implementor in limiting the size of his task. and to the user in moderating the
elfort of learning and comprehonsion needad. FOM has this simpiclly. In additlon. It

supports a well-dalined set of operations.

(2) It is object basad and not name basad.

This aspec! of FOM. supported by many other data models as well (12, 33},
tmplies that the user is not required to be aware of the mapping from real world
objects o values which act as tokens for them in the slored data. Vhis also means
thal many referantal Integrity constraints {B. 9] are implioad by the data modet itsalf

and it is possible to support varied externatl naming conventions.

(3) it provides a semantically rich modelling environment.

The concept of function augmented with multi-valued and multi-argument

functions feads ta uniform modelling of all types of inter-objact raelationships.

Because of this, creation of artificlal entities to model non-binary or many-to-many
relationships is avoided In this model. In addition. the accomodalion of sublype-

superiype hierarchy among entity types capiures an important real-world semantics.

(4) it removes the sharp distinction between data and programs.

All functions Irrespective of whether they are defined by stored data or by
programs have aqual rights. A large part ol the application specific knowledge exists
not as stored data but as a set of programs or rules. The concept of derived
functions in this model captures such procedural knowledge as part of the schema
htself, Because of this, FDM provides the ability to define relationships in a
procedural fashlon. For example, the refationship belween a person and his age.
as distinct from his date of birth. [t also glves considarable Hlexibility in the varisly of

views thatl can be supported.

(5) it has a ‘simple’ data manipulation language.

The function application provides a natural mode of expressing user queries.

Because of this, query formulations are closer to the natural language form.

(6) It has the potential to provide a data language in which data manipulation

facliities are neatiy integrated with the general-purpose computation facitities.

Existing data fanguages. both procedural and non-procedural, do not provide a
complete programming anvironment. To overcomse this deficlency. these languagas
are invariably coupled to existing procedural programming languages or alternatively.
existing programming languages arae extended with database notlons. Both these
abproaches are found to be less than ideal {26). A major reason for this is the lack
of a common concepil between the dala models and the programming languages.
FOM is well suited to overcome this deficlency as the concept of function to model
stored data Is also the basls of many general-purpose programming languages lke
LISP {22]. Buneman ei al. show how this can be achiaved in their functional query

tanguage. FQL {5].

(7) W has the potential to support all three malor thlerarchical. CODASYL. and

relational) dafta modeis {30, 29, 32, 11].

FDM is proposed as the global dala model in the haterogensous distributed

database system., MULTIBASE (32}

3. 2 Fast Protolyping and Schema Modilications

The other reason for Implementiing this data model Is 1o astablish a f{lexibie
database design eanvironment. One of the major probiems with the traditional design
methodofogles Is thal they aim 1o get # righ the first tme. Since this iIs difficult to
ensure In practice, there Is an Important need to accomodate tser experience In the
design process. Design approaches which amploy profoiypes are more appropriate in
the database confext.

Theare iIs also a necessily for economlical mechanisms to effect changes. Such
changes may be due to lhé tmproved Insights gained during the sxperimeniation on
the prototype or because the requirements of the applicalion the dailabase Is
modalling has changed. Thus. coniinuous modifications to the schemas may be
nacessary to ensure that the system reflecis the requirements as accurately as

possible at all imes,

The simpliclty of FDM combined with the power of DAPLEX makes It is easy to
construct prototypes In a short period of time. deciare and dellne consiructs of
DAPLEX provide a natural way to describe Increments to the schema. Using these
commands, users can construct thelr schemas Incrementally. {.e.. they can add a
companent of the schema at any time. If modlfy and drop commands are provided.
users can modily, or drop a component of the schema at any ime. The meta-data
can also be described as a set of funclions which are updated automatically as the
schema changes. This makes It possible for the users to examine the siructure of the

daiabase at any time.

4. Extended Functional Data Model - EFDM

erpom is our implementation of FOM. It provides an inleractive user interface,
using which the users can create. query. and modlily databases. Both the modsl
and the language closely foliow the proposals of Shipman. though the language has
been considerably extended to handle general purpose compulation and views. The
syntax for some of the constructs has also been modifled. We briefly skelch here the
salient points of EFDM; more detailed Information can be tound in the user manual

{21}. A summary of the syniax appears In the Appendix A.

