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Abstract 
Middleware augments operating systems and network infrastructure to assist in 

the creation of distributed applications in a heterogeneous environment. Current 

middleware systems exhibit some or all of the following five main problems: 

1. Decisions must be made early in the design process. 

2. Applications are inflexible to dynamic changes in their distribution.  

3. Application development is complex and error-prone. 

4. Existing systems force an unnatural encoding of application-level semantics.  

5. Approaches to the specification of distribution policy are limited. 

This thesis defines a taxonomy of existing middleware systems and describes their 

limitations. The requirements that must be met by a third generation middleware system 

are defined and implemented by a system called the RAFDA Run-Time (RRT). The RRT 

allows control over the extent to which inter-address-space communication is exposed to 

programmers, aiding the creation, maintenance and evolution of distributed applications.  

The RRT permits the introduction of distribution into applications quickly and 

with minimal programmer effort, allowing for quick application prototyping. 

Programmers can conceal or expose the distributed nature of applications as required. The 

RRT allows instances of arbitrary application classes to be exposed to remote access as 

Web Services, provides control over the parameter-passing semantics applied to remote 

method calls and permits the creation of flexible distribution policies. The design of the 

RRT is described and evaluated qualitatively in the context of a case study based around 

the implementation of a peer-to-peer overlay network. A prototype implementation of the 

RRT is examined and evaluated quantitatively. 

Programmers determine the trade off between flexibility and simplicity offered by 

the RRT on a per-application basis, by concealing or exposing inter-address-space 

communication. The RRT is a middleware system that adapts to the needs of applications, 

rather than forcing distributed applications to adapt to the needs of the middleware 

system. 
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Chapter 1  

 

Introduction 
 

 

 

 

This chapter introduces middleware and briefly describes the 

approaches to distributed application development that are available to 

programmers. The need for a new middleware system is justified and the 

outline of the thesis described. 
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1.1 Introduction 

Lamport defines distributed systems as collections of distinct, spatially separate 

processes that communicate by exchanging messages [1]. Distributed systems consist of 

multiple physical machines connected via a network, and exhibit the following properties: 

• Processes are autonomous. There are no central authorities that control all 

processes. 

• Processes do not share memory. Each has direct access only to its own 

address-space. 

• Processes execute concurrently. 

• Systems exhibit multiple, independent points of failure. Partial failure can 

occur, for example, if machines or their interconnecting networks fail. 

• Systems can be constructed from heterogeneous machines with different 

physical architectures running different operating systems. 

An application that executes across a distributed system is known as a distributed 

application. Distributed applications employ the resources of multiple machines allowing 

programmers to create applications that are more scalable and resilient than their non-

distributed equivalents. Scaling may be achieved through the introduction of additional 

machines, and resilience to failure by employing redundant machines then replicating 

application code and data across them.  

1.2 Creating Distributed Applications 

Inter-address-space communication occurs between processes in distributed 

applications. Programmers can perform all inter-address-space communication directly or 

employ middleware systems to simplify the software engineering process. This thesis 

defines middleware as software that augments the operating system and network 

infrastructure to make the creation of distributed applications in a heterogeneous 

environment easier. There are multiple approaches to middleware, which differ in the 

extent to which inter-address-space communication is exposed to programmers. 

1.2.1 Approaches to Creating Distributed Applications 

Figure 1.1 lists the possible approaches to distributed application creation, shown 

in a spectrum that ranges from those that expose inter-address-space communication 
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completely to the programmers, to those that conceal all inter-address-space 

communication. All but the left-most approach meets the definition of middleware 

provided previously. The software engineering process adopted when using each of these 

approaches is examined below. 

 

Figure 1.1: Approaches to constructing distributed applications. 

1.2.1.1 Direct Network Communication 

Operating systems provide abstractions over network communication (e.g. 

sockets) which allow programmers to pass data across the network in datagrams (e.g. 

UDP) or through streams (e.g. TCP). When performing inter-address-space 

communication directly, programmers are responsible for the end-to-end encoding of 

data. Programmers write all the code to manage inter-address-space communication and 

perform all message construction and transmission. Programmers define protocols and 

message formats on a per-application basis. The encoding scheme applied to data passed 

across the network must be defined. This encoding scheme must handle differences in 

architecture, operating system and implementation language between processes. 

Programmers open network connections between address-spaces and directly pass data 

across these channels. Performing all inter-address-space communication directly is 

difficult, error-prone and results in applications that are expensive to change. 

1.2.1.2 Message Passing Libraries  

Message passing libraries such as the Message Passing Interface (MPI) standard 

[2] or Parallel Virtual Machine (PVM) [3] abstract over the inter-address-space 

communication by formalizing the message passing mechanisms. These libraries allow 

application-level processes to exchange structured messages, which may contain 

application data. Data that is passed across the network in messages is encoded 

automatically to mask any differences in architecture, operating system or 

implementation languages that exist between processes. Message passing libraries 

provide a send/receive model through which programmers can pass messages, but 
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message structure must be defined on a per-application basis. Therefore, inter-address-

space communication is simplified but not concealed from programmers. 

1.2.1.3 Message-Oriented Middleware  

Message-Oriented Middleware (MOM) systems such as the Java Message Service 

(JMS) [4] extend the message passing model provided by message passing libraries. 

Messages are transmitted via message queues in the system infrastructure from which 

they can be retrieved by recipients asynchronously, allowing for location transparency 

between message senders and receivers. MOM systems also provide a publish/subscribe 

model that allows many-to-many relationships between senders and receivers. Recipients 

can subscribe to particular topics in order to receive all messages published with those 

topics. Additional features such as persistency of message queues, guaranteed delivery or 

support for transactions may be provided. MOM systems expose inter-address-space 

communication to programmers in the same way as message passing libraries but tend to 

provide a richer feature set to application developers. 

1.2.1.4 Remote Procedure Call  

Remote Procedure Call (RPC) [5, 6] systems such as Sun RPC [7] provide a 

request-response model similar to local procedure calls. When an application performs a 

remote procedure call, the RPC system constructs a request message that identifies the 

procedure to call and contains serialized representations of any arguments. Calls are 

performed on static code so the environment for each call is constructed at call-time from 

the passed arguments and any static data referenced from the code. After the call is 

complete, a response message containing serialized representations of the return values is 

sent back to the caller.  

1.2.1.5 Distributed Object Models 

Distributed Object Models (DOMs) such as CORBA [8], Java RMI [9] and 

Microsoft .NET remoting [10] provide Remote Method Invocation (RMI), the object-

oriented equivalent to RPC. Remote method calls are performed on identifiable closures 

of code and data. Consequently, the environment of each call is partially formed before 

call-time, thereby differentiating DOMs from RPC systems. Application objects can hold 

remote references to objects that exist in different address-spaces. Each remotely 
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accessible object is associated with an identifier. A programmer can obtain a reference to 

a remote object from the middleware infrastructure based on its identifier. 

1.2.1.6 Tuple Spaces 

Tuple Space systems such as Linda [11] and JavaSpaces [12] conceptually 

provide a shared memory space in the distributed system in which name/value pairs 

called tuples are stored. This shared space is called a tuple space and is accessible to all 

processes in the system. Tuples written by one process are visible to all. Processes 

communicate and synchronize their behaviour by reading and writing tuples. If a process 

tries to read a tuple that is not yet present in the tuple space, it is blocked until that tuple is 

written by another process. The distributed nature of applications is hidden from 

programmers through the abstraction of shared tuple spaces. No explicit inter-address-

space communication is performed. 

1.2.1.7 Distributed Shared Memory  

Using Distributed Shared Memory (DSM) systems [13] such as Java/DSM [14] 

and Orca [15], all processes in the distributed system appear to have access to shared 

memory though no physical memory is shared. DSM systems ensure that any updates 

made to the shared memory by one process are visible to all other processes. Using DSM 

systems, the distributed nature of an application can be completely hidden from the 

programmer.  

DSM systems can provide shared memory at the byte/page level (e.g. Java/DSM) 

or at the object level (e.g. Orca). DSM systems that share at the byte or page level 

emulate physical shared memory, which leads to problems in heterogeneous distributed 

systems because different machines represent data internally in different ways. DSM at 

this level requires low level support from hardware or the operating system and so cannot 

be introduced easily into a system that does not already support it. 

DSM systems that share memory at the object level allow processes to access 

shared objects using well-defined operations in a location transparent manner. Object-

based DSM systems achieve shared memory through the caching and replication of 

shared objects, combined with coherency protocols. It is this location transparency and 

the approach to implementation adopted by object-based DSM systems that differentiate 

them from DOMs, which also permit access to shared objects. 
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1.2.1.8 Conclusion 

Multiple approaches to middleware and the creation of distributed applications 

have been introduced. A more thorough discussion of these different kinds of middleware 

can be found in Coulouris, Dollimore and Kindberg [16]. 

This thesis tests the following hypothesis: A middleware system that provides 

control over the extent to which inter-address-space communication is exposed to 

programmers aids the creation, maintenance and evolution of distributed applications. 

Such a middleware system needs to conceal inter-address-space communication 

from programmers yet allow control where required. The DOM model has been adopted 

in this thesis as it matches the language model of currently popular object-oriented 

languages such as Java [17], C# [18] or C++ [19] and provides a compromise between 

complete exposure and complete concealment of inter-address-space communication. 

Message-based systems do not provide sufficient abstraction over the network while 

DSM systems do not permit the fine-grained control required. A DOM that permits 

arbitrary objects to be exposed to remote access, and that supports caching and replication 

of code and data, achieves the abstraction over the network offered by DSM systems. 

Unlike DSM systems, DOMs allow programmers explicit control over the behaviour of 

remote references and remote method calls. 

1.3 Limitations of Existing Systems 

Middleware systems aim to make it easy to create distributed applications; 

however, while existing middleware systems solve some problems, they introduce others: 

1. Programmers are forced to make decisions early in the design process about 

which types of application component may participate in inter-address-space 

communication. Distribution boundaries are decided statically and cannot be 

altered without changes to application source code. Thus, application 

distributions are difficult to change. 

2.  Distribution-related code permeates application logic meaning that 

applications created using existing middleware systems are inflexible to 

dynamic changes in their distribution. An application cannot adapt to changes 

to the underlying distributed system or to the flow of control within the 

application itself, for example, by dynamically collocating objects that interact 

frequently. 
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3. The creation of code to handle inter-address-space communication is complex 

and additional points of potential failure are introduced into the software 

engineering process. 

4. It is difficult to understand and maintain distributed applications because 

middleware systems may force an unnatural encoding of application-level 

semantics. Application classes may be forced to extend special base classes, 

implement particular interfaces or handle distribution-related errors explicitly. 

Flexibility in distribution boundaries is limited and the re-use of non-

distributed classes in distributed contexts, and vice versa, is hampered. 

5. It is difficult to control the way in which objects are distributed among 

available address-spaces. Using existing systems, programmers have limited 

control over the policies deciding object placement, which leads to policies 

that are inflexible and non-adaptive. 

1.4 The RAFDA Run-Time 

This thesis describes the design of the RAFDA Run-Time (RRT), a ‘third 

generation’ middleware system that aids the creation, maintenance and evolution of 

distributed applications, thereby tackling the problems inherent in previous systems. 

The RRT simplifies the software engineering process by: 

• Permitting the introduction of distribution into applications quickly and with 

minimal programmer effort, allowing for quick application prototyping. 

• Allowing programmers to conceal or expose the distributed nature of 

applications as appropriate. 

The RRT allows the creation of flexible applications by: 

• Providing fine-grained control over all aspects of middleware behaviour. The 

same underlying middleware system can be used to create prototypes and 

complete distributed applications. A prototype application can be evolved by 

exposing and controlling more aspects of its distribution. 

• Permitting control over the parameter-passing semantics applied to remote 

method calls. Flexibility in application semantics is increased and is decoupled 

from application distribution, thereby promoting code reuse. 

• Permitting the creation of object placement policies, constructed from 

individual policy components. This placement policy framework allows the 
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specification of rules that control how application objects are instantiated and 

migrated dynamically. 

This thesis shows that the RRT directly benefits programmers by allowing 

application logic, parameter-passing semantics and application distribution to become 

orthogonal considerations, thereby aiding application design, creation, maintenance and 

evolution. Re-use of existing code in distributed contexts is promoted and distributed 

applications are capable of adapting to changes in their requirements or in the distributed 

system. These benefits are illustrated in the context of a case study that provides a 

qualitative evaluation of the RRT and a prototype RRT implementation that provides a 

quantitative evaluation. The RRT is designed primarily for applications distributed at 

“LAN-scale”, though is capable of supporting “internet-scale” applications provided such 

applications do not attempt to preserve non-distributed application semantics. 

1.5 Thesis Contribution 

This thesis makes a four-fold contribution. Firstly, a taxonomy of existing 

middleware systems is created. From this, their limitations are evaluated and the 

requirements of a middleware system that permits the creation of flexible distributed 

applications are specified. 

Secondly, the design and implementation of a third generation middleware system 

that meets these requirements is described. This system permits arbitrary application 

objects to be exposed to remote access or migrated between address-spaces without 

modifications to their underlying source code. It also provides a mechanism to allow the 

parameter-passing mechanisms applied to objects that cross address-space boundaries to 

be decided dynamically. 

Thirdly, a framework for the specification of parameter-passing policy, known as 

transmission policy, is created. This framework allows programmers to dictate in a 

dynamic manner how objects participating in inter-address-space communication are 

passed across the network. Policies can be defined on a per-address-space basis and can 

be associated with classes, methods or individual parameters. 

Finally, a framework for the specification of object placement policy and 

migration policy, known collectively as distribution policy, is created. Programmers can 

define policies of arbitrary complexity that can be reused and recombined to create 

complete distribution policies on a per-address-space basis. 
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The work described in this thesis has been developed as part of the Reflective 

Application Framework for Distributed Architectures (RAFDA) project [20]. The 

objectives of this project are to investigate flexible distributed object-oriented application 

architectures, the key components of which are: 

• Transformation tools capable of transforming an application into an 

isomorphic distributed version in which the distribution boundaries are not 

fixed [21].  

• A novel middleware system that tackles the limitations of current systems with 

respect to flexibility by allowing the exposure of arbitrary application objects 

to remote access.  

• The creation of policy frameworks that separate parameter-passing semantics 

and object placement policy from functional application requirements. 

1.6 Thesis Structure 

Chapter 2 describes the middleware system model adopted in this thesis without 

reference to specific systems in order to provide a conceptual framework against which 

existing systems can be evaluated and compared. Chapter 2 also introduces the case study 

used throughout this thesis. Chapter 3 examines the limitations of existing systems in 

more detail and evaluates related work. Chapter 4 defines the requirements of a third 

generation middleware system. Chapter 5 describes the design of the RRT and evaluates 

it qualitatively. Chapter 6 describes the implementation of an RRT prototype and 

provides quantitative evaluation of this implementation. Chapter 7 concludes this thesis 

by summarizing the contribution of the research carried out and stating plans for future 

work. 

1.7 Summary 

Current middleware systems aim to simplify the creation of distributed 

applications but exhibit problems. This thesis shows that a middleware system that can 

separate application logic from distribution allows the creation of applications with 

flexible distribution architectures and has direct benefits for programmers. The design of 

the RRT, a middleware system that provides this flexibility, is described. The RRT 

conceals the complexity of distribution where appropriate, allowing distribution to be 

introduced into applications quickly. This reduces the software engineering effort 
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required to create distributed applications, leading to quick application prototyping. 

However, the RRT also permits programmers to expose all aspects of application 

distribution if required, allowing the creation of applications that can exploit their 

distributed nature and are flexible with respect to change. The RRT has advantages over 

traditional middleware approaches as it adapts its behaviour to suit the requirements of a 

given distributed application, rather than forcing the programmer to adapt the application 

to the requirements of the middleware system. 
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This chapter describes the middleware system model in a system-

independent manner. The case study that is adopted throughout this thesis 

is also introduced. 
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2.1 Introduction to Chapter 2 

The middleware system model adopted in this thesis is a Distributed Object Model 

(DOM) since DOMs are able to conceal inter-address-space communication from 

programmers yet allow control where required. This chapter describes the DOM 

middleware system model without reference to any particular technologies. The list of 

features described here is neither exhaustive nor implemented fully by all DOMs, but all 

systems implement at least a subset of these features. The DOM middleware system 

model provides a general framework against which the features of existing systems may 

be judged and compared. 

Terminology varies from system to system and the terminology defined here is 

reused throughout the thesis to provide a consistent universe of discourse. A glossary 

summarizing this terminology is provided in Appendix A. 

This chapter also introduces a case study that is used throughout the thesis to 

exemplify the limitations of current systems and to illustrate the design and 

implementation of the RRT. This case study consists of JChord, an implementation of the 

Chord [22] peer-to-peer overlay network, and the Data Store service, a generic distributed 

object store that builds on the JChord platform. 

2.2 Middleware System Model 

The objects in a distributed application are partitioned among the address-spaces 

in the distributed system. Application objects can hold both intra-address-space 

references and inter-address-space references to other objects. Intra-address-space 

references are known as local references, while inter-address-space references are known 

as remote references. From the perspective of a particular object, those objects in the 

same address-space are local objects, while those in remote address-spaces are remote 

objects.  

A method call performed on a local object is known as a local method call and a 

call made on a remote object is known as a remote method call. In a method call, the 

caller is the object that performs the invocation and the target is the object on which the 

invocation is performed. In a remote method call, the caller is said to exist in the client-

side address-space while the target is said to exist in the server-side address-space. It is 

important to note that the terms local and remote are relative in these contexts. 
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Figure 2.1 shows a distributed application in which there are four address-spaces 

(represented by solid squares) that exist on three machines (represented by dotted 

rectangles). There are a number of application objects (represented by circles), which 

hold both intra-address-space references (solid arrows) and inter-address-space references 

(dashed arrows). 

 
Figure 2.1: A distributed application showing both intra- and inter-address-space references. 

Every middleware system provides an infrastructure, which is its point-of-

presence in each address-space in the distributed system. The infrastructure is responsible 

for handling communication between address-spaces and is commonly implemented as a 

run-time system or a set of libraries.  

In practice, direct remote references cannot be implemented without support from 

the operating system or virtual machine in which the application executes. Middleware 

systems typically implement remote references by associating an object identifier with 

each remote accessible object. This object identifier differentiates a given object from all 

other remotely accessible objects in the same address-space. An object can be uniquely 

identified in the distributed system by its object identifier and the identity of the address-

space in which the object exists. 
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Each remote reference is a combination of an object identifier and an address-

space identifier. An application object that holds a remote reference really holds a local 

reference to an object that contains this information. Proxy objects [23] can be used to 

make remote references type-compatible with the corresponding remote objects. Proxy 

objects are local handles to remote objects that implement the same methods as the 

corresponding remote objects. 

Any methods that the application invokes on the proxy object are propagated 

across the network to the associated remote object. The client-side application therefore 

uses the proxy object as though it were the remote object, thereby introducing location 

transparency into the application. The abstraction of proxy objects is not logically 

necessary but many middleware systems provide it to allow local calls and remote calls to 

be performed in the same manner. 

When a remote method call is performed, the call is propagated through the client-

side infrastructure, across the network to the server-side infrastructure based on the 

address-space identifier, and onto the referenced object based on the object identifier. The 

part of the server-side infrastructure that performs the local method call on the exposed 

object is known as the skeleton. 

Figure 2.2 shows the same application as Figure 2.1, with the middleware 

infrastructure revealed. The middleware infrastructure in each address-space associates an 

identifier with each local object that is remotely accessible (labelled A, B, etc.). Each 

address-space is identified by a number (1, 2, etc.). The remote references are shown as 

infrastructure objects that identify remote objects using a combination of address-space 

identifier and object identifier (labelled 2A, 4B, etc.). 



Chapter 2: Middleware System Concepts 

15 

 

 
Figure 2.2: A distributed application in which the middleware infrastructure is shown. 

Programmers must register objects with the middleware infrastructure in order to 

expose them to remote access. On registration, an identifier for the object is created and a 

mapping from this identifier to the exposed object is defined. Registration prepares the 

infrastructure to handle incoming calls to the object. 

In some middleware systems, programmers are required to introduce support for 

distribution into application classes by extending special middleware infrastructure base 

classes or implementing special interfaces. These semantic restrictions vary from system 

to system and are investigated in more detail in the next chapter.  

2.2.1 Remote Method Calls 

Figure 2.3 shows the flow of control when object A performs a remote method call 

on the sayHello() method of object B. 
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Figure 2.3: Flow of control in a remote method call. 

Conceptually, object A holds a remote reference to object B. In reality, object A 

holds a local reference to a proxy object called Bprox. Object Bprox is type-compatible with 

object B and appears to object A as though it really is object B. The proxy object stores an 

address-space identifier and object identifier, which in combination identify object B 

uniquely within the distributed system. When object A attempts to call sayHello() on 

object B, it calls the sayHello() method on Bprox. This proxy object accesses the local 

middleware infrastructure and instructs it to perform a remote call on the sayHello() 

method of object B in address-space 2 with the supplied argument. 

The client-side middleware infrastructure constructs and transmits an invocation 

request to the server-side middleware infrastructure in the same address-space as object 

B. The invocation request contains the target object information, method name and 

associated argument. The server-side middleware infrastructure uses the target object 

information to identify the skeleton associated with object B, Bskel in this case. Once the 

call has been performed, the results are returned via the same path in reverse, in an 

invocation response that travels back across the network. 

2.2.2 Marshalling 

Method calls performed on proxy objects are converted into invocation requests in 

a process known as marshalling. The server-side conversion of an incoming invocation 

request back into a method call is known as un-marshalling. When marshalling 

arguments and return values, the middleware must determine which parameter-passing 
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mechanism will be applied to each of the objects that cross address-space boundaries. 

Most DOMs provide pass-by-value and pass-by-reference mechanisms which behave as 

follows. Consider the distributed application shown in Figure 2.4, in which object A holds 

a remote reference to object B and a local reference to object C. 

  

 
Figure 2.4: An application before a remote method call is performed on object B. 

If object A calls a method on object B and passes object C as an argument, then C 

can be marshalled in one of several ways: 

• If passed by-value, object C will be copied to address-space 2 as shown in 

Figure 2.5. Any method calls that object B performs on the argument will be 

executed on the copy in address-space 2. The middleware system must encode 

any object that is passed by-value into a stream of bytes that represents its 

internal state, for transmission across the network. This process is known as 

serialization. The decoding of a byte stream back into application objects is 

known as deserialization. 

  

 
Figure 2.5: Object C has been passed by-value. 

• If passed by-reference, a remote reference to object C will be passed to 

address-space 2 as shown in Figure 2.6. Any method calls that object B 
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performs on the argument will result in remote method calls to object C in 

address-space 1. The middleware system must serialize references to objects 

that are passed by-reference, rather than serializing the objects themselves. 

  

 
Figure 2.6: Object C has been passed by-reference. 

• Some systems also offer pass-by-migrate semantics. If passed by-migrate, 

object C will be moved to address-space 2 as shown in Figure 2.7. Any 

method calls that object B performs on the argument will execute locally on 

object C, which is now in address-space 2. 

  

 
Figure 2.7: Object C has been passed by-migrate. 

2.2.3 Smart Proxies 

The cost of performing remote method calls is many orders of magnitude greater 

than local method calls so it is often desirable to minimize the number of remote method 

calls that are performed by distributed applications. Smart proxies [24] are proxy objects 

that cache some of the target objects’ state thus allowing access without the expense of 

remote method calls. Smart proxy functionality overlaps with that provided by 

Distributed Shared Memory systems. Smart proxies allow multiple copies of cached state 
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to exist, analogous to object-based DSM systems. However, DOMs using smart proxies 

do not typically provide integrated coherency mechanisms, while DSM systems do. 

2.2.4 Remote Object Instantiation  

The creation of objects in remote address-spaces is known as remote object 

instantiation. Instead of performing object instantiation directly in the local address-

space, an application can instruct the middleware to perform instantiation in a remote 

address-space on its behalf. The application specifies the class of object it wishes to 

create and possibly supplies some initialization arguments to its local middleware 

infrastructure. This information is propagated across the network, the object instantiated 

and a remote reference returned to the application. 

2.2.5 Object Migration 

Object migration is the movement of application objects between address-spaces 

in the distributed system without loss of referential integrity. Migration is useful as it 

allows applications to adapt their distribution dynamically to handle changing 

requirements. It is implemented by copying the migrating object to the new address-

space, then updating all references to the old copy to refer to the new copy. The 

middleware must ensure that the application remains consistent while these operations are 

performed. References may be duplicated, passed between address-spaces, on the 

execution stack or inaccessibly in-flight between address-spaces, making them difficult to 

update. When object A moves from address-space 1 to address-space 2, there are four 

steps that must be carried out: 

• A copy of object A is created in address-space 2. 

• Local references that exist to the copy of object A in address-space 1 must be 

changed into remote references to the migrated copy of object A in address-

space 2. 

• Remote references from application objects in address-space 2 to the copy of 

object A in address-space 1 must be changed into local references to the 

migrated copy of object A in address-space 2. 

• Remote references from application objects in any other address-spaces must 

be updated to reference object A in address-space 2, rather than address-  

space 1. This can be achieved lazily using a tombstone, which is an object that 

remains in address-space 1 to record that object A has migrated. Remote 
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references are updated using the information in the tombstone only when they 

attempt to access object A in address-space 1. 

These steps need not be carried out eagerly at migration time, but references must 

be updated before any operations are performed on them. 

2.2.6 Code Distribution 

The code distribution problem is that of ensuring that the necessary application 

code is available in each address-space. Some middleware systems assume that all code is 

available in all address-spaces and defer responsibility for code distribution to 

programmers. In languages that support the dynamic loading of classes, such as Java, a 

network-accessible code repository available to all address-spaces in the distributed 

system can be created. If the infrastructure requires particular code, it can be obtained 

from the repository and dynamically loaded. Code repositories implemented in a logically 

centralized manner are a single point of failure and may become heavily loaded so it may 

be desirable that they are implemented in a scalable, distributed fashion. 

2.3 JChord Case Study 

The case study employed in this thesis consist of two parts: a Java implementation 

of the Chord [22] peer-to-peer protocol called JChord and a Data Store service that makes 

use of this peer-to-peer network. This case study is used to exemplify the limitations of 

current middleware systems and to describe the design and implementation of the RRT. 

2.3.1 JChord 

The following quotation from Norcross, Dearle, Kirby, and Walker [25] describes 

JChord: 

 

JChord is our implementation of the Chord [22] peer-to-peer look-up 

protocol. This implementation provides a peer-to-peer overlay that supports Key-

Based-Routing (KBR) [26] for addressing nodes in the underlying network. 

Under a KBR scheme every entity addressable by an application has an 

associated M-bit key value (where M is a system constant), and every key value 

maps to a unique live node in the overlay network. Up-calls from the routing 

layer inform the application layers of changes to the key space, thus allowing an 

application to be aware of changes to the set of keys that map to the local node. 
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Chord is a ring-based protocol, which at the simplest level requires each 

node to maintain only a pointer to its immediate successor in the ring. Each node 

also has a unique key and the ring is arranged in key order modulo 2M. The 

Chord protocol supports a single lookup operation, which takes a key value and 

returns the network address of the Chord node to which the key value maps. A 

look-up on key K will yield the address of the node N whose key KN is the first of 

the ring members to succeed K in the key space. In this way the Chord protocol 

provides a distributed hash function that maps from keys to overlay nodes. Each 

node maintains a list of nodes that follow it in the ring, known as its successor 

list. A successor list of size L allows the ring to survive the failure of up to L-1 

adjacent nodes. This provides resiliency of the ring and the look-up protocol, 

though further measures are required to ensure integrity of the data structures 

hosted by ring nodes. 

 

The following example illustrates how an archetypal middleware system could 

support remote calls in JChord. All code fragments are shown in Java [17]. Figure 2.8 

shows the classes in the example application and indicates whether these classes are 

created by programmers, generated using middleware tools or provided as part of the 

middleware infrastructure. 

To create a class supporting remote access, the programmer initially creates an 

interface (IJChordNode) that defines the operations that will be provided by this class. An 

implementation of this interface is also created by the programmer (JChordNode). The 

main application (Application) accesses this implementation through the interface only. A 

proxy class called JChordNodeProxy that implements the IJChordNode interface is 

generated using middleware system tools. It makes use of the middleware infrastructure 

classes Middleware and RemoteReference to perform remote method calls and identify 

objects in the distributed system.  
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Figure 2.8: The classes involved in the remote method call example. 

The programmer defines the common interface, IJChordNode, and corresponding 

implementation, class JChordNode, as shown in Figure 2.9. 

 

public interface IJChordNode { 

 IJChordNode lookup(Key key); 

} 

 

public class JChordNode implements IJChordNode { 

 public IJChordNode lookup(Key key) { 

  /* Find JChordNode associated with the supplied key */ 

  return …; 

 } 

} 

 

Figure 2.9: The  IJChordNode interface and JChordNode class. 

Figure 2.10 shows the remote reference implementation class, called 

RemoteReference, which uses an InetSocketAddress object (containing an IP address and 

port pair) to identify the target address-space and an object counter to identify the remote 

object within its address-space.  

public class RemoteReference { 

public InetSocketAddress isa = null; 

 public int objectID = 0; 

}

 

Figure 2.10: The remote reference class. 

Figure 2.11 shows the signature of the Middleware class, which provides a 

method called callRemoteMethod() through which remote method invocations can be 

performed.  This method takes a remote reference to the target object, the name of the 
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method to call, and any associated arguments packaged into an array. This method 

performs all marshalling, including serialization of arguments, and transmits the 

invocation request to the remote address-space identified by the remote reference. The 

method call is then performed and the return value passed back across the network.  

 
public class Middleware { 

public static Object callRemoteMethod( 

RemoteReference remoteRef, 

  String methodName,  

Object[] arguments) {…} 

} 

 
Figure 2.11: The middleware infrastructure class. 

The proxy class associated with class JChordNode, called JChordNodeProxy, can 

be implemented as shown in Figure 2.12. Typically this class would be generated using 

middleware tools. This proxy class implements the IJChordNode interface and so is type-

compatible with the associated application class. Instances of the proxy class hold remote 

references to the instances of JChordNode with which they are associated, in the 

remoteRef field. This field is initialized by the middleware system when the proxy object 

is created. The lookup() method forwards calls to a remote instance of JChordNode using 

the remote invocation method in the Middleware class, based on this remote reference.  

 

public class JChordNodeProxy implements IJChordNode { 

 /* Reference to remote instance of JChordNode */ 

 private RemoteReference remoteRef = …; 

 

 public IJChordNode lookup(Key key) { 

  Object[] args = new Object[] { key }; 

  return (IJChordNode) Middleware.callRemoteMethod( 

remoteRef,  

"lookup", 

   args); 

 } 

} 

 

Figure 2.12: The JChordNodeProxy proxy class.  
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The main() method of the Application class shown in Figure 2.13 contains a 

reference typed as IJChordNode. This allows the application to reference either an 

instance of JChordNode or an instance of JChordNodeProxy associated with a remote 

instance of JChordNode. The use of proxy objects conceals the inter-address-space 

communication from the application, allowing remote method calls to be made in the 

same manner as local method calls. 

 

public class Application { 

 public static void main(String[] args) { 

  /* Object ‘node’ may be local or remote */ 

  IJChordNode node = …; 

  /* Create a key */ 

  Key key = new Key(12345); 

  /* Method call may be local or remote */ 

  IJChordNode result = node.lookup(key); 

 } 

} 

 

Figure 2.13: The Application class, which can perform remote method calls. 

2.3.2 Data Store 

A generic key-based distributed Data Store service has been constructed using 

JChord. The Data Store service is implemented as a series of Data Store objects 

distributed across the available machines. When an application object is inserted into the 

store, the object is associated with a key. A mapping between key and object is recorded 

by one of the Data Store objects. Each Data Store object is collocated with a JChord node.  

The Data Store service decides in which Data Store object to store a given 

application object based on the application object’s key. Application object A with key K 

is stored in the same address-space as the JChord node which owns key K (that is, the 

address-space returned when a JChord lookup of key K is performed). The JChord ring 

does not store application objects. Rather it acts as a distributed hashing mechanism by 

which the application objects stored by the Data Store service can be partitioned among 

the available Data Store objects. 

Applications store objects in the Data Store service using a local point-of-presence 

(POP), which exists in all address-spaces. The Data Store POP allows applications to 

store and retrieve objects, and implements the interface shown in Figure 2.14. Each Data 
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Store object can hold local references to copies of stored application objects or remote 

references to stored application objects in remote address-spaces. When storing an 

application object in the Data Store service, the programmer decides whether the Data 

Store should hold a remote reference to the stored object or hold a duplicate copy of it, 

using the storeByReference argument of the store() method. 

 

public interface IDataStorePOP { 

 Key store(Object objectToStore, boolean storeByReference); 

 Object retrieve(Key key); 

}

 

Figure 2.14: The IDataStorePOP interface. 

Each Data Store object presents the IDataStoreInternal interface shown in Figure 

2.15 to the Data Store point-of-presence. This interface allows the Data Store POP to add 

and remove mappings between a particular key and object in a particular Data Store 

object. 

 

public interface IDataStoreInternal { 

 void put(Key key, Object objectToStore); 

 Object get(Key key); 

}

 

Figure 2.15: The IDataStoreInternal interface. 

The store() method provided by the IDataStorePOP interface generates a key for 

each stored application object. It determines which remote Data Store object should store 

the application object by performing a JChord lookup to find an address-space and 

obtaining a reference to the Data Store object in that address-space using the underlying 

middleware system. The stored object must then be passed by-reference or by-value to the 

put() method provided by the chosen Data Store object. The parameter-passing semantics 

of this method must be decided dynamically based on programmer input, irrespective of 

the class of object stored. 

Figure 2.16 shows a distributed system in which the Data Store service is 

deployed. Each Data Store object (labelled DS1 – DS5) is collocated with a JChord node 

(labelled JC1 – JC5). Each JChord node holds a remote reference to the next JChord node 

in the ring. The Data Store POP (labelled DS POP) can remotely access individual Data 

Store objects. Note that the Data Store POP need not be collocated with JChord nodes or 
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Data Store objects. The diagram shows the result of storing application objects A1 and A2 

(in the top left address-space) in the Data Store object DS1 by-reference and by-value 

respectively. DS1 holds a remote reference to A1 and a copy of A2. 

 

Figure 2.16: A JChord ring showing the remotely accessible Data Store objects. 

If the application executing in the top left address-space shuts down, it is desirable 

that object A1 be moved to another live address-space in the distributed system. However, 

it may be remotely referenced by clients that accessed it through the Data Store service 

so, to ensure referential integrity, object A1 must be migrated to another address-space 

rather than simply copied. 

2.3.3 Implementing the JChord Case Study 

JChord has been implemented as part of the Secure Location-Independent 

Autonomic Storage Architectures (ASA) project [27] using the RRT prototype developed 

as part of the research described in this thesis. This case study is used to illustrate the 

novel features of the RRT. 
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JChord and the Data Store have a number of properties that would make them 

difficult to implement using traditional middleware systems and so are particularly 

suitable as a case study, namely: 

• JChord was initially developed as a local application used to simulate peer-to-

peer networks on a single machine. The application was tested and stable so it 

was desirable that distribution be introduced with minimal changes to 

application logic, in order to reduce the likelihood of new errors.  

• JChord is used as a tool in a research environment to investigate the properties 

of peer-to-peer systems and so must adapt to changing requirements, such as 

the introduction of new routing algorithms, with minimal programmer effort. 

• Each JChord node presents a multiplicity of interfaces to clients. It provides 

lookup functionality to applications, low-level ring maintenance operations to 

other nodes and control over ring configuration to managers. 

• References to remote JChord nodes must cache some of the state of the remote 

nodes locally for efficiency and for use during failure, to identify the failed 

nodes. 

• It must be possible to create nodes on remote machines to automate ring 

deployment. 

• The Data Store point-of-presence needs to alter parameter-passing semantics 

dynamically when accessing the individual Data Store objects. 

• It must be possible to migrate objects that are remotely referenced by Data 

Store objects from one address-space to another. This allows the Data Store 

service to adapt to changes in the distributed system without loss of referential 

integrity. 

• Distribution policies to control the deployment of JChord ring nodes and the 

migration of stored objects must be defined. 

2.4 Summary 

This chapter has described the middleware system model adopted in this thesis in 

a system-independent manner. The concepts described here do not comprise an 

exhaustive list of all features that a middleware system must provide, nor are all possible 

middleware features described. This chapter provides a framework describing common 
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functionality against which existing systems can be evaluated. The JChord case study is 

introduced and its requirements summarized. 
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This chapter investigates and evaluates ‘first generation’ industry-

standard and ‘second generation’ research-based middleware systems. 

The limitations of existing systems are described in the context of this 

related work. 
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3.1 Introduction to Chapter 3 

This chapter categorizes middleware systems into ‘first generation’ systems, 

which are industry-standard systems in wide use, and ‘second generation’ systems, which 

are research-based systems that are not in extensive use outside of academia. The chapter 

concludes by re-examining the limitations of existing systems, which were introduced in 

Chapter 1, in the context of the middleware systems described here. 

3.2 First Generation RPC Systems 

RPC systems allow clients to call remotely accessible procedures, rather than the 

methods of specific objects. RPC systems provide two mechanisms to permit callers to 

execute code on remote machines, namely: 

• A mechanism to identify remote procedures. 

• A mechanism to encode arguments and return values that are passed across 

address-space boundaries. 

The main limitation of RPC systems is a lack of support for remote references, 

with the consequence that arguments cannot be passed by-reference during remote calls. 

RPC systems allow applications to provide service-oriented functionality to remote 

clients. All data required to perform any operations must be passed as arguments during 

calls. 

The most widely used traditional RPC system is Sun RPC [7] though there are 

others, such as DCE-RPC [28] (from which Microsoft’s COM RPC mechanism was 

developed) and ISO-RPC [29]. The differences between these different approaches are 

discussed in Barkley [30]. There are also modern RPC systems such as XML-RPC [31]. 

3.2.1 Sun RPC 

SunRPC [7] allows clients to execute code on remote machines. A programmer 

defines a numbered list of procedure declarations and creates a server application that 

implements these procedures. The server registers itself with the RPC infrastructure to 

make the procedures available. Clients perform remote calls via proxies which access the 

remote procedures based on the identities of the server applications, procedure numbers 

and the names of the machines on which the servers run. 
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Programmers initially define application structure in terms of programs, versions 

and procedures using RPC Language (RPCL). A program declaration describes a single 

remotely accessible server application and contains one or more version declarations. 

Version declarations define the particular procedures provided by each version of the 

server and provide multiple views over the server. 

A code generation tool called RPCGen is used to generate server implementations 

containing method stubs, to which programmers add application logic, and any associated 

proxies. When run, the server applications register themselves with the RPC 

infrastructure’s connection listener, known as the port mapper. The port mapper listens 

for invocation requests from clients. 

