A Flexible, Policy-Aware
Middleware System

Scott M. Walker
PhD Thesis
September 2005

School of Computer Science
University of St Andrews
St Andrews
Fife
Scotland
KY16 9SX

Abstract

Middleware augments operating systems and network infrastructure to assist in
the creation of distributed applications in a heterogencous environment. Current
middleware systems exhibit some or all of the following five main problems:

1. Decisions must be made early in the design process.

Applications are inflexible to dynamic changes in their distribution.
Application development is complex and error-prone.

Existing systems force an unnatural encoding of application-level semantics.

A T

Approaches to the specification of distribution policy are limited.

This thesis defines a taxonomy of existing middleware systems and describes their
limitations. The requirements that must be met by a third generation middleware system
are defined and implemented by a system called the RAFDA Run-Time (RRT). The RRT
allows control over the extent to which inter-address-space communication is exposed to
programmers, aiding the creation, maintenance and evolution of distributed applications.

The RRT permits the introduction of distribution into applications quickly and
with minimal programmer effort, allowing for quick application prototyping.
Programmers can conceal or expose the distributed nature of applications as required. The
RRT allows instances of arbitrary application classes to be exposed to remote access as
Web Services, provides control over the parameter-passing semantics applied to remote
method calls and permits the creation of flexible distribution policies. The design of the
RRT is described and evaluated qualitatively in the context of a case study based around
the implementation of a peer-to-peer overlay network. A prototype implementation of the
RRT is examined and evaluated quantitatively.

Programmers determine the trade off between flexibility and simplicity offered by
the RRT on a per-application basis, by concealing or exposing inter-address-space
communication. The RRT is a middleware system that adapts to the needs of applications,
rather than forcing distributed applications to adapt to the needs of the middleware

system.

Acknowledgements

I’d like to thank the following people because this thesis would not have been possible

without them:

- Professor Al Dearle and Dr Graham Kirby, my supervisors, for their help,

patience and support. They have provided a great introduction to research.
- Stuart and Alvaro for the useful feedback and for some good fun.
- Professor Ron Morrison for the opportunity to do this work.
- Conor and Dave for their proof-reading.
- Graeme, lain, Kath, Andy and Davie for just being around at the right time.
- Mervyn and Margery Walker, my family, for their unerring belief in me.

- Finally, Jen Walker, my wife, who has been a great support for the last four years.

This thesis is for her.

This work was funded by EPSRC grant GR/R51872/01: “Reflective Application
Framework for Distributed Architectures” (RAFDA).

1

Declarations

I, Scott Mervyn Walker, hereby certify that this thesis, which is approximately 55,000
words in length, has been written by me, that it is the record of work carried out by me

and that it has not been submitted in any previous application for a higher degree.

Date Signature of Candidateccccoevieriiiiieniiiiiiieieeieeee e

I was admitted as a research student in September 2001 and as a candidate for the degree
of Doctor of Philosophy in September 2002; the higher study for which this is a record
was carried out in the University of St Andrews between 2001 and 2005.

Dateccceeeeeeee... Signature of Candidateccceeeeeviiniiiiniiniiiciicnecee e .

I hereby certify that the candidate has fulfilled the conditions of the Resolution and
Regulations appropriate for the degree of Doctor of Philosophy in the University of St
Andrews and that the candidate is qualified to submit this thesis in application for that

degree.

Datecccceeeeeeneee.. Signature of SUPETVISOTLovveiviiriiniiniiiieriereeeeeereeee e .

In submitting this thesis to the University of St Andrews I understand that I am giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the work
not being affected thereby. I also understand that the title and abstract will be published,
and that a copy of the work may be made and supplied to any bona fide library or

research worker.

Dateccuen.ee.... Signature of Candidateccceeeeveeeiieeniiienieciieeeeeee e .

111

Contents

CHAPTER 1 INTRODUCTION 1
1.1 INTRODUCTIONeiuiiiiiiiiiinitenieeniteie ettt ettt et ettt st sae bttt et satesaaesbee b enbeemaesaees 2
1.2 CREATING DISTRIBUTED APPLICATIONS ...c..ceouteteereenrernrenieenueeteenreeseesnesanenieenseesseessesnnes 2

1.2.1 Approaches to Creating Distributed Applicationsc.cccccocvvircirvincioeecnenenne. 2
1.2.1.1 Direct Network COMMUNICAtIONeevievieieiiieietieeesieeeesteeeesieseeereseeesesreessesseessesseessennas 3
1.2.1.2 Message Passing LiDrariescceeiecuereeieniieierieeieieeeesiesieeie e see e eseessesseessesseessessasssens 3
1.2.1.3 Message-Oriented MiddIEWATecc.covevuerieiiirininiinieieicteeec sttt 4
1.2.1.4 Remote Procedure Call
1.2.1.5 Distributed Object MOAELScecvieuieieriieieciieieieetete ettt st eeaeneens 4
1.2.1.6 TUPLE SPACES .veeiiiirtitetetcitet ettt sttt ettt ettt s ae st 5
1.2.1.7 Distributed Shared MEMOTYcocerieriiriiieriieiese ettt sttt eaeas 5
1.2.1.8 CONCIUSION ..ovviiiiiieiieieeiieie ettt et te ettt e et e st esbesteesaesseeseenseessenseessensesssensesssensenssens 6

1.3 LIMITATIONS OF EXISTING SYSTEMS ...cuttritiritenieeieiienienitenieenieeteeteeiresinesieenieenseeneesnees 6
1.4 THE RAFDA RUN-TIME ...oiiiiiiiiiiiiiteieeteiteeee ettt 7
1.5 THESIS CONTRIBUTIONouutiiiiiientietieirenieenieeteeseenresanesaeesaeenseenseensesasessnesseenseesseensesnnes 8
1.6 THESIS STRUCTURE.......ccttriteitetietieteeirenieenieenteeseestesanesaeesaeesseenntensesanesanesseenseesseensesnnes 9
1.7 SUMMARY ...ttt ettt ettt ettt e et eatesa e e s et e te e et eseeeseesbee st eseeaseemeesneesseanseenseenseeneesneens 9

CHAPTER2 MIDDLEWARE SYSTEM CONCEPTS 11
2.1 INTRODUCTION TO CHAPTER 2.....euiiiiietieiieieetesiteseeentteie et eatesteesbeesbeeseesseesieeseeeneeenee 12
2.2 MIDDLEWARE SYSTEM MODEL.....cc.ueitiiitiniteiieieeiieeitesttesteeieeie e st sice et eneesnteseeesneens 12

2.2.1 Remote Method Callscccccooeuieeimiaiiaiieiieieeieeeieeie e 15

222 MaFSRAIIAG ...t 16

2.2.3 SHAFE PPOXIES ...ttt 18

2.2.4 Remote Object INSIANIIALIONcceeiueeeeaiieieesie ettt 19

2.2.5 OBJect MIGFALIONee ettt 19

2.2.6 COde DiStFIDUIIONoeeeee ettt et e eba e e sabeessbaessseessseenenas 20

23 JCHORD CASE STUDY «..cettettetieteete sttt st ettt eitesttesbtesbe e beetesaeesaeesbee et enteentesenesaeens 20

2301 JCOROFA.......oeeeeeeeee et 20

2,32 DEA SEOTC ...ttt et ettt ettt ettt ettt 24

2.3.3 Implementing the JChord Case StUAYc.cocoviroiniiioiiciiiiniiiniiiieeeteeee, 26

2.4 SUMMARY ..ottt ettt ettt ettt st sttt e tt et et e sesestsesbee bt e bt esaeesnesanesaeenaeenneenne 27

CHAPTER3 RELATED WORK 29
3.1 INTRODUCTION TO CHAPTER 3....ciiiiiiiiitieieeteeieeieeete st et et eseeeseesaeesaeeneeeneesneesneeneeenes 30
32 FIRST GENERATION RPC SYSTEMSoiiiiiiiieiieiieieeiiesitest ettt st 30

3201 SUR RPC .ottt 30

322 XML-RPC ..ottt 31

33 FIRST GENERATION DISTRIBUTED OBJECT MODELScooteriiiiiniiniienieenieenieenieeeeeeene 32

v

3.3.1 Common Object Request Broker Architecture (CORBA)ccccevvvcvevveniannne. 33

3.3.1.1 Creating a Distributed AppliCation..........cceecueririiiniiriienieiieieetere et 33
3.3.1.2 Dynamic INVOCAtIONccuiiuiiiiiiieiieiieieee ettt eneenens 34
3.3.1.3 IMPIEMENLALION ...eevtitieiieiiieeieeiieie st eteteette e eetesteseaeseesaesesseesseeseensesseessesseensessaensenseensenes 35

