
Demonstration of Hyper-Programming in Javaª

E. Zirintsis, G.N.C. Kirby & R. Morrison

School of Mathematical and Computational Sciences
University of St Andrews, North Haugh

St Andrews KY16 9SS
Scotland

{vangelis, graham, ron}@dcs.st-and.ac.uk

Abstract

We demonstrate the use of a hyper-programming
system to build persistent Java applications in
PJama, an orthogonally persistent version of
Javaª. This allows program representations to
contain type-safe links to persistent objects
embedded directly within the source code. The
potential benefits include greater potential for
static program checking, improved efficiency,
and reduced programming effort.

1. Introduction

Persistent programming languages were developed in an
effort to reduce the burden on the application programmer
of organising the transfer of long-term data between vola-
tile program storage and non-volatile storage [1].
Previously, application data to be retained between
activations had to be written explicitly to a database or
file system, and later read in again to the application
space. This flattening and rebuilding of data structures
involved a significant programming overhead, and an
increased intellectual effort since the programmer had to
keep track of a three-way mapping between program
representation, database/file representation and real world.
The introduction of orthogonally persistent languages
meant that any program data could be made persistent

simply by identifying it as such, with all transfers between
memory hierarchy layers handled transparently.

The treatment of source programs as strongly typed
persistent objects, which is made possible by the use of a
Persistent Object System (POS) or Object Oriented Data-
base as the support platform, permits a new approach to
program construction. Hyper-programming involves
storing strongly typed references to other persistent ob-
jects within a source program representation [2]. Thus the
source code entity is represented by a graph rather than a
linear text sequence. By analogy with hyper-text this is
called a hyper-program. It may be considered as similar to
a procedure closure, in that it contains both a textual
program and an environment in which non-locally de-
clared names may be resolved. The difference is that with
a hyper-program the environment is explicitly constructed
by the programmer, who specifies persistent objects to be
bound into the hyper-program at construction time.

Figure 1 shows an example hyper-program, compris-
ing a class definition containing two links. The first is to a
class, Person, while the second is to an object that is an
instance of that class. As illustrated by the link to the
class, a hyper-programming system may support linking
to non-first-class entities for convenience.

object

persistent store

object

object

hyper-program

class X {
...
...
Person p = ;
...

}

class

Figure 1. Example hyper-program

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or
distributed for direct commercial advantage, the VLDB
copyright notice and the title of the publication and its
date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment
Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

The support of hyper-program construction techniques by
a POS provides a number of potential advantages:

¥ Program succinctness: textual descriptions of the
locations and types of persistent components used
by the program may be replaced by simple embed-
ded references.

¥ Increased execution efficiency: checking of the va-
lidity of specified access paths to other components
is factored out when they are embedded directly in
the source program. Checking of type consistency
may be performed at compilation time rather than
execution time.

¥ Reliable access to components: where a textual de-
scription of a component is replaced by a direct
reference, the underlying referential integrity of the
POS ensures that the component will always be
accessible by the program. By contrast, where a
textual description is used it may become invalid
by the time the program executes, even if it was
valid at the time the program was constructed.

¥ Complete closure representations: it is possible to
fully represent code fragments that refer to existing
values within their closure. This is not possible
with purely textual representations, since the iden-
tities of those values may be significant.

2. Summary of Demonstration

Hyper-Program Composition and Viewing

The demonstration shows a prototype hyper-programming
system [3] based on the PJama [4] persistent version of
Javaª.

Figure 2 shows an example of the hyper-programming
user interface. It provides two tools: an editor in which
hyper-programs are composed, together with an ob-
ject/class browser that is used to locate persistent objects
for linking. The browser is also used in conjunction with
the editor for viewing hyper-programs: when the pro-
grammer clicks on a link in the editor, a representation of
the corresponding linked entity is displayed in the
browser.

The top window shows a hyper-program under con-
struction in the editor. The body of the main method con-
tains links to a static method, Person.marry, and to two
instances of class Person. The lower window shows the
object browser, currently displaying details of one of the
object instances in the left pane, and the objectÕs class in
the right pane.