To perform a remote method call, a client performs a local method call on a 

proxy, which marshals the arguments. The call is passed into the RPC infrastructure 

which creates an invocation request containing a program identifier, a version number 

and a procedure identifier along with the marshalled arguments. The request is passed 

across the network to the server-side port mapper. The port mapper executes the 

described procedure on behalf of the client. 

All arguments and return values are passed across address-space boundaries by-

value. A data representation scheme called the External Data Representation (XDR) is 

used to define how primitive values and data structures are encoded. Encoded values do 

not contain any type information and so it is not possible to determine which values an 

arbitrary block of encoded data represents unless the types are known in advance. 

SunRPC is representative of the functionality provided by all RPC systems. It 

provides a service-oriented model that allows clients to pass some arguments to a remote 

server, which performs some computation and returns a result. SunRPC, like all RPC 

systems, is not a suitable middleware system to use when creating distributed applications 

that depend on pass-by-reference semantics. 

3.2.2 XML-RPC 

XML-RPC [31] represents remote calls and serialized values in XML. Remote 

procedures are invoked by performing an HTTP POST request on an XML-RPC 

compliant web server. The POST data contains XML describing the: 

• Method name to call. 

• Method call arguments. 
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The XML-RPC specification is simplistic and much of the behaviour of an XML-

RPC system is implementation-specific, preventing interoperability between different 

implementations. The structure of valid XML-RPC calls is described but there is no 

indication of how method names are mapped to application methods. The specification 

states that servers interpret the method name in any way they deem appropriate. XML-

RPC provides no service description mechanism from which clients can determine the set 

of operations provided by a server.  

Only pass by-value semantics are supported for remote calls and though complex 

types can be passed across the network, XML-RPC provides no type mappings to indicate 

how to associate programming language types with serialized objects. Further, the current 

specification does not indicate how cycles within the closures of serialized objects can be 

handled. 

3.3 First Generation Distributed Object Models 

Distributed Object Models (DOMs) represent a more object-oriented approach to 

distributed application development. They provide Remote Method Invocation (RMI) 

functionality that allows clients to call methods on identifiable objects in remote address-

spaces. Applications can hold references to objects in remote address-spaces and both 

pass-by-reference and pass-by-value semantics are available for remote method calls. 

This section describes the first generation DOMs, which are CORBA [8], Java 

RMI [9], Microsoft COM technologies [32] and Microsoft .NET remoting [10]. Each of 

these middleware systems has unique properties but all require programmers to follow 

similar steps in order to create remotely accessible objects: 

1. Programmers must define the interfaces between distribution boundaries 

statically. 

2. Programmers must decide statically which classes will implement these 

interfaces and thus support remote access. These classes are known as remote 

classes and must meet certain semantic requirements. 

3. Programmers instantiate the remote classes and register them with the 

middleware infrastructure. Objects are associated with names that allow 

clients to obtain remote reference to them. 

Only instances of classes that have been designed to support distribution can be 

exposed to remote access. Further, distribution-related decisions must be made at class 
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granularity in the first step but at object granularity in the third step, making these 

middleware systems difficult to use. The decisions that programmers make statically 

concerning support for remote access place constraints on the ways in which applications 

can be distributed. 

All of the first generation DOMs described here exhibit similar limitations. The 

creation of distributed applications is both complex and error-prone. Programmers must 

decide which classes and interfaces will support remote access early in the design phase. 

They do not abstract over the distributed nature of the application meaning that the 

semantics of an application are tightly bound to its distribution. The introduction of 

distribution into an existing local application is difficult. Extensive changes to source 

code and possibly the application semantics are required. These DOMs do not adapt 

easily, rendering them inflexible to the requirements of applications that evolve over time. 

3.3.1 Common Object Request Broker Architecture (CORBA) 

The Common Object Request Broker Architecture (CORBA) [8, 33-35] is a 

complex DOM specification [33] that allows object interaction across address-spaces in 

an operating system and language independent manner. Multiple implementations of 

CORBA exist, such as MICO [36] and Orbix [37, 38]. 

The local infrastructure in a CORBA implementation is known as the Object 

Request Broker (ORB). There is a single ORB per address-space, which is responsible for 

constructing all outgoing invocation requests to remote objects and handling all incoming 

invocation requests to local objects. 

3.3.1.1 Creating a Distributed Application 

The first stage in the design and creation of distributed applications using CORBA 

is the definition of interfaces for the remotely accessible classes. CORBA interfaces are 

defined independently of implementation language using the Interface Definition 

Language (IDL) [8]. All complex types that can be passed as arguments or return values 

are also defined in the IDL. IDL is object-oriented and is used only to specify the 

structure of the interfaces and types. 

CORBA defines mappings between IDL and many programming languages, 

including Java, C, C++, ADA, Lisp and others. In order to implement the interfaces and 

complex types defined in IDL, programmers use language-specific IDL compilers to 

generate partial implementations of the interfaces and their associated proxy classes in a 
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programming language chosen by the programmers. These partial implementations 

contain method stubs without execution logic, which is subsequently provided by 

programmers. Support for remote access permeates classes making it difficult to change 

classes that are not accessible remotely into ones that are and vice versa. 

Remotely accessible objects are associated with names in a CORBA name service 

when exposed to remote access. The name service is available to both servers and clients 

through the ORB. Clients in remote address-spaces can obtain references to the exposed 

objects by name. Implementations of remote classes are known as servants. IDL 

compilers typical generate one partial servant implementation per type defined in IDL 

though a single servant may implement several CORBA types. 

Servants provide functionality to both the ORB and application programmers. It is 

common to inherit some of this functionality from a special base class. However, when 

the implementation language does not support multiple inheritance, servants cannot 

extend arbitrary other application classes, thereby affecting application semantics.  

The tie approach solves this problem by allowing programmers to implement the 

servant functionality and application logic in separate classes. Using this approach, the 

servant extends the special base class but holds a reference to an instance of the remote 

class that implements the application logic. The remote class is free to extend any 

arbitrary base class as shown in Figure 3.1. 

 

Figure 3.1: CORBA servant classes. 

3.3.1.2 Dynamic Invocation 

Programmers typically need static knowledge of the objects that clients will 

access at client compile-time. CORBA solves this problem by providing the Dynamic 

Invocation Interface, which allows clients to access remote objects for which static type 

information was unavailable at client compilation. Programmers must explicitly construct 

remote method call requests by defining the names of the operations and providing 
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arguments. If the arguments are of unknown types, the client must also describe the 

structure of these types to the infrastructure in order than they can be marshalled.  

To allow programmers to construct servants that can tie to objects for which static 

type information was not available at servant compilation time, the Dynamic Skeleton 

Interface (DSI) is provided. DSI servants extract the name of the operation to call and any 

associated arguments from an incoming remote method call request, and perform the 

requisite call. CORBA does not serialize objects in a self-describing manner and so 

programmers must write code to extract type information from the request and deserialize 

the arguments. The tie approach offers increased flexibility at the cost of increased 

complexity. Programmers lose the abstraction over the inter-address-space 

communication afforded when using proxies and objects created from IDL. Since 

serialized data is not self-describing it is possible to construct applications in which 

methods are invoked with inappropriate arguments, particularly when using dynamic 

invocation [33]. This leads to unexpected application semantics and may cause run-time 

problems in strongly typed languages. 

3.3.1.3 Implementation 

To ensure interoperability among different CORBA implementations, there is a 

standard representation of remote references called the Interoperable Object Reference 

(IOR) that must be supported by all ORBs. ORBs must also be capable of performing 

inter-address-space communication using the Internet Inter-ORB Protocol (IIOP). This 

protocol specifies the range, size and encoding for basic types and an encoding for 

complex types called the Common Data Representation. 

CORBA objects, data structures and primitive values may be passed as arguments 

or return values when remote methods are called. Each parameter of the methods defined 

in IDL is marked as in, out or inout indicating whether that parameter should be passed 

by-value, by-result or by-value-result [39] respectively. When arguments are passed by-

result or passed by-value-result, this indicates that the server will modify the arguments 

and copy the modified values back to the client. Pass-by-result semantics indicate that the 

server is not interested in the client-side value of the argument before the call and is 

simply using the argument as a way to return values to the caller. In languages that have 

no support for pass-by-result, such as Java, programmers must wrap, unwrap and update 

out and inout parameters to ensure the by-result semantics are preserved. 
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CORBA objects are passed by-reference by default and the in, out and inout 

semantics are applied to the associated IORs, not the objects themselves. Types may 

alternatively be defined in IDL as pass-by-value types and in such cases these semantics 

are adopted instead of the default. Only CORBA objects may be passed by-reference, 

leading to limitations with respect to shared data. Application flexibility and code reuse 

are hindered because passing semantics are defined statically. 

CORBA is a powerful but complex middleware tool that exposes much of the 

complexity of distribution to programmers, particularly those using the dynamic 

invocation mechanisms. Programmers must define distribution boundaries statically, 

leading to inflexibility in application distribution. 

3.3.2 Java Remote Method Invocation (Java RMI) 

Java Remote Method Invocation (Java RMI) [9] is a DOM included as part of Java 

2 Standard Edition (J2SE) [40]. It permits the creation of classes whose instances can be 

accessed remotely from other Java Virtual Machines (JVMs) [41]. Remotely accessible 

classes must implement interfaces that meet a number of requirements: 

• The interfaces must extend a special marker interface (java.rmi.Remote) either 

directly or indirectly. 

• Each method must throw a special remote exception class 

(java.rmi.RemoteException). 

Programmers must ensure that the methods inherited from class java.lang.Object, 

the root of the class hierarchy in Java, are modified to support distribution. This is 

achieved either by extending a special Java RMI base class or by overriding these 

methods in any classes that support remote access. These requirements erode the 

abstraction over the network provided by the middleware system because support for 

distribution pervades classes. 

3.3.2.1 Creating a Distributed Application 

In the most recent version of Java (J2SE 5.0 [40]), the Java RMI infrastructure can 

make use of the reflection technology integrated into Java to provide generic skeleton and 

proxy implementations. Programmers can instead employ a Java RMI compiler to 

generate ancillary distribution-related code such as skeletons and proxies (the latter 

known in Java RMI as stubs) for all remotely accessible classes to avoid the run-time cost 

of reflection. 
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The process of exposing an object to remote access is known as export. On export, 

objects are registered with a name service called the rmiregistry that runs in a separate 

process on a known machine and port. Clients can obtain references to exported objects 

by contacting the rmiregistry and specifying the names with which the objects were 

registered initially. The rmiregistry returns remote references to the exported objects.  

Java RMI determines the parameter-passing semantics to apply when remote 

methods are called based on whether the argument objects have been exported to remote 

access. Exported objects are always passed by-reference and all other objects are passed 

by-value. Even instances of classes supporting remote access are passed by-value if they 

have not yet been exported. Consequently, the parameter-passing semantics are tightly 

bound to the distribution of the application and can be unpredictable. 

Java RMI implements distributed garbage collection using a reference-counting 

scheme in which each JVM keeps track of its own reference count for each remote object. 

This distributed garbage collection scheme cannot detect distributed cycles of garbage 

[42] and so an additional lease-based scheme is employed to ensure that exported objects 

in cycles will eventually be collected. Distributed garbage collection in Java RMI is 

complete but not safe - the integrity of remote references cannot be ensured. 

3.3.2.2 Semantic Limitations 

Java RMI places a number of semantic limitations on classes that support remote 

access. If a remote class extends a super-class that is not remote, it must override all of 

the inherited methods to meet the semantic restrictions placed on remotely accessible 

methods with respect to network error related exceptions. Only methods written with 

concern for distribution can be inherited directly. Programmers may be forced to re-

implement inherited methods as only arguments of interface types can be passed by-

reference. The advantages of inheritance in terms of code reuse can be lost. 

Classes supporting remote access and their associated proxy classes are type-

compatible in terms of interface only. Instances of the proxy class cannot be cast into the 

associated remote class, which can have consequences for the client applications. For 

example, the observer/observable design pattern [43] is implemented in Java using the 

Observable class and the Observer interface. Instances of the classes that extend 

Observable allow observers to register an interest in them. These observers implement the 

Observer interface, which includes a call-back method that is invoked by Observable 

objects to indicate that events have occurred. 
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Each observer can be registered with multiple Observable objects and so the 

Observable objects pass references to themselves to these call-back methods, to allow the 

observers to identify where the events originated. Since the call-back methods take 

arguments typed as the Observable class, proxies to instances of classes that extend 

Observable cannot be passed in their place. Proxies to instances of Observable classes are 

not themselves instances of the Observable class. Observers and Observable objects 

cannot therefore be separated into different address-spaces. 

One solution appears to be the conversion of the Observable class into an 

interface. This is a viable solution to the problem but, because the newly created interface 

would need to have explicit support for remote access, it would be forced to extend the 

Remote interface and meet the semantics limitations described above. Support for 

distribution would permeate library code, whether the classes were used in distributed 

applications or not. 

Java RMI places major semantic limitations on classes that support remote access 

and the parameter-passing semantics are tightly bound to the application distribution. It 

provides no support for the dynamic reconfiguration of application distribution. 

3.3.3 Distributed COM 

Distributed COM (DCOM) introduces distribution into the Component Object 

Model (COM) [32, 34, 44]. COM is a Microsoft developed component technology, 

primarily for use with the Windows operating system. Although reduced feature 

implementations exist on other operating systems (MacOSX and several flavours of 

Unix), this tight association with Windows restricts interoperability across operating 

systems. COM and DCOM have been subsumed into a single entity called COM+ with 

the release of Windows 2000. 

COM is a binary standard that permits programmers to create components, which 

are coarse-grained reusable units of software that can be combined to create complete 

applications. COM components implement multiple interfaces that are defined in 

Microsoft Interface Description Language (MIDL), a language that provides mechanisms 

similar to CORBA IDL. An MIDL compiler is used to produce partial implementations in 

one of several programming languages including C, C++ and Visual Basic. The COM 

specification indicates how the compiled code in the component is structured and 

provides binary level interoperability between components written using different 

implementation languages. 
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Each interface and implementation class is identified using a Globally Unique 

IDentifier (GUID). A component is created using a factory by specifying the GUID of the 

required component and the context in which the component should be created. 

Programmers can instruct factories to instantiate components on remote machines by 

either identifying the machine explicitly or deferring to the Service Control Manager 

(SCM). 

The SCM makes decisions based on component information that has been 

explicitly stored in the Windows registry by programmers. This information may include 

details about the machines that are present in the distributed system and the component 

factories provided by these machines. In this way, object placement policies are defined 

in terms of one-to-one mappings between component identifiers and machines. 

Clients can access (particular interfaces of) remotely accessible components using 

proxies in the conventional manner. Though a DOM, DCOM is built on top of DCE-RPC 

[28], an RPC technology, and supports pass-by-reference semantics by extending the data 

representation to include interface references. Like CORBA, DCOM determines 

parameter-passing semantics based on the statically defined MIDL. 

DCOM does not support garbage collection. Once instantiated, component 

lifetime must be managed manually by programmers using a built-in reference-counting 

scheme. Programmers must increase and decrease the reference count associated with 

each component as they create and destroy references to it. 

Programmers using DCOM must support remote access explicitly in each 

component. Though DCOM enforces the use of factories when instantiating components 

thereby making the location of components transparent with respect to the client, it is 

inflexible in terms of changing distribution boundaries. DCOM does not support dynamic 

alterations to application distribution and does not permit migration. Modifications to 

existing components require considerable programmer effort which, combined with the 

lack of support for automatic memory management, makes the creation of distributed 

applications difficult and error-prone.  

3.3.4 Microsoft .NET framework 

The .NET framework [45] is a component technology that includes operating 

system extensions to provide a run-time infrastructure for applications, DOM 

functionality known as .NET remoting [10] and technology for the provision of Web 
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Services [46]. The .NET framework supersedes COM though the two technologies are 

interoperable for legacy reasons.  

Currently, the only fully featured implementation of the .NET framework runs on 

the Windows operating system and so cross-platform interoperability is limited. Two 

different feature-limited versions of the framework for other operating systems including 

MacOSX and GNU/Linux exist, namely Microsoft’s own Shared Source Common 

Language Infrastructure (SSCLI) [47] and the Mono project [48]. 

3.3.4.1 Microsoft Intermediate Language (MSIL) 

.NET components are known as assemblies and can be written in any .NET 

enabled language, of which the main ones are C#, Managed C++ and Visual Basic. All 

.NET-enabled languages are compiled into a single intermediate language called 

Microsoft Intermediate Language (MSIL), a singly-inherited, object-oriented language 

with automatic memory management. The run-time system, called the Common 

Language Runtime (CLR) compiles the MSIL into platform-specific binary code at run-

time. 

The use of this common intermediate language allows cross-language 

interoperability. Classes written in one .NET enabled language may extend classes 

written in another or may throw exceptions across language boundaries. Assemblies 

written in different languages can be tightly integrated but the cost of this interoperability 

is the loss of each language’s unique properties. Managed C++ illustrates this problem 

clearly; it is not source compatible with C++ and, in effect, is C# with C++ syntax. In 

general, there are no reasons to choose one .NET implementation language over another 

beyond programmer preference. 

3.3.4.2 Creating a Distributed Application 

Programmers need not define separate interfaces for the classes that support 

remote access though all remotely accessible classes must extend a special base class 

called MarshalByRefObject. There are two conceptually different approaches to making 

instances of classes available: object-based and class-based. The first approach adheres to 

the typical DOM model in which programmers instantiate objects then make them 

accessible remotely by registering them with the infrastructure. The second approach 

adheres to a Web Service style model in which programmers register classes with the 

infrastructure rather than objects. This indicates to the run-time that any instances of the 
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specified classes can be used to handle incoming method calls. The .NET infrastructure 

then creates instances of these classes on each call or on first access. 

The first step using either approach is to create and register a communications 

channel for the local application domain. Application domains are analogous to address-

spaces and multiple channels can be registered with a single application domain. 

Channels bind to particular ports and can use either a proprietary binary transport 

protocol or SOAP. To make objects remotely accessible, the programmer registers them 

with channels using names that identify them uniquely among the other remotely 

accessible objects in the application domain. All remotely accessible objects registered 

with the .NET run-time in that application domain will be accessible via any of that 

domain’s channels. 

Clients using the .NET framework obtain proxy objects that reference objects in 

remote address-spaces using the registered names and invoke methods in the usual DOM 

fashion. The .NET infrastructure provides special treatment for proxy objects allowing a 

client to cast a proxy object into the same class as its associated remote object. 

The .NET framework implements a lease-based distributed garbage collection 

scheme and garbage collects objects with expired leases. This approach is complete but 

not safe and can result in the collection of live objects. 

The .NET remoting infrastructure places semantic restrictions on the inheritance 

hierarchies of classes supporting remote access and tightly binds parameter-passing 

semantics to the distribution of the application. No support for migration or the 

instantiation of objects in remote address-spaces is provided, meaning that applications 

are inflexible to dynamically changing requirements. 

3.3.5 Component Models 

Component models such as Enterprise Java Beans (EJB) [49] or the CORBA 

Component Model (CCM) [50] are specifications defining how programmers can create 

software components that execute within server-side application containers. The 

application containers manage non-functional considerations such as transactions, 

persistence, load-balancing or security, allowing programmers to abstract over these 

concerns. 

Component models use first generation middleware systems to provide their 

underlying inter-address-space connectivity, for example, EJB builds on Java RMI and 
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CCM is part of the CORBA specification. Consequently, these systems are not examined 

any further. 

3.4 First Generation Service-Oriented Architectures 

Service-Oriented Architectures (SOAs) provide one-way-call or call-return 

semantics and so superficially appear similar to RPC systems or DOMs. However, there 

are a series of differences between SOAs and more traditional systems [51]. DOMs 

provide an abstraction over operations on remote objects by implicitly passing messages 

between address-spaces to perform remote calls, as the result of local calls on proxy 

objects. SOAs are often more explicit about this message passing, bringing it up into the 

application level. Indeed, some authors define services as entities that operate over 

messages [52]. SOAs operate at the granularity of the service, rather than the object, 

resulting in differences in the way in which application requirements are modelled. 

Services are intended to provide abstractions at the level of business entities. 

3.4.1 Web Services Architecture 

The Web Services Architecture [46] is a W3C specification for Web Services, 

which provides a standardized mechanism to allow interoperability between applications 

across programming languages and operating systems (promoted via the WS-I Basic 

Profile [53]). Web Services allow web servers to expose methods to remote access by 

clients using an XML-based protocol called SOAP [54-56]1. SOAP implementations are 

available on many platforms and for many languages, for example, Apache Axis [57] and 

Microsoft .NET Web Services [45]. 

Each Web Service is associated with a particular URL. HTTP requests posted to 

that URL correspond to calls on that service. The body of each request is a SOAP 

message containing the name of the method to invoke and any arguments in serialized 

form. Web Services do not support remote references and can employ only pass-by-value 

semantics for remote method calls. Consequently, references are typically exchanged 

between web services in an ad-hoc fashion, for example, using invoice numbers rather 

than remote programming language references to invoice objects. 

                                                 

 
1 Prior to version 1.2, SOAP stood for Simple Object Access Protocol, though it was also known as the 

Service Oriented Architecture Protocol. The latest specification does not spell out the acronym. 



Chapter 3: Related Work 

43 

Methods invoked on Web Services are performed on underlying service objects. 

The majority of Web Service technologies do not allow programmers to associate 

particular service objects with Web Services. They operate at class granularity, allowing 

programmers to associate implementation classes with Web Services. The Web Services 

infrastructure instantiates the specified class to handle incoming calls on a per-call basis, 

a per-session basis or on first access. 

The Web Services Description Language (WSDL) [58] is used to describe the 

methods provided by particular Web Services. WSDL defines the available methods in an 

abstract manner, in terms of the requests that clients can make and the responses they can 

expect to receive. WSDL then defines services in terms of: 

• Abstract method definitions. 

• URLs for the services. 

• The transport protocols that must be employed to access the services. 

Programmers can access Web Service functionality from client applications by 

generating proxies based on the WSDL. Using Web Services, all types that may be passed 

as arguments are described and associated with name-spaces in the WSDL describing the 

service. Programmers define application-specific mappings between namespaces and 

concrete programming language classes. 

3.4.2 JBoss Remoting 

The JBoss Enterprise Middleware System, known as JBoss or JEMS [59], is a 

Java-based application server for developing enterprise and web applications. JBoss AOP 

Remoting uses aspect-oriented programming techniques to instrument instances of 

existing classes for remote access. AOP Remoting allows the exposure of application 

objects to remote access as services using SOAP or Java RMI (described later in Section 

3.3.2). 

AOP Remoting places some semantic restrictions on the classes of object that can 

be exposed. All classes must provide default constructors and all method arguments and 

return values must be Serializable. AOP Remoting adopts a service-oriented model in 

which methods of the underlying objects are provided to remote clients, if the objects 

meet the above semantic requirements. Pass-by-value semantics are always employed.  

AOP Remoting simplifies the process of service design, implementation and 

exposure of objects to remote access, provided they meet some minor semantic 



Chapter 3: Related Work 

44 

restrictions, but fixes the parameter-passing semantics. No dynamic control over object 

placement, via remote instantiation or migration, is provided. 

3.5 Second Generation Middleware Systems 

There exist several second generation middleware systems that build on the first 

generation systems described so far. These second generation systems aim to tackle the 

limitations of first generation systems either by performing code transformations that help 

programmers to introduce distribution or by providing libraries that programmers can 

employ directly. 

3.5.1 Emerald 

Emerald [60, 61] is an object-based language and associated run-time 

infrastructure with integrated support for distribution and object mobility. While Emerald 

pre-dates all of the first generation systems described previously, it provides functionality 

such as migration and dynamic control over application distribution that is found only in 

more recent second generation systems. 

Emerald does not adopt the usual object-oriented paradigm in which programmers 

specify classes that are instantiated to create objects. Instead each object is declared and 

constructed in a single operation that defines its state and the operations that it supports. 

Emerald provides a number of primitive instructions that allow control over the 

placement of objects: 

• Locate X, returns the identity of the address-space in which object X exists. 

• Move X to Y, tells the Emerald infrastructure that object X should be migrated 

to the address-space in which object Y exists. 

• Fix X at Y, is similar to a move operation. It migrates object X to the address-

space in which object Y exists but will not subsequently allow object X to 

move away from that address-space. It is not permitted to move or fix an object 

that is already fixed.  

• Unfix X, removes the fixed status from X, allowing it to be migrated or fixed 

again. Once fixed, an object cannot be migrated or fixed until it is unfixed. 

• Refix X at Y, atomically performs an unfix of object X then a fix of object X at 

the address-space of object Y. 
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When object migration occurs, the Emerald infrastructure updates all references 

internal to the object, such that references previously held by the migratory object to local 

objects are converted into remote references, and vice versa as required. Remote 

references held by other objects to migratory objects are updated lazily, through a scheme 

whereby each address-space holds tombstones for the objects that migrate away from that 

address-space. The first time a client attempts to access an object at an address-space 

from which it has migrated, the call is forwarded automatically to the correct address-

space. For example, if object A migrates from address-space 1 to address-space 2, each 

time a client holding a reference to A attempts to access it at address-space 1, the call is 

forwarded to address-space 2. The invocation response sent back to the client indicates 

that the object has moved to the new address-space. The client can then update its remote 

reference. 

Emerald provides several different parameter-passing mechanisms. Arguments to 

remote method calls are passed by-reference by default though programmers can choose 

to mark arguments statically as by-move or by-visit. Pass-by-move is identical to pass-by-

migrate, as described in Chapter 2. Pass-by-visit is similar to pass-by-migrate but the 

arguments are migrated back to their original locations once the remote method calls are 

complete. 

Emerald is an impractical choice for creating real-world applications because it is 

a relatively unknown and unsupported language, with little library support in comparison 

to language such as Java or C++. However, it provides true transparency between local 

and remote method calls and allows programmer control over application distribution 

through its provision of object migration. 

3.5.2 JavaParty 

JavaParty [62] extends the Java language with the addition of the keyword 

remote, which is permissible only in class signatures and indicates that the class must 

support remote access. Classes are compiled with the JavaParty compiler, which 

generates pure Java source code that uses Java RMI to implement remote accessibility. 

3.5.2.1 Introducing Support for Remote Access 

The remote keyword acts as a marker indicating to the JavaParty compiler which 

classes must be transformed into remotely accessible versions. The JavaParty compiler 

makes all members (that is, methods and fields) of each remote application class public 
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and generates get/set accessor methods for all fields. Each remote application class is then 

transformed into five distinct classes. The non-static and static members of the original 

class are separated into two Java RMI-enabled implementation classes. One 

implementation class contains only the non-static members of the application class and 

the other contains only the static members transformed into isomorphic non-static 

versions. Java RMI compliant interfaces are then extracted from both implementation 

classes. Finally, a wrapper class with the same name as the original class is generated.  

Figure 3.2 shows an application class X and the five classes that are generated 

from it. Class XImpl contains Java RMI-compliant versions of all the non-static methods 

that were in X and class XImplStatic contains Java RMI-compliant non-static versions of 

all the static methods that were in X. Interfaces IX and IXStatic are extracted from the 

implementation classes. The wrapper class X is structurally equivalent to the original X 

but all methods have been converted into wrapper methods. 

 

Figure 3.2: The JavaParty remote class transformations. 

Each instance of the wrapper class references an instance of each implementation 

class via its Java RMI-compliant interface. These implementation instances may be in the 

same address-space, in which case the associated wrapper object references them directly, 

or may be in remote address-spaces, in which case the wrapper object references the 

associated Java RMI proxy objects. 

The wrapper implements the same methods and has the same name as the original 

class. When called, each method in the wrapper calls its counterpart in one of the 

implementation objects. The JavaParty wrapper ignores any Java RMI exceptions that 

occur, except for those that are caused by unchecked exceptions2, which are thrown back 

to the application. 
                                                 

 
2 Java has two kinds of exception, checked and unchecked. Programmers must explicitly handle checked 

exceptions. Unchecked exceptions may be handled or ignored, in which case the JVM terminates. 
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3.5.2.2 Additional Functionality 

JavaParty introduces new functionality that is not provided by Java RMI. It allows 

programmers to instantiate objects in any remote address-spaces in which the JavaParty 

infrastructure is executing. Object placement policies may be associated with classes, 

meaning schemes such as round-robin placement can be implemented. However, by 

applying policy at the granularity of class, the same placement policies must be applied to 

all instances of a class, limiting the flexibility of these policies. 

Objects may be migrated from one address-space to another, provided no methods 

are currently executing on those objects. Instances of the wrapper classes keep track of 

the threads that are executing on the wrapped objects and ensure that this rule is not 

broken. To migrate an object, the two implementation class instances and their closures 

are serialized using Java RMI then passed across the network by-value. The wrapper 

remains in the original address-space and is updated to reference the migrated 

implementation objects remotely using Java RMI. 

JavaParty implements migration without concern for referential integrity. The 

entire closures of the implementation instances are serialized. Programmers must ensure 

that references to objects within the migrated objects’ closures remain consistent. All 

remotely accessible objects in JavaParty directly or indirectly extend a special base class 

that implements the migration functionality. This approach cannot support the migration 

of non-transformable classes, such as system classes or those with native members. 

3.5.2.3 JavaParty Semantics 

JavaParty allows instances of non-transformed classes to hold references to 

instances of the transformed class wrapper and treat them as though they were instances 

of the original, untransformed class. The underlying transformations are based on Java 

RMI and consequently JavaParty exhibits Java RMI remote call semantics. If instances of 

non-remote classes are passed as arguments to remote method calls, they are passed by-

value. Passing semantics are decided based on whether arguments support remote access, 

but as JavaParty is designed to hide this information, these semantics can be difficult for 

programmers to predict. 

JavaParty is a tool to simplify creation of Java RMI-based applications. It allows 

programmers to define Java RMI-compliant classes without needing to write the Java 

RMI code manually. Using Java RMI directly, programmers create remote interfaces and 
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associated implementations. They ensure that all references to instances of the 

implementation classes are interface references. JavaParty reduces the number of steps 

required to create Java RMI compliant classes. Programmers identify the remote classes 

and the compiler alters method signatures and extracts interfaces automatically. 

JavaParty applications cannot introduce support for remote access into classes 

dynamically. Programmers must know statically which classes will need to support 

distribution. The parameter-passing semantics are the same as Java RMI and are decided 

based on the remote accessibility of the arguments. Though JavaParty hides the 

distribution-related code from programmers, it does not attempt to preserve non-

distributed calling semantics. Further, it transforms code at the source level and so cannot 

modify classes for which source is unavailable, such as system classes or native classes. 

3.5.3 J-Orchestra 

J-Orchestra [63-66] transforms non-distributed Java applications into isomorphic 

distributed versions. J-Orchestra introduces distribution into existing applications while 

retaining local method calling semantics using byte-code transformations and Java RMI. 

It is not a tool set for the creation of general distributed applications. Applications must 

have a single entry point and must push objects across the address-spaces in the 

distributed system, rendering it unsuitable as a platform on which to build distributed 

applications with multiple entry points. 

Programmers use the J-Orchestra tool to describe how a given application will be 

distributed among the available address-spaces. To transform an application, J-Orchestra 

analyses it statically and determines all places in the code where object construction is 

performed. Programmers are shown a list of these constructor calls and a list of all 

address-spaces in the distributed system. Programmers use a graphical tool to associate 

constructor calls with address-spaces to create a distribution plan. Constructor calls are 

replaced with calls into factories that will instantiate the requisite objects in remote 

address-spaces according to the distribution plan. 

J-Orchestra modifies applications statically and creates multiple transformed 

classes for each application class in almost the same manner as JavaParty. However, J-

Orchestra transforms all the classes it can instead of transforming only particular remote 

classes. 

J-Orchestra supports the migration of instances of transformed classes though 

non-transformable classes cannot migrate from the address-spaces in which they were 
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instantiated. Using the J-Orchestra tool, programmers can statically associate a pass-by-

move [61] policy with classes that support migration. If instances of these classes are 

passed as arguments to remote method calls, they will migrate to the target address-space. 

J-Orchestra is designed to analyse a non-distributed application statically in order 

to create a distributed version of that application. The application begins execution in a 

single address-space and creates objects in remote address-spaces in the distributed 

system. The overhead of indirection exists between all application objects, whether or not 

the objects exist in the same address-space, thereby increasing the cost of application 

execution. 

J-Orchestra is unsuitable for the creation of distributed applications in general. It 

cannot support multiple entry points into the application to allow asynchronous 

deployment of the application across the distributed system. Programmers cannot alter 

application semantics to take advantage of their application-specific knowledge to 

replicate or cache objects. J-Orchestra preserves local application semantics strictly. 

Control over object placement policy is provided, through distribution plans and pass-by-

move semantics when remote methods are called. This control is limited as distribution 

polices may only be applied at class granularity and are limited in their expressiveness. 

3.5.4 Do! 

Do! [67, 68] is a Java RMI-based system that aims to reduce the complexity of 

distributed application creation by generating the Java RMI code automatically but does 

not hide the distributed nature of the applications. The system deliberately exposes 

distribution and provides tools to enable programmers to create parallel distributed 

applications. 

As with Java RMI and JavaParty, programmers determine at design-time which 

classes are to be accessible remotely. Classes that must support remote access are 

modified to implement a marker interface called Accessible. The Do! framework 

generates Java RMI code by reflectively analysing all Accessible application classes in 

order to create: 

• Java RMI-compliant interfaces that capture the functionality of each 

Accessible class. 

• Implementations of these interfaces that are functionally identical to the 

original classes but have modified method signatures which throw Java RMI 

exceptions. 
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• Wrapper classes with the same names as the original classes. 

These transformations are similar to those carried out by both JavaParty and J-

Orchestra though Do! provides no support for static members. Consequently, Do! is 

limited in comparison to these other systems as programmers cannot access static 

members remotely. 

Programmers instantiate objects in remote address-spaces explicitly using factory 

methods provided by the Do! infrastructure, which registers the objects with the 

rmiregistry automatically. Do! provides no bootstrapping mechanism beyond that which 

is supplied by the rmiregistry. Each application starts running in a single JVM and pushes 

objects out to remote machines during execution. The Do! framework adopts 

conventional Java RMI passing semantics. 

Do! is a toolkit to allow programmers to create parallel applications in which units 

of work can be pushed out to machines in the distributed system. In comparison to 

JavaParty, it provides little support for the creation of general distributed applications. 

3.5.5 Pangaea 

Pangaea [69, 70] is a Java-based system that introduces distribution into non-

distributed applications according to programmer supplied constraints using static code 

analysis. Existing non-distributed applications are instrumented to introduce distribution, 

using JavaParty as the underlying distribution mechanism. 

Pangaea performs static code analysis on an existing application to create an 

application graph that approximates the set of objects that will exist when the application 

executes. Pangaea identifies constructor calls in the non-distributed application and 

estimates how many times each constructor will be called at run-time using static byte-

code analysis. Though not decidable in general, Pangaea can identify the number of times 

certain constructors are called, for example, those inside loops that execute a statically 

defined number of times. Pangaea cannot analyse classes that contain native code, which 

includes some system classes. 

Each node represents a particular constructor call in the application and represents 

the zero or more Java objects that will be instantiated by that constructor call at run-time. 

The distribution of the application is constrained by associating each graph node with a 

single address-space or some set of address-spaces. Constructor calls are replaced with 

factory calls which instantiate objects in the appropriate address-spaces. Programmers do 
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not need to assign every graph node to an address-space since Pangaea will instantiate 

unassigned objects in the same address-spaces as the objects that created them. 

Pangaea makes use of the underlying migration support in JavaParty. It is 

therefore not concerned with the implementation of an object migration mechanism. 

Instead, it provides a policy mechanism that can determine when and to where object 

migration should take place [71]. The same application graph that is used to define the 

application distribution is used by programmers to determine which objects support 

migration. Pangaea evaluates migration policies by polling migration strategy objects on 

a synchronous basis, after a certain number of calls, or on an asynchronous basis, after a 

certain period has elapsed. The migration strategies indicate whether the objects should 

be migrated based on one of three strategies: 

• Never advocate a migration. 

• Choose an address-space at random. 

• Move the object to the address-space from which it has received most remote 

calls. 

The Pangaea infrastructure associates a watcher object with each of the objects 

that supports migration. The watcher objects perform these polling operations on behalf 

of their associated objects. 

Pangaea allows support for distribution and migration in an application by 

building on an existing middleware system. It has advantages over the underlying 

middleware system because it employs static code analysis to help programmers visualize 

the approximate run-time structure of applications. Like J-Orchestra, the object placement 

policies are based on constructor calls and cannot be extended to take advantage of run-

time information about the context in which instantiations are performed to guide the 

policy decisions. Similarly, migration policies cannot evolve at run-time or respond to 

application events. In order to modify placement policies or alter the set of objects that 

supports migration, the programmer must stop and re-analyse applications. 

3.5.6 XRMI 

XRMI [72] is designed to allow the dynamic reconfiguration of Java RMI-based 

distributed applications. XRMI does not attempt to hide distribution from programmers 

but rather introduces a layer of indirection in order that applications can be reconfigured 

dynamically. Reconfiguration is the replacement of one Java RMI object with another in a 
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manner transparent with respect to the object’s reference holders. XRMI can convert 

references to local objects into references to remote objects and vice versa. 

A programmer creates distributed applications using standard Java RMI in the 

traditional manner. Consequently, XRMI exhibits all the limitations of Java RMI in terms 

of flexibility to change, complexity and restricted application semantics. XRMI uses a 

custom compiler to generate replacement Java RMI proxies, known as virtual stubs, 

which can be used to control access to the remotely accessible objects. 

Virtual stubs are wrappers that can reference either local application objects or 

Java RMI proxies to remote objects. XRMI keeps references from remotely accessible 

objects back to the virtual stubs that reference them. When replacing one object with 

another, XRMI eagerly updates all the virtual stubs that reference the old object to 

reference the new one. XRMI provides a locking mechanism to ensure that no threads are 

executing on a wrapped object before substitution occurs. The implementation of this 

mechanism, as it is described in Chen [72],  is not thread-safe and so may lead to loss of 

referential integrity in multi-threaded applications. 

XRMI aims to provide dynamic reconfiguration of Java RMI applications to allow 

flexibility in application distribution. However, it provides a sub-set of the functionality 

found in JavaParty or Do! with no advantages over either system. 