4.1 Data Definltion
‘ We describe the data structure of an application In the form of function definitions
using declare and define commands. Llke DAPLEX (and unlike ADAPILEX) . we allow
the Individuat function declaratlon stalements to occur at any timse. To avold
inconsistencles. the users are helped to ensure that the same fact Is not doscribed
by more than ons base function. For example. assume thatl there exisls a base
function

student{course) -> student.
Suppose now the user intends to add another function

course(studant) ->> course.
. in reality, this function Is the Inverse of the old function. adding it as a base
function will mean that the same lacl is rapresented by two independently updatable
functlons, and this will surely lead 1o inconsistenclaes in the database. On the other
hand, the new funclion may be corresponding to a new fact. say. relating to the
majors taken by a student. Since there Is no way for the system to Infer what is
intended. whenever addilion of a base function with a single argument is requastad,
EFDOM displays all the existing base functions betwean the argument and resull types
and somae "paths” that can be derived using Inversion and composition of other baso

functions. The user Is consulted to check H the function additlon should proceed.

Wa also provide

drop <function>
facility to remove {tems from the schema. 1o avold inconsistencies. drop may cause
cascade doletlon of functions that depend on the functinn being deleled. If there are
Implicit delietions, tha user is consuliad to chack if the cascade, once idantilied,

should proceed.

4. 2 Manipulating Meta Data

The meta data of the schema corresponding {o an application Is held in a sat of
EFDM functions shown in flg. 2. These functions are automatically populated and
modllied when declare. daline. or drop statements are processed. Only the
document function may be explicilly updated by the user. The contenis of these
functions can be rotrieved with the usual retrieval slatements. So a user may use
" such querles to discover the form of a data base. To f{acililtaie this the functions
given in fig. 3 are defined.

function() ->> entity -- contalns a list of all
functions existing in

the database
name (tunction) -> string -~ name of the function

nargs(function } = Integer -- number of arguments the
function has

argumenls (funciion) -»> tunction - - list of the argument

functions

resull (function § ~> funcfion -~ tha rasull function

type(tunction) -> gtring -~ whather the function Is
single-valued or multivalued

status(function) -» siring -- whather the function is
base or derived

text(function) -> siring -~ the text of the functlon
dafinition

document (tunclion) -> string -~ documentation associlated

with that function

Fig. 2. The functions to hold meta data of a schema

enlitylypa() =» ¢ In tunction such that
nargs(f)=0

supertype (entitytype) => resull(enfilytype)

superlypes(entitytype] —>> transitive of

supertype(entitytype)
sublype (enlitytype } -3 e in entitytype such that

resuli(e)= enlitylype
subtypes (entitytype) -» transitive of

sublype (antitytype }
tnaover (antitytype) - t i function such that

nargs(f) "= 0 and

80mMe e In arguments(f) has

{e = enlitylype Or

some e}

supertypes(entitylype) has

e =el)

tnsyictding(entitytypa) ~>> f In function such that

nargs(f) "= 0 and
regult(f) = entitylype

Fig. 3. The derivad functions for querying meta data

=

4. 3 Manipulaling Extenslonal Data

The database query and update operallons are again based on DAFPLEX
conslructs. Additionaily, we provide for explicit entity deletion opseration. This is
provided by
delele <ontity>
which deietes the specilled entity and causes a cascade delelion of all funclions
which reference this entity and all Its sublype entities. again consuiting the user

before the cascade proceeds. uniess there are no Implicil deletions.

In addition to string, Integer. and boolean. two additional primitive types of time
and date are also supported. The usua! arithmselic operations Iitke addition.
subfraction. muitipiicallon, and division are provided for numeric-valued
expressions. Concatenatlon. subsiring operations and various string matching tesis
are provided for string-valued expresslons. Stmilarly, the boolean operations of and.
or. and not are provided for boolean expressions. forward and difference operations

as weli as earlter and later tests are provided for date and time types.