3.3.2 Java Remote Method Invocation (Java RMI)ccccccovvueviveveiieieiiieniannnn, 36
3.3.2.1 Creating a Distributed AppliCation..........cceerieriieiieririierieiieieetere et 36
3.3.2.2 Semantic LIMItationscccceeeriruieneinieiiniiieineeneeneeter et ereseere et sneesnene 37

3.3.3 Distributed COM...........cccoouiiiiiiiiiiie ettt 38
3.34 Microsoft INET frameWork...............c.cccoocevvuimiiiiaciieieiieeieesie e 39
3.3.4.1 Microsoft Intermediate Language (MSIL)cocooiniiriiiiiiniinineneieeeeneneneeeeee e 40
3.3.4.2 Creating a Distributed APPlICAtION.......c..c.civieeriruiirieirietiinctreenereeeree et 40

3.3.5 CompPonent MOAELS.................cccoeeueioueeiiiieieeiie ettt 41
34 FIRST GENERATION SERVICE-ORIENTED ARCHITECTURESccceouivuieiiieiiienicnieeneennes 42
341 Web Services ArCRITECIUFe.ccccueieeiieeie sttt 42
3:4.2 JBOSS REMIOTING ...ttt 43
35 SECOND GENERATION MIDDLEWARE SYSTEMScoiiiiiiiiiiiiiiiiniiicnceiieeeieee e 44
350 EMEFAIA ... e 44
3.5. 2 JAVAPAFLY ..ottt 45
3.5.2.1 Introducing Support for REMOtE ACCESSccverrieieriieierieeieiieeerie et ete e eae s eaeseeens 45
3.52.2 Additional FUNCtIONALILYcceoveiiiriniriinieicieieeeie ettt 47
3.5.2.3 JavaParty SEMANTICScc.eieeuirrieierieeiet ettt ettt sttt st b et et be e 47

353 JrOFCROSII Q..o 48
3504 DO/ et 49
3.5.5 PANGACA. ..ottt ettt en 50
3.5.60 XRMI ...t 51
357 COUGM . e 52
3.5.7.1 Application Profiling.........ccoeiieiiiiiiiinieieeestee ettt 53
3.5.7.2 Distributing APPlICALIONSeoveueiruiirienirietiiiteirteentereeeree ettt et ene 53

3.5.8 JAVASYMPRONY ... 54
3.5.9 PFOACHIVE ...t e 55
3510 FAPGO...uoeeeeeeee ettt 57
3.6 LIMITATIONS OF EXISTING MIDDLEWARE SYSTEMSccccooiiiiiiiniiiiiniiiieieienesecencenenes 58
3.6.1 Forcing Early Design DeCiSIONScccccuiieicieeiiieiieseesi et 59
3.6.2 Brittleness with Respect to Dynamic CRANGE................ccccceeviiiiioeiniaeie e 6l
3.6.3 COMPLEXILY ..ot e 61
3.6.4 Distorted Application Level SEMANTICS............ccc.ccvueeeurieieeeiieieiieeiieeeieeeieeeiee v 62
3.6.5 Lack of Support for Object Placement POliCYc.ccccoovveveeveeieeneeieairanens. 64
3.6.6 JChord Case STUAYccooccveviieiieiiiiiiieeeeee et 65
3.7 CONCLUSION........ciiiitiitiiitietctetetce ettt 67

CHAPTER 4 REQUIREMENTS OF A THIRD GENERATION

MIDDLEWARE SYSTEM 68

4.1 INTRODUCTION TO CHAPTER 4.....cooiiiiiiiiiiiiiiiiiicciiececcce e 69
4.2 REQUIREMENTS ..vetiiiiiiiteeeeeee ettt e ettt e e e e et e e e e e seenmaaaeeeeeesesnnaaeeeeeeseennnnraeees 69
4.2.1 Server-Side FUnction@lity.............ccccccoociiviioiiiiiieiiee et 69
4.2.2 Client-Side FURCHONALIEY..........c.cccooviiiiiiiiiiiee et 71
4.2.3 Controlling Transmission POIICY..............cc.ccocciiiieiiiiiiiiiiiieieee e 72
4.2.4 Controlling Distribution POLICY...............cccccoevueeiiiiieiiiiieiesiecie e 73
43 MEETING THE REQUIREMENTS OF JCHORDccootuutriiieeeiiiiieeeeeeeeeeeirreeeeeeeeesivneeeeeeens 74
44 CONCLUSION........ciiitiitiiitietct ettt 75
CHAPTER S5 THE RAFDA RUN-TIME (RRT) 77
5.1 INTRODUCTION TO CHAPTER 5....ooiiiiiiiriiiiieieiententieieneeeieestetensensesresueeseeseensenaensensesaens 78
5.2 OVERVIEW OF THE RRT ..ottt 78
52,1 RRT INfPASIFUCIUTE ...t 79
5.2.2 Introducing Distribution into AppliCAtionscccoovvecinieniiiniiiiieneeene 81
5.3 SERVER-SIDE FUNCTIONALITY ...c.oiiuiiiiiiiiiiiiienieiie sttt st &3
5.3.1 Exposing Objects as Web ServiCescccccuevveeieceeeiieiieeiieiieeieseesseesseasesne s 85
53101 REMOLE TYPES -ttt ettt ettt ettt ettt et b et bt et bt et e sbeenaesbeenne e 86
5.3.1.2 Local Protection MeChaniSm............cccooireiieieiiiiieieieceiesc e 86
5.3.1.3 EXPOSING ODJECLS 1.uvivieniieiieiieeieiieieiesteteetetesttetesseessesseessesseessesseessesseessessaensessesssensenns 87
53,104 LAMITATIONS c..eeutetieniietieiesteeteet ettt ettt et ettt et b et seeeste b e e st e sbeestesbeenbenbeeneenbeeneenee 90
5.3.1.5 Exposed Object Lifetime.c.coueieiriniiieieieesieiee et 91
5.3.1.6 Accessing the RRT via a Web Browser .92
53017 SECUTIEY ettt ettt ettt ettt h ettt e st s bt et esbeea b e bt e st et e estenbeestebesbeebesneenee 94

5.3.2 Passing Arbitrary Objects By-Valuec.cccccooeciioiiiiiiiiiiiiiiieieeeee e 95
533 SUBIIGATY ..ot 96
5.4 CLIENT-SIDE FUNCTIONALITY ..ottt 97
5.4.1 AccesSing Remote ODJECES...........cccooouioiiiiiieiiei et 99
5.:4.2 SHALC MEMBEFS ... 100
543 FQIIUFE. ..o 101
5.4.4 Creating Objects in Remote Address-Spacescccccoevuevcieviiaciieieesiienieieanns 104
5.4.5 Migrating Objects to Remote Address-Spacescccccoveveievcieiiaceenieeneannn 106
5:4.60 SUBIIMGATY ..ottt ettt 109
5.5 SUMMARIZING THE LIMITATIONS OF THE RRTccccooiiiiiiiiiiii, 110
5.6 CONTROLLING TRANSMISSION POLICYccuiiiiiiiiiiiiiiiiiiiiiicicn s 110
5.6.1 Defining TransmisSion POLICYc.cccccovvuiviiiiiiiiiiiiiiieeieeeeeeeee e 111
5.6.1.1 Transmission POlCY RUIEScccorieiiriiriieiieiecceece et 111
5.6.1.2 Caching POlCY RUIEScc.eouiiiiiiiiiiieiieeeeeee e 112

5.6.2 Transmission Policy Manager...............c.ccccccoovueviiioiioiiiiiiiiiiet e 113
5.6.2.1 Setting Transmission Policy RUIES..........cccerieiiiriiiieniiiieiecieieceeeeeeee e 115

