
This paper should be referenced as:

Zirintsis, E., Dunstan, V.S., Kirby, G.N.C. & Morrison, R. “Hyper-Programming in Java”. In
Proc. 3rd International Workshop on Persistence and Java (PJW3), Tiburon, California (1998).

Hyper-Programming in Java
E. Zirintsis, V.S. Dunstan, G.N.C. Kirby & R. Morrison

Department of Mathematical and Computational Sciences,
University of St Andrews, North Haugh, St Andrews KY16 9SS, Scotland

Email: {vangelis, graham, ron}@dcs.st-and.ac.uk

Abstract

Hyper-programming is a technology only available in persistent systems, since hyper-program source
code contains both text and links to persistent objects. A hyper-programming system has already been
prototyped in the persistent programming language Napier88. Here we report on the transfer of that
technology to an object-oriented platform, Java. The component technologies required for hyper-
programming include linguistic reflection, a persistent store, and a browsing mechanism, all of which
have been reported elsewhere. The topics of discussion here are the additional technologies of: the
specification of denotable hyper-links in Java; a mechanism for preserving hyper-links over
compilation; a hyper-program editor; and the integration of the editor and the browser with the hyper-
programming user interface. We describe their design and implementation. In total, these technologies
constitute a hyper-programming system in Java.

1 Introduction

In persistent systems, programs may be composed and stored in the same environment as that in which they are
executed. At the time of program composition, objects accessed by a program may already be available in the
persistent store. Since the program itself is a persistent object, it can include direct links to such objects rather than
textual descriptions of how to locate the objects. A program containing both text and links to objects is called a
hyper-program [1]. Figure 1 shows an example hyper-program that contains a link to another persistent object. The
analogy with hyper-text is made by the links being displayed as buttons. The programmer can follow these links
using a browsing tool, to reveal further hyper-programs and other data structures.

object

program text
...
...
let x =
...

persistent store

object

object

hyper-program

Figure 1. Example hyper-program

The benefits of hyper-programming are discussed in [1-3]. They include:

• being able to perform program checking early
• support for source representations of all object closures
• being able to enforce associations from executable programs to source programs
• availability of an increased range of linking times

• increased program succinctness
• increased ease of program composition

A hyper-programming system has already been prototyped in the persistent programming language Napier88 [4].
Here we report on the design and the transfer of that technology to an object-oriented platform, a persistent form of
Java, PJama [5]. From our experience with Napier88 we identify the following as the requirements for providing a
hyper-programming system in Java [6]:

• a persistent store with root(s), reachability and referential integrity
• linguistic reflection as a programming technique
• a persistent store browser
• a specification of denotable hyper-links in Java
• a mechanism for preserving hyper-links over compilation
• a hyper-program editor
• a graphical user interface

Some of this technology, including a persistent store for Java – PJama [5], linguistic reflection [7, 8] and a browsing
mechanism [9], has been reported elsewhere. Here we concentrate on the additional technologies of: the
specification of denotable hyper-links in Java; a mechanism for preserving hyper-links over compilation; a hyper-
program editor; and the integration of the editor and the browser with the hyper-programming user interface. In total
these technologies constitute a hyper-programming system in Java.

2 Denotable Hyper-Links in Java

The first step in designing a hyper-programming system is to define the denotable values that may be hyper-linked.
In Napier88, a hyper-link can be made to any data value. This is captured by the syntactic production name in the
Napier88 formal definition [4] and includes both values and locations that contain values.

In Java not all denotable values are first class values, for example methods, and there is no simple production rule to
capture this in the syntactic definition. We define the denotable values that can be hyper-linked in Java as: objects;
classes; interfaces; arrays; array elements; static members; non-static members; and constructors. Furthermore, links
may be made to both values and locations that contain values (such as fields and array elements) where appropriate.

Table 1 illustrates the Java denotable values that can be hyper-linked and their corresponding syntactic productions
[10].