3.5.7 Coign 

Coign [73-75] automatically redistributes client/server distributed COM 

applications based on run-time profiling in order to minimize the inter-address-space 

communication cost incurred. Coign instruments an application in order to establish 

which components interact at run-time [76]. The application is run several times under 

typical conditions in order that usage data can be collected. This data allows the Coign 

system to determine how much inter-address-space communication occurred during these 

typical runs and to assign a cost to it based on the number of remote calls and the amount 

of serialized data passed. Coign transforms the application so that its distribution can be 

decided dynamically. At run-time, the Coign infrastructure decides the application 

distribution based on the usage data, in order to minimize the inter-address-space 

communication cost. 
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3.5.7.1 Application Profiling 

During the profiling stage, Coign tracks contextual information about each 

component instantiation, such as the class of component created or the name of the 

method that performed the instantiation. The number of inter-component method calls 

performed by each component to both local and remote components is recorded. Coign 

also tracks the amount of data that was serialized for these calls, or would have been 

serialized had the components been in separate address-spaces. 

Using this profiling information, Coign creates a graph representing the inter-

component communication that occurred in the application. A graph-cutting algorithm is 

applied to determine how the applications could be distributed to reduce the inter-address-

space communication cost. One of the main limitations of Coign is that it can only re-

distribute applications that are already divided into two partitions. Coign assumes that 

some components are fixed in each partition and uses the graph-cutting techniques to 

determine how the remaining components are divided between these two partitions. It 

cannot transform non-distributed applications or applications that are distributed into 

three or more parts. 

A cut graph indicates the optimal distribution of an application with respect to 

inter-address-space communication cost, given a particular set of usage data. This 

distribution is optimal if the application behaviour does not change and so it is important 

that the profiled runs of the application are representative of typical application usage. 

During future application runs, Coign distributes the application dynamically based on the 

optimal distribution. In order to make use of information gained during profiling, Coign 

classifies components and assumes that any components existing in the future that are 

classified as the same can be placed in the same partition. 

3.5.7.2 Distributing Applications 

Coign transforms each application so that its distribution can be decided 

dynamically. When an application is run, Coign classifies each new component before 

creation then finds the component from the profiled run that most closely matches it in 

classification. The optimal distribution is examined to determine in which address-space 

the matching component from the profiled runs was placed. Coign then instantiates the 

new component in that address-space. Coign places the new component in the address-
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space in which the profiled component should have been placed, not necessarily the one 

in which it was placed. 

Coign does not support component migration and so it must ensure that 

components are instantiated in the correct address-space, since they cannot be moved 

after creation. Components must be classified before they are instantiated and a variety of 

different component classification schemes are employed [73]. These schemes classify 

components based on combinations of the Coign classification, the class of the 

component performing the instantiation and the specific method in which the instantiation 

is performed. 

Coign provides completely automated re-distribution of applications based on 

typical usage data gained by profiling the original untransformed applications. Coign 

relies on the enforced use of factories in COM to allow application instrumentation. 

Further, it can distribute only at the granularity of COM components, which have been 

explicitly created with support for remote accessibility.  

3.5.8 JavaSymphony 

JavaSymphony [77-79] provides Java libraries to help programmers create 

distributed applications with particular emphasis on parallel tasks. JavaSymphony does 

not attempt to hide the distributed nature of applications from programmers. Instead, it 

allows programmers to specify the resource requirements for applications in abstract 

terms and employs system profiling to match the resources that are available at run-time 

to those specified. 

The JavaSymphony run-time executes on all machines in the distributed system 

and performs profiling of metrics such as CPU load or available memory. When creating 

a distributed application, the programmer defines the architecture in which the application 

must run in abstract terms using constraints based on the profiled metrics. For example, 

programmers may specify that the application runs on machines with at least 128MB of 

free memory and a processor with no more than 50% load. When the application is run, 

JavaSymphony distributes it over the sub-set of the available machines that best reflects 

the abstract architecture defined by the programmer. 

JavaSymphony allows programmers to make instances of any class accessible 

remotely using JSObjects. JSObjects adopt the active object pattern [80] in which each 

object has its own unique thread. All method calls on an object are queued and executed 

serially by the same thread. JavaSymphony extends this model by permitting concurrency 
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and providing thread pooling to reduce the overhead inherent in a strict one-to-one 

correspondence between threads and objects. 

Programmers can introduce support for remote access to arbitrary application 

classes, providing the classes are instantiated using JavaSymphony factory methods. 

When using one of these factory methods, programmers specify an application class and a 

series of constraints. The JavaSymphony infrastructure creates an instance of the 

specified class on a machine that meets these constraints then wraps it in a JSObject. A 

remote reference to the JSObject, not the application object, is returned to the client 

application. 

JavaSymphony does not offer the usual abstraction of proxies and so programmers 

must explicitly call a remote invocation method provided by JSObjects, supplying method 

names and arguments. This invocation method propagates the remote method call across 

the network. JSObjects cannot be passed as arguments to remote methods and so all 

method arguments are passed by-value. JavaSymphony does not provide DOM 

functionality that can be used to preserve local by-reference calling semantics, making it 

is unsuitable for the introduction of distribution into existing applications. 

JavaSymphony implements both persistence and migration but without concern 

for referential integrity. When an object is serialized for persistent storage or for 

migration, the object’s closure is serialized. Programmers must ensure that references to 

any objects within the closures are updated appropriately. 

JavaSymphony is primarily aimed at tasks for which local application semantics 

need not be preserved. It does not hide the fact that the application is distributed. Instead 

it attempts to make inter-address-space communication explicit, though with minimal 

programmer effort. 

3.5.9 ProActive 

ProActive [81] is a Java library that provides tools for the creation of distributed 

applications using Java RMI or the Java Message Service (JMS) [4] as the underlying 

transport protocol. Remotely accessible objects in ProActive adopt the active object 

pattern. Each remotely accessible application object is wrapped and accessed only via this 

wrapper. Method calls are queued by the wrapper and there is a thread per active object 

that executes the calls serially. Concurrent execution of methods on active objects is not 

permitted.  
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Remotely accessible objects are known as active objects while non-remotely-

accessible objects are known as passive objects. Objects may only be activated if they are 

instances of non-final classes that support serialization. The programmer must ensure 

manually that no two active objects reference a single shared passive object and that all 

passive objects support serialization. If these rules are not adhered to, threading and 

migration semantics become inconsistent. Remote method calls may only be performed 

on active objects and, since passive objects may not be shared, only active objects may be 

passed as arguments. ProActive is aimed at applications in which active objects are 

coarse-grained application components rather than individual programming language 

objects. 

Proxy classes in ProActive are sub-classes of the original application classes with 

which they are associated (hence the requirement that classes are non-final) and so a 

client can treat a proxy object as if it were an instance of the same class as the 

corresponding remote object. In this way, ProActive avoids one of the main limitations of 

Java RMI, which is that interface references must be used when referring to objects that 

support remote access.  

ProActive permits migration of active objects but relies on Java serialization, so 

all active objects and the objects in their closures must support serialization. When an 

active object migrates to a new address-space, its wrapper remains in the old one and acts 

as a tombstone. When a client attempts to access an object that has migrated using a 

remote reference that is out-of-date, the remote reference is updated lazily using the 

information in the tombstone. 

By strictly adopting the policy that passive objects may not be shared ProActive 

avoids the difficult problems inherent in preserving referential integrity when performing 

object migration. It further ensures that thread synchronization problems do not result as a 

consequence of the changes made to each application’s threading model. The active 

model allows no concurrent access to any objects, active or passive and so avoids the 

need for standard thread synchronization. 

This approach avoids problems with referential integrity and thread 

synchronization but is inflexible as a result. Programmers must ensure that they adhere to 

the rules and so the semantics of existing applications must be modified to fit the active 

object model. Further, programmers must rely on the thread synchronization provided by 

the active object model. Standard thread synchronization techniques cannot be used in a 

ProActive application without risking unpredictable application behaviour. ProActive has 
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significant overheads because the number of threads required for each application is 

potentially unbounded. There is further overhead in terms of the ancillary objects required 

to implement the active object model, such as the wrappers and associated method calls 

queues. 

3.5.10 FarGo 

FarGo [82-84] is a Java RMI-based DOM that allows programmers to create 

classes with explicit support for migration. Programmers define classes called complets 

and instances of these classes can be referenced remotely or migrated between address-

spaces. The granularity of distribution is at the complet level. 

The mechanism for creating distributed applications in FarGo is similar to that 

employed when using the Do! framework. Classes that support remote access or 

migration must extend special interfaces and a special compiler is used to generate 

versions of these classes that are accessible remotely using Java RMI. 

Programmers define event handler methods that are called when particular system 

events occur, such as migration or JVM shutdown. For example, these methods can 

perform housekeeping tasks then migrate objects to new address-spaces when the local 

JVM terminates. Programmers can also define event handlers using a scripting language 

that supports particular FarGo primitives e.g. move, which causes migration to occur. 

FarGo allows types that represent different migration policies to be imposed onto 

complet references. These policies can control the migration policies applied to both 

referenced objects and reference holders. By altering the types of references dynamically, 

programmers can define migration policies. There are five types of remote reference 

supported by FarGo: 

• Link references ensure referential integrity if the referenced complet migrates. 

• Pull references indicate that if the reference holder migrates to another 

address-space then the referenced complet should follow. 

• Duplicate references indicate that if the reference holder migrates to another 

address-space then a copy of the referenced complet should follow. 

• Stamp references indicate that if the reference holder migrates to another 

address-space then it should rebind to a complet of the same type as the 

previously referenced complet. This allows complets to rebind to physical 

resources such as disks or displays after migration. 
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• Bi-directional pull references indicate that if either the reference holder or 

referenced complet migrates to another address-space, the other should follow. 

FarGo gives programmers explicit control over the migration. Migration policy is 

defined by converting references in the application into one of the above types 

dynamically. FarGo does not abstract over the distributed nature of applications and 

requires programmers to construct classes with explicit support for remote access. It does 

not consider initial complet placement policy, which renders its approach to policy 

specification inappropriate for use with middleware systems that do not support 

migration. Control over the initial placement policy is useful even in systems supporting 

migration, as migration has non-zero cost. It is preferable to avoid unnecessary migration 

operations by instantiating objects in suitable locations, rather than migrating them as 

required. 

3.6 Limitations of Existing Middleware Systems 

This chapter has described both first generation and second generation 

middleware systems. As described in Chapter 1, there are five main problems inherent in 

first generation middleware systems, namely: 

1. Design decisions must be made early in the design process. 

2. Applications are inflexible to dynamic changes in their distribution.  

3. Middleware systems are complex and error-prone. 

4. An unnatural encoding of application-level semantics may be forced.  

5. Programmers have little control over distribution policies. 

The described second generation systems each tackle some of the problems, 

though none circumvents them all. Each limitation is now examined in turn to explain 

how it is manifested in the systems that exhibit it, and to address the reasons why it 

presents a problem to programmers. Table 3.1 relates these five problems to the described 

middleware systems and shows whether each system offers a full solution, partial solution 

or no solution to each of the problems. 
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Middleware 
System 

Forcing 
Early Design 

Decisions 

Brittleness 
with Respect 

to Change 
Complexity 

Distorted 
Application 

Level 
Semantics 

Support For 
Placement 

Policy 

Sun-RPC 8 8 8 8 8 

XML-RPC 8 8 8 8 8 

Web Services 8 8 8 8 8 

JBoss Remoting 8 8 9 8 8 

CORBA 8 8 8 8 8 

Java RMI 8 8 8 8 8 

DCOM 8 8 8 8 8 

.NET Remoting 8 8 8 8 8 

Emerald 9 9 9 9 8 

JavaParty 8 9 9 8 ! 

J-Orchestra 9 9 9 ! ! 

Do! 8 8 9 8 ! 

Pangaea 9 9 9 ! ! 

XRMI ! 9 8 8 8 

Coign 9 8 9 ! 9 

JavaSymphony 9 ! ! 8 9 

ProActive ! 9 ! 8 8 

FarGo ! 9 ! 8 9 

 9 The system offers a solution to this problem 

 8 The system offers no solution to this problem 

 ! The system offers a partial solution to this problem 

Table 3.1: The problems exhibited by existing middleware systems. 

The problems are now each examined in more detail in the context of the systems 

described in this chapter. 

3.6.1 Forcing Early Design Decisions 

Only instances of classes that support remote access may be separated into 

different address-spaces from their reference holders, constraining the ways in which 

applications can be distributed. To change an application’s distribution, programmers 

may be forced to introduce support for distribution into classes without it and vice versa. 

Programmers must determine whether the additional application complexity inherent in 
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unnecessarily supporting remote access outweighs the cost of removing it in terms of 

programmer effort. 

First generation middleware systems require programmers to decide which classes 

will support remote access at application design-time. Programmers must specify the 

interfaces between distribution boundaries. Only the application classes that implement 

these interfaces can be accessed remotely. This support is hard-coded at the source level 

and so changes to an application’s distribution may result in source-level changes. 

Programmers must know enough about how application objects will be distributed at run-

time to be able to determine which application classes need to support remote access. 

CORBA tackles this problem by providing a dynamic invocation mechanism that allows 

programmers to create invocation requests explicitly. This mechanism can be used to 

expose objects to remote access without static type information but forces programmers 

to implement middleware level functionality at the application level. 

Without the ability to expose objects to remote access dynamically, application 

distribution is inflexible. It is not possible to introduce support for remote access into 

every application class using existing systems because of the semantic restrictions placed 

on remote classes. For instance, application classes cannot pass remote references to 

instances of pre-defined library classes that do not support remote access.  

The second generation systems that employ custom compilers, such as JavaParty 

[62] and Do! [67], still force programmers to make early design decisions. These systems 

simplify the process of creating distributed applications through automated generation of 

distribution-related code but it is the programmers that must determine which classes will 

support remote access. 

Tools such as J-Orchestra [65] and Pangaea [70] are designed to transform a 

single non-distributed application into a distributed version that pushes itself out into the 

distributed system at run-time. They perform static code analysis and code 

transformations to help programmers choose suitable distributions. The distributed 

version of an application is generated automatically and in this respect these systems 

tackle this middleware system limitation. However, both transform only local applications 

and are unsuitable tools for the creation of general distributed applications because 

programmers cannot include multiple entry points.  

Using these systems, programmers define initial application distributions using the 

provided tools. Both systems support changes to application distribution using migration, 

however it is not possible to migrate arbitrary application objects. If fundamental changes 



Chapter 3: Related Work 

61 

are made to application distributions then the applications must be re-transformed, 

limiting the effectiveness of these systems in dynamically changing applications. 

ProActive [81] and JavaSymphony [77] allow programmers to expose objects to 

remote access dynamically. However, both adopt the active object [80] model which 

associates a thread with each remotely accessible application object. The conversion of 

existing application objects into active objects alters the threading semantics of the 

application. Further, active objects may not have shared access to any non-active objects. 

Programmers may need to alter the structure of the application to ensure that this strict 

separation of active object closures is preserved. 

3.6.2 Brittleness with Respect to Dynamic Change 

In addition to forcing decisions early in the design process, which results in static 

inflexibility to change, distributed applications created using existing middleware systems 

also exhibit brittleness with respect to dynamic change. Brittleness and inflexibility to 

change occurs in middleware systems that do not support object migration. None of the 

first generation middleware systems are capable of migrating objects between address-

spaces and so objects are fixed in the address-spaces in which they are instantiated. This 

hinders the adaptability of applications to changing execution environments, for example, 

objects on heavily loaded machines cannot migrate to other machines. It also has 

implications for long running systems because applications cannot be re-distributed as 

machines join and leave the distributed system. Several of the second generation systems 

provide object migration mechanisms, including JavaParty [62], J-Orchestra [65], 

ProActive [81], JavaSymphony [77], FarGo [82] and Pangaea [70].  

3.6.3 Complexity 

The creation of distributed applications using first generation middleware systems 

can be a difficult and error-prone task due to the complexity of these systems. 

Programmers using first generation middleware systems (CORBA [8], Java RMI [9], 

Microsoft COM [32] and Microsoft .NET remoting [10]) must ensure that the application 

classes supporting remote access adhere to particular semantic rules. These rules are 

specific to the middleware system in use. For instance, Java RMI forces application 

classes to implement certain interfaces, places restrictions on the types that may be used 

in method signatures and forces programmers to handle distribution-related error 

conditions explicitly. CORBA and COM require that programmers define IDL interfaces 
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and implement ancillary classes. Microsoft .NET remoting forces application classes to 

extend certain base classes. The Observer/Observable example described previously in 

the context of Java RMI illustrates the problems that result from these restrictions. 

Configuration of the middleware system can be a complex process as 

programmers must ensure that all aspects of the infrastructure are running, that remotely 

accessible objects are registered and that necessary application code has been distributed 

to all address-spaces or made accessible through a centralized code repository. Some first 

generation systems, such as CORBA [8], Microsoft COM [32] and Web Services [46], do 

not generate ancillary distribution-related code such as skeletons and proxy classes 

automatically. They provide tools that programmers must employ to generate ancillary 

code for the required classes. Programmers must either distribute code among all address-

spaces or must configure the code distribution infrastructure explicitly. Several additional 

steps, and consequently potential points of failure, are introduced into the software 

development process.  

The complexity inherent in creating and configuring distributed applications using 

first generation systems is addressed by many of the second generation systems. Systems 

such as JavaParty [62], J-Orchestra [65] and Pangaea [70] employ customized compilers 

or code transformation techniques to generate the distribution-related code automatically. 

3.6.4 Distorted Application Level Semantics 

The semantic limitations forced on application classes in order to support 

distribution affect application semantics. Inheritance relationships between classes are 

affected and it is difficult to make application classes remotely accessible if their super-

classes do not meet the necessary requirements. This causes an unnatural or inappropriate 

encoding of application semantics because classes are forced to support remote access for 

the benefit of their sub-classes, entangling application logic and distribution. This is 

particularly a problem for application classes that need to extend pre-compiled classes 

without support for remote access. 

First generation middleware systems decide statically which parameter-passing 

semantics should be applied when remote methods are called. In Java RMI [9], only 

classes that implement the java.rmi.Remote interface and handle network related errors 

explicitly in application logic can be exposed to remote access or passed by-reference. All 

other objects that are passed as arguments or return values to remote methods must be 

instances of classes that implement the Serializable interface. Parameter-passing 
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semantics are affected by static design level decisions and are tightly coupled with 

application distribution. 

Microsoft .NET remoting [45] adopts semantics that are similar to Java RMI. 

Instances of classes that extend the MarshalByRefObject class are passed by-reference 

and all other objects that are passed to remote methods must be instances of Serializable 

classes. The .NET remoting framework incrementally improves on Java RMI by applying 

these semantics consistently to objects. However, parameter-passing semantics are still 

fixed statically and are dependent on the distribution of the application. 

In CORBA and COM, arguments are marked in IDL with the passing semantics to 

be applied. Further, CORBA component classes are defined statically as either pass-by-

reference or pass-by-value. CORBA and COM allow only components and data structures 

that have been explicitly described to be passed across address-space boundaries. Web 

Services and other RPC systems allow pass-by-value semantics and permit only objects 

of pre-determined types to be passed. 

Several of the second generation middleware systems build on Java RMI, namely 

JavaParty, J-Orchestra, Do! and ProActive. However, these second generation systems 

strive to preserve local Java method calling semantics and so fix parameter-passing 

semantics statically.  

In general, reusability and application semantics are restricted for the following 

reasons: 

• Some systems allow no programmer control over parameter-passing 

semantics at all. 

Systems that allow no control over passing semantics lack flexibility as 

programmers cannot employ the most suitable parameter-passing mechanisms 

on a per-application basis. With control over passing semantics, programmers 

can manage the trade-offs between different parameter-passing mechanisms to 

reduce network traffic, introduce resiliency or permit caching. 

• When programmers can decide parameter-passing semantics, they cannot do 

so dynamically. 

Application programmers have limited dynamic control over inter-address-

space parameter-passing semantics. Within a single application, it may be 

required that objects are transmitted by-value or by-reference depending on 

the circumstances and in most existing middleware systems this would require 
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that different classes be created. Complexity is introduced into applications 

due to the limitations of the middleware system.  

• The parameter-passing semantics and application distribution are tightly 

bound. 

The parameter-passing semantics and application distribution are tightly 

coupled. Reuse of large-grained components, composed of instances of 

multiple classes, is hindered because concrete class implementations must be 

developed in the context of some planned deployment environment. Various 

physical considerations dictate the nature of the implementation, such as the 

available computational resources, network connectivity, latency or 

bandwidth. These considerations influence the implementation of classes 

limiting reuse [85]. For example, in a poorly connected environment, it may 

be appropriate that pass-by-value semantics are adopted in order that the 

called methods can continue to perform computation over arguments, even if 

the network connection to the caller is lost transiently. Conversely, in a well-

connected environment, it may be appropriate to adopt pass-by-reference 

semantics to allow shared access to arguments and ensure coherency. 

3.6.5 Lack of Support for Object Placement Policy 

Some of the second generation middleware systems support the creation of objects 

in remote address-spaces or the migration of objects between address-spaces. Each 

system provides a mechanism to define the distribution policy that controls these 

operations. Some of the systems that support this functionality, e.g. ProActive [81], defer 

these policy decisions to the programmers, who trigger object migration directly. Others, 

e.g. Coign [73], Pangaea [70], J-Orchestra [65], FarGo [82] and JavaSymphony [77], 

provide a policy mechanism that allows control over object placement. 

Coign makes extensive use of instrumentation and component classification to re-

distribute client/server COM applications. The component classification schemes in 

Coign [73] classify components before they are created. Coign then performs component 

placement based on this classification, providing completely automated distribution of 

applications based on profiling. However, it does not allow programmers to exploit the 

classification schemes to distribute applications into more than two address-spaces or to 

define placement policies directly. Further, it does not support migration or the definition 

of migration policy. 
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Pangaea and J-Orchestra both perform static analysis of applications and allow 

placement policies to be associated with constructor calls in source code. This allows 

specification of policies at a finer granularity than class though the placement policies 

that can be associated with each constructor call are basic. Objects can be placed in a 

particular address-space or can be distributed among a group of address-spaces in a 

round-robin manner. This approach to policy specification cannot be reused as a general 

mechanism because it is tightly bound to the capabilities of these systems, i.e. policies 

may only be associated with constructor calls. It provides no scope for alternative 

approaches to imposing object identity, such as Coign-style classification. 

FarGo allows programmers to associate migration policies with references. 

References are associated with policy information describing how the referenced objects 

behave when migration occurs. FarGo allows dynamic control over aspects of migration 

policy but only pre-defined migration policies can be used. FarGo’s approach to object 

placement policy does not consider initial object placement, limiting its reusability. 

JavaSymphony allows programmers to define constraints when performing remote 

object instantiation. These constraints can be considered an object placement policy as 

they define metrics that the target address-space of the instantiation must meet. 

Without the separation of distribution policy from implementation, programmers 

cannot re-distribute existing applications without altering the application classes 

themselves and must re-implement placement policy on a per-application basis. None of 

the existing systems provides a flexible mechanism for the specification of placement 

policy. 

3.6.6 JChord Case Study 

The JChord case study described in the previous chapter has a number of 

requirements that render current systems inappropriate for its implementation, namely: 

• JChord was initially developed as a local application. 

• JChord must adapt to changing requirements. 

The semantic limitations placed by current systems on classes that support 

remote access would force design level changes to the JChord application in 

order to introduce distribution. Application logic would be affected, risking 

the addition of errors into a tested and stable application. Further, the 

inflexibility to change inherent in existing systems would not permit JChord to 
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adapt to changing research goals in the required manner without extensive re-

engineering. 

Systems such as J-Orchestra and Pangaea that transform existing applications 

into distributed versions do not provide sufficient flexibility. The distributed 

version of JChord has multiple entry points and exposes certain aspects of its 

distribution to programmer control. 

• Each JChord node presents a multiplicity of interfaces to clients. 

Current systems permit exposed objects to implement multiple interfaces 

statically. It may be necessary to make changes to application source in order 

to present particular interfaces to clients, making it difficult to expose 

instances of pre-compiled classes with the desired interfaces. 

• References to remote JChord nodes must cache some of the state of the remote 

nodes locally for efficiency and for use during failure, to identify the failed 

nodes. 

None of the systems described above provide support for smart proxies. 

• It must be possible to create nodes on remote machines to automate ring 

deployment. 

None of the first generation systems provide support for remote object 

instantiation, though several of the second generation systems do, including 

JavaSymphony, ProActive and Do!. 

• The Data Store point-of-presence needs to alter parameter-passing semantics 

dynamically when accessing the individual Data Store objects. 

None of the described systems permit dynamic control over parameter-passing 

semantics meaning that it is difficult to implement the Data Store in the 

desired manner using these systems. Some systems provide no control at all 

over these semantics or decide them as a consequence of application 

distribution. 

• It must be possible to migrate objects that are remotely referenced by Data 

Store objects from one address-space to another. 

Migration is supported by several second generation systems, though always 

with restrictions. JavaParty [62], and therefore also Pangaea [70], do not 

ensure referential integrity throughout the closure of the migratory objects. J-

Orchestra [65] permits only transformed objects to migrate. FarGo [82] allows 
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only complets created with explicit support for migration to be moved. 

ProActive [81] and JavaSymphony [77] permit migration though force 

applications to adopt the active object model which does not permit shared 

access to non-active objects. 

• Distribution policies to control the deployment of JChord ring nodes and the 

migration of stored objects must be defined. 

In the systems that support remote object instantiation and migration, policies 

to control distribution are inflexible and non-adaptive. 

3.7 Conclusion 

This chapter has investigated and evaluated current middleware systems, 

describing first generation and second generation systems. All of these systems exhibit 

limitations, indicating the need for a third generation middleware system that provides 

flexibility throughout the creation, maintenance and evolution of distributed applications. 
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This chapter builds on the work in previous chapters to define the 

requirements of a third generation middleware system that allows 

programmers to create flexible distributed applications. 
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4.1 Introduction to Chapter 4 

This thesis describes the design and implementation of a third generation 

middleware system that aids the creation, maintenance and evolution of distributed 

applications. This system will separate functional and non-functional considerations, and 

hide the complexity of distribution where appropriate. Applications will be flexible with 

respect to change and programmers will be able to control both parameter-passing 

semantics and object placement dynamically. 

This chapter defines the requirements that a third generation system must meet, 

based on the taxonomy of existing systems defined in the previous chapter. This 

combination of requirements is unique to a third generation system, though several of the 

individual requirements are not. The chapter concludes by showing how such a third 

generation middleware system meets the requirements of the JChord case study described 

in Chapter 2. 

4.2 Requirements 

There are twenty requirements in total, which have been divided in four sub-

groups, as indicated by the following four sub-sections. 

4.2.1 Server-Side Functionality 

A third generation system must abstract over the complexity inherent in 

distributed application creation and the configuration of the underlying infrastructure. 

Programmers must not be required to create distribution-related ancillary code so the 

creation of such code should be automated and hidden from the programmer. To avoid 

the overhead of superfluous code, ancillary code must only be generated for classes that 

require support for remote access. 

Requirement 1: All the ancillary code required to perform inter-address-space 

communication, namely proxy classes, skeletons, serializers and deserializers, must be 

created automatically.  

 

To allow application logic to be separated from the non-functional considerations 

of distribution, it must be possible to expose instances of arbitrary classes to remote 

access. Programmers must not be forced to decide statically which classes of object will 

participate in inter-address-space communication.  
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Changes to application requirements may force classes that are not remotely 

accessible to become so or vice versa. Programmers must not be forced to re-engineer 

classes in either case. Since source code may not be available for all application classes, it 

must be possible to expose pre-compiled classes to remote access, thus promoting code 

reuse. 

Requirement 2: It must be possible to expose instances of arbitrary classes to remote 

access without modifications to their source code. 

 

It must be possible to control which particular objects are remotely accessible 

dynamically in order that objects can be exposed to remote access at any time. 

Requirement 3: It must be possible to expose objects to remote access dynamically. 

 

It must be possible to control which of the methods provided by application 

classes are remotely accessible. Different objects of the same class must be able to expose 

different subsets of the available methods. A single object must be able to expose 

different sets of methods to different remote clients, allowing the clients to have multiple 

views over the object. 

Requirement 4: It must possible to control which methods are accessible remotely on a 

per-object basis, allowing remote clients to have multiple views over a single object. 

 

Programmers must be able to retain the access semantics of non-distributed 

applications after distribution is introduced. It must be possible to control whether the 

local protection semantics provided by the implementation language (such as the public, 

protected, private and default modifiers in Java) are preserved when remote methods are 

called.  

Requirement 5: The local protection mechanisms of the implementation language must 

be preserved. 

 

Since the exposure of arbitrary objects to remote access can result in the 

transmission of arbitrary objects as arguments or return values, it must be possible to pass 

instances of any class across address-space boundaries by-value. Further, since the cost of 

remote method calls is many magnitudes greater than the cost of local method calls, 

support for pass-by-value semantics allows programmers to avoid the cost of unnecessary 

inter-address-space communication. 
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Requirement 6: It must be possible to pass any objects by-value as arguments or return 

values to remote method calls. 

 

Since arbitrary objects can be passed by-value, the middleware infrastructure in a 

given address-space may receive serialized instances of unknown classes from other 

address-spaces. The middleware system must be able to obtain and load the appropriate 

classes dynamically from a code repository. The code repository should be scalable and 

exhibit resilience to failure. 

Requirement 7: A scalable resilient code distribution scheme must be provided. 

4.2.2 Client-Side Functionality 

It must be possible to call methods directly on remote references and to pass them 

as arguments and return values. Reference equality semantics should also be preserved. 

The middleware system must provide a remote reference scheme that permits references 

to remotely accessible object to be used interchangeably with local references.  

Requirement 8: It must be possible to hold remote references to arbitrary objects and 

to treat local and remote references in the same manner. 

 

The middleware system must provide a name service that allows programmers to 

assign names to remotely accessible objects. The middleware system must associate 

automatically generated names with remotely accessible objects if none are provided by 

the programmers. 

Requirement 9: It must be possible to associate names with remotely accessible 

objects, either implicitly or explicitly, and to obtain remote references to objects based on 

those names. 

 

To allow programmers to retain non-distributed application semantics in 

distributed applications, it must be possible to preserve pass-by-reference semantics 

across address-space boundaries if desired.  

Requirement 10: It must be possible to pass any objects by-reference as arguments or 

return values to remote method calls. 

 

Static members do not exhibit the same semantics as instance members and so it 

must be possible to preserve the static semantics found in non-distributed applications. 
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Programmers must be able to decide whether to preserve non-distributed static semantics 

on a per-application basis. 

Requirement 11: It must be possible to control the semantics of static members on a per-

application basis and to preserve non-distributed static semantics in distributed 

applications if required. 

 

The addition of inter-address-space communication into applications unavoidably 

introduces new failure modes related to network errors. The middleware must provide a 

failure model that handles errors in a consistent manner and allows programmers to 

specify whether distribution-related errors should be propagated back into applications. In 

the event of distribution-related errors, the middleware system must offer the 

programmers a choice between fast-failure and continued execution on a best-effort basis. 

Requirement 12: The programmer must be able to control whether distribution-related 

failures are propagated to the application or handled internally by the middleware 

system. 

 

It is desirable that remotely accessible application objects are local to the 

reference holders that make greatest use of them, so that the cost of remote method calls 

is not incurred more often than necessary. A mechanism that permits the instantiation of 

objects in remote address-spaces ensures that application objects can be grouped into 

address-spaces according to the needs of the application, rather than based on the initial 

application distribution. 

Requirement 13: It must be possible to instantiate objects directly in remote address-

spaces. 

 

Support for object migration allows applications to adapt to dynamically changing 

execution environments by reconfiguring their distributions.  

Requirement 14: It must be possible to perform the migration of objects from one 

address-space to another without loss of application consistency. 

4.2.3 Controlling Transmission Policy 

The middleware system must allow control over the parameter-passing semantics 

employed when remote methods are called. A framework that allows programmers to 

define parameter-passing semantics both statically and dynamically must be provided. 
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Requirement 15: It must be possible to control parameter-passing semantics 

dynamically. 

 

Parameter-passing semantics should not be restricted to pass-by-reference or pass-

by-value only, as these two mechanisms represent two ends of a spectrum. Remote 

references must be able to cache fields and methods of objects locally, in order that the 

objects can be passed partially by-value and partially by-reference. When reference 

holders access cached fields or methods, then no remote method calls take place and the 

cached copies are used instead. 

Requirement 16: Remote references must be capable of caching fields and methods 

locally. 

4.2.4 Controlling Distribution Policy 

With the provision of remote instantiation and object migration, it must be 

possible to control the object placement policies applied when these operations are 

performed.  

Requirement 17: It must be possible to create policies to control the placement of 

objects when instantiation and migration operations are performed. 

 

Applications must be able to delegate to the policy framework when they require 

object placement decisions to be made. The creation of application logic can therefore be 

separated from the determination of application distribution. To allow programmers to 

focus on creating application logic, the mechanisms providing control over object 

placement policy must allow the separation of functional and distribution-related 

concerns. 

Requirement 18: It must be possible to define object placement policies independently of 

application logic. 

 

It must be possible to construct new placement policies from existing policies by 

reusing and recombining aspects of those policies. Reuse of existing policies can simplify 

the policy creation and testing process. It must be possible to create policies of arbitrary 

complexity. 

Requirement 19: It must be possible to define arbitrarily complex object placement 

policies in terms of reusable policy components. 
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Policies must be able to use information about the application context in which the 

instantiation and migration operations are performed to aid policy decisions. This permits, 

for example, placement policies to be decided using profiling tools external to the 

middleware system, which can measure system profiling metrics (such as CPU load or 

free memory) or application profiling metrics (such as the number of method calls 

performed on particular objects). 

Requirement 20: It must be possible for policies to use application context to aid policy 

decisions. 

4.3 Meeting the Requirements of JChord 

The previous chapter showed that existing systems were unsuited to the 

implementation of the JChord and Data Store applications. The requirements of the case 

study are re-examined here to show that a third generation system meeting these 

requirements is a more suitable choice of implementation platform. 

• JChord was initially developed as a local application. 

By allowing instances of arbitrary classes to be exposed to remote access and 

by supporting remote references, distribution can be introduced with minimal 

changes to application logic. This reduces the likelihood of new errors in 

application logic. The adaptive failure model allows the distributed JChord 

application to be developed without concern for distribution-related failure. 

Explicit error handling code can be introduced later, as required.  

• JChord must adapt to changing requirements. 

By exhibiting flexibility to static changes in the application distribution, the 

third generation middleware system allows JChord, in its remit as a research 

tool, to adapt easily to modifications in application requirements caused by 

changes in research direction.  

• Each JChord node presents a multiplicity of interfaces to clients. 

The object-oriented principles of encapsulation can be preserved as the set of 

methods that each node exposes to remote clients can be controlled and the 

local protection semantics of the original JChord application retained.  

• References to remote JChord nodes must cache some of the state of the remote 

nodes locally for efficiency and for use during failure, to identify the failed 

nodes. 
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Control over parameter-passing semantics and support for smart proxies, 

allows JChord to replicate ring state, pass immutable objects by-value and 

cache immutable state in remote references. 

• It must be possible to create nodes on remote machines to automate ring 

deployment. 

This functionality is provided by any system that meets the above 

requirements. 

• The Data Store point-of-presence needs to alter parameter-passing semantics 

dynamically when accessing the individual Data Store objects. 

A system meeting these requirements permits flexibility in parameter-passing 

mechanisms and allows dynamic control over them. This dynamic flexibility 

allows objects to be stored both by-reference and by-value. 

• It must be possible to migrate objects that are remotely referenced by Data 

Store objects from one address-space to another. 

This functionality is provided by any system that meets the above 

requirements. 

• Distribution policies to control the deployment of JChord ring nodes and the 

migration of stored objects must be defined. 

The control permitted over distribution policies allows the deployment of 

JChord rings according to flexible policies that are separated from the 

application logic. 

4.4 Conclusion 

This chapter has stated the requirements that must be fulfilled by the third 

generation middleware system that is designed and implemented in this thesis. These 

requirements define the functionality that the system must provide in order to aid the 

creation, maintenance and evolution of distributed applications. Complexity is hidden 

where appropriate yet the system allows programmers fine-grained dynamic control over 

the parameter-passing semantics employed when remote methods are called and the 

placement of objects in the distributed systems. 

The remainder of the thesis is structured as follows. Chapter 5 describes the 

design of a middleware system that meets these requirements and provides qualitative 

evaluation of this system. Chapter 6 examines the implementation details of this third 
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generation middleware system and provides quantitative evaluation of this 

implementation. Chapter 7 concludes the thesis by summarizing and evaluating the 

contribution of the described research. 
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This chapter describes the design of the RAFDA Run-Time (RRT), a 

reflective third generation middleware system that permits application 

logic to be designed and implemented completely independently of 

distribution-related concerns. This simplifies the software engineering 

process to aid the creation, maintenance and evolution of distributed 

applications. 
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5.1 Introduction to Chapter 5 

The RAFDA Run-Time (RRT) is a middleware system that meets the 

requirements identified in the previous chapter. The RRT conceals inter-address-space 

communication by default but allows programmers to expose and control all aspects of 

middleware behaviour. The RRT provides programmers with flexible control over its 

behaviour and can be used for quick application prototyping or to create fully featured 

distributed applications. 

Throughout this chapter, the functionality provided by the RRT is illustrated using 

the JChord case study, to demonstrate the benefits of the RRT over traditional approaches 

to middleware. This chapter contains code examples that illustrate the use of the RRT. 

These code examples are all written in Java, although the RRT does not take advantage of 

any features unique to Java and the techniques described here are applicable in other 

languages. The RRT can be downloaded from http://www-systems.dcs.st-and.ac.uk/ 

rafda/rrt.html. 

5.2 Overview of the RRT  

The RRT permits arbitrary application objects to be exposed to remote access 

through standard Web Services [46]. The RRT provides: 

• Full DOM functionality to RRT-based clients, making it a suitable tool for the 

creation of new distributed applications and for the introduction of distribution 

into existing non-distributed applications. 

• RPC functionality to clients using other Web Services technologies, allowing 

programmers to provide service-oriented functionality that supports 

conventional Web Services calling semantics. 

The RRT allows specific application objects to be exposed via Web Services. 

Programmers need not decide statically which application classes support remote access. 

Instances of any classes from any applications, including previously compiled classes and 

those with native members, can be exposed to remote access as Web Services without the 

need to access or alter source code. Using the RRT, programmers can adopt a 

methodology for developing and deploying distributed applications that permits 

application logic to be designed and implemented completely independently of 
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distribution concerns [86]. This eases the development process and permits the alteration 

of distribution decisions late in the development cycle. 

The RRT aids the creation of tools such as debuggers or application probes that 

need to access object state from other address-spaces. For example, programmers can 

introduce remote observers to observable objects or can attach object browsers to 

arbitrary application objects, permitting them to be browsed remotely. 

5.2.1 RRT Infrastructure 

The primary purpose of the RRT is to abstract over the inter-address-space 

communication in distributed applications. This is achieved by allowing instances of 

arbitrary classes to be exposed to remote access and by permitting clients to obtain remote 

references to these exposed objects. 