vi

5.6.2.2 Setting Caching Policy RUIEScceecuirieiiiiiiieiceeeceee s 115

5.6.3 File-Based POliCY RUIESccccccooiiiiiiiiiioiiiiiiieie sttt 116
5.6.4 Using Transmission Policy in JCROFd................cccccooviiiiiiiiiiiiiiiieieiieeee 116
5.6.5 AUtomatic EXPOSUFEc.cccooiieiiiiieeeeeeeee et 121
5.6.6 Resolving Policy Rule CORENLIONc.ccooueveeoiiiiieiieeiet e 122
5.6.7 Summary of the Transmission Policy Framework................ccccccoccvvenoencencenccnnn.n. 124
5.7 CONTROLLING DISTRIBUTION POLICYc.coviiiiiiiiiiiiiiiiiiiiiiiicceccccec s 125
5.7 Architectural OVEFrVIEWccccceiiiiiiiiiiieieeeeee st 126
5.7.2 Evaluating Distribution POLICIEScccccccevininiiriiiiiiiiaiieneie st 128
5.7.3 Defining DiStribution POLICIES..............cccccocioieiiniiiiiiiiiiiiteeeeeeseee e 129
5704 FACIOFIS. ..o ettt ettt ettt ne s 135
5.7.4.1 The Default FACIOTYccvevvieiiiieieieeieeeeee sttt beesaenseeneas 136
5.7.5 Deploying a JChord Ring using the Framework...................cc.cccoevvvvenvveneeneennn 140
5.7.6 Migration CORIIOIIErScc.ccoueiuieiiiiiiiiecieecie ettt 141
5.7.6.1 The Default Migration COntrollercoerieiirierierieiinieieseeeeeee e 142
5.7.7 Migrating Objects in JChord Automaticallycc.ccoccvvviioiiiiniiiiieiiaean. 146
5.7.8 Summarizing the Distribution Policy Framework...............c.ccccooevvveniieniinnncnnn. 147
5.8 CONFIGURING THE RRT ..o 148
59 CONCLUSION.......uiiiiiitiiiiictieci e 149
CHAPTER 6 IMPLEMENTING THE RAFDA RUN-TIME 150
6.1 INTRODUCTIONooviuiiiiiiiiitiiisietcietcet ettt ene s 151
6.2 OVERVIEW OF THE RRT IMPLEMENTATIONc.ccciiiiiiiiiiiiiiiiiiieneienc s 151
6.3 IMPLEMENTING SERVER-SIDE FUNCTIONALITYootteveruieuienieienienienienieeeeeeenneneeneenne e 155
6.3.1 Identifying EXpoSed OBJECLS...........cc..ccououmiieiiaiiaiiieseee et 156
6.3.2 Se1VICE AAAPIOFS........ooceeeeiiiecii ettt ae e s 157
6.3.2.1 Generic Service Adaptor IMmplementationccceveeevereeiierienierieeeeseeseeeeseeneneeennes 158
6.3.2.2 Automatically Generated Service Adaptorsc.ccovecveieirerenienieieieeeeneeeeeeeeeeae 160
6.3.2.3 Generic vs. Generated Service Adaptors..........ccoevererieirirerenieeee e 162
6.3.3 Service AdAptor INfraStrUCIUFe.c..coocueeeieeeisiee et 163
6.3.4 Serializers and DeSeriQliZErs...............ccocuveiiniiiiioiiiiiiieeeee e 166
6.3.4.1 Serializers
6.3.4.2 The Sub-type ProbIem.......cccueiuiiiiiiiiiiiieieeeec et 166
6.3.4.3 DESEIIALIZEIScveuiiiiieiiictceect ettt 167
6.4 IMPLEMENTING CLIENT-SIDE FUNCTIONALITYoviiiiiiiiiiiieieienieeieeie e 168
0.4.1 PrOXY ODJECLS ..ottt 169
6.4.1.1 Conventional Proxy Behaviourcccoccoiiiiiiiiiiiiiniiincieeeeceee e 169
6.4.1.2 Wrapper BERaVIOULcccouccirieiiriiiiiiieiniceretteee ettt 171
6.4.2 Implementing Proxy CIASSEScccocuuoiiieieieieseseee sttt 173
0.4.3 StALIC MEMBETS ..ot s 177
6.4.4 Creating Objects in Remote Address-Spacesc.ccocevciiecievencieniianiaeenn, 179
6.4.5 Migrating Objects to Remote Address-Spacescccocvvevivciiveiciiniiannannn. 180

vii

6.4.6
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.6
6.7

CHAPTER7 CONCLUSION

7.1
7.2
7.3

APPENDIX A GLOSSARY

APPENDIX B POLICY FILE XML SCHEMA

Remote Method Call COSt...........ooueiiiiiiiiiiiiiiieeeeee ettt
TRANSMISSION POLICY FRAMEWORKcocuiiiiiiiiiiiiiiiiiiiniiitcicsiccceeeie e
Flow of Control during Policy Evaluation....................cccocuviiciecieocncniniinincns
ClaSS POLICY MAP.........ooiiiieieeeeeeeee et
Method POLiCY MAPc.ccoooieiiiiiieiie et
Policy EVAIUALION COSt...........ccccuveiiiieeciieiieeeie ettt sveenaaeen
DISTRIBUTION POLICY FRAMEWORKccceeiutiiiiieieeeiiiiiieeeeeeeeeiitreneeeeseennaranesaesessnnens

(016).(@) 51611 (0] FSS PP PRSPPI

CONCLUSION.....ettiieeieeiitreeee e e eeeecaeeeeeeeeesetaereeeeeeeeeetaaaeeeeeeeeestasseeeseeeeaatssereeeeeeennrrerens
FUTURE WORK ...ooviiiiiiiiiiieeiee ettt ettt ee et e e e e e eeetaaaeeeeeeeenans

) 23N) 5 PR POROPRPRPPPRRRPRRRE

TRANSMISSION POLICY CONFIGURATION FILE SCHEMAccccveviiieeiieniienieeeieesieesnreesveesnnees

TRANSMISSION POLICY CONFIGURATION FILE EXAMPLE.........ccoooiviiiiiiiiiiiii

APPENDIX C RRT CONFIGURATION OPTIONS

SYSTEM CONFIGURATIONuuvviiieeeeeiiitirieeeeeeeeeitreeeeeeeeeeeissseeeeeeeeesisseseseseeesesssssesesessessssssseeseees

HANDLING STATIC MEMBERSuuvviiiiiiiiiiirieeeeeeeeecireeeeeeeeeeeiareeeeeeeeesiasseseseeeeesasreseeeseeennsreeens

(006)5) 28 €52 N1 2127 1 (0) RO

ACCESS CONTROLoouitieieiee ettt e e e ettt e e e e e e et e eeeessesaaaeeeeeeseesnaaaeeeeeesesssanseseeessesnnnnreeees

MEMORY MANAGEMENT ...ceitittitiaiittteeeiteeestteeeeitteesautteeesbteeesaasteesansteeeansteesannsaeesanseeessnsseesanns

REFERENCES

193

194
199
200

201

203

203
206

209

209
210
210
211
212

214

viii

Chapter 1: Introduction

Chapter 1

Introduction

This chapter introduces middleware and briefly describes the
approaches to distributed application development that are available to
programmers. The need for a new middleware system is justified and the

outline of the thesis described.

Chapter 1: Introduction

1.1 Introduction

Lamport defines distributed systems as collections of distinct, spatially separate
processes that communicate by exchanging messages [1]. Distributed systems consist of
multiple physical machines connected via a network, and exhibit the following properties:

e Processes are autonomous. There are no central authorities that control all

processes.

e Processes do not share memory. Each has direct access only to its own

address-space.

e Processes execute concurrently.

e Systems exhibit multiple, independent points of failure. Partial failure can

occur, for example, if machines or their interconnecting networks fail.

e Systems can be constructed from heterogeneous machines with different

physical architectures running different operating systems.

An application that executes across a distributed system is known as a distributed
application. Distributed applications employ the resources of multiple machines allowing
programmers to create applications that are more scalable and resilient than their non-
distributed equivalents. Scaling may be achieved through the introduction of additional
machines, and resilience to failure by employing redundant machines then replicating

application code and data across them.

1.2 Creating Distributed Applications

Inter-address-space communication occurs between processes in distributed
applications. Programmers can perform all inter-address-space communication directly or
employ middleware systems to simplify the software engineering process. This thesis
defines middleware as software that augments the operating system and network
infrastructure to make the creation of distributed applications in a heterogeneous
environment easier. There are multiple approaches to middleware, which differ in the

extent to which inter-address-space communication is exposed to programmers.

1.2.1 Approaches to Creating Distributed Applications

Figure 1.1 lists the possible approaches to distributed application creation, shown

in a spectrum that ranges from those that expose inter-address-space communication

Chapter 1: Introduction

completely to the programmers, to those that conceal all inter-address-space
communication. All but the left-most approach meets the definition of middleware
provided previously. The software engineering process adopted when using each of these

approaches is examined below.

< Middleware >

Direct Message Message- Remote Distributed Tule Distributed
Network Passing Oriented Procedure Object s aF::es Shared
Communication Libraries Middleware Call Models P Memory

Total Exposure No Exposure

Figure 1.1: Approaches to constructing distributed applications.

1.2.1.1 Direct Network Communication

Operating systems provide abstractions over network communication (e.g.
sockets) which allow programmers to pass data across the network in datagrams (e.g.
UDP) or through streams (e.g. TCP). When performing inter-address-space
communication directly, programmers are responsible for the end-to-end encoding of
data. Programmers write all the code to manage inter-address-space communication and
perform all message construction and transmission. Programmers define protocols and
message formats on a per-application basis. The encoding scheme applied to data passed
across the network must be defined. This encoding scheme must handle differences in
architecture, operating system and implementation language between processes.
Programmers open network connections between address-spaces and directly pass data
across these channels. Performing all inter-address-space communication directly is

difficult, error-prone and results in applications that are expensive to change.