Figure 2. Hyper-programming user interface

The following activities are illustrated during the demon-
stration:

¥ locating persistent objects using the object/class
browser;

¥ composing a hyper-program, including inserting
hyper-links;

¥ viewing the hyper-linked entities in a hyper-pro-
gram using the object/class browser;

¥ compiling and executing a hyper-program;
¥ dynamic invocation of object methods using the

object/class browser;
¥ customisation of the editor and object/class

browser displays, as described in the next section.

Customisation

By default, the editor displays hyper-links as textual
labels. It is also possible to customise the display style on
a per-object or per-class basis, achieved via user calls to a
customisation API. The object/class browser can be simi-
larly customised. Figure 3 shows an example in which
both editor and browser have been customised to display
instances of classes Person and java.awt.Image using an
appropriate bitmap.

Figure 3. Example customisation

3. Design and Implementation Issues

The major issue in building hyper-programming systems
concerns the semantics of the hyper-links, such as:

• what can a hyper-link refer to?
• what guarantees can be made about a hyper-linkÕs

referent data?
• how are hyper-links typed and when does type-

checking occur?

The degrees of freedom regarding what a hyper-link can
refer to depend upon the programming language seman-
tics and the measure of open-ness in the system. Normally
hyper-links will be able to refer to all first class language
values. Second class entities not in the value space, such
as classes or types, may also be conveniently hyper-linked
depending on the flavour of the language. Update may be
accommodated through hyper-links by linking to loca-
tions, which may or may not be first class values. More
interesting is the extent to which hyper-links may refer to
values created independently of the system, such as Web
pages and DCOM objects. Furthermore the open-ness of
the system can be extended by making the hyper-program
representation open for other tools to manipulate.

In Java not all denotable values are first class values,
for example methods, and there is no simple production
rule to capture this in the syntactic definition. We define
the denotable values that can be hyper-linked in Java as:
objects; classes; interfaces; arrays; array elements; static
members; non-static members; and constructors. Further-
more, links may be made to both values and locations that
contain values (such as fields and array elements) where
appropriate.

Table 1 shows the Java denotable values that can be
hyper-linked in the hyper-programming prototype, and the
corresponding syntactic productions [5].

Hyper-link To Production

class ClassType

primitive type PrimitiveType

interface InterfaceType

array type ArrayType

object Primary

primitive value Literal

(static) field FieldAccess

(static) method Name

constructor Name

array Primary

array element ArrayAccess

Table 1. Java hyper-links and productions

Referential integrity in a hyper-programming system
means that once a hyper-link is established it is guaran-
teed by the system to exist and to be the same value when
the hyper-link is executed. While this guarantee may be
provided by a strongly typed persistent object store, it
may also be expensive to provide in a distributed system.
Variations therefore include the hyper-link being valid but
not necessarily referring to the original value, and the
hyper-link referring to a copy of the original. This may
only be a problem where object identity is important such
as in sharing semantics. A hyper-program may therefore
display a range of failure modes from not failing to failure
from the hyper-link being no longer valid.

The final issue is how hyper-links are typed, if at all.
Assuming that they are, the interesting aspect of type
checking is that the contract between the program and the
referenced value may now take on a different agreement
procedure. Instead of the program asserting the type of the
hyper-link and the type checking system ensuring that the
hyper-link has the correct type when it is used, the reverse
may be used. That is the hyper-link knows its own type
and therefore when it is used the program can be made to
conform to this type. Statically this removes the need for
type specifications for hyper-links in hyper-programs and
dynamically it means that the program may be in error
rather than the hyper-link.

4. Current research: hyper-code

Current research is directed at refining the concept of hy-
per-program to remove all distinctions between multiple
program forms.

The goal is to maximise simplicity for the program-
mer. A single, uniform, program representation is pre-
sented at all stages of the software process. Since this

representation must be suitable for programs with closure,
by implication it must be a form of hyper-program that
can represent links to persistent values directly. To distin-
guish it from existing prototypes we refer to this repre-
sentation as hyper-code [6].