Applications access the functionality provided by the RRT system by calling 

methods on infrastructure objects called RRT instances. There is an RRT instance in each 

address-space in the distributed system, analogous to a CORBA ORB. Each RRT instance 

provides three interfaces to application programmers. The first, called IRafdaRunTime, 

provides server-side operations to application objects collocated with the RRT instance, 

allowing programmers to expose objects or access frameworks that control transmission 

policy and distribution policy. The second, called IRafdaRunTimeRemote, provides client-

side functionality to application objects that are remote with respect to the RRT instance, 

allowing programmers to obtain remote references to existing objects or to perform object 

migration. The third, called IRafdaRunTimeConfig, is used to control the behaviour of an 

RRT instance. 

Figure 5.1 shows the RRT instances present in two address-spaces. The large 

circles represent objects in the distributed application. Each RRT instance is represented 

by a shaded box with the IRafdaRunTime, IRafdaRunTimeRemote and IRafdaRunTime-

Config interfaces shown. Each RRT instance is accessible locally via the IRafdaRunTime 

and IRafdaRunTimeConfig interfaces and remotely via the IRafdaRunTimeRemote 

interface. 
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Figure 5.1: RRT instances exposing different interfaces to local and remote objects. 

Figure 5.2 shows a subset of the functionality provided by the IRafdaRunTime 

interface. The expose() method is used to expose an object to remote access as a Web 

Service. The remote type argument is used to control which of the methods provided by 

the object will be remotely accessible. Remote types are discussed in detail later. The 

service name argument associates a name with the exposed object that can be used by 

clients to obtain remote references to the object. 

 

public interface IRafdaRunTime { 

void expose(Object objectToExpose,  

Class remoteType,  

String serviceName); 

/* Other IRafdaRunTime methods omitted */ 

} 

 

Figure 5.2: A subset of the IRafdaRunTime interface. 

Figure 5.3 shows a subset of the functionality provided by the 

IRafdaRunTimeRemote interface. The getRemoteReference() method is used to obtain a 

remote reference to an exposed object using its name. 

 

public interface IRafdaRunTimeRemote { 

 Object getRemoteReference(String serviceName); 

/* Other IRafdaRunTimeRemote methods omitted */ 

}

 

Figure 5.3: A subset of the IRafdaRunTimeRemote interface. 

The RRT provides a bootstrapping mechanism that allows programmers to obtain 

references to RRT instances, both local and remote. The RRT class shown in Figure 5.4 

provides this functionality; it is assumed that this RRT class is available in every address-
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space. The get() method returns a reference to the IRafdaRunTime interface of the local 

RRT instance, the getRemote() method returns a remote reference to the 

IRafdaRunTimeRemote interface of the RRT instance connected to the specified socket 

address and the getConfig() method returns a reference to the IRafdaRunTimeConfig 

interface of the local RRT instance. 

 
public class RRT { 

 public static IRafdaRunTime get() {…} 

 public static IRafdaRunTimeRemote getRemote( 

       InetSocketAddress isa) {…} 

 public static IRafdaRunTimeConfig getConfig() {…} 

}

 

Figure 5.4: The RRT class used by applications to obtain references to RRT instances. 

5.2.2 Introducing Distribution into Applications 

This section describes a simple example that illustrates how connectivity between 

address-spaces can be achieved. The JChord case study introduced in Chapter 2 is used 

throughout this chapter to illustrate the functionality provided by the RRT. Figure 5.5 

shows the Chord abstract class, which implements the basic functionality of a Chord node 

implementation and declares several abstract methods that are implemented by a 

particular Chord node implementation. 

 

public abstract class Chord { 

 private Key key = null; 

 public abstract Chord lookup(Key key); 

 public abstract void addNode(Chord node); 

 public abstract Chord getSuccessorNode(); 

 public Key getKey() {return key;} 

 protected void setKey(Key key) {this.key = key;} 

 public void printKeyInfo() { 

  System.out.println("Key = " + key); 

  System.out.println("Successor Key = " + 

   getSuccessorNode().getKey()); 

 }  

} 

 

Figure 5.5: The Chord abstract class. 
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Figure 5.6 shows the JChordNode class, which extends the Chord abstract class. 

The implementation details have been omitted as they are not important in this example. 

The Chord and JChordNode classes were designed to allow non-distributed simulations 

of Chord peer-to-peer networks and have not been written with concern for distribution. 

These classes do not extend any special base classes or implement any special interfaces. 

 

public class JChordNode extends Chord { 

 public JChordNode(Key key) {…} 

 public Chord lookup(Key key) {…} 

 public void addNode(Chord node) {…} 

 public Chord getSuccessorNode() {…} 

 public String getLog() {…} 

 public void stop() {…} 

 public void start() {…} 

public static String getVersion() {…} 

} 

 

Figure 5.6: The JChordNode implementation class. 

An instance of JChordNode can be exposed to remote access as shown in Figure 

5.7. Once an instance of JChordNode has been created, the expose() method provided by 

the local RRT instance is called. In this example, the exposed object’s own class has been 

specified as the remote type, indicating that all methods should be exposed to remote 

access. The object has been exposed using the name “JCNode”. When this application is 

run, the RRT instance binds to the default port (5001) on the local host and exposes the 

JChordNode instance as a Web Service that can be remotely accessed using any Web 

Services technology. 

 

public class JChordServer { 

 public static void main(String[] args) { 

  JChordNode jchordNode = new JChordNode(new Key()); 

IRafdaRunTime rrt = RRT.get(); 

rrt.expose(jchordNode,  

JChordNode.class,  

"JCNode"); 

 } 

}

 

Figure 5.7: Exposing an instance of JChordNode to remote access. 
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In the client-side address-space, an application can obtain a remote reference to 

the exposed object directly from the RRT instance that exposes it. In Figure 5.8, the client 

obtains a remote reference to that RRT instance based on its socket address. It is assumed 

that this RRT instance is running on a machine called “host.rafda.org”, connected to the 

default port (5001). The client calls getRemoteReference() on the remote RRT instance, 

specifying the service name “JCNode”. A remote reference to the exposed object is 

returned, which the client casts into class JChordNode. This remote reference can be used 

as though it were a local reference to a local instance of JChordNode. 

 

public class JChordClient { 

 public static void main(String[] args) throws Exception { 

  InetSocketAddress isa =  

new InetSocketAddress("host.rafda.org", 5001); 

  IRafdaRunTimeRemote remoteRRT = RRT.getRemote(isa); 

  JChordNode node = (JChordNode) remoteRRT. 

getRemoteReference("JCNode"); 

  System.out.println(node.getLog()); 

 } 

} 

 

Figure 5.8: Obtaining and using a remote reference to the exposed JChordNode instance. 

Inter-address-space connectivity has thus been achieved without taking any 

special steps when creating the functional application classes Chord and JChordNode. 

Clients can access remote instances of the JChordNode class in the same manner as local 

instances. Thus, programmers have complete separation of functional concerns from 

those related to application distribution. 

Thus far, only a subset of the functionality provided by the IRafdaRunTime and 

IRafdaRunTimeRemote interfaces has been shown. The following sections describe all the 

features provided by the RRT, both server-side and client-side, to allow programmers 

fine-grained control over application semantics. The functionality provided by the RRT is 

described in the context of the requirements stated in the previous chapter. 

5.3 Server-Side Functionality 

This section describes the server-side functionality of the RRT provided through 

the IRafdaRunTime interface. Using this interface, programmers can expose objects, 

perform migration, access the transmission policy manager that controls parameter-
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passing semantics and access the distribution policy manager that controls object 

placement policy. The complete IRafdaRunTime interface is shown in Figure 5.9. 

 

public interface IRafdaRunTime { 

 /* Exposing objects to remote access */ 

 void expose(Object objectToExpose,  

Class remoteType,  

String serviceName); 

 

 /* Migration */ 

 Object makeMigratable(Object object, Class remoteType); 

 

 /* Automatically exposing objects to remote access */ 

 void associateClassWithRemoteType( 

Class applicationClass,  

Class remoteType); 

 

 /* Policy Managers */ 

 ITransmissionPolicyManager getTransmissionPolicyManager(); 

 IDistributionPolicyManager getDistributionPolicyManager(); 

 

 /* Utility methods */ 

 IRafdaRunTimeRemote getExposingRRT(Object object); 

} 

 

Figure 5.9: The IRafdaRunTime interface. 

The purpose of each of these methods is briefly summarized: 

• The expose() method exposes objects to remote access. 

• The makeMigratable() method converts application objects into functionally 

identical versions with support for object migration. 

• The associateClassWithRemoteType() method controls which methods of a 

particular class are exposed to remote access when automatic exposure is 

performed. This method is described in Section 5.6.5. 

• The getTransmissionPolicyManager() and getDistributionPolicyManager() 

methods allow access to the transmission policy framework and distribution 

policy framework respectively. 

• The getExposingRRT() method is a utility method used to obtain a remote 

reference to the RRT instance that exposes a particular object. 
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This functionality is now examined in more detail in the context of the 

requirements defined in the previous chapter. 

5.3.1 Exposing Objects as Web Services 

Any object in a running application can be exposed at any point in its lifetime. A 

Web Service is created when an object is exposed, and the exposed object is the 

underlying object on which incoming requests to this service are performed.  The 

attachment of a Web Service to an application object occurs transparently from the 

perspective of the application and so does not affect the execution semantics of the 

underlying application. Figure 5.10 shows a conceptual diagram in which an application 

consisting of objects labelled A-E exposes some of those objects as Web Services (objects 

A, B and E). 

 

Figure 5.10: An application with some exposed objects. 

Using standard Web Services has several advantages over a proprietary approach. 

Web Services provide interoperability across programming languages, architectures and 

operating systems. The underlying protocol, SOAP [87], is simple, standard, well 

supported and firewall-friendly (from the perspective of the application programmers). 

Consider the first three requirements of a third generation middleware system as 

defined in the last chapter: 

 

1: All the ancillary code required to perform inter-address-space communication, 

namely proxy classes, skeletons, serializers and deserializers, must be created 

automatically.  

2: It must be possible to expose instances of arbitrary classes to remote access 

without modifications to their source code. 
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3: It must be possible to expose objects to remote access dynamically. 

 

These requirements have been fulfilled by the functionality shown in the 

introductory example.  

5.3.1.1 Remote Types 

In the example shown in Figure 5.7, exposing the JChordNode instance meant 

exposing all of its method to remote access. Programmers need fine-grained control over 

the set of remotely available methods in order to allow information hiding. Further, it is 

often useful to allow a single object to present multiple views to remote clients, much as a 

conventional application class can implement multiple interfaces in order to present 

different encapsulated views over its functionality. The 4th requirement states: 

 

4: It must possible to control which methods are accessible remotely on a per-object 

basis, allowing remote clients to have multiple views over a single object. 

 

Every exposed object is associated, either implicitly or explicitly, with a remote 

type that controls which of its methods may be called remotely. A remote type is the 

distributed equivalent of an interface in a non-distributed application class and is used to 

control method visibility. Remote types provide multiple views over exposed objects to 

remote clients. From the perspective of clients, exposed objects are instances of their 

associated remote types. Different instances of a single class can be exposed with 

different remote types and a single object can be exposed multiple times with different 

remote types. 

The RRT allows an object to be exposed using a particular remote type if and only 

if that remote type is structurally compliant with the exposed object’s class, meaning that 

every method in the remote type has a counterpart with an identical signature in the 

exposed object’s class. Therefore, the remote type associated with an exposed object need 

not be a super-class of the object’s class nor an interface implemented by it. Programmers 

can expose instances of classes without the overhead of source level modifications.  

5.3.1.2 Local Protection Mechanism 

When determining which methods an object exposes to remote access, 

consideration must be given to the local protection mechanisms provided by the 
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implementation language, which control how instances of different classes can interact 

with each other. In Java, this protection is provided by the public, protected, private and 

default modifiers. For instance, in a Java class, public methods may be accessed from 

instances of any other class but private methods may only be accessed by instances of the 

same class. 

If local protection semantics are preserved in a distributed application, the private 

methods of an exposed object must be accessible to remote objects of the same class but 

not to remote objects of other classes. As a consequence, methods cannot be universally 

defined as either accessible or inaccessible remotely. 

The 5th requirement defined in the previous chapter states: 

 

5: The local protection mechanism must be preserved. 

 

When the RRT is used both server-side and client-side, local protection semantics 

are preserved. When an exposed object is accessed from clients using conventional (non-

RRT-based) Web Service technologies, non-public methods may not be called by default. 

Programmers can override this behaviour to allow non-public access by altering the RRT 

configuration via the IRafdaRunTimeConfig interface, described at the end of this chapter. 

By allowing non-public access, programmers can attach debuggers or probes to existing 

applications without restricting which methods can be called.  

5.3.1.3 Exposing Objects 

The expose() method provided by the IRafdaRunTime interface is shown in Figure 

5.11. It takes three arguments: 

• A local reference to the object to be exposed. 

• The remote type, as an instance of java.lang.Class, representing either a 

reified Java interface or a reified Java class.  

• A service name. 

 

void expose(Object objectToExpose,  

Class remoteType,  

String serviceName); 

 

Figure 5.11: The expose() method. 
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The specified object is exposed, with the methods defined in the remote type made 

accessible to remote clients. Methods that the remote type inherits from its super-classes 

or super-interfaces are also exposed to remote access. If a Java class is specified as 

remote type, its method implementations are ignored and the class is treated as an 

interface. If the object to expose is remote with respect to this RRT instance or if the 

specified remote type is not structurally compliant with the object’s class, meaning the 

remote type contains one or more methods for which there are no counterparts of the 

same signature in the object’s class, the RRT throws an IllegalArgumentException. This 

exception is an unchecked exception, meaning that applications calling the expose() 

method need not statically define handlers, though if an unchecked exception occurs and 

is not caught, the RRT instance will immediately terminate. 

The current RRT implementation does not permit remote types to be final classes 

or to contain final methods. Exposure will fail if exposure using such a remote type is 

attempted. The RRT provides a class loader that can be used to change application classes 

and methods such that they are non-final to overcome this limitation. However, the class 

loader cannot transform system classes dynamically, meaning that system classes that are 

final or contain final methods cannot be used as remote types. Implementations of the 

RRT in other languages may not exhibit this problem. A detailed description of the RRT 

prototype implementation is provided in the next chapter. 

The following two figures show an example in which a JChordNode instance 

(Figure 5.6) is exposed three times with different remote types. The three remote types 

used are the Chord abstract class (Figure 5.5), the IMonitor interface (shown in Figure 

5.12) and the IManage interface (also shown in Figure 5.12). The IMonitor interface 

provides methods used to monitor the running peer-to-peer system and the IManage 

interface provides methods used to manage nodes remotely. 

 

public interface IMonitor { 

 String getLog(); 

} 

public interface IManage { 

 void stop(); 

 void start(); 

} 

 

Figure 5.12: The IMonitor and IManage interfaces. 
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The JChordNode class (Figure 5.6) does not implement either of these interfaces, 

though both interfaces are structurally compliant with the JChordNode class. Figure 5.13 

shows an application in which an instance of JChordNode is exposed three times, once 

with each of the interfaces. 

 

public class JChordServer { 

 public static void main(String[] args) { 

  JChordNode jchordNode = new JChordNode(new Key()); 

  IRafdaRunTime rrt = RRT.get(); 

rrt.expose(jchordNode, IManage.class, "Manage"); 

  rrt.expose(jchordNode, IMonitor.class, "Monitor"); 

  rrt.expose(jchordNode, Chord.class, "Chord"); 

 } 

}

 

Figure 5.13: Exposing an instance of JChordNode with multiple remote types. 

Each time the object is exposed, a new Web Service is created. This Web Service 

is accessible via two URLs. One is based on the service name supplied by the 

programmer. However, this service name may subsequently be rebound to another 

service. In order to impose identity on services, a second URL is created for each service 

based on a randomly generated Universally Unique ID (UUID). This UUID-based URL is 

guaranteed to bind to the same Web Service for the service’s lifetime. The service-name-

based URL is an alias to this UUID-based URL. Web Service URLs take the form: 
 

http://<machineName>:<port>/<serviceName or UUID> 

 

For example: 
 

http://host.rafda.org:5001/Manage 

http://host.rafda.org:5001/b9d1052f-83f1-42f3-bf85-72fe6e17b169 

 

The names of the methods provided by a Web Service attached to an object match 

the corresponding Java method names where possible. However, Java allows method 

names to be overloaded but Web Services do not. Figure 5.14 shows an interface that 

contains three methods to perform application profiling. Two methods are called 

startProfiling() and one is called stopProfiling(). The method name “startProfiling” is 

therefore overloaded whereas the method name “stopProfiling” is not. 
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public interface Profiler { 

 void startProfiling(Chord ring, int time); 

 void startProfiling(String profileName); 

 void stopProfiling(String profileName); 

}

 

Figure 5.14: An interface with an overloaded method. 

If an object is exposed with a remote type that contains multiple methods with the 

same name, a naming scheme is employed to ensure that the names of the associated 

methods presented by the Web Service are unique within that service. A unique name for 

each overloaded method is constructed by appending the type signature of the method to 

its Java method name.  

Figure 5.15 shows how the naming scheme is applied to this interface when it is 

used as a remote type. Since the stopProfiling() method is not overloaded, the name of the 

method provided by the Web Service is the same as the Java method name. Unique names 

for the two startProfiling() methods are generated based on their signature types. The $ 

character is reserved in the Java Language Specification [17] for use in automatically 

generated code only. Therefore, the generated method names can be relied upon not to 

clash with existing application method names.  

 

void startProfiling(Chord ring, int time)  

becomes startProfiling$Chord$int 

void startProfiling(String profileName)   

becomes startProfiling$java.lang.String 

void stopProfiling(String profileName)   

remains stopProfiling 

 

Figure 5.15: Naming scheme for overloaded methods. 

5.3.1.4 Limitations 

The RRT does not expose fields to remote access directly. Fields can only be 

remotely accessed via get/set methods. If programmers perform direct field access on 

remote objects, application semantics are unpredictable. However, it is generally 

considered bad software engineering practice to access state in other objects directly, as 

encapsulation is lost. Thus, this limitation is not considered serious. Proposed future work 
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could transform applications dynamically to ensure that all direct field access operations 

are changed into accessor method calls, thereby completely removing this limitation. 

5.3.1.5 Exposed Object Lifetime 

When creating applications using garbage collected languages such as Java, the 

memory used by objects is reclaimed when those objects are no longer referenced directly 

or indirectly from the running application [78]. Once objects are exposed to remote 

access, they may at some time be referenced only remotely from outwith their local 

address-spaces. The local garbage collector in each address-space cannot detect these 

remote references and so may collect the objects. The RRT infrastructure can hold local 

references to exposed objects in order to prevent their collection. The RRT offers three 

approaches to controlling the lifetime of exposed objects: 

1. Always allow the local collector to collect exposed objects when they are no 

longer referenced locally, even if remotely referenced. 

2. Allow the local collector to collect exposed objects that have not been 

remotely accessed within a particular lease time. 

3. Never allow the local collector to collect exposed objects. 

These three approaches allow programmers to trade off safety for completeness in 

garbage collection terms. Programmers determine which approach is adopted on a per-

RRT-instance basis via the IRafdaRunTimeConfig interface.  

The first approach is complete but unsafe as it allows objects to be collected while 

still remotely referenced. It is particularly suitable for applications like probes or 

debuggers in which clients do not wish to hold references to objects once they are no 

longer live within the application. When exposed objects are collected, the Web Services 

associated with these objects are shut down. Extant remote references to collected objects 

become invalid. Any attempts to perform remote method calls on these references will 

fail. 

The second approach is particularly suitable when the RRT is employed as a 

traditional DOM as it allows the system to perform lease-based distributed garbage 

collection [88]. It is assumed that any objects that are not remotely accessed within a 

programmer-defined lease time are not remotely referenced and so may be collected. It 

balances completeness and safety by ensuring that any objects that are frequently 

accessed remain live in the distributed applications, even if they are not referenced 

locally. Programmers can increase the lease time to decrease the risk that remotely 
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referenced application objects will be collected with the increased risk that the available 

memory will fill with garbage objects that cannot be collected because they hold valid 

leases. 

The third approach is safe but not complete. Exposed objects will never be 

collected until they are removed from remote access manually. This approach is 

particularly suitable when the RRT is used as a conventional application container 

providing services to remote clients. In this case the availability of services is the primary 

concern and services must remain live even if not accessed for long periods. 

5.3.1.6 Accessing the RRT via a Web Browser 

Each RRT instance can be accessed using a conventional web browser to show all 

available Web Services. This allows application programmers to gain a global view of all 

remotely accessible objects in the RRT instance and to inspect the state of the running 

application. 

The list of available Web Services is shown, with the following information: 

• The remote type. 

• The service name (URL). 

• The class of the exposed object. 

• A string representation of the exposed object. 

Figure 5.16 shows the results of attaching a web browser to the RRT instance that 

is running the application shown in Figure 5.13, which exposes an instance of 

JChordNode with three different remote types. Note that all classes are in a Java package 

named jchord and that the RRT instance is bound to port 5001 on a machine called 

“host.rafda.org”. Since each Web Service is accessible via a URL based on the service 

UUID and a URL based on the service name, the three calls to the expose() method have 

resulted in six entries in the table shown. 
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Figure 5.16: A web page generated by an RRT instance showing the objects it exposes. 

The links in the URL column refer to service-specific pages that provide: 

• A list of the methods provided by the remote type. 

• A list of the methods and fields provided by the exposed object’s class. 

• The current state of these fields in the exposed object. 

By default, RRT instances show information only about the remote types. The 

information about the underlying exposed object is not available unless this functionality 

is explicitly enabled in the RRT configuration. 

Figure 5.17 shows the page associated with the service named “Manage”. This 

page shows the methods specified by the remote type (IManage). Only these methods 

may be accessed remotely. The methods implemented by the exposed object’s class and 

the current state of the exposed object are shown in this case. 
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Figure 5.17: Detailed information about the Manage service. 

5.3.1.7 Security 

As described so far, the RRT exposes application objects to remote access and 

provides information to clients connecting through web browsers without concern for 

security. Though the RRT is primarily intended for use in environments where 

programmers have complete control over all machines in the distributed system and 

connecting network, several security features are provided. 

A firewall built into each RRT instance can be configured to allow connections 

only from trusted addresses. When active, only clients on trusted machines can perform 
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remote calls on exposed objects or otherwise interact with the RRT instance. Similarly, 

only web browsers running on trusted machines are allowed to connect. 

The RRT permits programmers to provide custom socket implementations, such 

as encrypted sockets, which are used when performing inter-address-space 

communication. When encrypted sockets are used in conjunction with the firewall, RRT-

based applications can be deployed securely on a trusted subset of machines on an un-

trusted network. This functionality can also be exploited to simulate network connections 

with varying bandwidths, latencies or failure rates. 

5.3.2 Passing Arbitrary Objects By-Value 

The RRT permits the transmission of arbitrary objects across the network by-

value to implement conventional Web Service semantics when communicating with 

clients using traditional Web Services technologies. This mechanism is also useful when 

both client and server are RRT-based as it can be used to cache and replicate application 

objects. The RRT must therefore be capable of serializing and deserializing instances of 

any classes. The 6th and 7th requirements from the previous chapter state: 

 

6: It must be possible to pass any objects by-value as arguments or return values to 

remote method calls. 

7: A scalable resilient code distribution scheme must be provided. 

 

Each RRT instance provides two approaches to serialization/deserialization. 

Programmers may choose which is adopted via the RRT configuration. The approaches 

are: 

1. Perform all serialization/deserialization using a generic, reflection-based 

serializer/deserializer. 

2. Perform serialization/deserialization using per-class custom serializer/ 

deserializers, which are generated and compiled dynamically by the RRT. The 

RRT employs generative techniques to create serializers/deserializers that are 

tuned to work with the classes in each particular application. 

The approaches offer different trade-offs [79]. The generic serializer/deserializer 

can serialize and deserialize instances of any class, using reflective techniques to access 

the internal state of objects. Each generated per-class serializer/deserializer can serialize 

and deserialize only instances of one particular class but does not employ reflection at 
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serialization/deserialization time. The advantage of the latter approach lies in the cost 

difference between accessing fields in objects directly and accessing them using the 

reflection tools, which is typically an expensive operation. 

There is a one-time cost incurred by generating and compiling the per-class 

serializer/deserializers. In applications that serialize/deserialize a large number of 

instances of the same class, the one-time cost of creating the per-class serializer/ 

deserializers is outweighed by the lower cost of each serialization/deserialization 

operation. By default, per-class serializer/deserializers are discarded when the RRT 

instance terminates. Programmers can alter the RRT configuration so that RRT instances 

cache the per-class serializer/deserializers for future use, thereby avoiding the cost of re-

generation. 

When deserializing data into an object, the RRT needs access to the code 

associated with the serialized object in order to instantiate it. If the associated class file 

cannot be loaded, the RRT obtains the code automatically from the RRT instance that 

serialized the object, which necessarily has access to the class. Code is lazily distributed 

throughout the distributed system as necessary, negating the need to perform code 

distribution manually. The risk of programmer-related errors caused by failure to 

distribute code correctly is removed. 

5.3.3 Summary 

This section has described the server-side functionality of the RRT provided via 

the IRafdaRunTime interface. The RRT allows the exposure of arbitrary objects to remote 

access by clients in remote address-spaces. Remote types allow programmers control over 

the methods that objects expose to remote access. This provides multiple views over 

exposed objects to clients, allowing programmers to preserve encapsulation in distributed 

applications. The RRT conceals the distributed nature of applications unless programmers 

explicitly expose the inter-address-space communication. Programmers benefit by using 

the RRT due to the simplified software engineering process, separation of concerns and 

the flexibility of the RRT to adapt to the requirements of different distributed 

applications. 

The RRT provides several approaches to exposed object lifetime management, 

which can allow the local garbage collector to reclaim remotely accessed objects if they 

are no longer referenced locally, provide DOM-style lease-based garbage collection or 
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retain the semantics of service-oriented application containers by permitting no collection 

of exposed objects. 

The RRT is capable of serializing and deserializing instances of arbitrary classes, 

allowing these objects to be transmitted across the network by-value. Thus, conventional 

Web Services semantics can be preserved and the RRT can cache or replicate application 

objects across multiple address-spaces. 

5.4 Client-Side Functionality 

The server-side functionality described in Section 5.3 is sufficient to allow the 

exposure of objects to access by clients using the RRT and other Web Services 

technologies. This section fully describes the RRT client-side functionality and shows its 

advantages over other technologies. Full Distributed Object Model functionality is 

provided when the RRT is used both server- and client-side, allowing the creation of 

isomorphic distributed versions of non-distributed applications. 

Conventional Web Services technologies do not provide remote reference 

schemes and so objects may only be passed across address-space boundaries by-value. 

Without the ability to pass-by-reference, programmers are limited in terms of the 

applications that can be created. The 8th, 9th and 10th requirements express the necessity of 

support for remote references and pass-by-reference semantics. They state: 

 

8: It must be possible to hold remote references to arbitrary objects and to treat 

local and remote references in the same manner. 

9: It must be possible to associate names with remotely accessible objects, either 

implicitly or explicitly, and to obtain remote references to objects based on those 

names. 

10: It must be possible to pass any objects by-reference as arguments or return values 

to remote method calls. 

 

The 9th requirement has already been partially met as the RRT allows service 

names to be associated with objects at exposure. In order to fully meet all three 

requirements, the RRT introduces a remote reference scheme that is synergistic with 

existing Web Services technologies. Using the remote reference scheme built into the 

RRT, remote references to exposed objects can be passed across address-space 
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boundaries as arguments or return values to remote method calls. When methods are 

invoked on remote references, the calls are propagated across the network and performed 

on the exposed objects. 

To allow any object to be passed by-reference, including those that are not yet 

exposed, the RRT provides automatic exposure of objects on demand. This ensures that 

any application object that is passed by-reference is remotely accessible. Each RRT 

instance differentiates between RRT-based clients and those that use conventional Web 

Services technologies.  It ensures that remote references are never transmitted to clients 

that are not RRT-based. 

Each RRT instance provides functionality to remote clients through the 

IRafdaRunTimeRemote interface shown in its entirety in Figure 5.18. This interface 

captures the functionality that RRT instances provide to application objects in remote 

address-spaces. 

public interface IRafdaRunTimeRemote { 

Object getRemoteReference(String serviceName); 

 Object instantiateAndExpose(Class classToInstantiate, 

  Object[] constructorArguments,  

Class remoteType, 

  String serviceName); 

 void migrate(Object objectToMigrate); 

IDistributionPolicyManager getDistributionPolicyManager(); 

} 

 

Figure 5.18: The IRafdaRunTimeRemote() interface. 

This purpose of each of these methods is briefly summarized here, then described 

in detail later in this section: 

• The getRemoteReference() method was introduced in Section 5.2. It is used to 

obtain a remote reference to an object exposed by this RRT instance. 

• The instantiateAndExpose() method instantiates an object in this RRT instance 

and exposes it immediately to remote access. 

• The migrate() method migrates an object to this RRT instance. 

• The getDistributionPolicy Manager() method allows remote clients access to 

the distribution policy framework on this RRT instance. 

Clients obtain references to the IRafdaRunTimeRemote interface using the RRT 

class introduced previously (Figure 5.4). 
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5.4.1 Accessing Remote Objects  

The getRemoteReference() method allows programmers to bootstrap distributed 

applications; using this method, application objects in separate address-spaces can obtain 

references to each other, based on service names. The returned remote references will 

bind to particular services for their lifetimes, even if the specified service names are 

rebound to different services. This approach ensures that the rebinding of service names 

to different objects does not alter existing references as a side-effect. 

Returning to the JChord case study, the non-distributed JChord implementation 

allows researchers to simulate JChord rings in a single address-space. Figure 5.19 shows 

an application that creates a non-distributed simulation of a JChord ring. The application 

performs two distinct tasks. An initial node is created, then multiple peers are added to 

the ring through repeated calls to the addNode() method of the initial node. 

public class LocalRing { 

 public static void main(String[] args) { 

  JChordNode jchordNode = new JChordNode(new Key()); 

  jchordNode.addNode(new JChordNode(new Key())); 

  jchordNode.addNode(new JChordNode(new Key())); 

  jchordNode.addNode(new JChordNode(new Key())); 

 } 

} 

 

Figure 5.19: A JChord ring created in a single address-space. 

A distributed version of this application can be created by creating two entry 

points into the application, one of which is used to create a ring while the other is used to 

join an existing ring. Figure 5.20 shows the former. The initial JChord node is created and 

exposed to remote access with the name “initialNode”. 

public class NewRing { 

 public static void main(String[] args) { 

  JChordNode jchordNode = new JChordNode(new Key()); 

  RRT.get().expose(jchordNode,  

JChordNode.class,  

"initialNode"); 

 } 

}

 

Figure 5.20: Creating the initial node. 
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The other entry point, which creates a node and then joins it to an existing ring by 

calling the addNode() method of the initial node, is shown in Figure 5.21. A truly 

distributed version of the original JChord application has been created without making 

changes to any of the underlying JChordNode implementation classes.  

public class JoinRing { 

 public static void main(String[] args) throws Exception { 

  InetSocketAddress isa = new  

InetSocketAddress("host.rafda.org", 5001); 

  IRafdaRunTimeRemote remoteRRT = RRT.getRemote(isa); 

  JChordNode jchordNode = (JChordNode) remoteRRT. 

getRemoteReference("initialNode"); 

  jchordNode.addNode(new JChordNode(new Key())); 

 } 

} 

 

Figure 5.21: Joining an existing JChord ring. 

When the addNode() method is called in the original application shown in Figure 

5.19, Java semantics dictate that the argument is passed by-reference. The RRT allows 

programmers control over the parameter-passing mechanisms applied to arguments when 

remote method calls are performed but adopts pass-by-reference by default. This 

distributed JChord implementation takes advantage of the default pass-by-reference 

semantics in order to retain local calling semantics when remote calls are performed. 

When addNode() is called, the JChordNode argument will be passed by-reference thereby 

concealing distribution from the programmers. 

5.4.2 Static Members 

The semantics of static members (that is, methods and fields) differ from instance 

methods and fields as static members are associated with classes rather than objects. The 

11th requirement in the previous chapter states: 

 

11: It must be possible to preserve non-distributed static semantics in distributed 

applications and to control the semantics of static members on a per-application 

basis. 
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In local applications, there is one unique copy of each static field in each class that 

is shared by all objects in the application. The RRT allows static members to be handled 

in one of two ways in distributed applications: 

1. A copy of each static field is stored in each address-space and is only ever 

accessed locally. This approach has the benefit that no remote calls need ever 

be performed to access static methods. Static methods execute locally and 

access only their local copy of the fields. 

2. A single copy of each static field in stored in the entire distributed system. 

This approach preserves non-distributed static semantics but can incur the cost 

of remote method calls when accessing static members. 

Using the first approach, each class is loaded in each address-space and stores a 

complete copy of all static fields. All static methods execute locally when called. Using 

the second approach, exactly one RRT instance in the distributed system is designated the 

root RRT instance. The root is responsible for managing static member access in the 

distributed system and the application programmer must define which particular RRT 

instance is the root in the configuration of every RRT instance in the distributed system. 

The second approach requires that the RRT use a class loader to transform 

application classes automatically. When the distributed application is run, the 

programmer specifies a command line argument to indicate whether the class loader is 

employed. If an application is run without using the class loader, the first approach is 

adopted. If the class loader is employed, then the second approach is adopted. The use or 

otherwise of the command line argument implicitly indicates which approach should be 

employed. As a consequence of using Java as the underlying implementation language, 

this dynamic transformational approach is limited with respect to system classes because 

these classes cannot be altered dynamically. Non-distributed static functionality may 

therefore only be preserved for application classes. 

The manner in which the RRT handles static members differentiates it from other 

middleware systems, all of which adopt only one of the above approaches. Neither of the 

approaches is suitable for all distributed applications so the RRT allows programmers to 

adapt middleware behaviour to the particular requirements of each application. 

5.4.3 Failure 

The RRT provides a failure model that offers programmers a number of 

approaches to handling errors. The introduction of distribution into applications brings 
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new types of failure mode. For certain types of distributed application any such failure is 

immediately terminal, much as a failure within a single machine is terminal for local 

applications. For other types of distributed application, the programmer may need to 

handle errors occurring due to network failure explicitly or to continue execution on a 

best-effort basis. The RRT allows programmers to decide on a per-application basis 

whether to handle such errors manually or defer responsibility to the RRT. 

There are two kinds of failure that can occur in distributed applications, namely: 

• Distribution-related exceptions that occur as a direct result of the distributed 

nature of the application, such as network failure or remote machine failure. 

• Application exceptions that occur for reasons orthogonal to the distributed 

nature of the application. 

The 12th requirement from the previous chapter states: 

 

12: The programmer must be able to control whether distribution-related failures are 

propagated to the application or handled internally by the middleware system. 

 

Application exceptions are always thrown back to clients as they are not the 

concern of the RRT. Distribution-related exceptions are either handled directly by the 

RRT instance or propagated back to clients. Programmers control which approach is 

utilized in the RRT configuration, which is summarized in Appendix C. 

There are three approaches to handling distribution-related errors that are open to 

developers: 

1. Configure the RRT to handle all distribution-related exceptions internally. If 

failure occurs, default values are returned. No application-level exception 

handlers need to be defined in this case. 

2. Configure the RRT to propagate all distribution-related exceptions to the 

clients but do not define application-level exception handlers. If failure occurs, 

the uncaught exception causes the RRT instance to terminate immediately. 

3. Configure the RRT to propagate all distribution-related exceptions to the 

clients and define application-level exception handlers statically at any points 

in the application where failure can occur. If a distribution-related exception 

occurs, it is handled in a programmer-defined manner. 
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If the RRT is configured to handle all distribution-related errors internally, it logs 

failures and returns default values to the clients (null, 0, etc.). The client code need not 

create any special handlers for distribution-related exceptions, provided that programmers 

accept that remote method calls may return default values. This approach is suitable for 

application prototyping or for applications in which it is assumed that network failure will 

not occur (a reasonable assumption on a LAN). 

Figure 5.22 shows part of an application in which the RRT handles all 

distribution-related errors internally. The application obtains a remote reference to an 

object exposed using the IMonitor interface (Figure 5.12). When the remote call is made 

to getLog(), no exception handler is defined and a null value is returned if the remote call 

fails. 

 

IRafdaRunTimeRemote remoteRRT = RRT.getRemote( 

new InetSocketAddress("host.rafda.org", 5001)); 

IMonitor monitoredNode = (IMonitor) remoteRRT. 

getRemoteReference("Monitor"); 

/* ‘log’ will be set to null if a distribution-related  

 * exception occurs when getLog() is called */ 

String log = monitoredNode.getLog(); 

 

Figure 5.22: An application in which the RRT handles distribution-related errors. 

Distribution-related exceptions are wrapped in unchecked exceptions. In Java, 

methods do not need to declare statically that they throw unchecked exceptions and 

callers are not forced to define handlers. If the RRT is configured to propagate 

distributed-related exceptions, but clients do not define handlers then the Java Virtual 

Machine terminates if an exception occurs. Programmers are not forced to handle errors 

explicitly. In applications that consider distribution-related failures to be terminal, the 

application logic is not permeated by distribution-related code. The code in an application 

adopting this approach is unchanged from that shown in Figure 5.22.  

In order to handle distribution-related exceptions, programmers must define 

handlers that catch instances of RafdaRuntimeException as shown in Figure 5.23. The 

RafdaRuntimeException wraps the distribution-related exception, which can be extracted 

with a call to getCause().  
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IRafdaRunTimeRemote remoteRRT = RRT.getRemote( 

new InetSocketAddress("host.rafda.org", 5001)); 

IMonitor monitoredNode = (IMonitor) remoteRRT. 

getRemoteReference("Monitor"); 

String log = null; 

try { 

/* Distribution-related exception could occur here */ 

 log = monitoredNode.getLog(); 

} catch (RafdaRuntimeException rre) { 

 /* Handle the exception */ 

 Throwable cause = rre.getCause(); 

 cause.printStackTrace(); 

} 

 

Figure 5.23: An application that handles distribution-related errors. 

By providing a multiplicity of approaches to handling failure, the RRT simplifies 

application prototyping as programmers can ignore the possibility of distribution-related 

exceptions during initial development. The RRT offers programmers the flexibility to 

introduce error handling code into applications only where it is deemed necessary.  

5.4.4 Creating Objects in Remote Address-Spaces 

The RRT provides a mechanism that allows programmers to instantiate 

application objects in arbitrary address-spaces in the distributed system, thereby 

implementing the 13th requirement, which states that: 

 

13: It must be possible to instantiate objects directly in remote address-spaces. 

 

The RRT provides the instantiateAndExpose() method in the 

IRafdaRunTimeRemote interface, which allows applications to be deployed across the 

distributed system from a single starting point. This method, shown in Figure 5.24, 

permits programmers to instantiate arbitrary classes in remote address-spaces then expose 

the instantiated objects to remote access. It takes the following parameters: 

• The class of the object to instantiate. 