4.4 View Mechanism

EFDM also provides a view mechanism, which while providing differant perspective
of a global information space. also acts as authorisatton mechanism. Views are
defined using deduce statements. For example, for student database of fig. 1. we

can define a view called malestudents as

viow malsstudents Is

deduce male () ~>» entity using student

such that sex(student)="m"
deguce name(malej —> string using name(stident)
an

Al functions introduced by deduce are treated as derlved functions. Notice that
deduce Is used fo define view functions Inslead of deflne. This Is because view
function definittons involve change of name space: namas before the using keyword
define the namespace of the view being defined whereas names after the using
kayword refer to those In the name space in which the view is heing defined. In
fact. every view dafinition automatically creates a differant name space. which is
completely independent of the global name spaca as well as of the name spaces of
other views. The users of a particular view are not allowed to see the giobal name

space or the name spaces ol other views.

10 11

Once within a view, users can pose the usual FDM requesis lo carry out the encouniered. i no close Is encountered the operations will not be recorded.

database operations using the names avaliable in their name space. Each query

statement issued from an user view Is transiated into a corresponding query on the 4.6 Rapresanting Views
global name space by recursively applylng view delinition mappings and the globai The information about currently defined views is held in the EFDM structures given
query is then exacuted and resuits dispiayed. in figure 4.
b
Since all the lunctlons In a view are treated as derivad funclions, updales through : view() —>> entity
name(view) =-» string
view functions are aliowed only if procedures for updating the corresponding global : context(view) > view
J fext {view) ->> string
data Is provided for each vliew function. passward (view) ~> siring
document {view) -> string
Currently, the operations provided to change the schema within a vlew are elther Fig. 4. The functions to hold the meta data for views

delining derived funcilons from the set of functions they are atiowed to have access
to or dropping the derived functions they have creaied. This Is In keeping with the
assumption that the global view has all the Information required by difierent users.
This means that the individual users are not allowed to Introduce any base funclions
or stored data of thelr own. Views can be dropped with

drop <«iewname>

command.

4.5 Operations on Views
As well as craaling. using. and dropping a view. usars can also eslablish a view
as the context for subsequent operations. To do this three statemenis are required:
quote <«slring>

open <viewname>
close «iewname»

At the start of a session the database holds no quoted passwords., sach time
quote Is encountered the value of the string exprassion which foliows is added to the

sat of quoted passwords.

P

open then makos the specifled view as the current conlext for operations if there

Y

Is no constraint on its use, or If ane of the passwords whléh enable s use has been
quotled. The only names then avallable are names provided by that view. Subsequent
operations. define definltions, queries, updales and new view dslinltions are
interpreted In. and modiHy the name space of that current view. The most global view

ts the schema.

The opening and closing of views Is used to define transactions. A transaction

starls when a view is openad, and is commilted when the close stalement |s

12

5. Deferred View Updates and Views with Memory

n sgéllon 4 the view machanism for identifying smaliler name spaces and
constraining access 1o them was described. Provided a user gives a hierarchy of
views all with the same password, they can also be used to subdivide and make more
manageable the name space for a glven user. who may then move freely about this
tree of name spaces. This Is similar to modules or block structures in programming

languages. and is clearly useful.

What we have considersd are the mechanisms for deferring view updates in order
to conduct expertments of what-if nature and allowlng a view to have memory so as to

provide version management capabliities.

5.1 Deferred Viaw Updates

Section 4 assumed that updales may be made through a view Il update
proceduras are defined and that all the updates done from a view will be applied
immediately. 1. e. . propogated up to the global view. Howaever, In order to conduct
exberlmenls of what-if nature on databases appropriate In management and design,
wa need to have a mechanism which allows updates from a view to appear to have
happened within that view but from outside that view they appear not to have
happened. This can be achleved easily if we allow the update procedures for view
functions to be morﬂ.ned by preceding with the word defer. We can Interpret this as
meaning that each time an updale Is requested. the system records encugh dala to
parmit it to be done later. Thus. a user can experiment with the data by making
caoamplex and extendad updates without Interfering with other peopie’s work untii he

chooses to do so.