1.2.1.2 Message Passing Libraries

Message passing libraries such as the Message Passing Interface (MPI) standard
[2] or Parallel Virtual Machine (PVM) [3] abstract over the inter-address-space
communication by formalizing the message passing mechanisms. These libraries allow
application-level processes to exchange structured messages, which may contain
application data. Data that is passed across the network in messages is encoded
automatically to mask any differences in architecture, operating system or
implementation languages that exist between processes. Message passing libraries

provide a send/receive model through which programmers can pass messages, but

Chapter 1: Introduction

message structure must be defined on a per-application basis. Therefore, inter-address-

space communication is simplified but not concealed from programmers.

1.2.1.3 Message-Oriented Middleware

Message-Oriented Middleware (MOM) systems such as the Java Message Service
(JMS) [4] extend the message passing model provided by message passing libraries.
Messages are transmitted via message queues in the system infrastructure from which
they can be retrieved by recipients asynchronously, allowing for location transparency
between message senders and receivers. MOM systems also provide a publish/subscribe
model that allows many-to-many relationships between senders and receivers. Recipients
can subscribe to particular topics in order to receive all messages published with those
topics. Additional features such as persistency of message queues, guaranteed delivery or
support for transactions may be provided. MOM systems expose inter-address-space
communication to programmers in the same way as message passing libraries but tend to

provide a richer feature set to application developers.

1.2.1.4 Remote Procedure Call

Remote Procedure Call (RPC) [5, 6] systems such as Sun RPC [7] provide a
request-response model similar to local procedure calls. When an application performs a
remote procedure call, the RPC system constructs a request message that identifies the
procedure to call and contains serialized representations of any arguments. Calls are
performed on static code so the environment for each call is constructed at call-time from
the passed arguments and any static data referenced from the code. After the call is
complete, a response message containing serialized representations of the return values is

sent back to the caller.

1.2.1.5 Distributed Object Models

Distributed Object Models (DOMs) such as CORBA [8], Java RMI [9] and
Microsoft .NET remoting [10] provide Remote Method Invocation (RMI), the object-
oriented equivalent to RPC. Remote method calls are performed on identifiable closures
of code and data. Consequently, the environment of each call is partially formed before
call-time, thereby differentiating DOMs from RPC systems. Application objects can hold

remote references to objects that exist in different address-spaces. Each remotely

Chapter 1: Introduction

accessible object is associated with an identifier. A programmer can obtain a reference to

a remote object from the middleware infrastructure based on its identifier.

1.2.1.6 Tuple Spaces

Tuple Space systems such as Linda [11] and JavaSpaces [12] conceptually
provide a shared memory space in the distributed system in which name/value pairs
called tuples are stored. This shared space is called a tuple space and is accessible to all
processes in the system. Tuples written by one process are visible to all. Processes
communicate and synchronize their behaviour by reading and writing tuples. If a process
tries to read a tuple that is not yet present in the tuple space, it is blocked until that tuple is
written by another process. The distributed nature of applications is hidden from
programmers through the abstraction of shared tuple spaces. No explicit inter-address-

space communication is performed.

1.2.1.7 Distributed Shared Memory

Using Distributed Shared Memory (DSM) systems [13] such as Java/DSM [14]
and Orca [15], all processes in the distributed system appear to have access to shared
memory though no physical memory is shared. DSM systems ensure that any updates
made to the shared memory by one process are visible to all other processes. Using DSM
systems, the distributed nature of an application can be completely hidden from the
programmer.

DSM systems can provide shared memory at the byte/page level (e.g. Java/DSM)
or at the object level (e.g. Orca). DSM systems that share at the byte or page level
emulate physical shared memory, which leads to problems in heterogeneous distributed
systems because different machines represent data internally in different ways. DSM at
this level requires low level support from hardware or the operating system and so cannot
be introduced easily into a system that does not already support it.

DSM systems that share memory at the object level allow processes to access
shared objects using well-defined operations in a location transparent manner. Object-
based DSM systems achieve shared memory through the caching and replication of
shared objects, combined with coherency protocols. It is this location transparency and
the approach to implementation adopted by object-based DSM systems that differentiate

them from DOMs, which also permit access to shared objects.

Chapter 1: Introduction

1.2.1.8 Conclusion

Multiple approaches to middleware and the creation of distributed applications
have been introduced. A more thorough discussion of these different kinds of middleware
can be found in Coulouris, Dollimore and Kindberg [16].

This thesis tests the following hypothesis: A middleware system that provides
control over the extent to which inter-address-space communication is exposed to
programmers aids the creation, maintenance and evolution of distributed applications.

Such a middleware system needs to conceal inter-address-space communication
from programmers yet allow control where required. The DOM model has been adopted
in this thesis as it matches the language model of currently popular object-oriented
languages such as Java [17], C# [18] or C++ [19] and provides a compromise between
complete exposure and complete concealment of inter-address-space communication.
Message-based systems do not provide sufficient abstraction over the network while
DSM systems do not permit the fine-grained control required. A DOM that permits
arbitrary objects to be exposed to remote access, and that supports caching and replication
of code and data, achieves the abstraction over the network offered by DSM systems.
Unlike DSM systems, DOMs allow programmers explicit control over the behaviour of

remote references and remote method calls.

1.3 Limitations of Existing Systems

Middleware systems aim to make it easy to create distributed applications;

however, while existing middleware systems solve some problems, they introduce others:

1. Programmers are forced to make decisions early in the design process about
which types of application component may participate in inter-address-space
communication. Distribution boundaries are decided statically and cannot be
altered without changes to application source code. Thus, application
distributions are difficult to change.

2. Distribution-related code permeates application logic meaning that
applications created using existing middleware systems are inflexible to
dynamic changes in their distribution. An application cannot adapt to changes
to the underlying distributed system or to the flow of control within the
application itself, for example, by dynamically collocating objects that interact

frequently.

Chapter 1: Introduction

3.

The creation of code to handle inter-address-space communication is complex
and additional points of potential failure are introduced into the software
engineering process.

It is difficult to understand and maintain distributed applications because
middleware systems may force an unnatural encoding of application-level
semantics. Application classes may be forced to extend special base classes,
implement particular interfaces or handle distribution-related errors explicitly.
Flexibility in distribution boundaries is limited and the re-use of non-
distributed classes in distributed contexts, and vice versa, is hampered.

It is difficult to control the way in which objects are distributed among
available address-spaces. Using existing systems, programmers have limited
control over the policies deciding object placement, which leads to policies

that are inflexible and non-adaptive.

1.4 The RAFDA Run-Time

This thesis describes the design of the RAFDA Run-Time (RRT), a ‘third

generation’ middleware system that aids the creation, maintenance and evolution of

distributed applications, thereby tackling the problems inherent in previous systems.

The RRT simplifies the software engineering process by:

Permitting the introduction of distribution into applications quickly and with
minimal programmer effort, allowing for quick application prototyping.
Allowing programmers to conceal or expose the distributed nature of

applications as appropriate.

The RRT allows the creation of flexible applications by:

Providing fine-grained control over all aspects of middleware behaviour. The
same underlying middleware system can be used to create prototypes and
complete distributed applications. A prototype application can be evolved by
exposing and controlling more aspects of its distribution.

Permitting control over the parameter-passing semantics applied to remote
method calls. Flexibility in application semantics is increased and is decoupled
from application distribution, thereby promoting code reuse.

Permitting the creation of object placement policies, constructed from

individual policy components. This placement policy framework allows the

Chapter 1: Introduction

specification of rules that control how application objects are instantiated and
migrated dynamically.

This thesis shows that the RRT directly benefits programmers by allowing
application logic, parameter-passing semantics and application distribution to become
orthogonal considerations, thereby aiding application design, creation, maintenance and
evolution. Re-use of existing code in distributed contexts is promoted and distributed
applications are capable of adapting to changes in their requirements or in the distributed
system. These benefits are illustrated in the context of a case study that provides a
qualitative evaluation of the RRT and a prototype RRT implementation that provides a
quantitative evaluation. The RRT is designed primarily for applications distributed at
“LAN-scale”, though is capable of supporting “internet-scale” applications provided such

applications do not attempt to preserve non-distributed application semantics.

1.5 Thesis Contribution

This thesis makes a four-fold contribution. Firstly, a taxonomy of existing
middleware systems is created. From this, their limitations are evaluated and the
requirements of a middleware system that permits the creation of flexible distributed
applications are specified.