• Constructor arguments. 

• The remote type with which the newly created object should be exposed. 



Chapter 5: The RAFDA Run-Time (RRT) 

105 

• The service name with which the newly created object should be exposed. 

A remote reference to the exposed object is returned to the caller. The remote 

RRT instance automatically determines which constructor to use based on the types of the 

constructor arguments. If no constructor that takes the specified constructor arguments is 

found, an IllegalArgumentException is thrown. 

 

Object instantiateAndExpose(Class classToInstantiate,  

Object[] constructorArguments, 

Class remoteType,  

String serviceName); 

 

Figure 5.24: The instantiateAndExpose() method used to create objects in remote address-spaces. 

Figure 5.25 shows how this method can be used to distribute JChord nodes across 

a distributed system. Initially, an array of remote references to the available RRT 

instances in the system is created. The instantiateAndExpose() method is called on each 

remote RRT instance instructing it to create an instance of the JChordNode class with a 

single constructor argument of type Key.  

Once created, each JChordNode instance is exposed with remote type Chord and 

service name “Node”. A remote reference to the newly created node is returned and 

passed as argument to the addNode() method of its predecessor, in order to connect the 

deployed nodes together into a ring. The programmer can deploy a complete ring from a 

single application entry point, mimicking local application behaviour. 
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public void deployRing() { 

/* Get references to the RRTs in the distributed system */ 

 IRafdaRunTimeRemote remoteRRTs[] = new IRafdaRunTimeRemote[] { 

      RRT.getRemote( 

new InetSocketAddress("host1.rafda.org", 5001)), 

      RRT.getRemote( 

new InetSocketAddress("host2.rafda.org", 5001)), 

      RRT.getRemote( 

new InetSocketAddress("host3.rafda.org", 5001)), 

      RRT.getRemote( 

new InetSocketAddress("host4.rafda.org", 5001))  

}; 

 /* Create a node in each RRT instance and add it to the ring */ 

Chord[] remoteNodes = new Chord[4]; 

 for (int x = 0; x < remoteRRTs.length; x++) { 

  remoteNodes[x] = (Chord) remoteRRTs[x]. 

instantiateAndExpose( 

JChordNode.class,  

new Object[] { new Key() },  

Chord.class, 

    "Node"); 

  if (x > 0) 

   remoteNodes[x - 1].addNode(remoteNodes[x]); 

 } 

}

 

Figure 5.25: Deploying a JChord ring using the instantiateAndExpose() method. 

There are security implications for the remote RRT instances involved in this 

process. No sandboxing mechanisms are provided to restrict the operations that remotely 

instantiated objects can perform. This functionality is intended for use in trusted 

distributed systems, in which no byzantine RRT instances are present. Such a system can 

be constructed using the firewall and secure socket functionality described earlier. 

However, support for remote instantiation is not available by default and must be 

activated explicitly via the RRT configuration. 

5.4.5 Migrating Objects to Remote Address-Spaces 

The RRT allows the migration of objects between address-spaces, permitting 

application distribution boundaries to be modified to take advantage of changes in the 
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underlying distributed system or in the application itself. For example, as new machines 

are added to the distributed system, it may be desirable to re-distribute application objects 

to reduce the overall load on each machine in the system. Similarly, if objects that interact 

heavily are collocated then the number of (expensive) remote method calls that need to be 

performed can be reduced. Application objects can be migrated between address-spaces 

in order to collocate objects with their working sets as the application executes. Thus, the 

RRT implements the 14th requirement from the previous chapter, which states: 

 

14: It must be possible to perform the migration of objects from one address-space to 

another without loss of application consistency. 

 

Migration is completely transparent to reference holders but requires that 

programmers perform an explicit preparatory step. This step is performed dynamically by 

calling the makeMigratable() method, which is provided by the local IRafdaRunTime 

interface and shown in Figure 5.26 

 

Object makeMigratable(Object object, Class remoteType);

 

Figure 5.26: The makeMigratable() method used to introduces support for migration into objects. 

The programmer supplies a reference to an arbitrary local object and a remote 

type as arguments to this method. If, in the future, the object is migrated to a remote 

address-space, it will be exposed in that address-space using this remote type. The 

makeMigratable() method returns a wrapper that encapsulates the application object but 

is an instance of the remote type. This wrapper introduces a layer of indirection between 

local reference holders and the wrapped application object. All local references to the 

application object must be updated, by the programmer, to refer to the wrapper, therefore 

providing location transparency. If the application holds any direct references to the 

original application object, rather than the returned wrapper, migration will not proceed 

correctly resulting in the loss of application coherency. 

Once an object has been wrapped by passing it as an argument to the 

makeMigratable() method, it may be migrated directly by programmers, passed by-

migrate as an argument or return value, or migrated as the result of distribution policy 

evaluation. Object migration is performed by calling the migrate() method (Figure 5.27) 
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provided by the IRafdaRunTimeRemote interface. Passing objects by-migrate and the use 

of distribution policy are discussed in Sections 5.5 and 5.7 respectively. 

 

void migrate(Object objectToMigrate);

 

Figure 5.27: The migrate() method used to migrate objects between address-spaces. 

The Data Store built on JChord that was introduced in Chapter 2 is used to 

illustrate migration. To implement the Data Store service, multiple Data Store objects are 

created in the distributed system, each of which holds references to a sub-set of the stored 

objects. Figure 5.28 shows a distributed system in which a Data Store object in 

host2.rafda.org (labelled DS) is storing a database object (labelled DB). The database 

object is referenced by multiple application objects, A, B and C. 

 

host1.rafda.org:5001

host4.rafda.org:5001

host2.rafda.org:5001

host3.rafda.org:5001

B

A DS

C

DB

 

Figure 5.28: A stored database object that is referenced by multiple application objects. 

At some point, the Data Store object determines that resources are running low on 

host2.rafda.org and determines that the database object should be migrated to another 

machine, namely host1.rafda.org. Figure 5.29 shows the code executing within the Data 

Store object that performs this migration. It is assumed that the database object is held in 

the db field and is of class Database (not shown). Initially, support for migration is 

introduced into the database object by calling makeMigratable() and the db field is 

updated to refer to the migratory version of the database object. A remote reference to the 

RRT instance in host1.rafda.org is obtained and the migration performed. 
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IRafdaRunTime rrt = RRT.get(); 

db = (Database) rrt.makeMigratable(db, Database.class); 

InetSocketAddress isa = new InetSocketAddress("host1.rafda.org", 5001); 

IRafdaRunTimeRemote remoteRRT = RRT.getRemote(isa); 

remoteRRT.migrate(db); 

 

Figure 5.29: Migrating the database object to another address-space. 

Figure 5.30 shows the application after the migration has completed. Once the 

one-time preparatory step that wraps the database object has been taken, the object can 

migrate transparently with respect to its reference holders. 

 

host2.rafda.org:5001

host3.rafda.org:5001

host1.rafda.org:5001

host4.rafda.org:5001

C

DSA

B

DB

 

 

Figure 5.30: The database application after migration. 

5.4.6 Summary 

The section has described the main client-side functionality of the RRT, which 

allows the creation of distributed applications by permitting clients to obtain remote 

references to exposed objects. Remote references can be treated in the same manner as 

local references and may be passed between address-spaces as arguments or return 

values. Application distribution and logic are separated so programmers need not consider 

at design time which class of object will participate in inter-address-space 

communication.  

Multiple failure models are provided, giving programmers freedom to handle 

distribution-related errors, or to allow the RRT to handle them in a best effort fashion. 

Control over static members provides a choice between the preservation of local 



Chapter 5: The RAFDA Run-Time (RRT) 

110 

semantics and the introduction of per-address-space copies of static fields. The RRT 

provides support for remote object instantiation and object migration, allowing 

applications to adapt dynamically to changes in the underlying distributed systems or in 

the applications themselves. 

The purpose of this client-side functionality is to aid the software engineering 

process so that distribution can be treated as a non-functional concern. The RRT conceals 

inter-address-space communication by providing remote calling semantics that reflect 

local calling semantics. An isomorphic distributed version of an existing application can 

be created with minimal programming effort. The RRT allows programmers fine-grained 

control over the behaviour of the RRT in order to expose and control the distributed 

nature of an application to an arbitrary extent. Programmers have the flexibility to 

configure the middleware to meet the requirements of a particular application instead of 

adapting the application to accommodate the limitations of the middleware system. 

5.5 Summarizing the Limitations of the RRT 

The current Java-based implementation of the RRT exhibits some limitations, 

which are described throughout this chapter. These limitations are summarized here. 

1. Remote types may not be system classes that are final or contain final 

methods. 

2. Non-distributed static semantics cannot be preserved for system classes. 

3. Arrays may not be passed by-reference. 

4. Accessor methods must be defined for all fields. 

Limitations 1 and 2 could be resolved through the use of a tool that transforms 

system classes ahead of application run-time. This tool would perform the same 

transformations as the class loader, which cannot itself perform the transformations as the 

Java Virtual Machine does not permit alterations to system classes dynamically. 

Limitations 3 and 4 could be resolved for application classes by the RRT class loader or 

ahead of application execution using this offline transformation tool. 

5.6 Controlling Transmission Policy 

The transmission policy active in an application determines the parameter-passing 

semantics employed when remote methods are called. The RRT allows programmer 

control over the parameter-passing mechanisms that apply to objects: 
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• Pass-by-value, which passes duplicate copies of arguments across address-

space boundaries. 

• Pass-by-reference, which passes remote references to arguments across 

address-space boundaries. 

• Pass-by-migrate, which migrates arguments across address-space boundaries. 

Hybridisation, whereby some object state is cached at a client whilst other state is 

remotely accessed, is supported. Using the transmission policy framework, programmers 

can employ the most advantageous parameter passing semantics for the circumstances of 

each application. This provides programmers with control over application semantics and 

promotes reuse of library classes in distributed contexts since the transmission policy can 

be specified independently of class implementation. Library classes need make fewer 

assumptions about the environment in which they are to be deployed since programmers 

have the freedom to apply any parameter-passing policy to instances of any class, 

increasing the likelihood that any given class will be reusable in another context. 

5.6.1 Defining Transmission Policy 

When interacting with clients using standard Web Services technologies, RRT 

instances adopt pass-by-value semantics, as required by standard Web Services. 

However, when interacting with RRT based clients, any of the three parameter-passing 

mechanisms can be employed. The transmission policy framework described here 

provides a mechanism to allow the programmer to specify dynamically how objects are 

marshalled when passed as arguments and return values when remote methods are called. 

This transmission policy framework allows programmers to define transmission policy, 

which controls parameter-passing semantics, and caching policy which controls caching 

and hybridization of the by-reference and by-value mechanisms. The framework supports 

four types of rule governing transmission policy and two types of rules governing caching 

of methods and fields in remote references. 

5.6.1.1 Transmission Policy Rules 

Programmers can specify four types of transmission policy rule: 

• Method policy rules are associated with methods and specify how all the 

arguments to those methods are marshalled. For example, a method policy rule 

might specify that all arguments must be passed by-reference when calling a 

particular method. 
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• Return policy rules are also associated with methods and control how the 

return values are marshalled. For example, a return policy rule might specify 

that the return value from a particular method must be passed by-value. The 

method policy rule and return policy rule associated with a single method are 

independent of each other. 

• Argument policy rules are associated with individual method arguments to 

indicate how they are marshalled to allow programmers fine-grained control 

over transmission policy. For example, an argument policy rule might specify 

that the second argument must be passed by-migrate when calling a particular 

method. 

• Class policy rules are associated with classes rather than methods and indicate 

how instances of particular classes are marshalled. For example, a class policy 

rule might specify that all instances of a particular class must be passed by-

value.  

Policy rules apply to all objects that are marshalled in the local address-space for 

transmission to remote address-spaces, namely arguments passed when calling remote 

methods, return values passed when local methods are called by remote clients, and any 

objects in the closures of these arguments/return values. When an RRT instance is 

marshalling objects, it queries the transmission policy framework to determine whether to 

pass the objects by-reference, by-value or by-migrate. 

Method policy rules, return policy rules and argument policy rules are specified 

with depth constraints that indicates how deep into the closure of the arguments/return 

values the rules apply. The depth of an object in an argument/return value’s closure is 

based on the shortest path from that argument/return value to the object. A depth of zero 

indicates infinite depth. 

5.6.1.2 Caching Policy Rules 

There are two types of caching policy rule available to programmers; 

• Method caching rules are associated with methods and specify that these 

methods should be cached by remote references. Calls on cached methods are 

executed locally with respect to the reference holder rather than propagated 

across the network. 
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• Field caching rules are associated with fields and specify that these fields and 

their accessor methods should be cached by remote references. Any calls to 

the accessor methods are executed locally with respect to the reference holder 

and modify only the local cached copies of the fields. 

Using these rules, individual objects can be marshalled not just by-value or by-

reference but as a combination of both. The spectrum ranges from standard remote 

references at one end to remote references with all fields and methods cached, which are 

effectively by-value copies, at the other. Caching state in remote references allows them 

to remain partially usable even when connectivity is lost. The RRT does not provide 

automatic coherency control over cached fields, meaning caching is particularly 

appropriate for use with fields that are immutable within the context of the current 

application. 

The transmission policy framework meets the 15th and 16th requirements, that: 

15: It must be possible to control parameter-passing semantics dynamically. 

16: Remote references must be capable of caching fields and methods locally. 

5.6.2 Transmission Policy Manager 

There is a transmission policy manager in each address-space in the distributed 

system, through which programmers control transmission policy. Figure 5.31 shows the 

ITransmissionPolicyManager interface, which provides methods to control transmission 

policy rules and caching policy rules. Only the set() methods that allow programmers to 

define rules are shown. The interface also provides a series of get() methods that allow 

the currently active rules to be accessed but these methods are omitted for brevity. This 

interface is implemented by each transmission policy manager instance. Programmers can 

obtain a reference to the local transmission policy manager using the 

getTransmissionPolicyManager() method in the IRafdaRunTime interface. The 

PassingMechanism class, which defines constants to enumerate the parameter-passing 

mechanisms supported by the RRT, namely pass-by-reference, pass-by-value and pass-

by-migrate, is also shown in Figure 5.31.  
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public interface ITransmissionPolicyManager { 

 /* Setting transmission policies */ 

 void setMethodPolicy(Method methodIdentifier, 

  PassingMechanism passingMechanism,  

int depth,  

int priority); 

 void setReturnPolicy(Method methodIdentifier, 

PassingMechanism passingMechanism,  

int depth,  

int priority); 

 void setArgumentPolicy(Method methodIdentifier, 

  int argumentNumber,  

PassingMechanism passingMechanism,  

int depth,  

int priority); 

 void setClassPolicy(Class classIdentifier,  

PassingMechanism passingMechanism,  

int priority); 

 

 /* Caching */ 

 void setFieldToCache(Field fieldIdentifier,  

Method getMethodIdentifier, 

  Method setMethodIdentifier); 

 void setMethodToCache(Method methodIdentifier); 

 

 /* File-based policies */ 

 void getPolicyFromFile(File policyFile,  

boolean replaceCurrentPolicy); 

 void writeCurrentPolicyToFile(File policyFile); 

} 

 

public class PassingMechanism { 

    public static final PassingMechanism BY_REFERENCE = …; 

    public static final PassingMechanism BY_VALUE = …; 

    public static final PassingMechanism BY_MIGRATE = …; 

} 

 

Figure 5.31: The ITransmissionPolicyManager interface and PassingMechanism class. 
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5.6.2.1 Setting Transmission Policy Rules 

The setMethodPolicy() method is used to control how arguments passed to 

particular methods should be marshalled using method policy rules. Programmers identify 

a method using an instance of the java.lang.reflect.Method class and indicate an 

associated parameter-passing mechanism, a depth indicating how far into the closures of 

each argument this rule applies, and a priority. Priority plays a role in resolving conflicts 

between policy rules that specify contradictory parameter-passing policies. Conflict 

resolution is discussed later in Section 5.6.6. 

The setReturnPolicy() method is used to specify return policy rules that control 

how the return values of particular methods should be marshalled. It takes the same set of 

arguments as setMethodPolicy(). 

The setArgumentPolicy() method is used to specify argument policy rules that 

control how one particular argument of a method should be marshalled. It takes the same 

arguments as setMethodPolicy() plus an extra parameter which identifies the particular 

argument to which this policy applies. 

The setClassPolicy() method is used to specify class policy rules that control how 

instances of particular classes are marshalled when passed across the network as 

arguments or return values. 

5.6.2.2 Setting Caching Policy Rules 

The setFieldToCache() method is used to indicate that a particular field in a 

particular class should be cached in remote references to instances of that class. 

Programmers identify fields using instances of the java.lang.reflect.Field class. In 

addition they must identify the accessor methods of the specified field, which are also 

cached. Calls to these accessor methods are not propagated across the network but instead 

access the locally stored copy of the field.  

The setMethodToCache() method is used to indicate that a particular method in a 

particular class should be cached in remote references to instances of that class. Any calls 

to cached methods will be performed locally with respect to the caller. 

These rules allow a hybridization of pass-by-reference and pass-by-value that 

permits objects to be passed partially by-reference and partially by-value. Immutable state 

within objects can be cached in remote references to reduce the need for remote method 

call. 
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5.6.3 File-Based Policy Rules 

Policy rules can be defined directly in application source code using the 

ITransmissionPolicyManager interface. This provides a mechanism allowing appropriate 

default policy to be specified directly in classes but does not provide complete separation 

of transmission policy from the functional application. To address this need, the 

transmission policy framework allows policies to be stored in a policy file, which 

describes one or more policy rules, meaning: 

• Transmission policy can be completely separated from source code. 

• Transmission policies can be reused in multiple applications. 

The getPolicyFromFile() method reads rules from the specified file. The second 

argument indicates whether the currently active rules are deleted before the policy rules 

defined in the file become active. The writeCurrentPolicyToFile() method writes the 

complete set of currently active policy rules back to file. 

Policy rule files contain transmission and caching policy. Programmers can 

modify the policy files directly in order to change the policy associated with applications 

without the need to recompile application source. A simple example policy file in shown 

in the following section. Appendix B shows a fuller example and defines the XML 

schema of the policy files. 

5.6.4 Using Transmission Policy in JChord 

In the JChord implementation, keys are immutable and small. Therefore it is 

desirable that keys are always passed by-value in order that the application need not 

perform remote method calls to access key state. Figure 5.32 shows a class policy rule of 

priority 0 associated with class Key that defines this policy. This rule could be defined 

when the Key class is loaded, by specifying it in initialization code. 

 

RRT.get().getTransmissionPolicyManager().setClassPolicy(Key.class, 

PassingMechanism.BY_VALUE,  

0);

 

Figure 5.32: Setting pass-by-value transmission policy for keys. 

It is also desirable that keys are cached in remote references to instances of 

JChordNode, since they are immutable. The Chord class (Figure 5.5) defines a key field 

along with two accessor methods, getKey() and setKey(). The printKeyInfo() method is 
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also cached as it makes use only of keys. Figure 5.33 shows a caching policy rule that 

caches the key field in instances of any class that extends the Chord class, and a method 

caching policy rule that caches the printKeyInfo() method. 

 

/* Caching the key field */ 

Method getKeyMethod = Chord.class.getDeclaredMethod( 

"getKey",  

null); 

Method setKeyMethod = Chord.class.getDeclaredMethod( 

"setKey", 

 new Class[] { Key.class }); 

Field keyField = Chord.class.getDeclaredField("key"); 

RRT.get().getTransmissionPolicyManager().setFieldToCache( 

keyField, 

 getKeyMethod,  

setKeyMethod); 

/* Caching the printKeyInfo method */ 

Method printKeyInfoMethod = Chord.class.getDeclaredMethod( 

  "printKeyInfo", null); 

RRT.get().getTransmissionPolicyManager().setMethodToCache( 

  printKeyInfoMethod); 

 

Figure 5.33: Setting the caching policy for keys. 

It would be possible to create a version of the Key class that was always passed 

by-value using traditional middleware. However, this key implementation could not be 

reused in a different context in which it was mutable. Another by-reference version of the 

key would be necessary for such applications. 

This following example illustrates the use of transmission policy rules and 

caching rules in the context of the Data Store application implemented as part of the 

JChord case study. Chapter 2 described the behaviour of the Data Store service and 

explained that each Data Store object presented the IDataStoreInternal interface to 

remote clients. This is implemented by exposing a JChord node and a Data Store object in 

each RRT instance in the distributed system. Each Data Store object is exposed using the 

IDataStoreInternal interface shown in Figure 5.34 as remote type with the service name 

“DataStore”.  
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public interface IDataStoreInternal { 

 public void put(Key key, Object data); 

 public Object get(Key key); 

} 

 

Figure 5.34: The IDataStoreInternal interface exposed by the Data Store service. 

When an object is stored in the Data Store, a key is generated and associated with 

the object. This key has a dual role: 

• It identifies the address-space in which the object is stored. A JChord lookup 

of the key maps to the single live JChord node that is collocated with the Data 

Store instance holding the object. 

• It identifies the object within the Data Store instance in that address-space. 

The Data Store service is accessed via a point-of-presence (POP) that is 

implemented by the DataStorePOP class shown in Figure 5.35. This class implements the 

IDataStorePOP interface shown previously in Figure 2.14 and takes advantage of the 

transmission policy framework. 

The store() method is used to insert objects into the store. Objects can be passed to 

the store by-reference or by-value. When the store() method is called, an object to store 

and a Boolean indicating whether the object will be passed by-reference or by-value are 

supplied. Every Data Store object is collocated with a JChord node. The method begins 

by generating a key for the application object then performing a JChord lookup on the 

key. The application object will be stored by the Data Store object collocated with the 

looked up JChord node. 

The store() method gets a reference to the RRT instance that exposes this JChord 

node using the getExposingRRT() method provided by the IRafdaRunTime interface. A 

remote reference to the Data Store object that is exposed by this RRT instance is then 

obtained. 

The application object and generated key are passed as arguments to the put() 

method provided by that remote Data Store object, via the IDataStoreInternal interface. 

Using the transmission policy framework, an argument policy rule is created to control 

the parameter-passing semantics applied to the stored object. 



Chapter 5: The RAFDA Run-Time (RRT) 

119 

 
public class DataStorePOP implements IDataStorePOP { 

 private JChordNode localJChordNode = …; 

 public synchronized Key store(Object objectToStore,  

boolean storeByRef) { 

  /* Generate and lookup the key for the object to store */ 

  Key key = generateKeyForData(objectToStore); 

  Chord node = localJChordNode.lookup(key); 

  /* Get a remote reference to the Data Store object  

 * collocated with that JChord node */ 

  IRafdaRunTimeRemote remoteRRT = RRT.get(). 

getExposingRRT(node); 

  IDataStoreInternal store = (IDataStoreInternal) remoteRRT 

    .getRemoteReference("DataStore"); 

  /* Decide the parameter passing semantics */ 

  PassingMechanism passingMechanism = null; 

  if (storeByRef) { 

   passingMechanism = PassingMechanism.BY_REFERENCE; 

  } else { 

   passingMechanism = PassingMechanism.BY_VALUE; 

  } 

/* Set an argument policy controlling how the object will 

 * be passed to the Data Store object’s put() method */ 

Method putMethod = null; 

try { 

putMethod = IDataStoreInternal.class. 

getDeclaredMethod( "put",  

new Class[] { Key.class, Object.class }); 

} catch (Exception e) {e.printStackTrace();} 

  IRafdaRunTime localRRT = RRT.get(); 

  localRRT.getTransmissionPolicyManager().setArgumentPolicy( 

putMethod, 1, passingMechanism, 0, 0); 

  /* Add the data to the store */ 

  store.put(key, objectToStore); 

  return key; 

 } 

 public Object retrieve(Key key) {…} 

 public Key generateKeyForData(Object data) {…} 

} 

 

Figure 5.35: The DataStorePOP class, which dynamically changes transmission policy. 
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Using conventional middleware, in which the parameter-passing semantics 

applied to objects are decided statically, it would not be possible to implement the Data 

Store in this flexible manner. The programmer would be forced to apply the same passing 

mechanism to all instances of a single class. Using the RRT, class reuse is promoted and 

code to handle non-functional considerations does not pervade application classes. 

The transmission policy framework promotes the reuse of application classes in 

different contexts by allowing the creation of a single implementation to which widely 

varying parameter-passing mechanisms can be applied. Programmers can create classes 

without concern for the application context in which the classes will be deployed, 

provided greater separation of concerns than is possible using traditional middleware 

systems. 

An example of a transmission policy file is shown in Figure 5.36. This file defines 

the class policy shown in Figure 5.32 and the caching policies shown in Figure 5.33. A 

more complete example which includes all types of rule is shown in Appendix B. To 

allow the framework to identify methods uniquely, the name, class and argument types of 

each method are specified. This enables the framework to differentiate between 

overloaded methods. 
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<?xml version="1.0" encoding="UTF-8" ?>  

<transmissionPolicy> 

  <classPolicy> 

    <className>Key</className>  

    <paramPassingMechanism>byvalue</paramPassingMechanism>  

    <priority>0</priority>  

  </classPolicy> 

  <cachedField> 

    <className>Chord</className>  

    <fieldName>key</fieldName>  

  </cachedField> 

  <cachedMethod> 

    <method> 

      <className>Chord</className>  

      <methodName>getKey</methodName>  

    </method> 

  </cachedMethod> 

  <cachedMethod> 

    <method> 

      <className>Chord</className>  

      <methodName>setKey</methodName>  

      <argumentType>Key</argumentType>  

    </method> 

  </cachedMethod> 

  <cachedMethod> 

    <method> 

      <className>Chord</className>  

      <methodName>printKeyInfo</methodName>  

    </method> 

  </cachedMethod> 

</transmissionPolicy> 

 

Figure 5.36: An example transmission policy file. 

5.6.5 Automatic Exposure 

If an RRT instance needs to pass a remote reference to an object across the 

network but that object has not been exposed, then that RRT instance performs automatic 

exposure. By default, the RRT exposes objects using their own classes as remote types, 

with automatically generated service names. However, the concept of remote types stems 
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from the fact that it is not always desirable to expose all methods of a given object to 

remote access. Programmers can therefore associate particular remote types with 

particular application classes, meaning that the RRT will employ the specified remote 

types when automatically exposing any instances of the specified application classes. This 

association between application class and remote type is created using the 

associateClassWithRemoteType() method shown in Figure 5.37, which is provided by the 

IRafdaRunTime interface. 

 

void associateClassWithRemoteType( 

Class applicationClass,  

Class remoteType);

 

Figure 5.37: The associateClassWithRemoteType() method. 

5.6.6 Resolving Policy Rule Contention 

Contention can occur when two or more rules contradict each other. Consider the 

policy rules shown in Figure 5.38, which indicate that the parameters to the addNode() 

method are passed by-value to a depth of 0 and that instances of JChordNode are passed 

by-reference. These rules contradict each other when an instance of JChordNode is 

passed as an argument to the addNode() method. The transmission policy framework 

requires meta-rules to determine which transmission policy rules to adopt. 

 

Method addNodeMethod = JChordNode.class.getDeclaredMethod( 

"addNode", 

 new Class[] { Chord.class }); 

RRT.get().getTransmissionPolicyManager().setMethodPolicy( 

addNodeMethod, 

 PassingMechanism.BY_VALUE,  

0,  

0); 

RRT.get().getTransmissionPolicyManager().setClassPolicy( 

JChordNode.class, 

 PassingMechanism.BY_ REFERENCE,  

0);

 

Figure 5.38: Policy rule contention. 
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When programmers specify transmission policy rules they must associate 

priorities with the rules. When contention occurs, the highest priority rule that applies is 

chosen over all others. As a consequence, the transmission policy framework does not 

permit the following: 

• Two method policy rules of the same priority to be associated with the same 

method. 

• Two return policy rules of the same priority to be associated with the same 

method. 

• Two argument policy rules of the same priority to be associated with the same 

method and argument. 

• Two class policy rules of the same priority to be associated with the same 

class. 

If a programmer specifies a rule of the same type and priority as an existing rule, 

the existing rule is discarded and the new rule adopted. Consequently, when an object is 

marshalled during a call to a particular method, there cannot be two applicable rules of 

the same type with the same priority. There can however be two conflicting rules of the 

same priority but different types. 

In Figure 5.38, the two conflicting rules are of different types and were specified 

with the same priority of 0. An order of precedence is imposed on policy rules based on 

their types to allow the framework to choose between rules of different types with the 

same priority. Argument rules are a specialization of method rules, so are defined to have 

a higher precedence. Contention cannot exist between return policy rules and 

method/argument rules as the former apply policies to return values and the latter to 

arguments. Return policy rules are defined (arbitrarily) to be of lower precedence than 

method/argument rules. Class policy rules are defined (again arbitrarily) as having the 

lowest precedence. 

The overall ordering of rules is summarized in Figure 5.39. The rules of higher 

priority and precedence will be chosen and followed before the rules of lower priority and 

precedence. This approach to rule priority and precedence ensures that the temporal order 

in which rules are specified is not relevant, which is important given that policy rules may 

be defined dynamically in arbitrary application classes at any time during execution. If no 

policy rules are associated with the object to be marshalled then the default by-reference 

policy is chosen. 
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Chosen 
First

Default policy

Argument policy rule
Method policy rule
Return policy rule
Class policy rule

Chosen 
Last

Priority 
0

Argument policy rule
Method policy rule
Return policy rule
Class policy rule

Priority 
1

Argument policy rule
Method policy rule
Return policy rule
Class policy rule

Priority 
n-1

Argument policy rule
Method policy rule
Return policy rule
Class policy rule

Priority 
n

 
Figure 5.39: Policy rules ordered by dominance. 

5.6.7 Summary of the Transmission Policy Framework 

The transmission policy framework allows dynamic control over the parameter-

passing mechanisms employed when calling remote methods. It separates the 

specification of the parameter-passing semantics applied to objects from the creation and 

implementation of their classes. Policies may be defined dynamically on a per-class, per-

method, per-return-value or per-argument basis. Application semantics are not driven by 

decisions made statically. Programmers can also specify caching policies that control 

which fields and methods are cached in remote references, allowing hybridization of 

pass-by-value and pass-by-reference. 

Since transmission policies can be associated with classes on a per-application 

basis, a greater degree of class reuse is possible. The most appropriate passing 

mechanisms for the circumstances can be applied to instances of arbitrary classes. Classes 

can be reused in distributed and non-distributed contexts as policy is controlled 

independently of source code. A distributed application can be optimized using 
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hybridized remote references that cache particular fields and methods in order to take 

advantage of the programmers’ knowledge of the distributed nature of the application. 

5.7 Controlling Distribution Policy 

The RRT provides mechanisms through which remote instantiation and object 

migration can be performed. These operations can be invoked directly by programmers, 

who specify the target address-spaces in which objects are instantiated or to which 

migration occurs. In addition to these mechanisms, the RRT provides a distribution policy 

framework that allows programmers to specify distribution policies that determine how 

application objects are partitioned among the address-spaces in the distributed system 

automatically at run-time. 

Control over distribution policy is useful as it introduces location transparency 

into applications. Applications perform all object instantiation and migration operations 

through the framework. The framework determines in which address-spaces in the 

distributed system the objects are created or to which address-spaces the objects are 

migrated using the active distribution policy. A single application can be distributed in 

multiple different ways without changes to its underlying source code. By allowing 

programmers to defer distribution decisions to a separate policy framework, the RRT 

promotes the separation of application logic from distribution 

Changes to the policy that controls remote instantiation and migration allow 

programmers to re-configure application partitions to adapt to changes in the distributed 

system (e.g. to take advantage of extra machines added to a distributed system) or in the 

application itself (e.g. to collocate an object with its current working set). Applications 

can evolve dynamically and fine-tune their distributions to maximize performance. 

The last four requirements defined in the previous chapter state: 

 

17: It must be possible to create policies to control the placement of objects when 

instantiation and migration operations are performed. 

18: It must be possible to define object placement policies independently of 

application logic. 

19: It must be possible to define arbitrarily complex object placement policies in 

terms of reusable policy components. 

20: It must be possible for policies to use application context to aid policy decisions. 
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The distribution policy framework meets these requirements as follows: 

• It permits the separation of application logic from application distribution. 

• It allows the creation of reusable, modular object placement policies. 

• It permits arbitrarily complex policies. 

• It permits remote instantiation and migration to be performed consistently with 

the object placement policies that apply in remote address-spaces. 

Distribution policies are defined at object granularity, rather than a coarse-grained 

component level. However, the latter can be achieved by associating distribution policies 

with the objects at the edges of the components. 

Programmers define distribution policies that, when evaluated, return references 

to the RRT instances in the distributed system that meet that particular policy, for 

example, a “round robin” policy initialized with a set of RRT instances returns references 

to them in a round robin order while a “machines with no more than 50% CPU usage” 

policy returns references to machines that meet this criterion. Each application class is 

associated with exactly two policies, one to control remote instantiation of the class and 

one to control the migration of instances of the class. 

5.7.1 Architectural Overview 

The distribution policy framework is made up of five conceptual parts: 

• Policy objects are stateful objects that capture particular distinct distribution 

policies, for example, “round robin” or “machines with less than 50% CPU 

load”. Policy objects are associated with application classes, but may define 

policies at finer-than-class granularity based on programmer supplied 

information describing the application context of the instantiation or migration 

operation. A single policy object can define the distribution policy for multiple 

application classes, allowing policy to be defined at greater-than-class 

granularity also. 

• Factories perform all policy-based object instantiation. They can instantiate 

objects locally or remotely in conjunction with factories in remote address-

spaces. Factories query policies to determine in which address-spaces objects 

should be instantiated. 
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• Migration controllers perform all policy-based object migration. They query 

policies to determine to which address-spaces objects should migrate. 

• Distribution policy managers allow applications to obtain references to 

factories or migration controllers when they need to perform remote 

instantiation or migration. 

• Feedback on policy decisions is provided to policy objects by the policy 

objects in other address-spaces with which they interact. This allows policy 

objects to adapt their behaviour based on responses received from their remote 

counterparts. 

Figure 5.40 shows the structure of the distribution policy framework and the 

relationships between these components. There is a single distribution policy manager in 

each address-space, through which applications can access factories and migration 

controllers. Each application class is associated with a single factory and migration 

controller, though a single factory/migration controller may be associated with multiple 

application classes. Each application class is associated with two policy objects; one that 

controls the policy applied during remote instantiation (used by the class’s factory) and 

one that controls the policy applied during migration (used by the class’s migration 

controller). 

 

Figure 5.40: The structure of the distribution policy framework. 



Chapter 5: The RAFDA Run-Time (RRT) 

128 

5.7.2 Evaluating Distribution Policies 

In order to instantiate or migrate objects according to the active distribution 

policy, programmers use the distribution policy manager, which is accessible via the 

getDistributionPolicyManager() method provided by the IRafdaRunTime interface. This 

method returns a reference to the local distribution policy manager, which meets the 

IDistributionPolicyManager interface shown in Figure 5.41. 

 

public interface IDistributionPolicyManager { 

 /* Factories */ 

 IFactory getFactory(Class applicationClass); 

 void setFactoryPolicy(Class applicationClass, IPolicy policy); 

 void associateFactoryWithClass( 

Class applicationClass,  

Class factoryClass); 

 

 /* Migration Controllers */ 

 IMigrationController getMigrationController(Object object); 

 void setMigrationControllerPolicy(Class applicationClass,  

IPolicy policy); 

 void associateMigrationControllerWithClass( 

Class applicationClass, 

Class migContollerClass); 

}

 

Figure 5.41: The IDistributionPolicyManager interface. 

The role of each of these methods is briefly described: 

• The getFactory() method returns a reference to a factory that can create 

instances of the specified class. 

• The setFactoryPolicy() method associates a particular policy object with an 

application class to control the policy applied when this class is instantiated 

using a factory. 

• The associateFactoryWithClass() method allows the programmer to override 

the default factory implementation with a customized factory implementation. 

• The getMigrationController() method returns a reference to a migration 

controller that can be used to migrate the specified object. 
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• The setMigrationControllerPolicy() method associates a particular policy 

object with an application class to control the migration policy applied to 

instances of this class. 

• The associateMigrationControllerWithClass() method allows the programmer 

to override the default migration controller implementation with a customized 

migration controller implementation. 

5.7.3 Defining Distribution Policies 

Policy objects are instances of policy classes that implement the IPolicy interface 

shown in Figure 5.42. The Feedback class, through which policy objects exchange 

feedback, is also shown. 

public interface IPolicy { 

 IRafdaRunTimeRemote getRRT(Object context); 

 Feedback evaluatePolicy(Object context); 

 void handleFeedback(Feedback feedback); 

 

} 

public class Feedback { 

 private boolean positive = false; 

 private Object instantiatedObject = null; 

 

 public Feedback(boolean positive) { 

  this.positive = positive; 

 } 

 public Feedback(Object instantiatedObject, boolean positive) { 

  this.instantiatedObject = instantiatedObject; 

  this.positive = positive; 

 } 

 public boolean isPositive() {return positive;} 

 public Object getInstantiatedObject() {return instantiatedObject;} 

}

 

Figure 5.42: The IPolicy interface and Feedback class. 

The IPolicy interface provides the following methods: 

• The getRRT() method, which makes the policy decisions. This method returns 

the RRT instance that best meets the captured policy at that moment. It takes 

an object that describes the application context in which the instantiation or 
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migration operation is performed. This argument can contain any arbitrary 

data that the programmer wishes to supply to the policy object. If context is to 

have any benefit, programmers must create policy objects that understand it. 

The distribution policy framework does not analyse the context directly; it 

propagates the context from the application to the policy objects. 

• The evaluatePolicy() method returns feedback that is used to determine 

whether the local address-space is a suitable choice for an instantiation or 

migration. This method is called by factories and migration controllers before 

they perform operations on behalf of remote clients. 

• The handleFeedback() method is used to pass feedback received from remote 

policy evaluation back into the local policy object.  

The Feedback class provides the following two methods: 

• The isPositive() method is used to indicate whether the returned feedback is 

positive or negative. 

• The getInstantiatedObject() method is used by factories to access newly 

instantiated objects, which are returned from remote factories as part of the 

feedback. 

Programmers can associate two policy objects with each application class, one to 

determine placement during instantiation and one to determine migration policy, using the 

setFactoryPolicy() and setMigrationControllerPolicy() methods provided by the 

IDistributionPolicyManager interface. If no policy objects are associated with an 

application class, then instances of this class will always be instantiated locally by 

factories and will never be migrated. 

The setFactoryPolicy() method is used to indicate the policy object that must be 

evaluated by factories that create instances of the specified application class. The 

setMigrationControllerPolicy() method is used to indicate the policy object that must be 

evaluated by migration controllers that migrate instances of the specified class. 