Hyper-link To Production

class ClassType

primitive type PrimitiveType

interface InterfaceType

array type ArrayType

object Primary

primitive value Literal

(static) field FieldAccess

(static) method Name

constructor Name

array Primary

array element ArrayAccess

Table 1. Java hyper-links and productions

The Napier88 hyper-programming system allows a hyper-link to be inserted anywhere in a program whether it is a
syntactically legal use or not. Illegal uses will result in compilation errors. The same is true in our present Java
system but we intend to incorporate a parser into the editing system to direct syntactically legal insertions of hyper-
links. In the context of Table 1, if a hyper-link cannot be parsed as its equivalent production then it is syntactically

illegal. If it can then its use is context sensitive with respect to the surrounding hyper-program. In that sense the
equivalence between hyper-link and production is necessary but not sufficient for legal syntactic construction. For
example, a hyper-link can appear legally at a position corresponding to the production Name where it denotes a
constructor, but not where it denotes a package name, since packages cannot be linked to.

3 Representing Hyper-Programs

The Java hyper-programming system uses three different representations for hyper-programs at various stages of the
program development process. The editing form is optimised for editing, including fast selection, insertion and
deletion of both text and links. The storage form is optimised for storage and is used in preserving hyper-links over
compilation. The textual form is designed for use with a standard Java compiler.

Translation between the editing form and the storage form takes place when the hyper-program editor accesses or
stores a hyper-program in the persistent store. The textual form is generated by a new hyper-program compiler
method compileClass (HyperProgram) which takes an instance of the storage form as a parameter. By performing
this translation the method can call any standard Java compiler to perform the compilation.

In the rest of the paper we will illustrate the implementation of hyper-programming using the hyper-program shown
in Figure 2, defining the public class MarryExample.

public class MarryExample {

public static void main(String[] args) {

Person.marry (vangelis , mary);

}
}

Figure 2. An example hyper-program in Java

The body of the method main contains a link to the static method Person.marry, and links to two persistent instances
of class Person, which is partially defined in Figure 3.

public class Person {
private String name;
private Person spouse;

public static void marry (Person a, Person b) {
a.spouse = b;
b.spouse = a;

}
… // Other methods

}
Figure 3. Definition of class Person

3.1 The Storage Form

The storage form of a hyper-program is represented by the class HyperProgram. Part of the definition is shown in
Figure 4. It contains a string and a vector of HyperLinkHP instances. The string contains the textual part of the
hyper-program while the vector contains references to the hyper-linked entities.

public class HyperProgram {
protected String theText;
protected Vector theLinks;
// Other fields

public HyperProgram() {
theText = "";
theLinks = new Vector(); }

public HyperProgram (String theText) {
this.theText = theText;
theLinks = new Vector(); }

public HyperProgram (String theText, Vector theLinks) {
this.theText = theText;
this.theLinks = theLinks; }

public String getTheText () {
// Returns the textual part of the hyper-program

}

public Vector getTheLinks () {
// Returns the vector containing HyperLinkHP instances

}

// Other methods
}

Figure 4. The hyper-program storage form

The example hyper-program is shown in this form in Figure 5.

"mary"

82

false

false

HyperLinkHP

"vangelis"

78

false

false

HyperLinkHP

"public class MarryExample {
public static void main(String[] args) {

(,);
}

}"

vector of hyper-links

label for hyper-link

position of hyper-link
in the string

boolean denoting whether
hyper-link denotes a class
or method

boolean denoting whether
hyper-link denotes a
primitive value

hyperProgram

"Person.
marry"

74

true

false

HyperLinkHP
Method
instance

Person
instance

Person
instance

Figure 5. An instance of the hyper-program storage form

The class HyperLinkHP, illustrated as part of Figure 5, is used to represent hyper-links and is defined in Figure 6.
The use of the field hyperLinkObject depends on the kind of hyper-link. In our example, for the link to the static
method Person.marry, it refers to the instance of class Method representing the method, and for the links to the
objects it refers to the objects themselves.

public class HyperLinkHP {
protected Object hyperLinkObject;
protected String label;
protected int stringPos;
protected boolean isSpecial;
protected boolean isPrimitive;
// Other declarations and initialisations

public HyperLinkHP (Object hyperLinkObject, String label,
 int stringPos, boolean isSpecial, boolean isPrimitive) {

this .hyperLinkObject = hyperLinkObject;
this .label = label;
this .stringPos = stringPos;
this .isSpecial = isSpecial;
this .isPrimitive = isPrimitive;

}
// Other constructors

public Object getObject () { return hyperLinkObject; }
public String getLabel() { return label; }
public int getStringPos() { return stringPos; }
public boolean getIsSpecial() { return isSpecial; }
public boolean getIsPrimitive() { return isPrimitive; }
// Other methods

}
Figure 6. The representation of hyper-links

4 Compiling and Running Hyper-Programs

In type safe linguistic reflection [7, 8, 11], the executing application generates new program fragments in the form of
source code, invokes a dynamically callable compiler, and finally links the results of the compilation into its own
execution. We use this technique to process a hyper-program: a textual equivalent is generated and compiled, the
resulting class is loaded, and can then be instantiated using Java core reflection.