Secondly, the design and implementation of a third generation middleware system
that meets these requirements is described. This system permits arbitrary application
objects to be exposed to remote access or migrated between address-spaces without
modifications to their underlying source code. It also provides a mechanism to allow the
parameter-passing mechanisms applied to objects that cross address-space boundaries to
be decided dynamically.

Thirdly, a framework for the specification of parameter-passing policy, known as
transmission policy, is created. This framework allows programmers to dictate in a
dynamic manner how objects participating in inter-address-space communication are
passed across the network. Policies can be defined on a per-address-space basis and can
be associated with classes, methods or individual parameters.

Finally, a framework for the specification of object placement policy and
migration policy, known collectively as distribution policy, is created. Programmers can
define policies of arbitrary complexity that can be reused and recombined to create

complete distribution policies on a per-address-space basis.

Chapter 1: Introduction

The work described in this thesis has been developed as part of the Reflective
Application Framework for Distributed Architectures (RAFDA) project [20]. The
objectives of this project are to investigate flexible distributed object-oriented application
architectures, the key components of which are:

e Transformation tools capable of transforming an application into an

isomorphic distributed version in which the distribution boundaries are not
fixed [21].

e A novel middleware system that tackles the limitations of current systems with
respect to flexibility by allowing the exposure of arbitrary application objects
to remote access.

e The creation of policy frameworks that separate parameter-passing semantics

and object placement policy from functional application requirements.

1.6 Thesis Structure

Chapter 2 describes the middleware system model adopted in this thesis without
reference to specific systems in order to provide a conceptual framework against which
existing systems can be evaluated and compared. Chapter 2 also introduces the case study
used throughout this thesis. Chapter 3 examines the limitations of existing systems in
more detail and evaluates related work. Chapter 4 defines the requirements of a third
generation middleware system. Chapter 5 describes the design of the RRT and evaluates
it qualitatively. Chapter 6 describes the implementation of an RRT prototype and
provides quantitative evaluation of this implementation. Chapter 7 concludes this thesis
by summarizing the contribution of the research carried out and stating plans for future

work.

1.7 Summary

Current middleware systems aim to simplify the creation of distributed
applications but exhibit problems. This thesis shows that a middleware system that can
separate application logic from distribution allows the creation of applications with
flexible distribution architectures and has direct benefits for programmers. The design of
the RRT, a middleware system that provides this flexibility, is described. The RRT
conceals the complexity of distribution where appropriate, allowing distribution to be

introduced into applications quickly. This reduces the software engineering effort

Chapter 1: Introduction

required to create distributed applications, leading to quick application prototyping.
However, the RRT also permits programmers to expose all aspects of application
distribution if required, allowing the creation of applications that can exploit their
distributed nature and are flexible with respect to change. The RRT has advantages over
traditional middleware approaches as it adapts its behaviour to suit the requirements of a
given distributed application, rather than forcing the programmer to adapt the application

to the requirements of the middleware system.

10

Chapter 2: Middleware System Concepts

Chapter 2

Middleware System Concepts

This chapter describes the middleware system model in a system-
independent manner. The case study that is adopted throughout this thesis

is also introduced.

11

Chapter 2: Middleware System Concepts

2.1 Introduction to Chapter 2

The middleware system model adopted in this thesis is a Distributed Object Model
(DOM) since DOMs are able to conceal inter-address-space communication from
programmers yet allow control where required. This chapter describes the DOM
middleware system model without reference to any particular technologies. The list of
features described here is neither exhaustive nor implemented fully by all DOMs, but all
systems implement at least a subset of these features. The DOM middleware system
model provides a general framework against which the features of existing systems may
be judged and compared.

Terminology varies from system to system and the terminology defined here is
reused throughout the thesis to provide a consistent universe of discourse. A glossary
summarizing this terminology is provided in Appendix A.

This chapter also introduces a case study that is used throughout the thesis to
exemplify the limitations of current systems and to illustrate the design and
implementation of the RRT. This case study consists of JChord, an implementation of the
Chord [22] peer-to-peer overlay network, and the Data Store service, a generic distributed

object store that builds on the JChord platform.

2.2 Middleware System Model

The objects in a distributed application are partitioned among the address-spaces
in the distributed system. Application objects can hold both intra-address-space
references and inter-address-space references to other objects. Intra-address-space
references are known as local references, while inter-address-space references are known
as remote references. From the perspective of a particular object, those objects in the
same address-space are local objects, while those in remote address-spaces are remote
objects.

A method call performed on a local object is known as a local method call and a
call made on a remote object is known as a remote method call. In a method call, the
caller is the object that performs the invocation and the farget is the object on which the
invocation is performed. In a remote method call, the caller is said to exist in the client-
side address-space while the target is said to exist in the server-side address-space. It is

important to note that the terms /ocal and remote are relative in these contexts.

12

Chapter 2: Middleware System Concepts

Figure 2.1 shows a distributed application in which there are four address-spaces
(represented by solid squares) that exist on three machines (represented by dotted
rectangles). There are a number of application objects (represented by circles), which
hold both intra-address-space references (solid arrows) and inter-address-space references

(dashed arrows).

+ Machine 3
(] '
. .
) '
() '
() (]
. '
) '
(] '
. .
) '
) ’
: \ :
: N :
! \ _]
: N\ _ -7 H

—_— (]
a -1 o a
: \ , | :
H \\ \ '
E N s \ | :
! /' Address Space \ // Address Space| \ H
' + N \ q
H / s\ | 1
N —— P 1.-----).\.\--.---------% leccccccccccaaaad

/ 7 |
/ N\

.' """""""" J """"""""" /""'l I- """" \ """"" \' """ * """""""" (]
1 Machine / / [AN \ | Machine s
' / / HE AN \ 1
:] : \ I‘ '
! / ’ P \ | :
! b Oy '
: o | ’
] ~ < v 4
[~ o [| '
' ~ ' '
[Ve o~ -]
; b _F=C ' :
.] : = ~ -]
' - =< 1
. " : =~ '
[= ['
[['
[[]
; b ;
: P :
’ Address Space 4 ’ Address Space H
: i :
: o 5

-
[
'
'
[
[
'
[
[
'
'
[
[
'
[
[
'
'
[
[
'
'
[
[
'
[
[
'
'
[
[
'
[
[
.
'
[
[
[
'
[
D
-

Figure 2.1: A distributed application showing both intra- and inter-address-space references.

Every middleware system provides an infrastructure, which is its point-of-
presence in each address-space in the distributed system. The infrastructure is responsible
for handling communication between address-spaces and is commonly implemented as a
run-time system or a set of libraries.

In practice, direct remote references cannot be implemented without support from
the operating system or virtual machine in which the application executes. Middleware
systems typically implement remote references by associating an object identifier with
each remote accessible object. This object identifier differentiates a given object from all
other remotely accessible objects in the same address-space. An object can be uniquely
identified in the distributed system by its object identifier and the identity of the address-

space in which the object exists.

13

Chapter 2: Middleware System Concepts

Each remote reference is a combination of an object identifier and an address-
space identifier. An application object that holds a remote reference really holds a local
reference to an object that contains this information. Proxy objects [23] can be used to
make remote references type-compatible with the corresponding remote objects. Proxy
objects are local handles to remote objects that implement the same methods as the
corresponding remote objects.

Any methods that the application invokes on the proxy object are propagated
across the network to the associated remote object. The client-side application therefore
uses the proxy object as though it were the remote object, thereby introducing location
transparency into the application. The abstraction of proxy objects is not logically
necessary but many middleware systems provide it to allow local calls and remote calls to
be performed in the same manner.

When a remote method call is performed, the call is propagated through the client-
side infrastructure, across the network to the server-side infrastructure based on the
address-space identifier, and onto the referenced object based on the object identifier. The
part of the server-side infrastructure that performs the local method call on the exposed
object is known as the skeleton.

Figure 2.2 shows the same application as Figure 2.1, with the middleware
infrastructure revealed. The middleware infrastructure in each address-space associates an
identifier with each local object that is remotely accessible (labelled A, B, etc.). Each
address-space is identified by a number (1, 2, etc.). The remote references are shown as
infrastructure objects that identify remote objects using a combination of address-space

identifier and object identifier (labelled 2A, 4B, etc.).

14

Chapter 2: Middleware System Concepts

Peeccccccccccccccccccccccccccnccnnann

Machine
Address Space 1
D
4A
A
Infrastructure U
Machine

Infrastructure

Address Space 3

Address Space 2

>

4A 4B
U Infrastructure U

Machine

Infrastructure
A

Address Space 4

Figure 2.2: A distributed application in which the middleware infrastructure is shown.

Programmers must register objects with the middleware infrastructure in order to

expose them to remote access. On registration, an identifier for the object is created and a

mapping from this identifier to the exposed object is defined. Registration prepares the

infrastructure to handle incoming calls to the object.