A simple “single RRT policy” that always returns a reference to a particular RRT 

instance is shown in Figure 5.43. It ignores any application context provided by 

programmers and returns positive feedback. When queried, this policy will always return 

a reference to the RRT instance with which it was initialized. 
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public class SingleRRTPolicy implements IPolicy { 

 private IRafdaRunTimeRemote remoteRRT = null; 

 

 public SingleRRTPolicy (IRafdaRunTimeRemote remoteRRT) { 

  this.remoteRRT = remoteRRT; 

 } 

 public IRafdaRunTimeRemote getRRT(Object context) { 

  return remoteRRT; 

 } 

 public Feedback evaluatePolicy(Object context) { 

  return new Feedback(true); 

 } 

 public void handleFeedback(Feedback feedback) {} 

} 

 

Figure 5.43: A single RRT policy. 

This policy may be used to ensure that all instances of a particular class are 

instantiated on a single machine or are migrated to a single machine. For example, the 

code fragment in Figure 5.44 specifies that all instances of JChordNode created by the 

code running in this RRT instance should be instantiated on the RRT instance bound to 

port 5001 of machine “host.rafda.org” by associating an instance of the “single RRT 

policy” class with the JChordNode factory. 

 

IDistributionPolicyManager dpm = RRT.get(). 

getDistributionPolicyManager(); 

SingleRRTPolicy singleRRTpolicy = new SingleRRTPolicy( 

RRT.getRemote(new InetSocketAddress("host.rafda.org", 5001))); 

dpm.setFactoryPolicy(JChordNode.class, singleRRTpolicy); 

 

Figure 5.44: Using the single RRT policy. 

Figure 5.45 shows a simple round robin policy. Again, this policy does not make 

use of application context but exhibits more complex behaviour than the single RRT 

policy. It is initialized with a set of RRT instances (perhaps obtained by querying another 

policy) and returns references to these RRT instances in round robin order. This policy is 

used to distribute objects of a particular class evenly among a number of RRT instances. 
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public class RoundRobinPolicy implements IPolicy { 

 private IRafdaRunTimeRemote[] remoteRRTs = null; 

 private int current = -1; 

 

 public RoundRobinPolicy(IRafdaRunTimeRemote[] remoteRRTs) { 

  this.remoteRRTs = remoteRRTs; 

 } 

 public IRafdaRunTimeRemote getRRT(Object context) { 

  current = (++current) % remoteRRTs.length; 

  return remoteRRTs[current]; 

 } 

 public Feedback evaluatePolicy(Object context) { 

  return new Feedback(true); 

 } 

 public void handleFeedback(Feedback feedback) { 

 } 

} 

 

Figure 5.45: A round robin policy class. 

Figure 5.46 shows how a round robin policy can be associated with both the 

JChordNode factory and the DataStore factory. It is notable that both factories are 

associated with the same instance of the round robin policy class. The policy object is not 

concerned whether it is accessed by the JChordNode factory or DataStore factory; it 

simply returns the specified RRT instances in round robin order. For example, if two 

instances of JChordNode are created, then two instances of DataStore, the former will be 

created on “host1” and “host2” while the latter will be created on “host3” and “host4”. 

This many-to-one relationship between factories/migration controllers and policy objects 

helps avoid a preponderance of policy objects in the system and allows a single policy to 

be applied to instances of multiple classes. 
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IDistributionPolicyManager dpm = RRT.get(). 

getDistributionPolicyManager(); 

IRafdaRunTimeRemote remoteRRTs[] = new IRafdaRunTimeRemote[] { 

 RRT.getRemote(new InetSocketAddress("host1.rafda.org", 5001)), 

 RRT.getRemote(new InetSocketAddress("host2.rafda.org", 5001)), 

 RRT.getRemote(new InetSocketAddress("host3.rafda.org", 5001)), 

 RRT.getRemote(new InetSocketAddress("host4.rafda.org", 5001)) }; 

RoundRobinPolicy roundRobinPolicy = new RoundRobinPolicy(remoteRRTs); 

dpm.setFactoryPolicy(JChordNode.class, roundRobinPolicy); 

dpm.setFactoryPolicy(DataStore.class, roundRobinPolicy); 

 

Figure 5.46: Using the round robin policy. 

Policies of greater complexity could be created in several ways: 

• Policy objects could make use of profiling tools external to the RRT to base 

policy decisions on system or application metrics. 

• Multiple policies could be composed together. For example, the round robin 

policy could be initialized using the output of another policy object. 

• Policy objects that aggregate the output of other policy objects could be 

created, such as policies which determine the union or intersection of several 

policy objects, effectively acting as filters over this output. 

Context can be employed to aid the policy decisions. Context indicates any 

additional information that the programmer wishes to supply to aid policy decisions, for 

example, the identity of the method or class that is performing the given operation or 

meta-data associated with a class or object. This allows policies to differentiate between 

instances of the same application class, based on their application context. 

Feedback allows policies to exchange arbitrary information. By default, feedback 

is positive or negative but programmers are free to extend the Feedback class to provide 

an arbitrarily rich explanation of a policy decision. Feedback is not used directly by the 

distribution framework; rather it is a vehicle for information interchange that can be 

employed by policy objects, much as context allows information to be passed from the 

application to the policy objects. 

The JChordLookupPolicy class shown in Figure 5.47 illustrates the use of context 

and feedback. This policy expects the application to provide a JChord key as context and 

returns a reference to the RRT instance exposing the JChord node associated with this 

key. When the evaluatePolicy() method is called, this policy casts the context into a key 
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and confirms whether the JChord node associated with the supplied key is the local 

JChord node. If so, positive feedback is returned otherwise negative feedback is returned. 

The handleFeedback() method expects always to receive positive feedback, since 

a single key should always map to the same JChord node unless the underlying ring has 

changed. If negative feedback is received, the policy performs some ring maintenance to 

confirm the local JChord node’s ring state information is up-to-date. The code shown in 

this class omits error-checking and assumes that the context object is the key. 

 

public class JChordLookupPolicy implements IPolicy { 

 private JChordNode localJChordNode = …; 

 

 public IRafdaRunTimeRemote getRRT(Object context) { 

  /* Assume context is the key associated with the object */ 

  Key key = (Key) context; 

  Chord nodeAssociatedWithKey = localJChordNode.lookup(key); 

  return RRT.get().getExposingRRT(nodeAssociatedWithKey); 

 } 

 public Feedback evaluatePolicy(Object context) { 

  /* Assume context is the key associated with the object */ 

  Key key = (Key) context; 

  Chord nodeAssociatedWithKey = localJChordNode.lookup(key); 

  if (nodeAssociatedWithKey.equals(localJChordNode)) { 

   return new Feedback(true); 

  } else { 

   return new Feedback(false); 

  } 

 } 

 public void handleFeedback(Feedback feedback) { 

  if (!feedback.isPositive()) { 

   /* 

    * Indicates that the underlying ring has changed.  

 * Perform some checks to ensure the local ring state  

 * information is up-to-date 

    */ 

  } 

 } 

} 

 

Figure 5.47: The JChordLookupPolicy class. 
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5.7.4 Factories 

A default factory implementation is provided with the distribution policy 

framework though programmers can create custom implementations of factories in order 

to provide arbitrarily complex factory behaviour. This allows programmers control over 

the manner in which factories evaluate policies. Factories must trade off the cost of 

evaluating distribution policy against the benefits. For instance, it may be advantageous to 

spend time evaluating policy carefully for long-lived objects that are instantiated rarely 

but not for objects that are instantiated often. 

Factories must implement the IFactory interface shown in Figure 5.48. No 

semantic restrictions are placed on programmers though the instantiateObject() method is 

intended for use by the application to instantiate objects. The method takes five 

arguments, namely the class of the object to create, an array of constructor arguments, 

application context information, a remote type and a service name. The context argument 

holds additional information that the policy can use to aid the placement decision. 

The instantiateObjectForRemoteFactory() method is intended for use by remote 

factories to perform instantiation in the local address-space. It takes the same arguments 

as the previous method but returns a feedback object, rather than a remote reference. 

 

public interface IFactory { 

 Object instantiateObject( 

Class applicationClass,  

Object[] constructorArguments, 

  Object context,  

Class remoteType,  

String serviceName); 

 Feedback instantiateObjectForRemoteFactory( 

Class applicationClass,  

Object[] constructorArguments, 

  Object context,  

Class remoteType,  

String serviceName); 

} 

 

Figure 5.48: The IFactory interface. 

Programmers must implement both of these methods to create a factory 

implementation but are free to alter factory behaviour as required. Custom factories are 
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associated with application classes using the associateFactoryWithClass() method, which 

is provided by the IDistributionPolicyManager interface. The distribution policy 

framework instantiates the custom factories as required. 

5.7.4.1 The Default Factory 

The default factory is employed when the distribution policy framework needs to 

instantiate classes for which no customized factory implementations exist. To create 

instances of a class, the default factory queries the policy associated with that class and 

instantiates the object in the RRT instance specified by the policy. Figure 5.49 shows a 

sequence diagram describing the flow of control during a particular remote object 

instantiation. The general case is discussed after this example. The components of the 

distribution policy framework are marked in bold. 

The sequence diagram shows the following objects, divided between two RRT 

instances, which are marked by large dotted rectangles: 

• The application object performing the instantiation. 

• The distribution policy managers in the local and remote RRT instances. 

• The factories in the local and remote RRT instances associated with the class 

to be instantiated. 

• The policy objects in the local and remote RRT instances that are associated 

with the class to be instantiated. 

• The created object. 

The sequence diagram contains the following steps: 

1. The application needs to instantiate a new object. It obtains a reference to a 

factory that can create instances of the required class from the local 

distribution policy manager. 

2. The distribution policy manager returns a reference to a suitable factory. 

3. The application instructs the factory to create an instance of a particular class. 

4. The factory queries the policy associated with that class to determine in which 

RRT instance to instantiate the new object. 

5. The policy determines that RRT instance 2 is the best choice. 

6. The factory asks the distribution policy manager in RRT instance 2 for a 

reference to a factory that can create instances of the required class in that 
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address-space. A reference to a remote distribution policy manager can be 

obtained using the IRafdaRunTimeRemote interface. 

7. The distribution policy manager returns a remote reference to a suitable 

remote factory. 

8. The local factory asks the remote factory to instantiate the object. 

9. The remote factory evaluates its policy to determine if it deems RRT instance 

2 a suitable target in which to instantiate the object. 

10. The policy returns positive feedback indicating that RRT instance 2 is a 

suitable target. 

11. The remote factory instantiates the new object. 

12. The remote factory returns feedback, which contains a remote reference to 

the new object. 

13. The local factory passes the feedback into its policy. 

14. The local factory returns the remote reference to the application. 
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Figure 5.49: Sequence diagram showing a remote object instantiation. 
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The sequence diagram shows the flow of control during a particular remote 

instantiation. In other circumstances, the policy in the local RRT instance may determine 

that the object should be instantiated locally. Alternatively, the factory in the remote RRT 

instance may refuse to instantiate the object because its policy returns negative feedback. 

The following describes the flow of control during remote instantiation in general terms.  

 

1. The programmer obtains a reference to a factory that can create instances of the 

required class via the distribution policy manager. 

2. The programmer instructs the factory to instantiate the object. 

3. The factory queries the policy to determine which RRT instance is the optimal choice 

in which to instantiate the object. The policy returns a reference to that RRT instance. 

3.1. If the policy has specified that the local RRT instance is the optimal 

choice, the factory instantiates the object immediately and returns a 

reference to the programmer. 

OR 

3.1. If the policy has specified that a remote RRT instance is the optimal 

choice, the factory attempts to instantiate the object in the remote RRT 

instance specified by the policy. 

3.2. The local factory uses the distribution policy manager in the remote 

RRT instance to obtain a reference to a remote factory that is capable of 

instantiating instances of the required class. 

3.3. The local factory instructs the remote factory to instantiate the object. 

3.4. The remote factory checks with its policy to determine whether the 

instantiation should be performed based on the feedback provided by its 

policy. 

3.5. The remote factory returns the feedback to the local factory. If the 

instantiation was successful, this feedback contains a remote reference to 

the newly created object. 

3.6. The local factory passes the feedback into its policy. 

3.6.1. If instantiation was successful, the remote reference to the new 

object included in the feedback is returned to the programmer. 

OR 
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3.6.1. If instantiation was not successful, the local factory queries its 

policy again to determine which other RRT instances the policy 

deems as suitable targets for instantiation.  

3.6.2. The factory attempts remote instantiation, as described above, at 

each RRT instance in turn, until the object is instantiated 

successfully. If all possible RRT instances are tried without 

success, the factory instantiates the required object locally. 

 

This approach shares the responsibility for choosing the target address-space 

among the policies in all participating address-spaces, though the local policy retains 

responsibility for ensuring that the operation completes. Remote policies have the power 

to veto the local policy to ensure that instantiation does not occur in their address-spaces.  

5.7.5 Deploying a JChord Ring using the Framework 

When remote instantiation was described earlier in Section 5.4.4, a ring of JChord 

nodes was deployed by instantiating and exposing nodes in remote address-spaces. The 

example in Figure 5.50 shows how the code to perform those instantiations (Figure 5.25) 

can be modified to deploy the nodes according to an active distribution policy, rather than 

explicitly. Initially, a round robin policy object is created and associated with instances of 

the JChordNode class. Association of a policy object with an application class can be 

performed at any point during the application initialization, not necessarily immediately 

before the distribution policy framework is employed, as in this example. 

A reference to a factory that can create instances of JChordNode is obtained from 

the local distribution policy manager. The application performs four instantiation 

operations by calling the instantiateObject() method four times, specifying the Chord 

class as remote type and the service names “Node0”, “Node1”, etc. Aside from the node 

created first, each instance of JChordNode that is created is passed as an argument to the 

addNode() method, in order to connect it to the ring. Location transparency has been 

introduced into the JChord deployment application. By altering the distribution policy 

associated with the application, the application can be deployed in different ways. 
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public void deployRingAccordingToPolicy() { 

 /* Create an array of references to available RRT instances */ 

 IRafdaRunTimeRemote remoteRRTs[] = new IRafdaRunTimeRemote[] { 

   RRT.getRemote(new InetSocketAddress( 

"host1.rafda.org", 5001)), 

   RRT.getRemote(new InetSocketAddress( 

"host2.rafda.org", 5001)), 

   RRT.getRemote(new InetSocketAddress( 

"host3.rafda.org", 5001)), 

   RRT.getRemote(new InetSocketAddress( 

"host4.rafda.org", 5001)) }; 

 /* Create the round robin policy object */ 

 RoundRobinPolicy roundRobinPolicy =  

new RoundRobinPolicy(remoteRRTs); 

 /* Associate the round robin policy with the JChordNode class */ 

 IDistributionPolicyManager dpm = RRT.get(). 

getDistributionPolicyManager(); 

 dpm.setFactoryPolicy(JChordNode.class, roundRobinPolicy); 

 /* Get a reference to a suitable factory */ 

 IFactory nodeFactory = dpm.getFactory(JChordNode.class); 

 Chord[] remoteNodes = new Chord[4]; 

 for (int x = 0; x < 4; x++) { 

  /* Perform remote instantiation using the factory */ 

  remoteNodes[x] = (Chord) nodeFactory.instantiateObject( 

JChordNode.class,  

new Object[] { new Key() },  

null, 

Chord.class, 

   "Node"+x); 

  /* Add each newly created node to the ring */ 

  if (x > 0) remoteNodes[x - 1].addNode(remoteNodes[x]); 

 } 

}

 

Figure 5.50: Deploying a JChord ring using the distribution policy framework. 

5.7.6 Migration Controllers 

Migration controllers decide when and to where migration will occur. 

Applications must poll migration controllers to evaluate migration policy, otherwise no 
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policy evaluation occurs and no migration occurs. Programmers decide on a per-object 

basis how often to poll the migration controller. 

Migration controllers implement the IMigrationController interface shown in 

Figure 5.51. Although programmers are free to decide the semantics of these custom 

implementations, the migrateObject() method is intended for use by applications to 

evaluate migration policy and perform any required migration. The 

isSuitableTargetAddressSpace() is intended for use by remote migration controllers to 

evaluate the policy in the local address-space. 

 

public interface IMigrationController { 

 void migrateObject( 

Object object,  

Object context); 

 Feedback isSuitableTargetAddressSpace( 

Object object,  

Object context); 

}

 

Figure 5.51: The IMigrationController interface. 

Programmers associate custom migration controller implementations with 

application classes using the associateMigrationControllerWithClass() method, which is 

provided by the IDistributionPolicyManager interface. Custom migration controllers are 

instantiated as required. 

5.7.6.1 The Default Migration Controller 

The default migration controller implementation is used to evaluate the migration 

policy for any classes that are not associated with customized migration controllers. 

Figure 5.52 shows a sequence diagram describing the flow of control during a particular 

migration operation. The general case is discussed after this example. 

The sequence diagram shows the following objects, divided between two RRT 

instances, which are marked by large dotted rectangles: 

• The application object performing the migration. 

• The distribution policy managers in the local and remote RRT instances. 

• The migration controllers in the local and remote RRT instances associated 

with the migratory object’s class. 
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• The policy objects in the local and remote RRT instances that are associated 

with the migratory object’s class. 

• The migratory application object. 

The sequence diagram contains the following steps: 

1. The application polls the framework to determine whether an object should 

migrate. It asks the local distribution policy manager for a reference to a 

migration controller associated with this object. 

2. The distribution policy manager returns a reference to a suitable migration 

controller. 

3. The application asks the migration controller to evaluate the migration 

policy for the object and perform the migration if necessary. 

4. The migration controller queries its policy to determine in which RRT 

instance the object should be located. 

5. The policy determines that RRT instance 2 is the best choice. 

6. The migration controller asks the distribution policy manager in RRT 

instance 2 for a reference to a migration controller in that address-space 

which can evaluate the migration policy associated with this particular object. 

7. The distribution policy manager returns a remote reference to a suitable 

remote migration controller. 

8. The local migration controller instructs the remote migration controller to 

evaluate whether RRT instance 2 is a suitable target for migration. 

9. The remote migration controller evaluates its policy. 

10. The policy returns positive feedback indicating that it deems RRT instance 2 

a suitable target. 

11. The remote migration controller returns the feedback. 

12. The migration controller passes the feedback into its policy. 

13. The local migration controller performs the migration. 

14. The migration controller method returns. 
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Figure 5.52: Sequence diagram showing a migration operation. 
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The sequence diagram shows the flow of control during a particular migration 

operation. Under different circumstances, the policy in the local RRT instance may 

determine that migration should not occur at all. Alternatively, the migration controller in 

the remote RRT instance may return negative feedback. The following describes the flow 

of control during the evaluation of migration policy in general terms. 

 

1. The programmer obtains a reference to a migration controller associated with the 

migratory object via the distribution policy manager. 

2. The programmer polls the migration controller to determine whether migration 

should occur. 

3. The migration controller queries the policy to determine in which RRT instance the 

object should be located. 

4.1. If the policy has specified that the local RRT instance is the optimal 

choice, then no migration occurs. 

OR 

4.1. If the policy has specified a remote RRT instance as the optimal choice, 

the migration controller evaluates the policy in that RRT instance. 

4.2. The local migration controller uses the distribution policy manager in 

the remote RRT instance to obtain a reference to a remote migration 

controller associated with the migratory object. 

4.3. The local migration controller requests that the remote migration 

controller evaluate its policy. 

4.4. The remote migration controller evaluates its policy to determine 

whether the migration should be performed. The remote migration 

controller receives feedback from its policy. 

4.5. The remote migration controller returns the feedback to the local 

migration controller. 

4.6. The local migration controller passes the feedback into its policy. 

4.6.1. If the feedback is positive then the migration controller 

migrates the object to that RRT instance. 

OR 

4.6.1. If the feedback is negative then the migration controller queries 

its policy again to determine which other RRT instances the 

policy deems as suitable targets for migration.  
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4.6.2. The migration controller re-evaluates the remote policy at each 

RRT instance in turn, as described above, until a suitable target is 

found. If all possible RRT instances are tried without success, 

then no migration is performed. 

 

Like the default factory implementation, the default migration controller offers a 

balanced approach to policy evaluation. Ultimate responsibility for determining whether 

migration takes place remains with a single policy but policies in remote address-spaces 

can participate in the decision. 

5.7.7 Migrating Objects in JChord Automatically 

Object migration was described in Section 5.4.5. The example in that section 

shows a database object migrating between address-spaces to free resources without loss 

of referential integrity. The following example modifies that original example by 

associating a round robin distribution policy with that migratory database object’s class. 

Initially the database object exists in host2.rafda.org (Figure 5.28). A round robin policy 

(Figure 5.45) associated with the remaining machines is created as shown in Figure 5.53. 

This round robin policy is associated with the database (db) object’s class. 

 

/* Configure the distribution policy framework */ 

IRafdaRunTime localRRT = RRT.get(); 

IRafdaRunTimeRemote remoteRRTs[] = new IRafdaRunTimeRemote[] { 

 RRT.getRemote(new InetSocketAddress( 

"host1.rafda.org", 5001)), 

 RRT.getRemote(new InetSocketAddress( 

"host3.rafda.org", 5001)), 

 RRT.getRemote(new InetSocketAddress( 

"host4.rafda.org", 5001)) }; 

RoundRobinPolicy roundRobinPolicy = new RoundRobinPolicy(remoteRRTs); 

IDistributionPolicyManager dpm = localRRT. 

getDistributionPolicyManager(); 

dpm.setMigrationControllerPolicy(db.getClass(), roundRobinPolicy); 

 

Figure 5.53: Associating a round robin policy with the database object. 

When the database application detects resources running low in host2.rafda.org it 

polls the distribution policy framework to determine the RRT instance to which the object 

will migrate, by calling the migrateObject() method. The application does not explicitly 
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choose the RRT instance to which the database object migrates. Instead, it performs a call 

into the distribution policy framework as shown in Figure 5.54, thereby delegating the 

policy decision. The round robin policy will cause the migration to host1.rafda.org to 

occur, as shown in Figure 5.30. 

 

IRafdaRunTime localRRT = RRT.get(); 

IDistributionPolicyManager dpm = localRRT. 

getDistributionPolicyManager(); 

IMigrationController dbmc = dpm.getMigrationController(db); 

dbmc.migrateObject(db, null); 

 

Figure 5.54: Evaluating the migration policy associated with the database object. 

5.7.8 Summarizing the Distribution Policy Framework 

The distribution policy framework controls the placement of objects in the 

distributed system when remote instantiation and migration operations are performed. 

Arbitrarily complex distribution policies can be created and associated with application 

classes. Policy objects can make use of the application context in which operations occur 

to aid policy decisions and can exchange feedback to allow cooperation between multiple 

address-spaces. 

The framework uses factories to perform all policy-based remote instantiation and 

migration controllers to control object migration. Default implementations of factories 

and migration controllers are provided though programmers can create customized 

versions on a per-class basis to allow factory and migration controller behaviour to be 

defined on a per-application basis, allowing complete customization of the distribution 

policy framework. Programmers can use the default implementations for convenience but 

can obtain full control over the semantics of policy-based remote instantiation and 

migration if required. 

The distribution policy framework separates application logic from distribution by 

introducing location transparency into remote instantiation and migration. Unlike existing 

approaches to the specification of distribution policy, the framework provides a flexible 

and expressive approach to defining application distribution dynamically and does not 

make assumptions about the granularity at which policies will be applied. Further, no 

limitations are placed on the kinds of distribution policy that can be specified. 
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5.8 Configuring the RRT 

The IRafdaRunTimeConfig interface shown in Figure 5.55 allows control over 

RRT behaviour. Each configurable property of the RRT has a unique name that is used by 

programmers to get and set its value. The complete configuration can also be read from or 

written to file. 

 

public interface IRafdaRunTimeConfig { 

 void setProperty(String property, String value); 

 String getProperty(String property) throws Exception; 

 void writeConfigurationToFile(File configurationFile); 

 void readConfigurationFromFile(File configurationFile); 

} 

 

Figure 5.55: The IRafdaRunTimeConfig interface policies. 

The complete set of configurable aspects is listed in Appendix C along with a 

description of valid values for each. Examples of the configurable properties include: 

• The network interface or port to which an RRT instance is bound. 

• Control over code generators. 

• Firewall configuration. 

• Control over the approach to memory management adopted by each RRT 

instance. 

The code fragment shown in Figure 5.56 sets properties that cause the RRT 

instance to bind to the network interface associated with the host name “host.rafda.org” 

and port 12345, with a socket timeout of 60 seconds (60000ms). The configuration can be 

altered at any time with a few exceptions, for example, the network interface or port to 

which an RRT instance binds cannot be changed after an object has been exposed. 

 

IRafdaRunTimeConfig rrtConfig = …; 

rrtConfig.setProperty("networkInterface", "host.rafda.org"); 

rrtConfig.setProperty("port", "12345"); 

rrtConfig.setProperty("socketTimeout", "60000"); 

 

Figure 5.56: Setting properties to control RRT behaviour. 



Chapter 5: The RAFDA Run-Time (RRT) 

149 

5.9 Conclusion 

The RAFDA Run-Time (RRT) is a middleware system providing a rich feature set 

that meets the requirements of a third generation middleware system that were defined in 

the previous chapter. The RRT allows programmers to separate the design and 

implementation of application logic from distribution-related concerns. As a result, the 

development effort required when creating distributed applications or when introducing 

distribution into existing application is reduced. Distributed applications created using the 

RRT are more maintainable and more easily evolvable than applications created using 

traditional systems. 

 



Chapter 6: Implementing the RAFDA Run-Time 

150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6  

 

Implementing the RAFDA Run-Time 
 

 

 

A prototype implementation of the RRT is described and evaluated 

quantitatively in this chapter. Particular attention is given to the manner 

in which the RRT attaches to arbitrary application objects dynamically, 

provides remote references that are type-compatible with local references, 

supports remote instantiation, implements migration, offers flexibility in 

parameter-passing semantics and provides efficient implementations of 

the policy frameworks. 
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6.1 Introduction 

This chapter describes the implementation of the RRT prototype. The previous 

chapter introduced the IRafdaRunTime, IRafdaRunTimeRemote and IRafdaRunTime-

Config interfaces (shown in Figure 5.9, Figure 5.18 and Figure 5.55 respectively) through 

which programmers access the RRT. The RRT prototype addresses several difficulties 

inherent in implementing the design described in the previous chapter, the main ones 

being: 

• Attaching the middleware system to arbitrary application objects dynamically. 

• Creating remote references that can be used interchangeably with local 

references. 

• Support for remote instantiation of objects. 

• Support for object migration. 

• Allowing the middleware system to alter the parameter-passing mechanisms 

applied to arguments and return values dynamically. 

• Creating optimized implementations of policy frameworks. 

The RRT prototype has been implemented using Java and so all code examples 

are in this language. While the RRT prototype does not employ any unique features of 

Java, some of the implementation details, such as the special steps taken to handle static 

members, are specific to a Java implementation of the RRT. 

6.2 Overview of the RRT Implementation 

Figure 6.1 shows an overview of the RRT architecture. It illustrates the flow of 

control when a remote method call is performed by object A on object B. Circles represent 

objects and rectangles represent components of the RRT. The large dotted rectangles in 

each address-space represent RRT instances. 
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Figure 6.1: Flow of control through the RRT when a remote method call is performed. 

Object A holds a reference to a proxy object associated with object B. When 

object A invokes a method on the proxy, the proxy forwards the call into the invocation 

interface provided by the client-side RRT instance. The client-side RRT instance 

marshals the method call and arguments, serializing arguments as required, and constructs 

a SOAP request. The request is passed to the server-side RRT instance, which 

deserializes the arguments and un-marshals the method call. The call on object B is 

performed by a service adaptor, which allows the server-side RRT instance to attach to 

any application object. 

The return value is passed to the service adaptor, serialized then passed back 

across the network to the client-side RRT instance in a SOAP response. The client-side 

RRT instance deserializes the return value and passes it to the proxy object. The proxy 

object returns this value to object A. 

Figure 6.2 shows a UML class diagram showing the structure of the RRT 

prototype implementation. The RRT implementation classes and interfaces are shaded. 

The RRT implementation can automatically generate ancillary code required to 

implement inter-address-space communication and these classes are represented by un-

shaded boxes. 
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Figure 6.2: The structure of the classes and interfaces in the RRT implementation. 

The main RRT implementation class, called RRTImplementation, implements five 

interfaces. The IRafdaRunTime, IRafdaRunTimeRemote and IRafdaRunTimeConfig 

interfaces, which allow programmers to access RRT instances, were introduced in the 

previous chapter. These are the only publicly accessible interfaces and are marked in 

bold. The other two interfaces, called IRafdaRunTimePrivate and IRafdaRunTimeRemote-

Private, define methods that are for internal use.  

The IRafdaRunTimePrivate interface shown in Figure 6.3 defines a series of 

methods that are used by automatically generated client-side code to access the local RRT 

instance.  
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interface IRafdaRunTimePrivate { 

 Object invokeRemoteInstanceMethod(RafdaIOR rafdaIOR, 

  String methodIdentifier,  

Object[] arguments); 

 Object invokeRemoteStaticMethod(Class applicationClass,  

String methodIdentifier, 

  Object[] arguments); 

 boolean isHandlingStaticMethods(Class applicationClass); 

 PassingMechanism evaluateTransmissionPolicy( 

  Class argumentClass, 

  Method methodIdentifier,  

  int argumentNumber,  

  int depth,  

  boolean isReturnValue); 

} 

 

Figure 6.3: The IRafdaRunTimePrivate interface. 

This interface provides the following methods: 

• The invokeRemoteInstanceMethod() method which allows proxy objects to 

perform remote method calls. 

• The invokeRemoteStaticMethod() and isHandlingStaticMethods() methods, 

both of which are used to preserve non-distributed static method semantics. 

• The evaluateTransmissionPolicy() method which determines the parameter-

passing semantics to apply to objects that are passed across address-space 

boundaries. 

The IRafdaRunTimeRemotePrivate interface, shown in Figure 6.4, provides 

functionality to remote RRT instances. 

interface IRafdaRunTimeRemotePrivate { 

byte[] getClassCode(String className); 

 RafdaIOR migrateObject(Object objectToMigrate); 

}

 

Figure 6.4: The IRafdaRunTimeRemotePrivate interface. 

This interface provides the following methods: 

• The getClassCode() method which is used to perform code distribution. 

• The migrateObject() method which implements object migration. 
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The functionality provided by both interfaces is examined in more detail 

throughout this chapter. 

The RRT class introduced in the previous chapter in Figure 5.4 is used by 

programmers to access RRT instances. The RRTPrivate class shown in Figure 6.5 is used 

only by RRT instances and proxy objects to obtain references to the IRafdaRunTime-

Private and IRafdaRunTimeRemotePrivate interfaces of other RRT instances. The 

RRTPrivate class is not accessible to programmers. 

 

class RRTPrivate { 

 public static IRafdaRunTimePrivate get() {…} 

 public static IRafdaRunTimeRemotePrivate getRemote() {…} 

}

 

Figure 6.5: The RRTPrivate class. 

The class diagram in Figure 6.2 contains five further classes and an interface: 

• GenericServiceAdaptor provides a generic implementation of the service 

adaptor functionality which allows the RRT to attach to arbitrary application 

objects. The RRT can generate per-class implementations of service adaptors 

automatically. These per-class service adaptors extend the generic 

implementation class. They are represented on the diagram by the class 

PerClassServiceAdaptor. 

• GenericSerializerDeserializer provides a generic serializer/deserializer, which 

is capable of serializing and deserializing instances of arbitrary application 

classes. The RRT can generate per-class implementations of 

serializer/deserializers automatically. These per-class implementations extend 

the generic implementation class. They are represented on the diagram by the 

class PerClassSerializerDeserializer. 

• All proxy classes (represented by the PerClassProxy class) are generated on a 

per-class basis and implement the Proxy interface.  

6.3 Implementing Server-Side Functionality 

Each RRT instance is an instance of class RRTImplementation. Each RRT 

instance is exposed to remote access twice, using the IRafdaRunTimeRemote and 

IRafdaRunTimeRemotePrivate interfaces as its remote types. The basic connectivity that 

is provided by the RRT via remote method invocation is exploited to simplify the 
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implementation of the RRT itself. Clients can access remote RRT instances as easily as 

any other remote objects.  

Self-exposure allows the RRT implementation to be easily maintained and 

extended. New functionality could be introduced to RRT instances by declaring new 

methods in IRafdaRunTimeRemote and implementing them in RRTImplementation, 

without the need to modify the underlying protocols or perform custom inter-address-

space communication. Changes to the RRT implementation itself can be made as easily as 

changes to a distributed application created using the RRT as a middleware system. 

6.3.1 Identifying Exposed Objects 

Remotely accessible objects are associated with identifiers called RAFDA 

Interoperable Object References (RafdaIORs), from CORBA parlance, that uniquely 

identify the objects in the distributed system. RafdaIORs implement the remote reference 

functionality in the RRT and allow clients to identify remote objects. If an object is 

passed by-reference, it is the RafdaIOR associated with the object that is passed across the 

network. Each RafdaIOR identifies an exposed Web Service rather than an individual 

object so a single object that is exposed multiple times is associated with multiple 

RafdaIORs. The RafdaIOR associated with a particular object contains: 

• The InetSocketAddress of the RRT instance exposing the object. When remote 

method calls are performed on the object, this address determines the RRT 

instance to which the SOAP requests are sent. 

• A string representation of a 160-bit Universally Unique Identifier (UUID) that 

identifies the Web Service associated with the exposed object. UUIDs are 

generated randomly by the RRT such that no two services will ever have the 

same UUID. 

• An instance of java.lang.Class capturing the remote type associated with the 

object, which was specified at exposure time. This remote type is used client-

side during proxy generation and indicates which methods of those provided 

by the object’s class will be remotely accessible. The automatic generation of 

proxy classes is described in Section 6.4.2. 

• An instance of java.lang.Class capturing the class of the object. This is 

identified as the real class to differentiate it from the object’s remote type. 

This class is also used during proxy generation. 
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• A list of the fields to be cached in any remote references to the object, which 

is used during proxy generation. 

• A list of the methods to be cached in any remote references to the object, 

which is also used during proxy generation. 

• The current values of any cached fields. 

The RafdaIOR implementation class is shown in Figure 6.6. 

 

public class RafdaIOR { 

 private InetSocketAddress rrtInstance = null; 

 private Class remoteType = null; 

 private Class realClass = null; 

 private String uuid = null; 

 private Field[] cachedFields = null; 

 private Object[] cachedFieldValues = null; 

 private Method[] cachedMethods = null; 

 

 public RafdaIOR(InetSocketAddress rrtInstance,  

Class remoteType, 

  Class realClass) { 

  this.uuid = …; // Generate UUID string 

  this.rrtInstance = rrtInstance; 

  this.remoteType = remoteType; 

  this.realClass = realClass; 

 } 

 /* Getters and setters omitted */ 

}

 

Figure 6.6: The RafdaIOR class. 

6.3.2 Service Adaptors 

Service adaptors provide skeleton functionality in the RRT, allowing the 

infrastructure to attach to arbitrary application objects. When a remote call is performed 

on a remotely accessible object, the RRT instance exposing the object uses a service 

adaptor to access the object. Service adaptors are similar to servants that adopt the tie 

approach in CORBA [8]. There is a one-to-one correspondence between service adaptors 

and exposed services, meaning that there will be multiple service adaptors associated with 
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objects that are exposed with multiple remote types. Each service adaptor is an object that 

holds the following: 

• A local reference to the exposed object. 

• The RafdaIOR associated with the service, to allow the RRT to obtain the 

RafdaIOR associated with a particular object when passing that object across 

the network. 

• A timestamp indicating when the service was last accessed by a remote client. 

• A map between the names of the methods provided by the Web Service and 

instances of the java.lang.reflect.Method class, which allow reflective access 

to the exposed methods of the object. 

• A Boolean indicating whether this service adaptor is acting as a tombstone. 

Tombstones are used during object migration and are described in Section 

6.4.5. 

The service adaptor permits only the methods defined in the remote type to be 

invoked on the exposed object. If a client attempts to call a method that is not provided by 

the remote type, the call will fail, even if the exposed object’s class implements that 

method. 

6.3.2.1 Generic Service Adaptor Implementation 

The generic service adaptor implementation is shown in Figure 6.7. When an 

object is exposed, an instance of this class is created. A map from Web Service method 

names, which are used in SOAP requests, to instances of the Method class, which allow 

the methods to be called reflectively, is initialized. This map allows direct lookup of 

methods based on Web Service method names when handling remote calls, without the 

need for any processing of the method name. The map is populated based on the remote 

type and so it ensures that only methods defined in the remote type are accessible 

remotely. An RRT instance can invoke a method on the exposed objects using the 

invokeMethod() method, supplying the Web Service method name, any arguments and a 

Boolean flag indicating whether the caller is permitted access to non-public methods. 

Since the invoked method may throw exceptions, invokeMethod() throws an instance of 

Throwable, the super-type of all exceptions and errors in Java. 
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public class GenericServiceAdaptor { 

 private Object exposedObject = null; 

 private RafdaIOR rafdaIOR = null; 

 private long timestamp = 0; 

 private HashMap<String, Method> nameToMethodMap = null; 

 private boolean isTombstone = false; 

 

 public GenericServiceAdaptor(Object exposedObject,  

RafdaIOR rafdaIOR) { 

  this.exposedObject = exposedObject; 

  this.rafdaIOR = rafdaIOR; 

  this.timestamp = System.currentTimeMillis(); 

/* Code to populate nameToMethodMap omitted */ 

 } 

 public Object invokeMethod(String wsMethodName,  

Object[] arguments, 

  boolean callerHasNonPublicAccess) throws Throwable { 

 /* Get hold of the java.lang.reflect.Method object  

 * associated with this Web Service method name */ 

  Method m = nameToMethodMap.get(wsMethodName); 

  if (m != null) { 

   /* If the caller has access, invoke the method */ 

if (callerHasNonPublicAccess ||  

Modifier.isPublic(m.getModifiers())) { 

this.timestamp = System.currentTimeMillis(); 

    return m.invoke(exposedObject, arguments); 

   } 

  } 

  throw new NoSuchMethodException("Unknown method " + 

 wsMethodName + "()."); 

 } 

 public Object getExposedObject() {return exposedObject;} 

 public RafdaIOR getRafdaIOR() {return rafdaIOR; } 

 public long getTimestamp() {return timestamp;} 

/* Methods used to implement migration */ 

 public void becomeTombstone() {isTombstone = true;} 

 public boolean isTombstone() {return isTombstone;} 

}

 

Figure 6.7: The GenericServiceAdaptor class. 
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Clients may only access non-public methods of exposed objects if the local 

protection semantics permit it. RRT instances can distinguish between clients that use the 

RRT and other clients by the HTTP headers supplied with SOAP requests. Clients using 

other technologies are not permitted to access non-public methods by default. Conversely, 

clients using the RRT are always permitted to access them. Each server-side RRT 

instance relies on its client-side counterpart to preserve local protection semantics. Each 

RRT instance trusts that no other RRT instance will permit a remote call that violates the 

local protection mechanism. 