Two new operatlons are then Introduced:

apply «lewname>
and resetl wlawname?

When a view Is created the sst of delerred updates Is emply. As successive user
sassions operate on this view a sequence of updates wil be accumulated. The
interaction of the operations in the sequence of updates is examined and an
equivalant nett offect sequance is bulll. apply causes this accumulatled sequence of
updates to be applled In the view's context. and the stored sequence of updates to

be set emptly. reseat explicitly abandons a sequence of updates.

We anticipate using a ditlergntial file mechanism [28]) to implement this. in fact,

13

a slightly more subtie implementation is necessary In this context. The reason being
that a deferred updaie may no longer be applicable due to changes In the database
since [t was recorded. At present we see that as a user problem. People will
normally avold such situations by agreeing the territory each works on, as they do
now when feams are Involved In design and management. But such division of tasks
Is never perfect. and must in any case be checked. When It is checked, the apply Is
aborted with the sequence left unchanged. and the user Informed of the problem.
(Note it is difficuit to describe the problem so as to be meaningful to the user.)
When the user has understood the real world problem of two people’s work interfering.
he will decide how 1o resolve it. and updaias his view. Subsequent application of the

view shouid not meet the same probiem.

5.2 Views with Memory

As they stand in section 4. views are memoryless. defines and deduces may
extend thelr name space. drop may reduce il, buil no other updates on the siructure
of a view are possible, However. the dillerent views might also want dilferent
verslons of the meta—-data. J.e.. base relations, and there might be no intention of
merging the daia. This can be sasily achlevad by allowing declare to be used within
a view. This would then associale base funclions (i.e.. explicilly stored) with the
view. These would only be useable from this view and its dascendents. but could be

manlpulated in the usual way.

This ailows more general variants. It also allows people to poessess private data.
optionaily refated (0 the original data. without any commitment 10 pass on, or to allow
accass to others, protected by the view’s password. This seems lo give an equivalent
to the proposed federated archltecturas (14, 231, except that the recursive definition

means there may be many layers of fadaration.

H every use of a view starts with an explicit open command and ends with an
explicit close command. we then have a mechanism for providing transient data.
decfares occuring in a view In the current session. which Is never closed will store
data during the session. but will vanish at the end of it. Thus wo have a machanism

for ditffersntlating persistent. and private data and possibly foderations.

lts one drawback seems to be the laboriousnass of defining views so that all the
external names wanted are importad. The alternative is to introduce another concepl

for access control which seems lass aliractiva. Wo beligve the problem is best

14

overcome by having a good cut and paste screen editor at the user Interface.

Notse that with the ane concept of view. and the avoldance of exceptions as fo
where decalre. deflne etc. may be wrillen, we have In one unlform and simple
tanguage achleved a number of effects. which have hliherto required diflerent
nolations and Uteatment and have hence elther been omiited or led to a more
complex tanguage. These ellects are: D views, I meta-data edits. 1) ‘what-if’
axperimental grouping of operations on the data. W) protected data spaces. V)
federations, vi) idenilficailon of persistence. Although 1t looks feasible, the

imptementation of this approach has yet to be researched.

8. The Search for a Uniform Languagse

We would ltke a Janguage which in one conlinuous spectrum without major
discontinuity would provide simple general queries. packaged queries. and the power

of a general purpose programmling language.

Starting from DAPLEX one can take two paths. One Is to Integrate DAPLEX in a

‘procedural language. This Is the approach faken by the ADAPLEX team. While this

makes the fuli power of ADA avallable for database applcatlon programming, there
are three criticisms of this approach from our viewpolint:
~ Since normal programming language types differ too much from DAPLEX

enilly types. it Is Impossible to adhere to the principle of data type
completeness (35]1. This results in a complex fanguage.

- DAPLEX programs are predominanily applicative or functional In style.
Embedding it in a procedural language leads fo two different styles of
programming in the same language.

~ it produces a language which does not even approach the end of the
spectrum concerned with doing simple things, simply and interactively.