In some middleware systems, programmers are required to introduce support for

distribution into application classes by extending special middleware infrastructure base

classes or implementing special interfaces. These semantic restrictions vary from system

to system and are investigated in more detail in the next chapter.

2.2.1 Remote Method Calls

Figure 2.3 shows the flow of control when object 4 performs a remote method call

on the sayHello() method of object B.

15

Chapter 2: Middleware System Concepts

Invocation Request sent
to Address-Space 2
Target=B

Method = “sayHello”
Argument = “Hello from A”
\| /
N\ /
AN 7/
/
“Hello back” ‘ ‘ Birox-sayHello(“Hello from A”) .- - -l B.sayHello(“Hello from A”) ‘ ‘ “Hello back”
e -
Invoke method “sayHello” on Infrastructure Infrastructure o, Dol
object B in address-space 2 lnv::(. nglt?gH s;yl;l’e l:z A‘:{lth
with argument: “Hello from A” | 3 - gul < “relio 1ro
/|
’ ’ ! \
7
e \ / N\
/ \ s ” / N « ”
/ Result: “Hello back Y Result: “Hello back’
Object Identity: B s N
Location: Address-Space 2 N
Address-Space 1 Invocation Response sent Address-Space 2

back to Address-Space 1

Result = “Hello back”

Figure 2.3: Flow of control in a remote method call.

Conceptually, object 4 holds a remote reference to object B. In reality, object 4
holds a local reference to a proxy object called B,,.. Object B, is type-compatible with
object B and appears to object 4 as though it really is object B. The proxy object stores an
address-space identifier and object identifier, which in combination identify object B
uniquely within the distributed system. When object 4 attempts to call sayHello() on
object B, it calls the sayHello() method on B, This proxy object accesses the local
middleware infrastructure and instructs it to perform a remote call on the sayHello()
method of object B in address-space 2 with the supplied argument.

The client-side middleware infrastructure constructs and transmits an invocation
request to the server-side middleware infrastructure in the same address-space as object
B. The invocation request contains the target object information, method name and
associated argument. The server-side middleware infrastructure uses the target object
information to identify the skeleton associated with object B, B, in this case. Once the
call has been performed, the results are returned via the same path in reverse, in an

invocation response that travels back across the network.

2.2.2 Marshalling

Method calls performed on proxy objects are converted into invocation requests in
a process known as marshalling. The server-side conversion of an incoming invocation
request back into a method call is known as wum-marshalling. When marshalling

arguments and return values, the middleware must determine which parameter-passing

16

Chapter 2: Middleware System Concepts

mechanism will be applied to each of the objects that cross address-space boundaries.
Most DOMs provide pass-by-value and pass-by-reference mechanisms which behave as
follows. Consider the distributed application shown in Figure 2.4, in which object 4 holds

a remote reference to object B and a local reference to object C.

Address-Space 1 Address-Space 2

Figure 2.4: An application before a remote method call is performed on object B.

If object A calls a method on object B and passes object C as an argument, then C

can be marshalled in one of several ways:

e If passed by-value, object C will be copied to address-space 2 as shown in
Figure 2.5. Any method calls that object B performs on the argument will be
executed on the copy in address-space 2. The middleware system must encode
any object that is passed by-value into a stream of bytes that represents its
internal state, for transmission across the network. This process is known as
serialization. The decoding of a byte stream back into application objects is

known as deserialization.

Address-Space 1 Address-Space 2

Figure 2.5: Object C has been passed by-value.
o If passed by-reference, a remote reference to object C will be passed to

address-space 2 as shown in Figure 2.6. Any method calls that object B

17

Chapter 2: Middleware System Concepts

performs on the argument will result in remote method calls to object C in
address-space 1. The middleware system must serialize references to objects

that are passed by-reference, rather than serializing the objects themselves.

-

Address-Space 1 Address-Space 2

Figure 2.6: Object C has been passed by-reference.
e Some systems also offer pass-by-migrate semantics. If passed by-migrate,
object C will be moved to address-space 2 as shown in Figure 2.7. Any
method calls that object B performs on the argument will execute locally on

object C, which is now in address-space 2.

IS

Address-Space 1 Address-Space 2

Figure 2.7: Object C has been passed by-migrate.

2.2.3 Smart Proxies

The cost of performing remote method calls is many orders of magnitude greater
than local method calls so it is often desirable to minimize the number of remote method
calls that are performed by distributed applications. Smart proxies [24] are proxy objects
that cache some of the target objects’ state thus allowing access without the expense of
remote method calls. Smart proxy functionality overlaps with that provided by

Distributed Shared Memory systems. Smart proxies allow multiple copies of cached state

18

Chapter 2: Middleware System Concepts

to exist, analogous to object-based DSM systems. However, DOMs using smart proxies

do not typically provide integrated coherency mechanisms, while DSM systems do.

2.2.4 Remote Object Instantiation

The creation of objects in remote address-spaces is known as remote object
instantiation. Instead of performing object instantiation directly in the local address-
space, an application can instruct the middleware to perform instantiation in a remote
address-space on its behalf. The application specifies the class of object it wishes to
create and possibly supplies some initialization arguments to its local middleware
infrastructure. This information is propagated across the network, the object instantiated

and a remote reference returned to the application.

2.2.5 Object Migration

Object migration is the movement of application objects between address-spaces
in the distributed system without loss of referential integrity. Migration is useful as it
allows applications to adapt their distribution dynamically to handle changing
requirements. It is implemented by copying the migrating object to the new address-
space, then updating all references to the old copy to refer to the new copy. The
middleware must ensure that the application remains consistent while these operations are
performed. References may be duplicated, passed between address-spaces, on the
execution stack or inaccessibly in-flight between address-spaces, making them difficult to
update. When object 4 moves from address-space 1 to address-space 2, there are four
steps that must be carried out:
e A copy of object 4 is created in address-space 2.
e [Local references that exist to the copy of object 4 in address-space 1 must be
changed into remote references to the migrated copy of object 4 in address-
space 2.

e Remote references from application objects in address-space 2 to the copy of
object 4 in address-space 1 must be changed into local references to the
migrated copy of object 4 in address-space 2.

e Remote references from application objects in any other address-spaces must
be updated to reference object A in address-space 2, rather than address-
space 1. This can be achieved lazily using a tombstone, which is an object that

remains in address-space 1 to record that object 4 has migrated. Remote

19

Chapter 2: Middleware System Concepts

references are updated using the information in the tombstone only when they
attempt to access object 4 in address-space 1.
These steps need not be carried out eagerly at migration time, but references must

be updated before any operations are performed on them.

2.2.6 Code Distribution

The code distribution problem is that of ensuring that the necessary application
code is available in each address-space. Some middleware systems assume that all code is
available in all address-spaces and defer responsibility for code distribution to
programmers. In languages that support the dynamic loading of classes, such as Java, a
network-accessible code repository available to all address-spaces in the distributed
system can be created. If the infrastructure requires particular code, it can be obtained
from the repository and dynamically loaded. Code repositories implemented in a logically
centralized manner are a single point of failure and may become heavily loaded so it may

be desirable that they are implemented in a scalable, distributed fashion.

2.3 JChord Case Study

The case study employed in this thesis consist of two parts: a Java implementation
of the Chord [22] peer-to-peer protocol called JChord and a Data Store service that makes
use of this peer-to-peer network. This case study is used to exemplify the limitations of

current middleware systems and to describe the design and implementation of the RRT.

2.3.1 JChord

The following quotation from Norcross, Dearle, Kirby, and Walker [25] describes
JChord:

JChord is our implementation of the Chord [22] peer-to-peer look-up
protocol. This implementation provides a peer-to-peer overlay that supports Key-
Based-Routing (KBR) [26] for addressing nodes in the underlying network.
Under a KBR scheme every entity addressable by an application has an
associated M-bit key value (where M is a system constant), and every key value
maps to a unique live node in the overlay network. Up-calls from the routing
layer inform the application layers of changes to the key space, thus allowing an

application to be aware of changes to the set of keys that map to the local node.

20

Chapter 2: Middleware System Concepts

Chord is a ring-based protocol, which at the simplest level requires each
node to maintain only a pointer to its immediate successor in the ring. Each node
also has a unique key and the ring is arranged in key order modulo 2. The
Chord protocol supports a single lookup operation, which takes a key value and
returns the network address of the Chord node to which the key value maps. A
look-up on key K will yield the address of the node N whose key Ky is the first of
the ring members to succeed K in the key space. In this way the Chord protocol
provides a distributed hash function that maps from keys to overlay nodes. Each
node maintains a list of nodes that follow it in the ring, known as its successor
list. A successor list of size L allows the ring to survive the failure of up to L-1
adjacent nodes. This provides resiliency of the ring and the look-up protocol,
though further measures are required to ensure integrity of the data structures

hosted by ring nodes.