4.1 The Textual Form

Standard Java compilers operate on textual source programs rather than hyper-programs. To enable a hyper-program
to be compiled with such a compiler, it is first translated into a purely textual form in which each hyper-link is
replaced by an equivalent textual denotation.

To ensure that every hyper-link has such a textual form, the system records a reference to each hyper-program
submitted for translation, in a password-protected location in the persistent store. The hyper-linked entities will thus
remain accessible by the compiled form even if the original hyper-program is discarded. The textual denotation of
an individual hyper-link is an expression that will retrieve the hyper-linked entity from the password-protected data
structure, and the password protection prevents any accidental or malicious tampering with the data structure.

The precise form of the retrieval expression generated for each hyper-link depends on the kind of the hyper-link
(object, class, method etc), but always includes a unique identifier allocated to each hyper-program when it is
processed, and the index of the hyper-link within the hyper-program. Examples are given in Section 4.2.

In our current implementation, no hyper-program that is translated and compiled can be subsequently garbage
collected, since a reference to it is stored in the implementation data structure. To overcome this problem, weak
references will be used in the next version (requiring JDK 1.2) so that hyper-programs may be garbage collected
once no user references to them remain. This is illustrated in Figure 7.

HyperProgram

label

stringPos

isSpecial

isPrimitive

HyperLinkHP

hyperLinkObject

access via password
checking method

persistent root

vector of weak references to
HyperProgram instances

WeakReference

vector of HyperLinkHP
instances

text

Figure 7. The hyper-program storage data structure

To recap, a reference to each hyper-program being compiled is placed in the persistent store at a known (textually
denotable) location. Using this, a textual form can be generated for each hyper-link. Once compiled, the execution of
the textual form allows access to the original hyper-links via the password protected data structure.

4.2 Example of Textual Form

The textual form of a hyper-program is generated by the method generateTextualForm of the DynamicCompiler
class (see Figure 9), using information recorded in the storage form. A textual equivalent is generated for each
hyper-link, with a structure depending on the kind of hyper-link. For example, the string generated for a hyper-link
to an object has the form:

((class name) DynamicCompiler.getLink (secret password ,
 unique id for hyper-program ,
 unique id for hyper-link).getObject())

The static method getLink retrieves a specified HyperLinkHP instance from the persistent data structure of Figure 7,
taking as parameters the password and identifiers for the hyper-program and hyper-link. The call to the getObject
method returns the hyper-linked object itself, which is then cast to its specific class. The entire string thus gives an
access path to the hyper-linked object that may be evaluated correctly at run-time.

A link to a static method does not require any persistent objects to be retrieved; the string simply has the form:

fully qualified method name

Figure 8 shows the resulting textual form for the example hyper-program.

1 “import compiler.DynamicCompiler;
2 import Person;
3 public class MarryExample {
4 public static void main(String[] args) {
5 Person.marry(
6 ((Person) DynamicCompiler.getLink ("passwd", 0, 1).getObject()) ,
7 ((Person) DynamicCompiler.getLink ("passwd", 0, 2).getObject()));
8 }
9 }”

Figure 8. An instance of the hyper-program textual form

The details of the hyper-link textual equivalents in lines 5-7 are generated as follows:
• The name of the static method, the string Person.marry in line 5, is generated by combining the names

of the method and its defining class. The former is obtained by calling the method getName on the Method
instance recorded in the corresponding HyperLinkHP instance, and the latter by calling getDeclaringClass
on the Method instance, followed by getName. Note that a hyper-link to an object of class Method would
also be represented by a Method instance in the hyperLinkObject field; the value of the field isSpecial is
used to distinguish between the possible interpretations.