The demonstrated PJama hyper-program system falls
short of this goal in several respects. Different represen-
tations are used for creating new values and browsing
existing values: new values are created by writing hyper-
program source definitions, while existing values are dis-
played graphically in the object/class browser. Secondly,
full representations are not provided for all existing
values, in particular it is not possible to view method
source code.

The hyper-code system will address these deficiencies
by retaining all source code in the persistent store, and by
providing the same single representation of values at all
stages of the software process. As a consequence the dis-
tinction between editor and object browser will disappear:
all programmer interaction with the system will take place
via a single unified hyper-code editor. This will support a
small set of simple operations that can be composed or-
thogonally to achieve all programming activities:

evaluate : this executes a selected fragment of hyper-
code. If any result is produced this is returned as a
further fragment of hyper-code.
explode : this expands a selected fragment of hyper-
code to show more detail, while retaining the identities
of any values referred to.
edit : this encompasses conventional editing facilities.

Implementation of this scheme in any particular language
involves mapping the operations to the syntax of the lan-
guage, and designing an appropriate hyper-code repre-
sentation that can be used both to define new programs
and represent existing values, in all possible cases.
FigureÊ4 shows a simple example in ProcessBase [7, 8] in
which the definition of a procedure newPerson contains
various hyper-links, both exploded and unexploded. The
exploded links, denoted by grey boxes, show detail of the
linked entities in the form of more hyper-code.

5. Further Information

Further details of the hyper-program and hyper-code pro-
jects are available, with related publications, at the
StÊAndrews web site:

http://www-ppg.dcs.st-and.ac.uk/

6. References

[1] Atkinson, M.P., Bailey, P.J., Chisholm, K.J.,
Cockshott, W.P. & Morrison, R. ÒAn Approach to
Persistent ProgrammingÓ. Computer Journal 26, 4
(1983) pp 360-365.

[2] Kirby, G.N.C., Connor, R.C.H., Cutts, Q.I., Dearle, A.,
Farkas, A.M. & Morrison, R. ÒPersistent Hyper-
ProgramsÓ. In Persistent Object Systems, Albano, A.
& Morrison, R. (ed), Springer-Verlag (1992) pp 86-
106.

[3] Zirintsis, E., Dunstan, V.S., Kirby, G.N.C. &
Morrison, R. ÒHyper-Programming in JavaÓ. In
Advances in Persistent Object Systems, Morrison,
R., Jordan, M. & Atkinson, M.P. (ed), Morgan
Kaufmann (1999).

[4] Atkinson, M.P., Dayn�s, L., Jordan, M.J., Printezis, T.
& Spence, S. ÒAn Orthogonally Persistent JavaªÓ.
ACM SIGMOD Record 25, 4 (1996) pp 68-75.

[5] Gosling, J. & McGilton, H. ÒThe Java™ Language
Environment: A White PaperÓ. Sun Microsystems, Inc
(1995).

[6] Connor, R.C.H., Cutts, Q.I., Kirby, G.N.C., Moore,
V.S. & Morrison, R. ÒUnifying Interaction with
Persistent Data and ProgramÓ. In Interfaces to
Database Systems, Sawyer, P. (ed), Springer-Verlag
(1994) pp 197-212.

[7] Warboys, B.C., Balasubramaniam, D., Greenwood,
R.M., Kirby, G.N.C., Mayes, K., Morrison, R. &
Munro, D.S. ÒInstances and Connectors: Issues for a
Second Generation Process LanguageÓ. In Lecture
Notes in Computer Science 1487, Gruhn, V. (ed),
Springer-Verlag (1998) pp 137-142.

[8] Morrison, R., Balasubramaniam, D., Greenwood, M.,
Kirby, G.N.C., Mayes, K., Munro, D.S. & Warboys,
B.C. ÒProcessBase Reference Manual (Version
1.0.4)Ó. Universities of St Andrews and Manchester
(1999).

loc ()fun (); := ' + 1 ()

let newPerson <- fun (newName : , newAge :) -> intstring view [name : ; age, id :]string

begin

view (name <- newName; age <- newAge; id <- ')
end

Figure 4. Hyper-code example