The following example illustrates how an archetypal middleware system could
support remote calls in JChord. All code fragments are shown in Java [17]. Figure 2.8
shows the classes in the example application and indicates whether these classes are
created by programmers, generated using middleware tools or provided as part of the
middleware infrastructure.

To create a class supporting remote access, the programmer initially creates an
interface (.JChordNode) that defines the operations that will be provided by this class. An
implementation of this interface is also created by the programmer (JChordNode). The
main application (Application) accesses this implementation through the interface only. A
proxy class called JChordNodeProxy that implements the ILJChordNode interface is
generated using middleware system tools. It makes use of the middleware infrastructure
classes Middleware and RemoteReference to perform remote method calls and identify

objects in the distributed system.

21

Chapter 2: Middleware System Concepts

<<interface>>
IJChordNode

[N/

Created by programmers

Application RemoteReference

JChordNode JChordNodeProxy Middleware

‘ Generated by middleware tools ‘
‘ Middleware infrastructure classes ‘

Figure 2.8: The classes involved in the remote method call example.

The programmer defines the common interface, ZJChordNode, and corresponding

implementation, class JChordNode, as shown in Figure 2.9.

public interface IJChordNode {
IJChordNode lookup (Key key) ;

public class JChordNode implements IJChordNode
public IJChordNode lookup (Key key) {
/* Find JChordNode associated with the supplied key */

return ..;

Figure 2.9: The IJChordNode interface and JChordNode class.

Figure 2.10 shows the remote reference implementation class, called
RemoteReference, which uses an InetSocketAddress object (containing an IP address and
port pair) to identify the target address-space and an object counter to identify the remote
object within its address-space.
public class RemoteReference

public InetSocketAddress isa = null;

public int objectID = 0;

Figure 2.10: The remote reference class.

Figure 2.11 shows the signature of the Middleware class, which provides a
method called callRemoteMethod() through which remote method invocations can be

performed. This method takes a remote reference to the target object, the name of the

22

Chapter 2: Middleware System Concepts

method to call, and any associated arguments packaged into an array. This method
performs all marshalling, including serialization of arguments, and transmits the
invocation request to the remote address-space identified by the remote reference. The

method call is then performed and the return value passed back across the network.

public class Middleware f{
public static Object callRemoteMethod (
RemoteReference remoteRef,
String methodName,
Object[] arguments) {..}

Figure 2.11: The middleware infrastructure class.

The proxy class associated with class JChordNode, called JChordNodeProxy, can
be implemented as shown in Figure 2.12. Typically this class would be generated using
middleware tools. This proxy class implements the ZJChordNode interface and so is type-
compatible with the associated application class. Instances of the proxy class hold remote
references to the instances of JChordNode with which they are associated, in the
remoteRef field. This field is initialized by the middleware system when the proxy object
is created. The lookup() method forwards calls to a remote instance of JChordNode using

the remote invocation method in the Middleware class, based on this remote reference.

public class JChordNodeProxy implements IJChordNode ({
/* Reference to remote instance of JChordNode */

private RemoteReference remoteRef = ..;

public IJChordNode lookup (Key key) {
Object[] args = new Object[] { key };
return (IJChordNode) Middleware.callRemoteMethod (
remoteRef,
"lookup",

args) ;

Figure 2.12: The JChordNodeProxy proxy class.

23

Chapter 2: Middleware System Concepts

The main() method of the Application class shown in Figure 2.13 contains a
reference typed as IJChordNode. This allows the application to reference either an
instance of JChordNode or an instance of JChordNodeProxy associated with a remote
instance of JChordNode. The use of proxy objects conceals the inter-address-space
communication from the application, allowing remote method calls to be made in the

same manner as local method calls.

public class Application {
public static void main(String[] args) {
/* Object ‘'mode’ may be local or remote */
IJChordNode node = ..;
/* Create a key */
Key key = new Key(12345);
/* Method call may be local or remote */

IJChordNode result = node.lookup (key) ;

Figure 2.13: The Application class, which can perform remote method calls.

2.3.2 Data Store

A generic key-based distributed Data Store service has been constructed using
JChord. The Data Store service is implemented as a series of Data Store objects
distributed across the available machines. When an application object is inserted into the
store, the object is associated with a key. A mapping between key and object is recorded
by one of the Data Store objects. Each Data Store object is collocated with a JChord node.

The Data Store service decides in which Data Store object to store a given
application object based on the application object’s key. Application object 4 with key K
is stored in the same address-space as the JChord node which owns key K (that is, the
address-space returned when a JChord lookup of key K is performed). The JChord ring
does not store application objects. Rather it acts as a distributed hashing mechanism by
which the application objects stored by the Data Store service can be partitioned among
the available Data Store objects.

Applications store objects in the Data Store service using a local point-of-presence
(POP), which exists in all address-spaces. The Data Store POP allows applications to

store and retrieve objects, and implements the interface shown in Figure 2.14. Each Data

24

Chapter 2: Middleware System Concepts

Store object can hold local references to copies of stored application objects or remote
references to stored application objects in remote address-spaces. When storing an
application object in the Data Store service, the programmer decides whether the Data
Store should hold a remote reference to the stored object or hold a duplicate copy of it,

using the storeByReference argument of the store() method.

public interface IDataStorePOP
Key store (Object objectToStore, boolean storeByReference) ;

Object retrieve (Key key);

Figure 2.14: The IDataStorePOP interface.

Each Data Store object presents the /DataStorelnternal interface shown in Figure
2.15 to the Data Store point-of-presence. This interface allows the Data Store POP to add
and remove mappings between a particular key and object in a particular Data Store

object.

public interface IDataStorelInternal {
void put (Key key, Object objectToStore) ;
Object get (Key key) ;

Figure 2.15: The IDataStorelnternal interface.

The store() method provided by the /DataStorePOP interface generates a key for
each stored application object. It determines which remote Data Store object should store
the application object by performing a JChord lookup to find an address-space and
obtaining a reference to the Data Store object in that address-space using the underlying
middleware system. The stored object must then be passed by-reference or by-value to the
put() method provided by the chosen Data Store object. The parameter-passing semantics
of this method must be decided dynamically based on programmer input, irrespective of
the class of object stored.

Figure 2.16 shows a distributed system in which the Data Store service is
deployed. Each Data Store object (labelled DS — DS5) is collocated with a JChord node
(labelled JC1 — JC5). Each JChord node holds a remote reference to the next JChord node
in the ring. The Data Store POP (labelled DS POP) can remotely access individual Data
Store objects. Note that the Data Store POP need not be collocated with JChord nodes or

25

Chapter 2: Middleware System Concepts

Data Store objects. The diagram shows the result of storing application objects A/ and 42
(in the top left address-space) in the Data Store object DS/ by-reference and by-value
respectively. DS holds a remote reference to A7/ and a copy of 42.

—_— —_

~ \

|
DS \
° I
|
I R I
//’ -~ I
| I SNS ©

Vd /

IDataStorelnternal

Address Space 7/ Address Space

@
/ IDataStorelnternal
/

Address Space

/

/.
/
IDataStorelnternal . :

Address Space

»
/
IDataStorelnternal . .

Address Space

S

)
|
@
I IDataStorelnternal

~ —

N
~

Address Space

Figure 2.16: A JChord ring showing the remotely accessible Data Store objects.

If the application executing in the top left address-space shuts down, it is desirable
that object A/ be moved to another live address-space in the distributed system. However,
it may be remotely referenced by clients that accessed it through the Data Store service
so, to ensure referential integrity, object A/ must be migrated to another address-space

rather than simply copied.

2.3.3 Implementing the JChord Case Study

JChord has been implemented as part of the Secure Location-Independent
Autonomic Storage Architectures (ASA) project [27] using the RRT prototype developed
as part of the research described in this thesis. This case study is used to illustrate the

novel features of the RRT.

26

Chapter 2: Middleware System Concepts

JChord and the Data Store have a number of properties that would make them

difficult to implement using traditional middleware systems and so are particularly

suitable as a case study, namely:

24

JChord was initially developed as a local application used to simulate peer-to-
peer networks on a single machine. The application was tested and stable so it
was desirable that distribution be introduced with minimal changes to
application logic, in order to reduce the likelihood of new errors.

JChord is used as a tool in a research environment to investigate the properties
of peer-to-peer systems and so must adapt to changing requirements, such as
the introduction of new routing algorithms, with minimal programmer effort.
Each JChord node presents a multiplicity of interfaces to clients. It provides
lookup functionality to applications, low-level ring maintenance operations to
other nodes and control over ring configuration to managers.

References to remote JChord nodes must cache some of the state of the remote
nodes locally for efficiency and for use during failure, to identify the failed
nodes.