The other, which we have only begun to explore. is to extend the language
retaining the predominantly functional style. Buneman has already demonsltrated how
powerful this can be in formulating queries {51 and our language has comparable
capabillities. The main challenge arises from adequalely modelling and packaging
update and /0 operatlons without disharmony. Essentlally the idea of explicitly
controliing the implementation or propagation of updates is antithetical to pure
functional pragramming. Yel organising the siorage of data and hence updates is a
dominant computing activity central to databases. We are therefore expanding the sal
of provided functions to include /0 operations and building on the functional
parameter handiing mechanisms io establish whather a convenlient and consistent
language can be developed lo salisfy the range of programming needs. Early user
experience suggests this is likely to be the case. We aro consldering whether to
retain the present syntactic form ol the language or to use a form closer to famitiar

programming styles.

16

7. Implementation

Our work adopls a novel approach ta bullding database management syslems.
The data model Is Implemented using PS-algot 12. 3., 4] which avolds us having to
organise any explicit data transfaers. allowing the implementor to concentrate on data
structure and algorithm design. Betore we discuss the specliic implementation

detalis, we will hriefly describe this tanguage and the Impact It had on our work.

7.1 Brle! Description of the PS-algol Language

PS-algol Is an algol-like language derived from the strongly typed programming
language S-algol [24] which supporls a properly managed heap. The principal
feature of-PS-algo! language Is that it supports a persistent heap on which a data
structyre bullt in ona run of a program may be preserved to be used in other runs of
the same or other programs. Data reachabliity serves as the principal means of
identifying dala parsistence. Preservalion of data Is a consequence of arranging that
there is a way of using that dala. This feature makes I possible to provide
persistence as an orthogona!., varlable properly of data and further simplilies the
provision of access to data which persists longer than the execution times of

individuat programs.

The .use of PS-algol language for our implementation has fed to many important

benefils:

- Source codn volumes are much reduced - for example. some porlions of
the Implementations were done earlier using PASCAL {36}. The source
code in PS- algol was about one third the iength of the PASCAL source.

- Codlng' {imes are much reduced due to reduced code volumes and this
has a bettar than proportional eifect on the debugging times.

- Execullon timss are reduced as a consequence of avolding layering
costs, In a tradllional system, evary access lo dalabase Hems passes
through many layers of subroutine calls and mappings. In PS-algol the
first use of a data tem automatically brings It to the heap in the right
form for the current program. Therealtaer. access is direct. Disk
translers may also be reduced as the collection of data on the heap has
high refevance to the prasent computation. unlike statistically based disk—
bulfer caches. As user bhehaviour usually has only a slowly shifting focus
of interest this can be very elfective.

- Type rutes can be strictly anforced.

Use of the FS-algol language has made it possible to concentrate exclusively on

17

the design of the logical aspeclts of the user interface and has greally heiped In
conduciing experimenis {to determine suilabie high-level data structures and

algorithms.

7.2 Data Structures
The data structures to implement the data model essentially fall Into one of the

fotlowing four categories:
1. Representation of indlvidual entitles.
2. Representation of sets ol entities.
3. Representation ol entity type hierarchy.

4. Representation of functlons mapping entities to entitles.

it Is the choice of data structures for representing functions which Is most
Imporiant. The efficiency of the implementation critically depends on how the function
values are siored and how the funclion values for a given enlity are evaluated. In
addition. it Is imperative that entities are internally identifiable irrespective of how
they are lidentified externally. Therefore, the Impleamentation must have a

mechanism which assigns a unique entily Identilier o each eniity upan creation.

in our Implementation, the values of all one—argument non-inherited funciions
appilcable to an entity are storod at one place In a record-like structure shown in
figure 5. To access the values of functions delined on the superlype. a pointer to its
immediate supar-entity is included in each entily structure. As the language itself
ensures that a pointer o each structure Is unique. we have chosen the polnter to
each enilly structure as its entity Identifler. This avolds us having to Invent and
malntain unique entliy identlliers. All multi-argument functions are then Implemented
separately as linked Hst of rows of argument and result entity identiflers. It may be
noted that the designers of ADAPLEX DOMS have also advocated a similar

implementation sirategy (6].

fve for ‘

unction 2 | { tunction n |
|
!

tink to l vatue for va
| superliype | function 1V | ¥
| object i | | |

Fig. 5. Object Structure

18

Sets 61 entities are currenlly implemented as linked lists of such struclures.
Crealing a new entlty results In creation of such a structure and adding it to the
corresponding Hnked Hst. Deletion of an enlity results In removing all relerences to
the corresponding slruclure and finally the entity struciure itself from the

corrasponding Hinked list.