• The string (Person) defining the class casts in lines 6 and 7 is obtained by calling the getClass method on
the objects recorded in the corresponding HyperLinkHP instances, followed by getName.

• The password used in the calls to getLink in lines 6 and 7 is built into the system. The hyper-program and
hyper-link indices are the offsets in the respective persistent vectors.

4.3 Compiling Textual Form

After generating the textual form, the system calls a standard Java compiler dynamically, to compile the textual form
into a class that is equivalent to the original hyper-program. Although no facilities for dynamic compilation are
provided directly by the Java environment, it is possible to implement a class that provides such facilities. Figure 9
shows several compilation methods provided by the class DynamicCompiler.

public class DynamicCompiler {
// Field declarations and initialisations

public static Class[] compileClasses (String[] classNames, String[] classDefns)
throws Exception {

boolean compiled = false ;
try { // Direct invocation of the standard Java compiler
} catch (Exception e) {} // Ignore errors
if (! compiled) {

// Direct invocation of compiler failed. Fork an operating system process
}
// Create a class loader and use it to load class
...

}
public static Class compileClass (String className, String classDefn) throws Exception {

// Compiles a single class using compileClasses above
}
public static Class[] compileClasses (HyperProgram[] hps) throws Exception {

String[] classNames = new String[hps.length];
String[] classDefns = new String[hps.length];
for (int i = 0; i < hps.length; i++) {

addHP (hps [i], "passwd");
classNames [i] = hps [i].getClassName ();
classDefns [i] = generateTextualForm (hps[i]);

}
Class[] result = compileClasses (classNames, classDefns);
return result;

}
public static Class[] compileClass (HyperProgram hp) throws Exception {

// Compiles a single hyper-program using compileClasses (HyperProgram[])
}
public static String generateTextualForm (HyperProgram hp) {

// Generates the textual form required by the compiler
}
public static HyperLinkHP getLink (String password, int hpIndex, int hlIndex) {

// Returns representation of a given hyper-link.
}
private static void addHP (HyperProgram hp, String password) {

// Adds hp to the persistent vector of hyper-programs (if not already present)
}
// Other methods

}
Figure 9. The DynamicCompiler class

The DynamicCompiler class includes methods for generating the textual form. The generateTextualForm method
takes a HyperProgram instance as parameter and returns a string. The methods getLink and addHP retrieve a given
HyperLinkHP instance, and add a HyperProgram instance to the persistent vector, respectively. Both require a
password to prevent unauthorised access to the vector containing the hyper-programs.

The compileClasses(String[], String[]) compiler method takes an array of source code strings defining a number of
classes and attempts to compile them by invoking the standard Java compiler directly as a Java class. If this fails,
then a new operating system process is forked to call the Java compiler. If the compilation is successful, the result is
an array of instances of class Class, otherwise an exception is thrown.

The first mechanism has the advantage of fewer run-time overheads. The disadvantage is the reliance on knowledge
of the Java implementation, in particular of the compiler interface and of which package contains the compiler. Thus
a change in the Java implementation—such as placing the compiler in a different package or re-implementation of
the compiler in a different language—would prevent this approach from working. The disadvantages of the second
mechanism are that significant additional run-time resources are involved in creating a new instantiation of the JVM,
and that it is more platform-specific.

Other compiler methods provided take HyperProgram instances as parameters and compile them to instances of the
class Class. This involves conversion from the storage form to the textual form, which is then passed to the string
compilation method as described before.

Dynamic compilation, if successful, creates class definitions in the form of byte code sequences (.class files). Using
the example, compilation will result in the creation of the file MarryExample.class. To be useful this must then be
loaded into the running system and converted to a Class object. This is achieved by using a subclass of the class
Classloader—details are given in [7]. Once a class has been loaded at run-time, instances of the class can be created
using the newInstance method.

5 User Interface

The user interface to the hyper-programming system has two components: the hyper-program editor, which is used
to construct and edit hyper-programs, and the object/class browser, which is used to select the persistent data to be
linked into the hyper-programs.

5.1 The Hyper-Program Editor

The hyper-program editor is designed to support the following requirements:

• basic editing facilities;
• support for embedded hyper-links;
• drag and drop of hyper-links and text; and
• multiple fonts, sizes, styles and colours (faces).