6.3.2.2 Automatically Generated Service Adaptors 

Instances of the GenericServiceAdaptor class can be used to expose instances of 

any application class. However, the cost of Java reflection is incurred on every method 

call. In Java, it is more expensive to perform a method call using the reflection tools than 

it is to call the same method directly. The RRT can employ generative programming 

techniques to create customized service adaptors on a per-class basis. The per-class 

service adaptors call methods on exposed objects directly without using runtime 

reflection, with the reflective step moved to the time when the per-class service adaptors 

are generated. Per-class service adaptors all extend the GenericServiceAdaptor class and 

override invokeMethod() to create a version that is specific to a particular application 

class and remote type. The classes are generated and compiled dynamically by the RRT. 

Dynamic compilation is performed using tools that are currently provided as part 

of the Java 2 SDK, Standard Edition (up to and including version 5.0 [40]) and the St 

Andrews Dynamic Java Compiler [89]. These tools are not guaranteed to be present in 

every Java implementation though dynamic compilation can be performed reliably under 

Microsoft Windows, RedHat Linux and MacOSX.  

The example in Figure 6.8 shows a generated service adaptor that is associated 

with instances of class JChordNode (Figure 5.6) that have been exposed using class 

Chord (Figure 5.5) as remote type. The remote type dictates which of the exposed 

object’s methods will be remotely accessible. Note that the exposedObject field must be 

typed according to the exposed object’s real class. This is necessary because the exposed 

object’s class does not necessarily implement or extend the remote type (though in this 

particular case it does); they need only be structurally compliant such that every method 

in the remote type has a counterpart with an identical signature in the exposed object’s 
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class. Both the real class of the exposed object and the remote type with which is has been 

exposed must be known in order to generate the associated service adaptor. 

public class JChordNode$Chord$ServiceAdaptor 

extends GenericServiceAdaptor { 

 private JChordNode exposedObject = null; 

 

 public JChordNode$Chord$ServiceAdaptor( 

JChordNode exposedObject, 

  RafdaIOR rafdaIOR) { 

  this.exposedObject = exposedObject; 

  this.rafdaIOR = rafdaIOR; 

  this.timestamp = System.currentTimeMillis(); 

 } 

 public Object invokeMethod(String wsMethodName ,  

Object[] arguments, 

  boolean callerHasNonPublicAccess) throws Exception { 

  if (wsMethodName .equals("lookup")) { 

   return exposedObject.lookup((Key) arguments[0]); 

  } else if (wsMethodName .equals("addNode")) { 

   exposedObject.addNode((Chord) arguments[0]); 

   return null; 

  } else if (wsMethodName .equals("getSuccessorNode")) { 

   return exposedObject.getSuccessorNode(); 

  } else if (wsMethodName .equals("getKey")) { 

   return exposedObject.getKey(); 

  } else if (wsMethodName .equals("setKey") && 

    callerHasNonPublicAccess) { 

   exposedObject.setKey((Key) arguments[0]); 

   return null; 

  } else if (wsMethodName .equals("printKeyInfo")) { 

   exposedObject.printKeyInfo(); 

   return null; 

  } 

  throw new NoSuchMethodException("Unknown method " + 

    wsMethodName  + "()."); 

 } 

}

 

Figure 6.8: The per-class service adaptor associated with class JChordNode and remote type Chord. 
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The constructor in this generated class behaves differently to the inherited super 

constructor as it does not need to initialize the Web Service method name to Method 

object map required by the generic service adaptor. Also, the setKey() method declared in 

Chord is protected and so invokeMethod() must check whether the caller has non-public 

access before calling this method. The generated service adaptor class is created in the 

same Java package as the exposed object’s class and so has access to methods with 

public, protected and default modifiers. However, it cannot access private methods of the 

exposed object directly. Generated service adaptors employ reflection to access private 

methods, negating their advantage over the generic implementation. 

In order to allow generated service adaptors to access all methods directly, the 

RRT implementation provides a class loader that makes all application class members 

public at class load-time. If this class loader is employed, then the service adaptor will be 

able to access any of the exposed object’s methods. This process is considered safe as the 

transformations are performed on code that has been verified by a standard compiler. 

6.3.2.3 Generic vs. Generated Service Adaptors 

Programmers specify in the RRT configuration whether the RRT should use the 

generic service adaptor or generate them on a per-class basis (see Appendix C for details). 

The two types of service adaptor offer different trade-offs [90]. The per-class versions are 

more efficient than the generic alternative in terms of per-call cost but incur the one-time 

cost of code generation and compilation. The generic implementation is more suitable for 

applications in which a large number of different classes of object are exposed and few 

remote calls are performed on each class of object. In such an environment, each 

generated per-class service adaptor would be used a small number of times, meaning that 

the cost of generation and compilation would outweigh the cost of incurring reflection on 

each method call. The generated per-class implementations are more suitable for use in 

applications in which exposed object lifetime is long or in which many remote calls are 

made to instances of each class. The cost of generation and compilation in these 

circumstances is amortized over many method calls. 

By default, all generated code is discarded when the RRT instance that generated 

it terminates. However, programmers can configure the RRT to indicate that the 

generated code should be cached for future runs of the application. Currently, the RRT 

does not detect if the application classes associated with cached code have been modified 

since the code was created, necessitating another configuration option to indicate that all 
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cached code should be discarded and re-generated. Future work may address this problem 

by including a content hash in the cached code that is used to detect changes in the 

underlying application classes. 

6.3.3 Service Adaptor Infrastructure 

As described in the previous chapter, services are always accessible via URLs 

based on their UUIDs and, provided the services were not automatically deployed, are 

accessible via URLs based on programmer-specified service names. SOAP requests are 

passed to specific URLs and RRT instances must associate these URLs with service 

adaptors, in order to perform the calls. Each RRT instance holds a service map that is 

used for this purpose. The service map associates service URLs with service adaptors. 

The RRT also holds an object map mapping from objects to service adaptors, 

which is used for server-side object management. Each entry in the object map associates 

an exposed application object with a secondary map, called the remote type map. The 

remote type map associates all the remote types with which an object is exposed to the 

corresponding service adaptors. The object map allows the RRT instance to find all the 

Web Services and corresponding remote types associated with a particular object, in order 

to determine whether an object is currently exposed or to obtain the RafdaIORs associated 

with a particular object. Figure 6.9 shows the service map and object map data structures 

present in an RRT instance and an application object A. 

Object Map 
Reference

A

Key Value

Key Value

RemoteType

Service 
Adaptor RafdaIOR

Key Value

Service URL

RRT

Object Map Service Map

Remote 
Type Map

 

Figure 6.9: The Service Map and Object Map data structures, including an application object. 
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When an object is exposed with a particular remote type, a RafdaIOR is generated 

for the newly exposed service. A service adaptor is instantiated and initialized with the 

reference to the exposed object and the RafdaIOR. The last access time in the service 

adaptor is set to the current system time. Mappings are then created: 

• Between the object and its service adaptor in the object map. 

• Between the UUID-based URL and the service adaptor in the service map. 

• Between the service-name-based URL and the service adaptor in the service 

map, if a service name has been specified. 

The object map also controls whether the local garbage collector is allowed to 

collect exposed objects. As described in the previous chapter, the RRT provides 

programmers with three approaches to object lifetime management: 

1. The RRT infrastructure allows exposed objects to be collected when they are 

no longer referenced locally by the running application, even if referenced 

remotely. To achieve this, the RRT holds only weak references to exposed 

objects, which are ignored by the local garbage collector when determining 

whether an object is referenced. 

2. The RRT holds (conventional strong) references to exposed objects and 

continues to do so until they are removed from remote access manually. 

3. The RRT holds (conventional strong) references to exposed objects. However, 

the references to any exposed objects that are not accessed remotely within a 

programmer-defined lease time are changed into weak references, allowing the 

local collector to reclaim them. 

Figure 6.9 shows the references that exist when the RRT instance adopts approach 

1. Conventional strong references are shown as solid arrows and weak references are 

shown as dashed arrows. In this example, both the service map and object map are 

implemented in Java using weak maps. Weak maps hold weak references to keys and so 

the keys may collected by the local collector, despite their presence in the weak map. The 

weak map detects when collection of keys has occurred and automatically removes the 

associated mappings, thereby releasing any references held to values associated with 

those keys. 

The RRT infrastructure holds no strong references to the application object A. The 

object map holds a weak reference to the application object and as long as the application 

object is extant, the object map will hold a strong reference to the associated remote type 
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map. Consequently, the remote type map will not be collected, nor will the object’s 

service adaptor, RafdaIOR or service URL. 

The local collector is free to reclaim object A. If it does so, the weak object map 

will detect the collection of one of its keys (object A) and will release the reference it 

holds to the value associated with this key (object A’s remote type map). The remote type 

map is no longer referenced and so will eventually be reclaimed, along with the service 

adaptor, RafdaIOR and service URL object. 

The two other approaches to memory management can be adopted on a per-RRT-

instance basis through the RRT configuration. If the second approach to memory 

management is taken, in which application objects are never collected, the object map is 

implemented as a conventional map rather than a weak map. The reference held by the 

object map to the application object, marked Object Map Reference would be a strong 

reference. This ensures that the application object is always (strongly) locally referenced 

and so will never be collected until it is explicitly removed from remote access by the 

programmer. 

The third approach to memory management, in which objects not accessed within 

the lease time are collected, is implemented using two object maps, one conventional and 

one weak. Initially, objects are placed into a conventional object map that strongly 

references them. Periodically, the RRT instance checks to see whether objects have been 

accessed within the lease time. Those that have not are moved from the conventional 

(strong) object map to the weak object map. 

As with the first approach, the local collector may now reclaim the objects if 

necessary but the RRT instances can still access the corresponding service adaptors if any 

incoming remote calls to the objects arrive before collection. If remote calls occur, the 

objects are moved back into the conventional object map and their last access time is 

updated. 

Using two separate object maps has advantages over an approach based on a 

single object map that holds both strong and weak references. Weak maps in Java have 

subtly different semantics to conventional maps holding weak references to keys. Even 

when a key is collected, a conventional map will continue to hold a strong reference to 

the associated remote type map, forcing programmers to remove the mapping manually. 

Using a weak map ensures that housekeeping is performed automatically by the local 

garbage collector when the application object A is collected. RRT instances do not need 

to take any special steps to detect the collection of exposed application objects. 
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6.3.4 Serializers and Deserializers 

The RRT is capable of passing instances of arbitrary classes by-value. The 

implementation of appropriate serializers and deserializers that allow the transmission of 

arbitrary objects across the network is described here. 

6.3.4.1 Serializers 

A generic reflective serializer is provided. It is a generic object browser that 

examines the fields present in any arbitrary object and generates a corresponding SOAP 

encoded representation of the object using reflection. Using generative programming 

techniques, the RRT can generate and compile customized per-class serializers that 

directly access fields when serializing instances of a particular class. The per-class 

serializers do not use reflection when accessing public, protected and default fields 

though do when accessing private fields. The RRT class loader described previously in 

the context of service adaptors can again be employed to make all fields in application 

classes public to avoid the need for any reflection when serializing objects using the 

generated serializers. 

The trade-offs between the generic and per-class implementations are similar to 

those faced when deciding which kind of service adaptor implementation to employ. The 

per-class generated serializers are more appropriate than the generic implementation 

when many instances of each class are serialized, allowing the one-time cost of 

generation and compilation to be amortized over many serialization operations. By 

default, the per-class serializers are deleted when the RRT instance that generated them 

terminates. The generated code may be cached across multiple runs of the application, in 

the same manner as per-class service adaptors, in order to avoid the cost of re-generation. 

6.3.4.2 The Sub-type Problem 

Conventional Web Services semantics dictate that return values are passed by-

value. Each method provided by a Web Service has a statically defined return type and 

Web Services can return only objects that are of exactly this type. Instances of sub-types 

of the statically defined return types cannot be returned when using standard Web 

Services. The reason for this limitation with respect to sub-types is as follows. 

Standard Web Services perform inter-address-space communication using the 

SOAP protocol. When an object is serialized into XML using SOAP, the middleware 
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needs to associate a type with this serialized object to permit deserialization. Using 

standard Web Services technology, each client holds a mapping between programming 

language types and XML namespaces. The XML namespace corresponding to the 

serialized object’s type is included in the serialized object data. From this namespace, a 

deserializer can map the namespace back to a programming language type in order to 

instantiate the object. 

Since there are an infinite number of possible sub-types of a statically defined 

return type, it is not possible to associate a unique XML namespace with every sub-type 

statically. Thus, conventional Web Services technologies cannot return arbitrary types 

because serializers cannot capture type information in the serialized object data. 

Support for sub-typing is provided through an extension to Web Services 

semantics, which is incompatible with standard Web Services. The RRT employs the 

extended semantics when both client and server are RRT-based to allow full support for 

the transmission of sub-types. When the RRT is used in conjunction with conventional 

Web Services technology, standard Web Services semantics are adopted. The RRT 

determines whether to employ extended semantics on a per-class basis.  

Transmission of sub-types is achieved using an approach similar to autotyping in 

Apache Axis [57]. A deterministic mapping from programming language class to 

namespace is adopted at serialization time. The namespace consists of two parts. The first 

part indicates that the RRT performed the serialization using this deterministic naming 

scheme and identifies the programming language in use. The second part contains the 

fully qualified name of the associated class. This approach allows the deserializer to 

determine the class of a serialized object directly from its namespace, negating the need 

for explicit mappings between namespaces and types. Figure 6.10 shows the namespace 

generated when an instance of Java class JChordNode in package jchord is serialized. 

 

"uk.ac.stand.dcs.rafda/java:jchord.JChordNode" 

 

Figure 6.10: Deterministically generated namespace. 

6.3.4.3 Deserializers 

The RRT implementation includes a generic deserializer that performs all object 

creation and initialization reflectively. To create objects, the generic deserializer uses the 

default constructor if one exists otherwise it uses one of the other constructors, specifying 
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default values for the initialization arguments. These default values are overwritten when 

the deserialized state is written into the newly instantiated object. This approach to object 

creation can have unexpected consequences if any of the constructors have side-effects. 

This problem could be solved in future work by generating a special RRT constructor for 

each application at load-time, to be used only for object instantiation during 

deserialization. 

When performing deserialization, an RRT instance may need to instantiate a class 

for which it has no locally accessible code. A code distribution system that allows the 

deserializing RRT instance to query the serializing RRT instance in order to obtain the 

required code in binary form is provided. The received code can then be loaded 

dynamically and the instantiation performed. 

Code is obtained from a remote RRT instance via the getClassCode() method 

(shown in Figure 6.11) provided by the IRafdaRunTimeRemotePrivate interface (shown 

in Figure 6.4). Given the name of a class, it returns an array of bytes that encodes that 

particular class. Application code is distributed throughout the distributed system lazily 

using this mechanism. 

 

byte[] getClassCode(String className);

 

Figure 6.11: The getClassCode() method, used for code distribution. 

Per-class deserializers can be generated to complement per-class serializers, in 

order to avoid the cost of reflection. Much like per-class serializers, per-class deserializers 

are beneficial in applications in which many instances of a particular application class are 

deserialized over the lifetime of the RRT instance. Generated deserializers cannot directly 

modify final or private fields though this limitation is overcome by reverting to reflective 

access where necessary. Programmers can employ the RRT class loader, to makes all 

fields non-final and public, in order to avoid the need for any reflective operations in 

generated deserializers. 

6.4 Implementing Client-Side Functionality 

As discussed at the beginning of this chapter, each RRT instance exposes itself to 

remote access using the IRafdaRunTimeRemote interface. Clients can obtain a reference 

to a remote RRT instance using the getRemote() method in the RRT class. Clients can 
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obtain references to remote objects, instantiate objects in remote address-spaces and 

migrate objects between address-spaces using this interface. 

6.4.1 Proxy Objects 

An application can call the getRemoteReference() method on a remote RRT 

instance to obtain a reference to an exposed object. The remote RRT instance returns the 

RafdaIOR associated with the exposed object. The RafdaIOR is not type-compatible with 

the application object it represents so the client cannot call methods directly on the 

RafdaIOR, therefore a type-compatible proxy object is created to encapsulate the 

RafdaIOR. 

Proxy objects in the RRT adopt a dual role: 

1. They act as conventional middleware proxies, namely as local handles on 

remote objects that propagate method calls across the network. 

2. They act as wrappers that introduce a layer of indirection into applications 

to allow object migration to be performed transparently with respect to the 

objects’ reference holders. 

Each role is now examined in turn. 

6.4.1.1 Conventional Proxy Behaviour 

Each proxy object is associated with a single remote object. The proxy object 

appears to clients to be an instance of the remote type, irrespective of the real class of the 

remote object. Proxy classes are generated from remote types but contain only non-static 

methods. Static methods are handled as described later in Section 6.4.3. For each non-

static method declared in the remote type, a type equivalent proxy method is created in 

the proxy class. 

A proxy method propagates calls across the network using the remote invocation 

method provided by the local RRT instance. This remote invocation method, called 

invokeRemoteInstanceMethod(), is found in the IRafdaRunTimePrivate interface. This 

interface, shown in Figure 6.12, is not publicly accessible and is used only by proxy 

objects to perform remote method calls. 



Chapter 6: Implementing the RAFDA Run-Time 

170 

 

Object invokeRemoteInstanceMethod(RafdaIOR rafdaIOR, 

 String wsMethodName,  

Object[] arguments); 

 

Figure 6.12: The invokeRemoteInstanceMethod() invocation method. 

When calling the invokeRemoteInstanceMethod() method, the proxy object passes 

the RafdaIOR of the remote object to be called, the name of the method to be called and 

any arguments. The local RRT instance marshals the method call according to the active 

transmission policy. Arguments may be passed by-reference, by-value or by-migrate. 

• If an argument is passed by-reference, then the associated RafdaIOR is 

transmitted across the network. The argument is automatically exposed if 

necessary. Before serializing a RafdaIOR, the RRT examines the active 

transmission policy to determine if any fields or methods of the referenced 

object are cached. If so, the RRT updates the cached field and method 

information in the RafdaIOR. The RafdaIOR is then serialized and added to 

the SOAP message. 

• If an argument is passed by-value, it is serialized and added to the SOAP 

message. Pass-by-value semantics may only be applied to objects that exist 

locally. If the transmission policy dictates that by-value semantics should be 

applied to an argument which itself is a remote reference, then the RRT passes 

that argument by-reference. 

• If an argument is passed by-migrate, then the RRT initially checks whether the 

argument has been wrapped through a call to makeMigratable(), in preparation 

for migration. If so, the object is migrated immediately to the remote address-

space then passed by-reference. If the argument does not support migration 

then it is passed by-reference. 

The resulting SOAP message consists of the Web Service method name and a 

series of serialized arguments, some of which are remote references. The RRT instance 

sends the SOAP message to the corresponding remote RRT instance using the socket 

address stored in the RafdaIOR. 

The server-side RRT instance receives and deserializes the SOAP request 

resulting in a Web Service method name along with a series of arguments, some of which 

are RafdaIORs. RafdaIORs are not type-compatible with the arguments they represent. 
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The RRT instance checks whether the RafdaIOR corresponds to a local object and, if so, 

will pass that object to the method call instead of the RafdaIOR. Alternatively, if a proxy 

object corresponding to the RafdaIOR already exists then that proxy object is passed to 

the method call. If no proxy object exists, one is created. The appropriate proxy class is 

generated and compiled automatically if necessary. 

6.4.1.2 Wrapper Behaviour 

Proxy classes in the RRT also play a role in object migration, which is 

implemented using Stub Scion Pair (SSP) Chains [91]. Instances of a particular proxy 

class can act as a wrapper to instances of the associated application class. By introducing 

this layer of indirection, the RRT can ensure referential integrity when a migratory object 

is copied from one address-space to another. All local and remote references to the 

original copy of the migratory object in the old address-space must be updated to refer to 

the copy in the new address-space. It is desirable, though not logically necessary, to 

change all remote references in the new address-space into local references to the copy in 

that address-space. 

The substitution of an application object with a proxy object is difficult as there is 

no mechanism in Java, or in other typical object-oriented languages, to substitute one 

object directly for another i.e. to substitute an application object with a proxy object. 

Further, given an arbitrary object, it is not possible to determine which other objects 

reference it locally when using typical languages, making direct update of references in 

place difficult. The following example illustrates how wrappers can be used to allow 

substitution. Figure 6.13 shows an application in which object A in address-space 1 is 

exposed to remote access. Object A is locally referenced by multiple objects in address-

space 1 and remotely referenced by multiple objects in address-spaces 2 and 3. There is 

one proxy object in each of address-spaces 2 and 3 that allow the reference holders to call 

methods in the remote object A. Application objects are darkly shaded whilst proxy 

objects are lightly shaded. 
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Figure 6.13: An example application in which both local and remote references to object A exist. 

When the makeMigratable() method is called on object A to introduce support for 

migration, the object is wrapped using a proxy object. A reference to the wrapper returned 

to the application and all references to object A are updated (by programmers) to 

reference the proxy object. Figure 6.14 illustrates the resultant changes to the application. 

Object A is referenced directly only by the wrapper (local proxy object). The 

proxy in address-space 1 forwards any calls performed by reference holders onto the 

wrapped object. The proxy objects in address-spaces 2 and 3 are conventional proxies, 

forwarding calls across the network. Any of the proxy objects in the system can act as 

wrappers meaning that the location of A is now transparent with respect to its reference 

holders, whether local or remote. 

 

Figure 6.14: The application structure after makeMigratable() has been called on object A. 
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To migrate object A to address-space 2, it is first copied to that address-space as 

shown in Figure 6.15. The proxy in address-space 2 becomes a wrapper and the proxy in 

address-space 1 becomes a conventional proxy. The only references that need to be 

updated are those present in the proxy objects themselves, all of which are known and 

accessible to the RRT. In address-space 1, the service adaptor associated with the object 

begins to act as a tombstone so that other remote references can be updated lazily when 

they attempt to access object A in address-space 1. The details of migration 

implementation and the manner in which references are updated coherently are discussed 

later.  

 

Figure 6.15: The application structure after object A has migrated from address-space 1 to 2. 

Without the layer of indirection introduced by the wrapper object, it would not be 

possible to convert all local references in address-space 1 into remote references (by 

substituting object A with a proxy) or to convert the remote references in address-space 2 

into local references (by substituting the proxy with the new copy of object A).  

6.4.2 Implementing Proxy Classes 

It has been shown that proxy objects adopt two distinct roles as: 

• Conventional middleware proxies used to perform remote method calls. 

• Wrappers used to introduce indirection into applications to allow the 

implementation of transparent object migration.  

Proxy objects are instances of proxy classes, which are always generated 

automatically. No generic proxy implementation exists as it is not possible to create proxy 

objects that appear to clients to be instances of the associated remote types without using 
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code generation. Each proxy class is constructed based on the real class of an exposed 

object, the remote type with which the object is exposed and the lists of cached fields and 

methods included in the RafdaIOR.  

Each proxy class implements the methods defined in the remote type. When 

acting as a conventional proxy, these methods are either un-cached, meaning that they 

propagate the call into the RRT infrastructure, or are cached, meaning that they execute 

locally. When acting as a wrapper, all method calls are forwarded onto the locally 

wrapped application object. 

Each proxy object holds a reference to a wrapped application object or the 

RafdaIOR associated with a remote object but never both. When behaving as a wrapper, 

each proxy object also hold a reference to a reader/writer lock of class ReadWriteLock. 

This lock is used at migration time to lock access to the local object while it is copied to 

another address-space and the references are updated. The behaviour of this lock is 

described later in the context of migration. 

Each proxy class implements the interface shown in Figure 6.16, which allows 

access to the locally wrapped object, the RafdaIOR associated with the proxy and the 

reader/writer lock. 

 

public interface Proxy { 

 Object getLocalObject(); 

 void setLocalObject(Object localObject); 

 RafdaIOR getRafdaIOR(); 

 void setRafdaIOR(RafdaIOR rafdaIOR); 

 ReadWriteLock getReadWriteLock(); 

}

 

Figure 6.16: The Proxy interface implemented by all proxy classes. 

Since Java supports only single class inheritance, the inheritance hierarchy 

adopted by generated proxy classes differs depending on whether the remote types with 

which they are associated are Java interfaces or Java classes. When a remote type is a 

Java interface, the associated proxy class extends the real class of the exposed object and 

implements the remote type and Proxy interfaces as shown in Figure 6.17. Consequently, 

instances of the proxy class appear to clients to be instances of both the remote type and 

the real class. In addition to extending the application, the proxy class contains a field 

typed as the application class, in order to implement wrapper behaviour. 
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Figure 6.17: Proxy class derived from a remote type that is a Java interface. 

When a remote type is a Java class, the associated proxy class extends the remote 

type and the Proxy interface only, as shown in Figure 6.18. Though the proxy class does 

not extend the application class, it still contains a field typed as the application class to 

allow it to wrap an instance of that class. Instances of the proxy class appear to be 

instances of the remote type, not instances of the exposed object’s real class.  

<<interface>>
Proxy

<<class>>
RemoteType

Per-ClassProxy

<<class>>
ApplicationClass

1

 

Figure 6.18: Proxy classes derived from remote types that are Java classes. 

Figure 6.19 shows the proxy class generated when an instance of the JChordNode 

class is exposed to remote access using the Chord class as remote type. In this example, it 

is assumed that the lookup() method is un-cached and so behaves as a conventional proxy 

method but that the getKey() method is cached and so executes locally.  

When called, the lookup() proxy method will either invoke the method locally on 

the wrapped object or invoke it remotely through the RRT instance, depending on 

whether the proxy object is acting as a conventional middleware proxy or a wrapper. The 
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getKey() method is cached so either accesses the method directly on the wrapped object 

(when behaving as a wrapper), or accesses a local implementation (when acting as a 

proxy with a cached method). It is important to note the distinction between cached 

methods and wrapper methods. The proxy class inherits cached methods from its super-

class so they execute on the proxy object while wrapper methods execute on the wrapped 

object. 

The reader/writer lock is used to implement migration and is described in detail 

later. Each method must ensure it holds a reader lock before accessing the locally 

wrapped object. The try-finally construct ensures that the lock is always released, even if 

exceptions are thrown. 

 

public class JChordNode$Chord$Proxy extends Chord implements Proxy { 

 private RafdaIOR rafdaIOR = null; 

 private JChordNode localObject = null; 

 private ReadWriteLock readWriteLock = new ReadWriteLock(); 

 

 /* Un-cached method */ 

 public Chord lookup(Key key) { 

  readWriteLock.getReadLock(); 

  try { 

   if (localObject != null) { 

    return localObject.lookup(key); 

   } else { 

IRafdaRunTimePrivate rrt = RRTPrivate.get(); 

return (Chord) rrt. 

invokeRemoteInstanceMethod( 

rafdaIOR,  

"lookup", 

      new Object[] { key }); 

   } 

  } finally { 

   readWriteLock.releaseReadLock(); 

  } 

 } 
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 /* Cached method */ 

 public Key getKey() { 

  readWriteLock.getReadLock(); 

  try { 

   if (localObject != null) { 

    return localObject.getKey(); 

   } else { 

    /* Call inherited method implementation */ 

    return super.getKey(); 

   } 

  } finally { 

   readWriteLock.releaseReadLock(); 

  } 

 } 

 /* Other methods from Chord omitted */ 

 public Object getLocalObject() {return localObject;} 

 public void setLocalObject(Object localObject) { 

  this.localObject = (JChordNode) localObject; 

 } 

 public RafdaIOR getRafdaIOR() {return rafdaIOR;} 

 public void setRafdaIOR(RafdaIOR rafdaIOR) { 

  this.rafdaIOR = rafdaIOR; 

 } 

 public ReadWriteLock getReadWriteLock() {return readWriteLock;} 

}

 

Figure 6.19: The proxy class associated with JChordNode instances exposed with remote type Chord. 

6.4.3 Static Members 

Static members (that is, methods and fields) are associated with classes rather than 

objects. The RRT provides two alternatives to handling static members. The first 

approach does not intercept static method calls, thereby allowing all of them to execute 

locally. The consequence of this is that each Java Virtual Machine holds a private copy of 

the fields. This approach has the advantages that it is efficient in terms of execution time 

as no remote calls occur and that the RRT is not required to take special steps to handle 

static members. 

Using the second approach, programmers must identify a single RRT instance in 

the distributed system as the root. The root has responsibility for tracking which RRT 
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instances have responsibility for the static members of which classes. The root RRT must 

be set in every RRT instance in the distributed system via the RRT configuration. 

The second approach requires the use of the RRT class loader, which can 

transform applications to allow interception of static method calls. The RRT instance in 

which the static members of a particular class are first accessed is assigned to be the home 

RRT instance for that class, in which its static fields will be stored. The root acts as arbiter 

to ensure that exactly one RRT instance becomes home instance for each application 

class. If static methods of a class are called by objects in the home RRT instance, they 

execute as normal, accessing the locally held copies of the static fields. If static methods 

of a class are accessed by objects in any other RRT instances, the calls are intercepted and 

the equivalent static methods remotely invoked on the home RRT instance. 

The class loader transforms all static methods dynamically at class load-time. 

When called, each static method will check with the local RRT instance to determine 

whether the method executes locally or remotely. It then either executes the method as 

normal or performs a remote call to the equivalent method in another RRT instance. 

Figure 6.20 shows an example class called JChordNodeSingleton, which has not yet been 

transformed to support remote access to static members. It contains a static field called 

singleton that is accessed via the getSingleton() method.  

 

public class JChordNodeSingleton { 

 private static JChordNode singleton = …; 

 

 public static JChordNode getSingleton() { 

  return singleton; 

 } 

} 

 

Figure 6.20: An untransformed class containing a static method. 

Figure 6.21 shows the JChordNodeSingleton class after transformation. The 

existing code is unchanged aside from the introduction of several lines at the beginning of 

the static method that use the IRafdaRunTimePrivate interface to determine whether the 

static member should be accessed remotely, and if so, to perform the remote call. 
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public class JChordNodeSingleton { 

 private static JChordNode singleton = …; 

 

 public static JChordNode getSingleton() { 

  IRafdaRunTimePrivate rrt = RRTPrivate.get(); 

  if (!rrt.isHandlingStaticMethods(JChordNode.class)) { 

   return (JChordNode) rrt. 

invokeRemoteStaticMethod( 

JChordNode.class, 

     "getSingleton",  

null); 

  } 

  return singleton; 

 } 

} 

 

Figure 6.21: A class with a transformed static method. 

The isHandlingStaticMethods() is used to determine whether the local RRT 

instance is the home of the specified class. If so, then the method executes locally as 

normal. If not, the invokeRemoteStaticMethod() method is called. This method propagates 

the call to that home RRT instance of the specified class. The root RRT instance can be 

used to determine the home RRT instance of any class.  

The failure model adopted by the RRT when calling remote static methods is 

identical to that used when calling remote instance methods. The RRT can consume 

distribution-related exceptions or can propagate them back to the application. 

6.4.4 Creating Objects in Remote Address-Spaces 

The instantiateAndExpose() method defined in the IRafdaRunTimeRemote 

interface allows a programmer to create an instance of any arbitrary class in a remote 

RRT instance and expose it for remote access. This method is shown in Figure 6.22. 

 

Object instantiateAndExpose(Class classToInstantiate,  

 Object[] constructorArguments,  

Class remoteType, 

 String serviceName); 

 

Figure 6.22: The instantiateAndExpose() method. 
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The implementation of this method relies on the transmission policy framework 

and the self-exposure provided by the RRT instances. The Java reflection tools are used 

to instantiate and initialize an instance of the specified class. The remote RRT determines 

which constructor to use based on the types of the specified constructor arguments. The 

object is then exposed with the remote type and service name. Finally, a remote reference 

to the newly created object is returned to the caller. 

This functionality is implemented in a few lines of code in the RRT. This is as a 

direct consequence of the RRT’s exposure of itself to remote access and the control over 

parameter-passing semantics afforded by the transmission policy framework. By building 

on the flexibility provided by the RRT infrastructure, advanced middleware functionality 

can be easily provided. 

6.4.5 Migrating Objects to Remote Address-Spaces 

Migration is implemented by building on the transmission policy framework and 

the dual nature of proxy objects. When programmers call the makeMigratable() method 

provided by the IRafdaRunTime interface, a proxy object is created and used to wrap the 

supplied application object. A reference to this wrapper is returned and the programmer 

must ensure that all objects holding references to the application object are updated to 

refer to the wrapper, as shown previously in Figure 6.14. Once this has been achieved, the 

location of the application object is transparent to all its reference holders. 

The RRT implements migration by copying the migratory object to the remote 

address-space then updating all references to it. In order to achieve this consistently, no 

clients can be permitted to call methods on the migratory object after the migration 

process has begun, until it is completed and all references have been updated. If updates 

to the old copy of the object were allowed after it had been duplicated into the remote 

address-space, those changes would not be reflected in the new copy of the object, and so 

would be lost. 

To ensure application coherency, the RRT employs a locking mechanism that 

ensures migration will only be performed when no methods are executing on the object 

and that no method calls will be performed until the migration operation completes. A 

reader/writer lock is used to provide the required functionality. This lock allows multiple 

readers but only one writer to hold the lock simultaneously. When a writer tries to obtain 

the lock, it is blocked until all readers holding the lock release it. If a reader attempts to 

obtain the lock while a writer is blocked waiting for it, that reader is also blocked. 
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The reader/writer lock is used as follows. A read lock must be obtained in order to 

call a method on a wrapped object. A write lock must be obtained in order to migrate the 

wrapped object to another address-space. Thus, multiple methods may be executed 

simultaneously on the wrapped object but migration cannot proceed until all methods 

executing on the wrapped object complete. Any attempt to call a method on a wrapped 

object in the middle of a migration operation is blocked until that operation is completed 

and the writer lock released. 

Thus migration of a particular object proceeds as follows: 

• The local RRT instance obtains a write lock on the reader/writer lock in the 

service adaptor associated with the migratory object. 

• The migratory object is copied to the new RRT instance and exposed using the 

remote type specified when makeMigratable() was called. If the migratory 

object was exposed in the old address-space using other remote types, it is re-

exposed with those remote types also. 

• The RRT permits at most one proxy object in a single address-space to be 

associated with the same object and remote type. If there is an extant proxy 

object associated with this migratory object in the remote address-space, it is 

used as a wrapper for the new copy of the migratory object. 

• The wrapper in the old address-space is updated with the RafdaIOR of the 

object in the remote address-space and begins to act as a conventional proxy. 

• All service adaptors associated with the object are updated to become 

tombstones, by calling their becomeTombstone() methods. If any clients 

attempt to access the object at the old address-space, the RRT detects that 

migration has occurred through the presence of the tombstone. The service 

adaptors hold the new RafdaIOR of the migrated object and return it to the 

caller by returning a response indicating that migration has occurred. The 

client updates its remote references with this RafdaIOR and reattempts the 

call. 

The RRT provides a migrate() method through the IRafdaRunTimeRemote 

interface, allowing migration to be performed by programmers. This method is 

implemented using the RRT’s support for pass-by-migrate semantics. The migrate() 

method in the RRT instance is an empty method that performs no computation but is 

associated with a method policy rule indicating that pass-by-migrate semantics should be 
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applied to an infinite depth when it is called. Thus, when called, it will immediately return 

but any arguments passed to it will be migrated to the remote RRT instance as a result of 

the active transmission policy. 

6.4.6 Remote Method Call Cost 

The cost of remote method calls in the RRT prototype was compared with the 

equivalent calls using other middleware systems. A test application was created then 

distributed using multiple different middleware technologies. The run-time cost of 

method calls was determined to allow comparisons between the RRT and existing 

middleware systems. The following Java-based systems were evaluated: 

• The RRT. 

• Java RMI (J2SE 1.5). 

• CORBA (using the ORB supplied with J2SE 1.5). 

• Apache Axis (version 1.2 final) deployed in Tomcat (version 5.5) [92]. 

Additional versions of the test application were created to execute under the 

Microsoft .NET framework, which permits programmers to choose between SOAP and a 

proprietary TCP-based transport protocol when performing remote method calls. The 

following .NET based systems were evaluated: 

• Microsoft .NET framework using SOAP channels (version 1.0). 

• Microsoft .NET framework using TCP channels (version 1.0). 

Tests were run on a two machine network. The first machine, designated the 

“server”, was used to execute the server-side applications that exposed objects to remote 

access. It contained a 2.7GHz Pentium 4 with 512MB RAM. The second machine, 

designated the “client”, was used to execute the client-side applications that performed 

the remote calls. It contained a 1.2GHz Pentium 3 with 256MB RAM. The machines 

were connected using an isolated 100Mb/s Ethernet. Since the .NET framework executes 

only under the Windows operating system, all tests on both machines were run under 

Windows XP Service Pack 2, fully patched, with only default services running. 

The first test evaluates the cost of a remote method call to a method that took no 

arguments, performed no computation and returned no results. The clock resolution 

provided by the test machines was 10ms, which is considerably greater than the average 

method call time. Therefore the test application performed 100 batches of 4000 method 

calls using each middleware system, resulting in a total run-time of between two and 
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twenty minutes wall clock time. The system clock was used to measure the time taken to 

perform each of the 100 batches of method calls. Apache Axis received special treatment 

as it ran around an order of magnitude slower than all other systems. Each batch 

performed only 400 method calls, rather than 4000, in order to achieve reasonable total 

test execution time. 

This test determines the lower bound of call cost, since there are no arguments or 

return values to pass, meaning no marshalling is performed. Table 6.1 shows the average 

time in milliseconds for a remote method call and the minimum and maximum call times 

observed.  

 
Middleware Average Min Max 

Java RMI 0.26 0.25 0.26 
.NET (TCP) 0.44 0.44 0.47 
CORBA 0.87 0.85 0.91 
RRT 2.10 2.02 2.22 
.NET (SOAP) 2.94 2.91 3.03 
Apache Axis 12.60 11.87 14.43 

 
Table 6.1: The time in milliseconds for a remote method call to an empty method. 

The second test was run under the same conditions as the first test but introduced 

arguments that required serialization. The method called by this test application took ten 

arguments, all of which were passed by-value. The arguments were all instances of the 

same complex type, which contained a 10 character string, a 25 character string and an 

integer. In all tests the arguments were initialized identically. 

Table 6.2 shows the time in milliseconds for a remote method call to this method, 

which required the middleware system to perform serialization. The table shows the 

average call time along with the minimum and maximum call times observed. 

 
Middleware Average Min Max 

Java RMI 0.43 0.42 0.45 
.NET (TCP) 0.86 0.86 0.88 
CORBA 1.41 1.40 1.49 
RRT 2.63 2.53 2.89 
.NET (SOAP) 5.07 5.04 5.17 
Apache Axis 20.88 16.24 24.24 

 
Table 6.2: The time in milliseconds for a remote method call to a method with arguments. 