The above data structures refer to the base functions only., The data for a
derived funclions Is calculated every Hime It Is accessed. To faclitate this. the
pointer to the synlax tree corresponding to its definition is stored along with each
derived function. The user nquerles Involving derived funclions are processed by
replacing the referances 1o those functions by the corresponding definition tree. The

rasulting syntax tres is then executed against the base functions of the database.

To handle the Incremental schema changes. the implementation adopts different
techniques depanding on the number of arguments the function has and the nature of
the function. The addition or deletion of a one-argument base function resulls in
creating the new Instances of the modifiad entlty structure and copying corresponding
values from the old instances to the new Instances. On the other hand. the addition
or deletlon of a multi~argument base function results in the addition or deletion of a
table without alfecting the existing enlity structures. The addition or deletion of

derived functions has no effect on the stored entity siructures.

Compared to a relational-like Implementation where each entity is assigned a
unique Integer to stand as Its entily identifler and the values for each function are
stored as binary tables. this scheme has many advaniages. Firstly. in the schema
wo have chosen. the entity idantifler is not stored in each funclion representation and
this results in a considerable saving in storage. Secondly. the functlon values for a
glven oblect are provided simply by field dereference instead of table lookup.
Thirdly. function composilion is achieved by following the pointers Inslead of join~like
operation in the relation-like implementalion. Both these lactors result in [ast
executlon times. We have found that the above structure provides a reasonable

rasponse timas for moderate volumes of data, typically found in personal data bases.

19

8. Conciusions

in this papor. wo have tried to demonsirate that the lunctional data model has a
greal potential for solving many of the problems associated with the conventional data
models without introducing undue complexity. We have done this by means of a
working Implementation. the novelly - of which is that It Is implemented using a
persisteni algorithmic fanguags. The result is a powerful working system providing
interactive functional programming sultable as a prototyping tool when doing database
design and as a personal DBMS for moderate volumes of data. A simple device to
control the visible name space promises simpie provision of experlments. version
management. federatlons and nested transactlons. The language appears to be

cleanly extensible to full programming power.

ACKNOWLEDGEMENTS

The authors gratefully acknowliedge ths efforts of Ken Chishoim. Paul Cockshott,
and George Ross in providing the persisieni programming environment. We
appraciate many useful discussions with them and with Pedro Hepp. Segun Owoso.
and Ron Morrison. We thank Roy Dyckhoif for suggesting the synlax summary given
in the Appendix A,

The work at Edinburgh was supported by SERC grant 86541, It Is now supported
by SERC granits 21977 and 21960. and by a grant from ICL. K. G.Kulkarni was
supported {or the duration of this work by a Scholarship from the Association of

Commonwaeaith Universities.

REFERENCES

. Abrial.J. R. Data Semantlcs. In Database M t. Klimbite.J. W
.L.. Ed..North-Holland, 1974. ree Mandgemen N and Koffman

k]
K
2. Atkinson. M. P., Chisholm,K.J. and Cocksholi. W. P. "PS-algol: an Algo! with a

Persistent Heap. ® ACM SIGPLAN Notices 17. 7 (July 1981) .

3. Atkinson.M.P. Chishoim.K.J. . Cockshotl. W. . and Marshali, R. M. "Algorithms
for a Parsistent Heap. ™ Software Practice and Experience 13, 7 (March 1983) .

4. Atkinson, M. P. . Balley, P.J. . Chisholm, K.J.. Cockshott, W. P, and Morrison. R.
An Approach to Persistent Programming. ™ Computer Journal 26 (1983).