The editor is implemented in three layers, as shown in Figure 10.

Window Editor

Basic Editor

User Editor

Figure 10. The hyper-programming editor layers

This allows implementations of the different layers to be changed independently. The envisaged use of each layer is
as follows:

• The basic editor stores and manipulates text and hyper-links. It supports basic operations such as insertion,
cutting and pasting of text and links.

• The window editor provides an API for the graphical display and editing of the contents of a basic editor. It
supports multiple fonts, sizes and colours.

• Various higher-level user editors may be constructed using the window editor API. One, the hyper-program
editor, is pre-defined.

5.2 The Editing Form

The hyper-program editing form is the data structure used in the basic editor. It is similar to the storage form but is
optimised for editing operations. An example is shown in Figure 11.

(empty) vector
of hyper-links"public class MarryExample {"0

1

2

3

4

vector of HyperLine
instances

HyperLine

"}"

" }"

" (,);"

" public static void main(String[] args) {"

"mary"

12

false

false

HyperLink

"vangelis"

8

false

false

HyperLink

label for hyper-link

position of hyper-link
in the line

boolean denoting whether
hyper-link denotes a class
or method

boolean denoting whether
hyper-link denotes a
primitive value

"Person.
marry"

4

true

false

HyperLink
Method
instance

Person
instance

Person
instance

Figure 11. An instance of the hyper-program editing form

The editing form is designed to be efficient in: memory and disk storage requirements; I/O transfers; performing
operations such as basic editing and navigation; and hyper-link manipulation. The textual part of each line is kept in
a separate string. The position of each hyper-link is defined by a pair of values (line number, offset).

5.3 The Object/Class Browser

The OCB browser [9] was initially designed in response to a need identified by the developers of the PJama
persistent Java implementation [5]. It was recognised, however, that most of its facilities would also be useful in
hyper-programming. All OCB facilities other than access to persistent roots, and in some cases method invocation,
will work with any Java system. Persistent root access for other persistent versions can be added simply on a per-
system basis; the details depend on the model of persistence provided.

The OCB browser has the following design aims:
• to provide portability by implementing in Java;
• to allow control from running Java programs through a class interface and call-back methods which allow

the programmer to specify actions to be performed in response to user interaction;
• to support the visualisation of object sharing and identity, and to allow simple navigation between related

objects and classes;

• to allow the graphical display format to be customised for specific classes, including the temporary hiding of
superclass fields and methods.

• to support hyper-programming in Java.

5.4 User Interface Example

5.4.1 Composing Hyper-Programs

Figure 12 illustrates the hyper-programming user interface. It shows a hyper-program editor window, containing text
and three links, and an Object/Class Browser (OCB) browser window. As values are discovered in the persistent
store using OCB, they may be linked into the editor source. The first link, to the static method Person.marry, is
displayed with a textual label. The other links, to instances of Person, are displayed with image labels. The OCB
window shows a representation of an instance of Person.

Figure 12. The hyper-programming user interface

The programmer composes a hyper-program by a combination of typing text into the editor window and inserting
links to existing data. In Figure 12, the browser window displays an instance of the class Person in the left panel and
the static method marry in the right panel. A hyper-link may be inserted by positioning the mouse over a denotable
entity in the browser window and pressing the right-hand mouse button, or by pressing the Insert Link button in the
editor window. In the first case a hyper-link to the selected entity is inserted into the front-most editor window,
while in the latter case a hyper-link to the object displayed in the front-most browser window is inserted into the
selected editor window. Figure 12 shows the display after a link to the method marry has been inserted. Where
appropriate, the user can select whether to link to a value or the location containing the value, by pressing the right-
hand mouse button over the right or left half of the panel respectively. In a future version, we plan to support
insertion of hyper-links by drag and drop.

Each inserted hyper-link is displayed as a button in the editor window. These buttons can be moved and edited in the
same way as the text. The names or images displayed on the buttons can be changed and are not significant to the

semantics of the hyper-program. If the programmer presses a button, the associated entity is displayed in the top-
most browser window.

5.4.2 Compiling, Loading and Executing Hyper-Programs

Once a hyper-program is completed it may be translated, compiled and the resulting classes loaded. The
programmer may then either display the principal class in the browser, or execute the main method of the principal
class directly1. These options are selected using the Display Class and Go buttons respectively.