The figures obtained from both tests are graphed in Figure 6.23.  
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Figure 6.23: Method call time in milliseconds. 

A clear difference can be seen between the middleware systems that use XML-

based SOAP as their transport protocol (the RRT, Apache Axis and the .NET framework 

employing SOAP channels) and those that use binary protocols (Java RMI, CORBA and 

the .NET framework employing TCP channels). The RRT outperforms both its SOAP-

based counterparts; the application employing the RRT ran more than 25% more quickly 

than the equivalent .NET application and around a factor of six times more quickly than 

the application employing Apache Axis. When serializing a large number of arguments, 

the RRT is again the quickest of the SOAP-based systems. During this test, the RRT used 

cached per-class serializers in order to optimize the serialization process, giving it a large 

advantage over the other systems, which do not generate such serializers. 

The applications using Java RMI, CORBA and TCP-based .NET all executed two 

to five times as quickly as the RRT. It should be noted that there are many 

implementations of the CORBA specification and that the one tested is that supplied with 

the J2SDK 5.0. It is reasonable to suggest that commercial ORBs may be better tuned for 

performance than this implementation and that the call time could be reduced more in line 

with the other systems that employ binary protocols. While the middleware systems that 

employ binary protocols outperform the RRT, the binary approach has disadvantages in 
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that it does not provide the meta-data and opportunities for validation that XML does. 

SOAP can be considered the safer approach as the data is self-describing and less prone 

to problems with type safety [33].  

SOAP-based systems offer a high degree of interoperability and a transport 

protocol with multiple advantages over binary approaches, as discussed above. Of the 

SOAP systems tested, the RRT prototype performed best, indicating that the advantage 

provided by the RRT’s approach to application creation need not come at the cost of 

degraded performance. 

6.5 Transmission Policy Framework 

The transmission policy framework allows programmers to control the parameter-

passing semantics employed when remote methods are called. There are four kinds of 

transmission policy rules that can be specified: 

• Method policy rules are associated with methods. They specify how all the 

arguments to the methods are marshalled. 

• Return policy rules are also associated with methods. They control how the 

return values are marshalled. 

• Argument policy rules are associated with individual method arguments. They 

indicate how particular arguments within method signatures are marshalled. 

• Class policy rules are associated with classes rather than methods. They 

indicate how instances of particular classes are marshalled. 

The transmission policy framework needs to optimize lookup of policy rules, as 

these rules must be checked every time an object is marshalled. The RRT trades quicker 

lookup for increased rule addition and removal time since it is expected that rules will be 

looked up much more often than they are altered. The transmission policy manager uses 

two associative stores to hold rules. One contains class policy rules alone and the other 

contains all rules related to methods, namely, method policy rules, return policy rules and 

argument policy rules. 

Programmers also use the transmission policy manager to manage caching policy 

rules, which indicate the fields and methods that are cached in particular remote 

references. Caching rules do not require any evaluation as there cannot be contention 

between separate rules. These rules are therefore recorded in simple associative stores 

keyed using classes, which are not examined in detail here. 
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6.5.1 Flow of Control during Policy Evaluation 

To determine how a particular object should be marshalled, the RRT instance 

queries the transmission policy via the evaluateTransmissionPolicy() method provided by 

the IRafdaRunTimePrivate interface, which is shown in Figure 6.24. The object to be 

marshalled may be an argument, a return value or an object within the closure of an 

argument or return value. 

 

PassingMechanism evaluateTransmissionPolicy( 

Class objectClass, 

Method methodIdentifier,  

int argumentNumber,  

int depth,  

boolean isReturnValue); 

 

Figure 6.24: The evaluateTransmissionPolicy() method used during marshalling. 

This method takes the following arguments: 

• The class of the object being marshalled. 

• The identity of the method being called. 

• The identity of the argument being marshalled. 

• The depth of object in the argument/return value closure. 

• A Boolean indicating whether this is an argument or return value.  

The algorithm that evaluates transmission policy for a particular object considers 

all policy rules that are associated with the specified class, method and argument. Rules 

that are not applicable at the current depth are ignored. The rule that is chosen by the 

transmission policy manager is called the dominant rule. The dominant rule defines 

which parameter-passing mechanism is applied to the specified object. 

The dominant rule is chosen from all applicable rules based on rule priority and 

precedence (argument policy rules override method policy rules of the same priority, 

which override class policy rules of the same priority) as follows: 

1. The class policy rule with the highest priority that is associated with the 

object’s class is found. This rule becomes the provisional dominant rule. 

2. Either the method policy rules or the return policy rules are evaluated 

depending on the isReturnValue Boolean. The highest priority rule that is valid 

at the current depth is found. If this rule is of equal or higher priority than the 
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current provisional dominant rule, then it becomes the provisional dominant 

rule. 

3. The highest priority argument policy rule that is valid at the current depth is 

found. If this rule is of equal or higher priority than the current provisional 

dominant rule, then it becomes the provisional dominant rule. 

4. The provisional dominant rule becomes the dominant rule. It dictates the 

parameter-passing mechanism to use. 

The data structures used to store rules are now described in the context of the 

following policy rules: 

• Class policy rule associated with the JChordNode class indicating pass-by-

reference with a priority of 3. 

• Class policy rule associated with the JChordNode class indicating pass-by-

value with a priority of 0. 

• Class policy rule associated with the Key class indicating pass-by-migrate 

with a priority of 1. 

• Class policy rule associated with the Key class indicating pass-by-value with 

a priority of 0. 

• Method policy rule associated with the lookup() method indicating pass-by-

reference to depth 2 with a priority of 3. 

• Method policy rule associated with the lookup() method indicating pass-by-

value to depth 0 with a priority of 1. 

• Return policy rule associated with the lookup() method indicating pass-by-

migrate to depth 0 with a priority of 3. 

• Return policy rule associated with the lookup() method indicating pass-by-

reference to depth 4 with a priority of 0. 

• Argument policy rule associated with the second argument of lookup() 

method indicating pass-by-value to depth 2 with a priority of 3. 

6.5.2 Class Policy Map 

The class policy map associates each class with a linked list of the class policy 

rules associated with that class. Since each rule has a priority that determines its 

precedence over other rules, the linked list of rules is sorted into priority order, such that 

the highest priority rule is at the head of the list as shown in Figure 6.25. Since the RRT 
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does not permit two rules of equal priority to be associated with a single class, there is 

always a single rule associated with each class that is of higher priority than all other rules 

associated with the same class. 

Obtaining the class policy rule associated with a particular class requires a single 

map lookup to obtain the head of the list. Insertion, modification or deletion of rules 

requires a list traversal to locate the specified rule. If no rules are associated with a 

particular class then no entry appears in this map. 

 

Figure 6.25: The transmission policy framework’s data structure for storing class policy rules. 

6.5.3 Method Policy Map 

The method policy map associates a method with its method policy rules, return 

policy rules and argument policy rules. The method policy map associates each method 

with a secondary map called the per-method map as shown in Figure 6.26. The per-

method map holds multiple linked lists of rules, sorted in priority order. 

In the per-method map, method policy rules are associated with the key “All”, 

return policy rules are associated with the key “Return”, and argument policy rules are 

associated with keys based on their argument numbers, “1”, “2”, etc.  

Lookup of a method policy, return policy or argument policy rule requires two 

map lookups to obtain the required linked list of rules. The first to obtain the per-method 

map associated with the required method and the second to obtain the link list of policy 

rules from this per-method map. The first rule in this linked list that is valid at the current 

depth is found by traversing the list.  

For example, the policy rules shown are associated with the lookup() method. The 

method policy rules specify a pass-by-value policy to a depth of 2 with priority 3 then a 

pass-by-reference policy to a depth of 0 with priority 1. Up to a depth of 2, the pass-by-

value rule at the head of the list is applied. Beyond this depth, the first rule is ignored as it 

is no longer valid and the next valid rule (dictating pass-by-reference be adopted) is 

followed. 
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Figure 6.26: The data structure for storing method, return and argument policies. 

6.5.4 Policy Evaluation Cost 

The policy framework must be queried and the policy rules evaluated each time 

objects are marshalled, affecting remote method call cost. This cost is heavily dependent 

on the particular policy rules that are associated with the object to be marshalled. The 

transmission policy framework is an integral part of the RRT and so cannot be switched 

off under normal circumstances. To determine the cost of transmission policy evaluation, 

a special build of the RRT that employed only pass-by-reference semantics was created. 

A test application that performed multiple calls to a remote method was created. 

This method took one argument and returned one return value, both by-reference. The test 

application was run using the specially built RRT with the transmission policy framework 

removed and again using the full RRT, using the test environment described in Section 

6.4.6. In the former case, the special RRT was hard-coded to pass objects by-reference, 

and in the latter case, the transmission policy consisted of a method policy rule and a 

return policy rule stating that pass-by-reference semantics should be employed. The 

parameter-passing semantics were therefore the same for each run of the application. 

The cost of a remote call when the policy evaluation phase was performed was 

around 2% to 3% greater than the cost of a remote call without the evaluation phase. The 

introduction of additional arguments has no effect on the proportionate cost of the policy 

evaluation phase as there is a one-to-one correspondence between the number of objects 

marshalled and the number of transmission policy evaluations performed.  
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From the perspective of the RRT prototype, this is considered a reasonable trade-

off in execution time for the benefits afforded by the transmission policy in its 

implementation. Even incurring the cost of policy evaluation, the RRT prototype 

outperforms the nearest comparable rival by a considerable margin. 

6.6 Distribution Policy Framework 

The distribution policy framework allows the dynamic specification of policies to 

control object placement when remote instantiation and object migration operations are 

performed. The distribution policy manager is used to obtain references to factories (used 

for remote instantiation) and migration controllers (used for migration). Each factory and 

migration controller is associated with a policy object, which is an instance of a 

programmer-defined policy class that is used to determine the distribution policy. 

Programmers can create custom re-implementations of the factories, migration 

controllers, policy objects and feedback objects provided by the distribution policy 

framework. Thus, implementation details concerning these components can be found in 

Chapter 5, though are briefly summarized here: 

• The distribution policy manager, which is accessible through the 

IRafdaRunTime and IRafdaRunTimeRemote interfaces. There is one 

distribution policy manager per address-space that provides two associative 

stores, one of which maps classes to their associated factory objects and one of 

which maps classes to their migration controllers. 

• Factories, which perform all policy-based object instantiation. The default 

factory class employs reflective techniques to instantiate objects in both the 

local and remote RRT instances. Programmers can create custom factory 

implementations in order to modify factory behaviour. 

• Migration controllers, which perform all policy-based migration. A default 

migration controller class is provided but programmers are free to implement 

multiple different custom migration controllers. 

• Policy objects, which make the object placement decisions. 

• Feedback objects, which allow policies in multiple address-spaces to exchange 

information. Feedback classes are also customizable. 

The overhead incurred by policy evaluation is heavily dependent on the policy 

implementation, which is provided by application developers. However, in order to gauge 
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whether there is any additional cost incurred by using the distribution policy framework 

mechanism instead of performing operations in remote RRT instances directly, the 

following test was performed using the previously described test environment. Two 

clients, each of which instantiated 5000 objects in a remote RRT instance, were created in 

order to determine the cost of remote instantiation. 

One client performed remote instantiation directly in a particular remote RRT 

instance using the instantiateAndExpose() method provided in the IRafdaRunTimeRemote 

interface. The other performed the same remote instantiation operations but did so via the 

distribution policy framework and a “single RRT instance” policy. This policy performed 

minimal computation in order that the cost of instantiation through the framework could 

be directly compared to the cost of instantiation performed directly by programmers. 

The cost of instantiating the first remote object (cold instantiation) was 

considerably greater in both clients than that of instantiating further objects (hot 

instantiation). In both clients, hot instantiation took the same time, around 19ms, 

indicating that the distribution policy framework introduces no significant overhead, 

outside of policy evaluation, to the cost of performing the remote operation. Cold 

instantiation however, was around five times slower when using the framework, caused 

by the need to initialize the distribution policy framework components. In both clients, 

cold instantiation was around two to three orders of magnitude slower than hot 

instantiation, as the cost of RRT initialization was also incurred. 

It can be concluded that the cost inherent in using the distribution policy 

framework is heavily dependent on the implementation of the policy classes. The onus is 

therefore on the programmers creating these policy classes to do so efficiently. 

6.7 Conclusion 

This chapter has examined the implementation of the prototype RRT and 

evaluated it quantitatively. The RRT instances expose themselves to remote access 

through multiple interfaces to provide functionality to programmers and RRT instances, 

both local and remote. Functionality allowing programmers to obtain references to remote 

objects, perform remote instantiation and migrate objects between address-spaces has 

been implemented using the basic remote method invocation mechanism provided by the 

RRT. 
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Service adaptors allow the middleware system to attach to arbitrary application 

objects. Serializers and deserializers permit the transmission of arbitrary objects across 

the network by-value. Per-class customized implementations of the service adaptors, 

serializers and deserializers can be generated and compiled automatically by the RRT. 

These per-class implementations avoid the use of reflection and are optimized to work 

with the classes in each particular distributed application. 

Proxy objects provide both conventional proxy behaviour, allowing remote 

method calls to be performed transparently, and wrapper behaviour, allowing the 

implementation of migration. Combined with RafdaIOR objects, the proxy objects 

provide a complete remote reference scheme, allowing any object to be accessed remotely 

or passed by-reference. 

Though the RRT prototype has not been optimized for speed, the cost of remote 

method calls is lower than the equivalent industry-standard systems. This indicates that 

the benefits provided by the RRT in terms of flexibility and separation of concerns can be 

achieved without incurring additional expense over comparable systems.  

The structure of the transmission policy framework was examined. It is designed 

to allow quick lookup of policy rules to optimize the object marshalling process. It was 

shown that the transmission policy framework is an integral part of the RRT that 

simplifies the implementation of middleware features such as remote instantiation and 

migration. Further, the additional cost incurred querying the transmission policy 

framework at marshalling time is low. 

Finally, the implementation of the distribution policy framework was examined. 

Though this framework can be customized extensively by programmers, it was shown 

that the cost inherent in its use lies in the policy evaluation phase. Programmers trade 

policy complexity for speed of evaluation when creating distribution policies. 

The RRT prototype is a complete implementation of the middleware system 

designed in Chapter 5. It is currently publicly available and is in use as a platform on 

which to carry out research into peer-to-peer systems [27], resilient Web Services [25] 

and automated application deployment. 
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This chapter concludes the thesis by summarizing the work carried 

out and the contribution made. A synopsis of possible future work is also 

provided. 
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7.1 Conclusion 

Middleware augments operating systems and network infrastructure to assist in 

the creation of distributed applications in a heterogeneous environment. Multiple 

approaches to middleware exist, though this thesis has focussed on a Distributed Object 

Model (DOM) approach. DOMs provide a programming model similar to that adopted 

when implementing non-distributed object-oriented applications and allow flexibility over 

the extent to which inter-address-space communication is visible to programmers. 

Current middleware systems exhibit five main limitations: 

1. Programmers are forced to make decisions early in the design process about 

which types of application component may participate in inter-address-space 

communication. Applications are therefore inflexible to static changes in their 

distribution. 

2. Applications created using existing middleware systems are inflexible to 

dynamic changes in their distribution and cannot adapt to changes in the 

underlying distributed systems or in the applications themselves. 

3. The creation of code to handle inter-address-space communication is complex, 

introducing additional points of potential failure into the software engineering 

process. 

4. It is difficult to understand and maintain distributed applications because 

middleware systems may force an unnatural encoding of application-level 

semantics. Application classes are forced to meet particular semantic 

requirements, hampering the reuse in a distributed context of code written 

without support for distribution. Parameter-passing semantics are fixed 

statically and are inflexible, again limiting code reuse and preventing 

programmers from performing optimizations that take advantage of the 

distributed nature of applications. 

5. It is difficult to control the way in which objects are distributed among 

available address-spaces. Programmers must adopt ad-hoc approaches to the 

definition of distribution policy if application logic and distribution are to be 

separated. 

This thesis defined a taxonomy of current middleware systems. First generation 

RPC and DOM systems were described and shown to exhibit all five of these problems. 
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Second generation DOM systems that tackle these limitations with varying success were 

investigated. It was shown that all of these second generation DOMs exhibit some or all 

of these problems. 

There are four roles in which programmers may employ middleware systems: 

• To create new distributed applications. 

• To introduce distribution into existing applications. 

• To deploy services to remote clients. 

• To integrate applications with legacy systems. 

Each role makes different demands of a middleware system and none of the 

existing systems are flexible enough to be applied in all circumstances. Systems such as 

CORBA [8], Java RMI [9], JavaParty [62] and ProActive [81] expose the distributed 

nature of applications to programmers. Explicit support for remote access must be 

provided in application classes but it is difficult to introduce distribution into an existing 

application using these systems without extensive engineering effort. Systems such as J-

Orchestra [65] and Pangaea [70] perform automatic application transformation to create 

distributed applications in which local calling semantics are preserved. By hiding inter-

address-space communication completely, these systems cannot be employed to create 

applications that adopt different semantics, and so are suitable for developing only certain 

kinds of distributed application.  

This thesis defined the requirements that must be fulfilled by a third generation 

middleware system, based on an evaluation of current systems. The design and 

implementation of the RAFDA Run-Time (RRT), a middleware system that meets these 

requirements, were described. The RRT allows programmers to trade-off the simplicity 

attained through the concealment of inter-address-space communication against the 

flexibility realized by exposing it to fine-grained programmer control. The RRT aims to 

provide intuitive distributed application semantics that reflect non-distributed semantics, 

allowing programmers to ignore whichever distribution-related aspects are of no concern. 

The RRT allows inter-address-space communication to be concealed or exposed 

as required on a per-application basis. In order to conceal the distributed nature of 

applications, the RRT allows the exposure of arbitrary objects to remote access as Web 

Services. A remote reference scheme is introduced, allowing instances of any class to be 

passed across the network by-reference or by-value. This provides a similar degree of 

abstraction over the network as object-based Distributed Shared Memory systems. The 
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RRT ensures that non-distributed semantics are preserved in applications by default, 

unless programmers explicitly alter them. First generation systems cannot provide this 

degree of transparency because programmers are forced to meet stringent semantic 

requirements in order to support remote access.  

Some second generation systems, such as JavaParty [62], ProActive [81] and Do! 

[68], simplify the engineering process by automatically generating distribution-related 

ancillary code but cannot support remote access to arbitrary objects. Consequently, 

programmers must adapt applications to the middleware.  

The RRT provides fully transparent inter-address-space communication while 

allowing programmers, where appropriate, to take advantage of application-specific 

knowledge. The RRT allows inter-address-space communication to be exposed and 

controlled in several ways: 

• Remote types can be associated with exposed objects in order to control which 

methods are exposed to remote access. Remote types provide multiple views 

over exposed objects and permit programmers to allow information hiding in 

distributed applications.  

• Applications can be initially created without concern for failure, then extended 

to provide application-specific error handling as required. 

• Multiple object lifetime policies are supported and managed on a per-RRT-

instance basis. The RRT can ensure that exposed objects are never collected, 

are collected when no longer locally referenced, or collected when not 

accessed within a programmer-defined lease time.  

• Objects can be instantiated in remote address-spaces. 

• Objects can migrate between address-spaces. 

• The parameter-passing semantics applied when remote methods are called can 

be controlled dynamically. 

• Distribution policy can be associated with applications in a flexible manner. 

The RRT is unique in its ability to provide abstraction over the network without 

removing control from programmers. Control over the parameter-passing semantics 

employed in remote calls is allowed to a degree that is not possible using traditional 

systems, due to limitations in the mechanisms that support remote access and the 

restrictions placed on application semantics. The transmission policy framework is used 

to control parameter-passing semantics and object caching policies independently of 
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application source. Transmission policy can be defined on a per-argument, per-method, 

per-return-value or per-class basis. This ensures that the functional logic of an application 

class is not affected by considerations related to the context in which instances of the 

class will be deployed. Components need not be designed for particular deployment 

environments, permitting reuse in a distributed context of components that were designed 

without support for remote access.  

Caching policy rules allow programmers to treat the pass-by-reference and pass-

by-value mechanisms as two ends of a spectrum. Remote references that cache fields and 

methods can be created, reducing the need to perform remote method calls and permitting 

remote references to remain partially usable even when connectivity is lost. Programmers 

can take advantage of application knowledge to trade-off by-reference and by-value 

semantics or to cache objects that are immutable in a particular application. 

The RRT is novel both in its support for flexible parameter-passing mechanism 

and its provision of a policy specification mechanism that allows programmers to define 

application semantics dynamically. 

Distribution policies can be defined through the distribution policy framework to 

govern the placement of objects when remote instantiation and migration operations are 

performed. By deferring placement decisions to the framework, programmers can create 

applications with flexible distribution boundaries. None of the first generation systems 

and few of the second generation systems support remote object instantiation or 

migration. Those that do, provide only partial solutions to the problem of policy 

specification, by limiting the expressiveness of policies and by allowing no flexibility in 

the granularity at which distribution policies are applied, e.g. per-class, per-constructor 

call. 

Using the RRT, policies can be arbitrarily complex and may make use of 

application context information in order to apply policies at finer-than-class granularity. 

Policies can take advantage of tools external to the RRT, such as system or application 

profiling tools, to control application distribution in a completely flexible manner. The 

distribution policy framework provides location transparency, meaning that applications 

can adapt dynamically to changes in the underlying distributed systems or can modify 

their own distributions, for example, to minimize remote method calls. 

The RRT has been evaluated using the JChord case study, which consists of a 

peer-to-peer overlay network implementation and a distributed object store built on top of 

this network. The JChord case study places a number of requirements on middleware 
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systems that cannot be fully met by conventional systems but are fulfilled by the RRT. 

JChord was originally developed as a non-distributed application and it was shown that 

the unique properties of the RRT allowed an isomorphic distributed version to be created 

without modifications to the JChord implementation classes. Distribution-related 

concerns such as error handling and the caching and replication of state were handled late 

in the development process. JChord is a research tool and its requirements change often, 

as research goals change. Using a conventional middleware system, changes to the 

distribution boundaries in JChord would require re-engineering of the application. Using 

the RRT, the programmer need only modify the JChord application logic and can rely on 

the middleware to accommodate these changes. 

A prototype of the RRT design has been implemented and is currently publicly 

available. This prototype is in use as a development platform for research into peer-to-

peer systems, resilient Web Services and automated application deployment. A 

mechanism to allow the RRT to connect to arbitrary application objects is required in 

order to expose objects to remote access. Serializers and deserializers that can handle 

instances of any application class are necessary, as are proxy objects that preserve the 

abstraction over the inter-address-space communication presented by the RRT. 

The RRT employs generative programming techniques in three main areas: 

• The creation of service adaptors that allow the RRT infrastructure to attach to 

application objects. 

• The creation of serializers and deserializers that can handle instances of 

arbitrary classes. 

• The generation of proxy classes to allow the implementation of remote 

references that are interchangeable with local references. 

The RRT can automatically generate and compile per-class implementations of 

service adaptors, serializers, deserializers and proxy classes. Per-class implementations 

avoid the cost of reflection at run-time but incur the one-time cost of code generation. 

Generated code may be cached across multiple runs of the application to obviate the need 

for re-generation. 

Each RRT instance in a distributed system exposes itself to remote access. RRT 

instances can therefore provide functionality to applications and other RRT instances in 

remote address-spaces using the same mechanisms that provide connectivity in 

distributed applications. The RRT implementation makes use of its own underlying 
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functionality to abstract over the network allowing the provision of sophisticated 

middleware functionality, such as remote instantiation of objects and migration, with 

minimal programmer effort. The RRT prototype is as extensible and maintainable as any 

other distributed application created using the RRT since code to perform inter-address-

space communication does not permeate application logic. 

7.2 Future Work 

The RRT has succeeded in providing next generation middleware functionality 

and, as a consequence, has opened up interesting new research issues. Given mechanisms 

to provide transparent inter-address-space communication and control over object 

placement, the RRT could be used as a basis for developing support for dynamic re-

distribution of applications in a fully automatic manner. Programmers could adopt an 

intentional programming model, in which they described the high level non-functional 

requirements of applications in terms of availability, response time, maximal permitted 

remote call time and so on. Using autonomic management tools in combination with 

meta-level policy rules that define how the programmers’ requirements can be achieved, 

the RRT could automatically control and modify the distribution policies that were 

applied to the applications. 

This model could be extended to investigate whether it is possible to capture a set 

of properties that is universally desirable in all distributed applications. It might be 

possible to define a set of definitive meta-level rules that could be used to completely 

remove the need for programmers to make distribution-related decisions. Programmers 

would provide only a non-distributed application to the middleware system, which would 

automatically discover machines in the distributed system and perform negotiation of 

resources. Each machine could be profiled to determine how best to distribute the 

application based on these profiles and meta-level rules. The use of compliant 

architectures [93, 94] that accommodate the needs of particular applications provide an 

alternative approach to dynamic profiling, as the distributed system could adapt to the 

needs of each application. 

Part of the complexity inherent in implementing distributed applications results 

from the limitations of the industry standard programming languages used. These 

languages do not contain implicit support for distribution, hence the necessity of 

middleware systems. By subsuming the functionality provided by the RRT directly into 
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the programming language, the boundary between language and middleware system 

could be dissolved to provide a single programming model that is applicable to both 

distributed and non-distributed application development. 

7.3 Finally 

This thesis has described the requirements, design and implementation of a third 

generation middleware system. The hypothesis investigated states: 

A middleware system that provides control over the extent to which inter-

address-space communication is exposed to programmers aids the 

creation, maintenance and evolution of distributed applications.  

The RRT provides novel functionality that allows control over the extent to which 

inter-address-space communication is exposed. It is a middleware system that adapts to 

the needs of applications, rather than forcing distributed applications to adapt to the needs 

of the middleware system, with direct benefits for programmers. The RRT provides a 

solid foundation on which to develop the next generation of distributed applications. 
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Appendix A Glossary 
Terminology specific to the RAFDA Run-Time system is marked with a *. 

 

Deserializer Creates objects from serialized representations. 

Distributed Application An application that runs in a distributed system. 

Distributed System A collection of distinct, spatially separate processes that 

communicate by exchanging messages [1].  

Distribution Policy*  The policy controlling object placement when remote 

object instantiation and migration operations are performed. 

DOM Distributed Object Model. 

Marshalling The conversion of a method call into an invocation request. 

Part of the marshalling process includes object serialization. 

Middleware System Software that augments operating systems and network 

infrastructure to make the creation of distributed 

applications in a heterogeneous environment easier. 

Migration The movement of objects between address-spaces without 

the loss of referential integrity. 

Pass-By-Migrate Parameter-passing mechanism employed when remote 

methods are called in which arguments are migrated to the 

remote address-space. 

Pass-By-Reference  Parameter-passing mechanism that passes remote 

references to arguments to the remote address-space. 

Pass-By-Value Parameter-passing mechanism that copies arguments to the 

remote address-space. 

Proxy Object A local handle on a remote object. 

RAFDA* Reflective Application Framework for Distributed 

Architectures. 

Remote Reference A reference to an object in another address-space. 

RMI Remote Method Invocation. 

RPC Remote Procedure Call. 

RRT Instance* The RRT infrastructure present in a single address-space. 

RRT* The RAFDA Run-Time middleware system. 
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Serializer Creates serial data representations of objects. 

Service Adaptor* Provides skeleton functionality in the RRT allowing it to 

connect to arbitrary application objects. 

Skeleton The part of a middleware system that un-marshals incoming 

remote method calls and performs invocations on local 

objects. 

Transmission Policy* The policy controlling the parameter-passing mechanisms 

and caching semantics employed when remote methods are 

called. 

Un-marshalling The conversion of an invocation request into a method call. 

Part of the un-marshalling process includes object 

deserialization. 

Wrapper A proxy object associated with a local object. 
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Appendix B Policy File XML Schema 

Transmission Policy Configuration File Schema 
<?xml version="1.0" encoding="UTF-8" ?>  

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

  <xs:element name="transmissionPolicy"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element ref="argumentPolicy" minOccurs="0"  

          maxOccurs="unbounded" />  

        <xs:element ref="methodPolicy" minOccurs="0"  

          maxOccurs="unbounded" />  

        <xs:element ref="returnPolicy" minOccurs="0"  

          maxOccurs="unbounded" /> 

        <xs:element ref="classPolicy" minOccurs="0"  

          maxOccurs="unbounded" />  

        <xs:element ref="cachedField" minOccurs="0"  

          maxOccurs="unbounded" />  

        <xs:element ref="cachedMethod" minOccurs="0"  

          maxOccurs="unbounded" />  

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

  <xs:element name="argumentPolicy"> 

    <xs:complexType> 

      <xs:all> 

        <xs:element ref="method" />  

        <xs:element name="argumentNumber" type="xs:integer" />  

        <xs:element ref="paramPassingMechanism" />  

        <xs:element name="depth" type="xs:integer" />  

        <xs:element name="priority" type="xs:integer" />  

      </xs:all> 

    </xs:complexType> 

  </xs:element> 

  <xs:element name="methodPolicy"> 

    <xs:complexType> 

      <xs:all> 

        <xs:element ref="method" />  
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        <xs:element ref="paramPassingMechanism" />  

        <xs:element name="depth" type="xs:integer" />  

        <xs:element name="priority" type="xs:integer" />  

     </xs:all> 

    </xs:complexType> 

  </xs:element> 

  <xs:element name="returnPolicy"> 

    <xs:complexType> 

      <xs:all> 

        <xs:element ref="method" />  

        <xs:element ref="paramPassingMechanism" />  

        <xs:element name="depth" type="xs:integer" />  

        <xs:element name="priority" type="xs:integer" />  

      </xs:all> 

    </xs:complexType> 

  </xs:element> 

  <xs:element name="classPolicy"> 

    <xs:complexType> 

      <xs:all> 

        <xs:element name="className" type="xs:string" />  

        <xs:element ref="paramPassingMechanism" />  

        <xs:element name="priority" type="xs:integer" />  

      </xs:all> 

    </xs:complexType> 

  </xs:element> 

  <xs:element name="cachedField"> 

    <xs:complexType> 

      <xs:all> 

        <xs:element name="className" type="xs:string" />  

        <xs:element name="fieldName" type="xs:string" />  

      </xs:all> 

    </xs:complexType> 

  </xs:element> 

  <xs:element name="cachedMethod"> 

    <xs:complexType> 

      <xs:all> 

        <xs:element ref="method" />  

     </xs:all> 

    </xs:complexType> 

  </xs:element> 

  <xs:element name="paramPassingMechanism"> 
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    <xs:simpleType> 

      <xs:restriction base="xs:string"> 

        <xs:enumeration value="byreference" />  

        <xs:enumeration value="byvalue" />  

        <xs:enumeration value="bymigrate" />  

      </xs:restriction> 

    </xs:simpleType> 

  </xs:element> 

  <xs:element name="method"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element name="className" type="xs:string" />  

        <xs:element name="methodName" type="xs:string" />  

        <xs:element name="argumentType" type="xs:string" minOccurs="0"  

          maxOccurs="unbounded" />  

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

</xs:schema> 
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Transmission Policy Configuration File Example 

This XML defines the following transmission policy rules: 

• An argument policy rule associated with the first argument of the method 

IDataStorePOP.store(Object objectToStore, boolean storeReference) that 

specifies a by-migrate policy to depth 2 and is of priority 1. 

• A method policy rule associated with the method IDataStoreInternal.put(Key 

key, Object object) that specifies a by-reference policy to depth 0 and is of 

priority 0. 

• A return policy rule associated with the method IDataStoreInternal.get() that 

specifies a by-value policy to depth 4 and is of priority 3. 

• A class policy rule associated with the Key class that specifies a by-value 

policy and is of priority 0. 

• A caching rule that caches the key field with accessor getKey() and setKey(Key 

k) in instances of the Chord class. 

• A caching rule that caches the printKeyInfo() method in instances of the Chord 

class. 

 
<?xml version="1.0" encoding="UTF-8"?> 

<transmissionPolicy> 

  <argumentPolicy> 

    <method> 

      <className>IDataStorePOP</className> 

      <methodName>store</methodName> 

      <argumentType>java.lang.Object</argumentType> 

      <argumentType>boolean</argumentType> 

    </method> 

    <argumentNumber>1</argumentNumber> 

    <paramPassingMechanism>bymigrate</paramPassingMechanism> 

    <depth>2</depth> 

    <priority>1</priority> 

  </argumentPolicy> 

  <methodPolicy> 

    <method> 

      <className>IDataStoreInternal</className> 

      <methodName>put</methodName> 

      <argumentType>Key</argumentType> 
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      <argumentType>java.lang.Object</argumentType> 

    </method> 

    <paramPassingMechanism>byreference</paramPassingMechanism> 

    <depth>0</depth> 

    <priority>0</priority> 

  </methodPolicy> 

  <returnPolicy> 

    <method> 

      <className>IDataStoreInternal</className> 

      <methodName>get</methodName> 

    </method> 

    <paramPassingMechanism>byvalue</paramPassingMechanism> 

    <depth>4</depth> 

    <priority>3</priority> 

  </returnPolicy> 

  <classPolicy> 

    <className>Key</className> 

    <paramPassingMechanism>byvalue</paramPassingMechanism> 

    <priority>0</priority> 

  </classPolicy> 

  <cachedField> 

    <className>Chord</className> 

    <fieldName>key</fieldName>   

  </cachedField> 

  <cachedMethod> 

    <method> 

      <className>Chord</className> 

      <methodName>getKey</methodName> 

    </method> 

  </cachedMethod> 

  <cachedMethod> 

    <method> 

      <className>Chord</className> 

      <methodName>setKey</methodName> 

      <argumentType>Key</argumentType>   

    </method> 

  </cachedMethod> 

  <cachedMethod> 

    <method> 

      <className>Chord</className> 

      <methodName>printKeyInfo</methodName>   
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    </method> 

  </cachedMethod> 

</transmissionPolicy> 
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Appendix C  RRT Configuration Options 
RRT configuration is described in Chapter 5 and allows control over various 

aspects of system behaviour. These properties can be set using the setProperty() method 

of the IRafdaRunTimeConfig interface by specifying a property name and associated 

value. The following shows a full list of all configurable properties organized into groups, 

with permitted and default values shown. 

System Configuration 

firewallAllowedAddresses  

Permitted Values: Semi-colon separated list of IP addresses and partial IP 

addresses 

Default: Connections from any address permitted 

Indicates a list of valid hosts from which incoming connections can be accepted. 

 

networkInterface 

Permitted Values: IP address/hostname 

Default: Result of InetAddress.getLocalHost() 

Indicates the network interface to which the RRT instance should bind. 

 

port 

Permitted Values: 1-65535 

Default: 5001 upwards 

Indicates which port the RRT instance should bind to when accepting socket 

connections. If no port is specified the RRT will use the first free port in the range 

5001 upwards. 

 

socketTimeout 

Permitted Values: integer 

Default: Default platform socket timeout 

Indicates how long a socket will wait for a response from a remote RRT before 

determining that the host is off-line. 
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Handling Static Members 

makeRootRRTInstance 

Permitted Values: Boolean 

Default: false 

If true, this RRT instances acts as the root RRT instance that manages access to 

static members. 

If false, this RRT instance is not the root RRT instance. 

 

setRootRRTInstance 

Permitted Values: Socket address 

Default: None 

Indicates the socket address of the root RRT instance. 

Code Generation 

autoGenerateServiceAdaptors 

Permitted Values: Boolean 

Default: false 

If true, service adaptors are generated and compiled dynamically on a per-

application-class basis. 

If false, all objects are exposed using the generic reflective service adaptor. 

 

autoGenerateSerializersDeserializers 

Permitted Values: Boolean 

Default: false 

If true, per-class serializers and deserializers are generated and compiled 

dynamically on a per-application-class basis. 

If false, all serialization and deserialization is performed using the generic 

reflective serializer/deserializer. 

 

cacheGeneratedProxies  

Permitted Values: Boolean 

Default: false 
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If true, automatically generated proxy classes are cached locally for reuse during 

subsequent runs of the application. 

If false, automatically generated proxy classes exist only for the lifetime of the 

JVM running the RRT instance. 

cacheGeneratedServiceAdaptor  

Permitted Values: Boolean 

Default: false 

If true, automatically generated service adaptors are cached locally for reuse 

during subsequent runs of the application. 

If false, automatically generated service adaptors exist only for the lifetime of the 

JVM running the RRT instance. 

 

cacheGeneratedSerializersDeserializers  

Permitted Values: Boolean 

Default: false 

If true, automatically generated per-class serializer/deserializers are cached locally 

for reuse during subsequent runs of the application. 

If false, automatically generated per-class serializer/deserializers exist only for the 

lifetime of the JVM running the RRT instance. 

 

deleteAllCachedCode  

Permitted Values: Boolean 

Default: false 

If true, all cached per-class service adaptors, serializers, deserializers and proxy 

classes are deleted at start-time. 

If false, cached code is re-used 

Access Control 

allowNonPublicMethodAccess  

Permitted Values: Boolean 

Default: false 

If true, all clients are allowed access to the non-public methods of exposed 

objects. 
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If false, clients may only access non-public methods if the local protection 

semantics permit it. 

 

allowBrowsingOfExposedObjects 

Permitted Values: Boolean 

Default: false 

If true, the service-specific web pages, accessible via a web browser, display 

information about the real classes of exposed objects and their current state. 

If false, this information is not displayed. 

 

allowRemoteInstantiation 

Permitted Values: Boolean 

Default: false 

If true, remote RRT instances can create objects in this RRT instance. 

If false, remote instantiation is not permitted. 

 

allowMigration 

Permitted Values: Boolean 

Default: false 

If true, remote RRT instances can migrate objects to this RRT instance. 

If false, migration is not permitted. 

 

throwDistributionRelatedExceptions  

Permitted Values: Boolean 

Default: false 

If true, distribution-related exceptions occurring during remote method calls are 

wrapped in RafdaRuntimeExceptions and thrown back to clients. 

If false, distribution-related exceptions occurring during remote method calls are 

not thrown back to clients. The RRT logs the exception and returns default values. 

Memory Management 

memoryManagement 

Permitted Values: “none”, “manual”, “automatic” 
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Default: automatic 

If “none”, the RRT holds weak references to exposed objects and so objects will 

be garbage collected when they are no longer referenced locally. Once objects are 

collected, the associated Web Services will be shut down and extant remote 

references will become invalid. 

If “manual”, the RRT (strongly) references all exposed objects and will continue 

to do so until the programmer manually shut down the services. 

If “automatic”, the RRT (strongly) references all the objects it exposes. It assumes 

that any exposed objects not remotely accessed within a programmer-defined 

lease time are no longer remotely referenced. These services will be shut down 

and any extant remote references will become invalid. 
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