S. Buneman.P. and Frankel, B.E. FQU - A Functlonal Query Language.
l]”g(;geedlngs of international Conference on Managoment of Data, ACM-SIGMOD.,

20

6. Chan, A.. ot. al. Storage and Access Siructures to Sugpor! a Semanlic Data
Model. In Procesdings of Erghth Internsfional Conference on Very Large Dals Beses. ACM. 1982,

7. Chen.P.P.S. “The Entity-Relalionship Model. Towards a Unlfled View ol Data.”
ACM Transactions on Dnaisbage Systems 11, 1 (March 1976).

8. Codd.E.F. 'Extanding the Relational Modal! of Dala to Caplure More Meaning. *
ACM Transactions on Dnlabase Systems 4. 4 (Dacember 1879) .

9. Date,C.J. HAeferential lnlogrllg. Proceedings of 7th international Conference on
Very Large Data Bases. Vi.DB. 1981,

10. Folinus.J.J. . Madnick.S.E. . and Shulzmann.H.B. “Virtual information in
Database Systems. " FDI, SIGFIDET 6 (1874).

11. Qray, P.M.D. The Funclional Data Model Relaled to the CODASYL Model. In
Databases: FRole and Structure, Stocker, P., Ed..Cambridge University Press. 1983,

12. Hammar.M. and Mcleod.D. The Semantic Data Model: a Modoliing
Mechanism for Database A}\»gncauons‘ Proceedings of International Conference on
the Management of Data. M -SIGMOD. 1978.

13. Hammer, M. and Mcleod.D. On Database Mana%emem System Architecture.
In Infotech State of the Arl Aeport on Datsbase. Alkinson.M.. Ed..Infotech, 1980.

14. Hiemblgner.D. and Mcleod.D. Federated Informallon Bases (A Preliminar
Report) . Tech. Hept. TR-105. Universily of Southern Cailfornia, Oclober, 19871.

15. Housel.B.C.. Waddla.V., and Yao.S.B. The Functional Dependency Modet
for Loglcal Database Das!qn. Proceadings of 5th Intarnational Conference on Very
Large Databases. viLDB, 1979.

16. ichblah et al, *Rationale of the Design of the Programming tanguage Ada.”
ACM Ssigplan Notices 14, 8 (1979).

17. Kant.W.. Data and Reafity. North—Holland, 1978.

18. Kent.W. "Umitations of Record~based Information Models. ™ ACM Transactions on
Datsbase Systems 4. 1 (1979).

19. Karschberg.l.. Kiug.A.. and Tscichritzis. D. A Taxonomy of Data Models.
Tech. Rept. CSRG-70, Univarsily of Toronto. 6.

20. Kulkarnl, K.(G. Evsluation of Funclional Data Models for Database Design and Use. Ph.D.
Th. . Universily of Edinburgh. 1983,

21. Kutkarnl.K. G. Extended Functional Data Model - User Manual. Univarsity of
Edinburgh. Septomber. 1983.

22. McCarthy.). . et al. USP 1.5 Programmer's Manual. 1962. MIT Press.

23. Mcleod.D. and Helmbigner. D. A Federatad Archlteclure for Database
Systems. FProceodings of the Natlonal Computer Conference. AFiPS, 1980.

24, Morrison. R, S-algol Language Reference Manual. Tech, Rept. CS/79/1,
University of St. Andrews, 1979,

25. Mylopoulos.J. . Bernstain. P, A. and Wong. H. K. T. "A Language Factlity for
Deslgn]n g)alabasn intensive Applcatlons. ™ ACM [ransactions on Dalabase Systems 5.
(June 1980). :

26. Pirétta. A. and Lacrolx. M. User Interfaces for Dalabase Application
Programming. In Infotech State of the Art Conference an Dalabase, infotech Limitad, 1980.

o7. Schmid.H.A. . and Swenson.Jd.R. On the Semantics of the Refational Model.
f]"‘sr;;%eedtngs of International Conlerence on the Managemaent of Data. ACM-SIGMOO.

28. Sevarance.D. and Lohman.G. “Differentlal files: Thelr Appiication to the
Ma;glengggt)?%"lnrge Databases. - ACM [ransactions on Database Systems 1 (Seplember
19763 . - .