If compilation fails, an error message is displayed. In the current version the error is described in terms of the
translated textual form, which may not be comprehensible to the programmer. In a future version, we plan to display
error messages in terms of the original hyper-program.

6 Future Work

The printing of hyper-programs and the transferring of hyper-programs from one system to another is hindered by
the presence of hyper-links. It is, however, possible to translate each hyper-program into HTML, representing the
hyper-links as URLs. This was done to publish the Napier88 compiler source, which is itself a hyper-program, and it
is our intention to do the same for Java.

The hyper-programming system described here is a further step towards our goal of an integrated programming life
cycle using hyper-code [12]. The hyper-code abstraction allows a single program representation form, the hyper-
program, to be presented to the programmer at all stages of the software development process. In constructing a
program, the programmer writes hyper-code. During execution, during debugging, when a run time error occurs or
when browsing existing programs, the programmer is presented with, and only sees, the hyper-code representation.
Thus the programmer need never know about those entities that the system may support for reasons of efficiency,
such as object code, executable code, compilers and linkers. These are maintained and used by the underlying
system but are merely artefacts of how the program is stored and executed, and as such are completely hidden from
the programmer. This permits concentration on the inherent complexity of the application rather than that of the
underlying system.

7 Conclusions

The aim of this paper is to report on the transfer of hyper-programming technology from the persistent programming
language Napier88 to an object-oriented environment, and in particular the orthogonally persistent Java system,
PJama. The component technologies required for hyper-programming include linguistic reflection, a persistent store,
and a persistent store browsing mechanism. All of these have already been designed, implemented and published.
The additional components reported here are: the specification of denotable hyper-links in Java; a mechanism for
preserving hyper-links over compilation; a hyper-program editor; and the integration of the editor and the browser
with the hyper-programming user interface.

The differences in implementing hyper-programming in Napier88 and PJama revolve around the amount of code
that is implemented in the underlying systems and the amount implemented in the languages themselves. In
Napier88, the implementors had full control of the system and could implement at any level of abstraction that they
chose. In fact, they took the decision to implement as much as possible in the language, providing only the essentials
in the underlying system. Interestingly enough, the provision of the core reflection package and dynamic loaders,
together with the language facility for casting from and injecting to class Object, allows the same implementation
decision to be made in Java. This is either a shared insight based on experience or mere coincidence.

One minor drawback in our implementation is the use of AWT objects, which cannot be made to persist in the
current PJama implementation. We hope to overcome this in a future release of PJama with the Swing classes.

1 The principal class and the main method may be specified by the programmer; by default they are the first class
defined in the hyper-program, and the method static void main(String[] args).

Linking to persistent objects at program composition time would, at first glance, seem to be at odds with the object-
oriented paradigm of delayed binding. Hyper-programming does not, however, reduce the range of linking time but
indeed extends it to program composition. Delayed binding made be preserved, where it is necessary, by either
writing textual code or by linking to a location that contains an object. In the latter case, when the program is run the
object that is currently contained in the location will be the one that is used.

Composition-time linking would also seem at odds with system evolution. In fact it can be argued that hyper-
programming simplifies this activity. Evolving any system requires the evolution of programs as well as data. In
Java this requires recompilation of the libraries and reconstruction of the files or databases. Since a hyper-
programming system can ensure that the hyper-program source text is always available for any persistent class that
was created within the system2, it is possible to write an evolution program that updates the source, re-compiles it
and reconstructs the persistent data using linguistic reflection. Indeed, in a transactional system it is possible to do
this in a separate transaction while the system is live. These are ideas that we have experimented with in the
Napier88 context [13].

Our final conclusion is that the hyper-programming concept does transfer from a higher-order imperative
polymorphic persistent language to an object-oriented polymorphic persistent language. In both, hyper-programming
allows linking to be performed earlier where advantageous, without loss of flexibility.

8 References

[1] G.N.C. Kirby, R.C.H. Connor, Q.I. Cutts, A. Dearle, A.M. Farkas and R. Morrison. Persistent Hyper-Programs.
In A. Albano and R. Morrison (ed) Persistent Object Systems, Proc. 5th International Workshop on Persistent
Object Systems (POS5), San Miniato, Italy. Springer-Verlag, 1992, pp 86-106.