21

29. Shipman.D.W. “The Funclional Data Model and the Data Language DAPLEX.”
ACM Transaclions on Database Systems 6, 1 (March 1981), 140-173.

30. Sibiey. E.H.. Kerschberg. L. Dala Architacture and Data Model

ggngédeva“ons. in Proceedings of AFIPS Naliona! Computer Conference, AFIPS, 1977. pp.

31. Smlth,J. M. and Smith,D. C. P. "Database Abstractions - Aggregation and
Generalisation. © ACM Transactions on Database Systems 2. 2 (Juna 1973?.

32. Smith,J. M., Bernstein,P.A., et. al. Basic Architecture of Multibase.
Computer Corporationof America., November. 1980.

33. Smith,J. M. and Smith,D. C.P. Conceplual Database Deslign. In Infotech Stat
the Art Repori on Dafabase, Atkinson, M., Ed. ,Vn?otech‘ 1980. K m Intotech State of

34, Smith,J. M. ,Fox.S. and Landers. T. Reference Manual for ADAP
Compuler Corporation of America. January. 1981, nuat or HEX:

35. Strachay.C.. Fundamental Concepls in Programming Languages. Oxford University, 1967,
36. Wirth.N. °“The Programming Language PASCAL. " ACTA Informatica 1 (1971},

22 23

Appendix A: Syntax Specification of EFDM Implementation profix = "+"|"~
addop = {L - “l"«w"
mulop = """/ °irem.
command = imperative|
doclare funspec ("->" { "->>") typeidl
define funspec ("—>" | "=>>") fundet| Note: Bold-face words., and non-aiphanumeric symbols enclosed In quote marks
consiraint identitier on funlist >
(totat § fixed | unique i disjoint | singleton) | represent terminals. Lower case Hallc words represent syntaclic categories. Curly
program programid I8 imperativel
o'ulput proq;awd fitaid] brackets denote repetelion. Square brackets denote optionality. Grouping Is
view viewid is
{deduce funcspec ("=>"["-»>") typeid using expressed by parantheses. I.e.. (alb)c stands for acibe.

fundef) end.
dfop (tunspeclprogramidiviewid) |
loadt
programid .
imperative = for each setl imperalivel
for singleton imperativel
updatelprint stuple.
sef = vblid ln set?
{such that predicate] (a8 typeid]
set1 = mytuncallltypeidi™("stupte™) "}
“(" set ((unloniintersectionidifference) sef} ") °.
singleton = exp? {or expl}

expl = exp2 {and exp?)

exp2 = [not) exp3

expd = exp4 {compop exp4)

expd = [pretix} exp5 (addop exp5)
exp5 = exp8 {mulop exph)

exp6 = exp? (a8 typeid]

axp? = conslanllvhhdlw!uncalllagqcall

the sefla new rv‘wm
quant set (hasihave) predicatel
"(" singleton ')
sviuncall = funcid (stuple ") ",
mvfuncall = funcid "(" miuple ") .
stuple = singleton (", “aingleton) .
mtuple = expr {7, expr)
expr = sellsingletan.
sggeall = (countimaximin) (" sef ") "}
(totallaverage) “(" over mtupte singleton *) "
update = 1@t fupcall "=~ exprl
Include C(funcaillypaid) “=" setl
oxclude (funcailiypeid) "=" sell
deleta singleton.
tuncall = fupcid "(" stupte ") ",
fundef =
Cexpr |
invarse of funcspec |
transitive of expr |
)compound of fuple.

funcspec = funcid "(” larglist] ") "
arglist = (perd [1ypmdy
tuntist = (lypeid | funcidt (" ar?hsl
(lypeld 1 Ium:ld armml ")))
compop = T "|" ¢
quant = somela!lln l
(atl (laastimos!) lexactly) integer.
integer = singleton.
predicate = singlafon.
constant = inflstribool.
int = digit (digit),
str = """" character {(character)™""".
bool = truelialse.
vblid = identilier.
typeid = identitjer .
funcid = identifier.
programid = idenlifier.
viewid = identifier.
identitier = letter {Ulelierldigit”. ")}