[2] A.M. Farkas, A. Dearle, G.N.C. Kirby, Q.I. Cutts, R. Morrison and R.C.H. Connor. Persistent Program
Construction through Browsing and User Gesture with some Typing. In A. Albano and R. Morrison (ed)
Persistent Object Systems, Proc. 5th International Workshop on Persistent Object Systems (POS5), San
Miniato, Italy. Springer-Verlag, 1992, pp 376-393.

[3] R. Morrison, R.C.H. Connor, Q.I. Cutts, V.S. Dunstan and G.N.C. Kirby. Exploiting Persistent Linkage in
Software Engineering Environments. Computer Journal, Volume 38, Number 1, pages 1-16, 1995.

[4] R. Morrison, A.L. Brown, R.C.H. Connor, Q.I. Cutts, A. Dearle, G.N.C. Kirby and D.S. Munro. Napier88
Reference Manual (Release 2.2.1). University of St Andrews, 1996.

[5] M.P. Atkinson, L. Daynès, M.J. Jordan, T. Printezis and S. Spence. An Orthogonally Persistent Java™.
SIGMOD Record, Volume 25, Number 4, pages 68-75, 1996.

[6] R. Morrison, R.C.H. Connor, G.N.C. Kirby and D.S. Munro. Can Java Persist? In Proc. 1st International
Workshop on Persistence for Java (PJW1), Drymen, Scotland, 1996.

[7] G.N.C. Kirby, R. Morrison and D.W. Stemple. Linguistic Reflection in Java. Software—Practice & Experience,
Volume 28, Number 10, pages 1045-1077, 1998.

[8] D. Stemple, R.B. Stanton, T. Sheard, P. Philbrow, R. Morrison, G.N.C. Kirby, L. Fegaras, R.L. Cooper, R.C.H.
Connor, M.P. Atkinson and S. Alagic. Type-Safe Linguistic Reflection: A Generator Technology. ESPRIT
BRA Project 3070 FIDE Report FIDE/92/49, 1992.

[9] G.N.C. Kirby and R. Morrison. OCB: An Object/Class Browser for Java. In Proc. 2nd International Workshop
on Persistence and Java (PJW2), pages 89-105, Half Moon Bay, California, 1997.

[10] J. Gosling and H. McGilton. The Java™ Language Environment: A White Paper. Sun Microsystems, Inc, 1995.

2 There are obvious difficulties in dealing with classes imported from outside the system—reconstruction of source
by de-compilation of byte codes may be adequate for classes that have not been deliberately obfuscated.

[11] G.N.C. Kirby, R. Morrison and D.S. Munro. Evolving Persistent Applications on Commercial Platforms. In R.
Manthey and V. Wolfengagen (ed) Advances in Databases and Information Systems, Proc. 1st ACM SIGMOD
East-European Symposium on Advances in Databases and Information Systems, St Petersburg, Russia.
Springer-Verlag, 1997, pp 170-179.

[12] R.C.H. Connor, Q.I. Cutts, G.N.C. Kirby, V.S. Moore and R. Morrison. Unifying Interaction with Persistent
Data and Program. In P. Sawyer (ed) Interfaces to Database Systems, Proc. 2nd International Workshop on
User Interfaces to Databases, Ambleside, Cumbria, 1994. Springer-Verlag, 1994, pp 197-212.

[13] R.C.H. Connor, Q.I. Cutts, G.N.C. Kirby and R. Morrison. Using Persistence Technology to Control Schema
Evolution. In Proc. 9th ACM Symposium on Applied Computing, pages 441-446, Phoenix, Arizona, 1994.

	Citation
	Title
	Abstract
	1 Introduction
	2 Denotable Hyper-Links in Java
	3 Representing Hyper-Programs
	3.1 The Storage Form

	4 Compiling and Running Hyper-Programs
	4.1 The Textual Form
	4.2 Example of Textual Form
	4.3 Compiling Textual Form

	5 User Interface
	5.1 The Hyper-Program Editor
	5.2 The Editing Form
	5.3 The Object/Class Browser
	5.4 User Interface Example
	5.4.1 Composing Hyper-Programs
	5.4.2 Compiling, Loading and Executing Hyper-Programs

	6 Future Work
	7 Conclusions
	8 References