It must be possible to create nodes on remote machines to automate ring
deployment.

The Data Store point-of-presence needs to alter parameter-passing semantics
dynamically when accessing the individual Data Store objects.

It must be possible to migrate objects that are remotely referenced by Data
Store objects from one address-space to another. This allows the Data Store
service to adapt to changes in the distributed system without loss of referential
integrity.

Distribution policies to control the deployment of JChord ring nodes and the

migration of stored objects must be defined.

Summary

This chapter has described the middleware system model adopted in this thesis in

a system-independent manner. The concepts described here do not comprise an

exhaustive list of all features that a middleware system must provide, nor are all possible

middleware features described. This chapter provides a framework describing common

27

Chapter 2: Middleware System Concepts

functionality against which existing systems can be evaluated. The JChord case study is

introduced and its requirements summarized.

28

Chapter 3: Related Work

Chapter 3

Related Work

This chapter investigates and evaluates ‘first generation’ industry-
standard and ‘second generation’ research-based middleware systems.
The limitations of existing systems are described in the context of this

related work.

29

Chapter 3: Related Work

3.1 Introduction to Chapter 3

This chapter categorizes middleware systems into ‘first generation’ systems,
which are industry-standard systems in wide use, and ‘second generation’ systems, which
are research-based systems that are not in extensive use outside of academia. The chapter
concludes by re-examining the limitations of existing systems, which were introduced in

Chapter 1, in the context of the middleware systems described here.

3.2 First Generation RPC Systems

RPC systems allow clients to call remotely accessible procedures, rather than the
methods of specific objects. RPC systems provide two mechanisms to permit callers to
execute code on remote machines, namely:

e A mechanism to identify remote procedures.

e A mechanism to encode arguments and return values that are passed across

address-space boundaries.

The main limitation of RPC systems is a lack of support for remote references,
with the consequence that arguments cannot be passed by-reference during remote calls.
RPC systems allow applications to provide service-oriented functionality to remote
clients. All data required to perform any operations must be passed as arguments during
calls.

The most widely used traditional RPC system is Sun RPC [7] though there are
others, such as DCE-RPC [28] (from which Microsoft’s COM RPC mechanism was
developed) and ISO-RPC [29]. The differences between these different approaches are
discussed in Barkley [30]. There are also modern RPC systems such as XML-RPC [31].

3.2.1 Sun RPC

SunRPC [7] allows clients to execute code on remote machines. A programmer
defines a numbered list of procedure declarations and creates a server application that
implements these procedures. The server registers itself with the RPC infrastructure to
make the procedures available. Clients perform remote calls via proxies which access the
remote procedures based on the identities of the server applications, procedure numbers

and the names of the machines on which the servers run.

30

Chapter 3: Related Work

Programmers initially define application structure in terms of programs, versions
and procedures using RPC Language (RPCL). A program declaration describes a single
remotely accessible server application and contains one or more version declarations.
Version declarations define the particular procedures provided by each version of the
server and provide multiple views over the server.

A code generation tool called RPCGen is used to generate server implementations
containing method stubs, to which programmers add application logic, and any associated
proxies. When run, the server applications register themselves with the RPC
infrastructure’s connection listener, known as the port mapper. The port mapper listens
for invocation requests from clients.

To perform a remote method call, a client performs a local method call on a
proxy, which marshals the arguments. The call is passed into the RPC infrastructure
which creates an invocation request containing a program identifier, a version number
and a procedure identifier along with the marshalled arguments. The request is passed
across the network to the server-side port mapper. The port mapper executes the
described procedure on behalf of the client.

All arguments and return values are passed across address-space boundaries by-
value. A data representation scheme called the External Data Representation (XDR) is
used to define how primitive values and data structures are encoded. Encoded values do
not contain any type information and so it is not possible to determine which values an
arbitrary block of encoded data represents unless the types are known in advance.

SunRPC is representative of the functionality provided by all RPC systems. It
provides a service-oriented model that allows clients to pass some arguments to a remote
server, which performs some computation and returns a result. SunRPC, like all RPC
systems, is not a suitable middleware system to use when creating distributed applications

that depend on pass-by-reference semantics.

3.2.2 XML-RPC

XML-RPC [31] represents remote calls and serialized values in XML. Remote
procedures are invoked by performing an HTTP POST request on an XML-RPC
compliant web server. The POST data contains XML describing the:

e Method name to call.

e Method call arguments.

31

Chapter 3: Related Work

The XML-RPC specification is simplistic and much of the behaviour of an XML-
RPC system is implementation-specific, preventing interoperability between different
implementations. The structure of valid XML-RPC calls is described but there is no
indication of how method names are mapped to application methods. The specification
states that servers interpret the method name in any way they deem appropriate. XML-
RPC provides no service description mechanism from which clients can determine the set
of operations provided by a server.

Only pass by-value semantics are supported for remote calls and though complex
types can be passed across the network, XML-RPC provides no type mappings to indicate
how to associate programming language types with serialized objects. Further, the current
specification does not indicate how cycles within the closures of serialized objects can be

handled.

3.3 First Generation Distributed Object Models

Distributed Object Models (DOMs) represent a more object-oriented approach to
distributed application development. They provide Remote Method Invocation (RMI)
functionality that allows clients to call methods on identifiable objects in remote address-
spaces. Applications can hold references to objects in remote address-spaces and both
pass-by-reference and pass-by-value semantics are available for remote method calls.

This section describes the first generation DOMs, which are CORBA [8], Java
RMI [9], Microsoft COM technologies [32] and Microsoft .NET remoting [10]. Each of
these middleware systems has unique properties but all require programmers to follow
similar steps in order to create remotely accessible objects:

1. Programmers must define the interfaces between distribution boundaries

statically.

2. Programmers must decide statically which classes will implement these
interfaces and thus support remote access. These classes are known as remote
classes and must meet certain semantic requirements.

3. Programmers instantiate the remote classes and register them with the
middleware infrastructure. Objects are associated with names that allow
clients to obtain remote reference to them.

Only instances of classes that have been designed to support distribution can be

exposed to remote access. Further, distribution-related decisions must be made at class

32

Chapter 3: Related Work

granularity in the first step but at object granularity in the third step, making these
middleware systems difficult to use. The decisions that programmers make statically
concerning support for remote access place constraints on the ways in which applications
can be distributed.

All of the first generation DOMs described here exhibit similar limitations. The
creation of distributed applications is both complex and error-prone. Programmers must
decide which classes and interfaces will support remote access early in the design phase.
They do not abstract over the distributed nature of the application meaning that the
semantics of an application are tightly bound to its distribution. The introduction of
distribution into an existing local application is difficult. Extensive changes to source
code and possibly the application semantics are required. These DOMs do not adapt

easily, rendering them inflexible to the requirements of applications that evolve over time.

3.3.1 Common Object Request Broker Architecture (CORBA)

The Common Object Request Broker Architecture (CORBA) [8, 33-35] is a
complex DOM specification [33] that allows object interaction across address-spaces in
an operating system and language independent manner. Multiple implementations of
CORBA exist, such as MICO [36] and Orbix [37, 38].

The local infrastructure in a CORBA implementation is known as the Object
Request Broker (ORB). There is a single ORB per address-space, which is responsible for
constructing all outgoing invocation requests to remote objects and handling all incoming

invocation requests to local objects.

3.3.1.1 Creating a Distributed Application

The first stage in the design and creation of distributed applications using CORBA
is the definition of interfaces for the remotely accessible classes. CORBA interfaces are
defined independently of implementation language using the Interface Definition
Language (IDL) [8]. All complex types that can be passed as arguments or return values
are also defined in the IDL. IDL is object-oriented and is used only to specify the
structure of the interfaces and types.

CORBA defines mappings between IDL and many programming languages,
including Java, C, C++, ADA, Lisp and others. In order to implement the interfaces and
complex types defined in IDL, programmers use language-specific IDL compilers to

generate partial implementations of the interfaces and their associated proxy classes in a

33

Chapter 3: Related Work

programming language chosen by the programmers. These partial implementations
contain method stubs without execution logic, which is subsequently provided by
programmers. Support for remote access permeates classes making it difficult to change
classes that are not accessible remotely into ones that are and vice versa.

Remotely accessible objects are associated with names in a CORBA name service
when exposed to remote access. The name service is available to both servers and clients
through the ORB. Clients in remote address-spaces can obtain references to the exposed
objects by name. Implementations of remote classes are known as servants. IDL
compilers typical generate one partial servant implementation per type defined in IDL
though a single servant may implement several CORBA types.

Servants provide functionality to both the ORB and application programmers. It is
common to inherit some of this functionality from a special base class. However, when
the implementation language does not support multiple inheritance, servants cannot
extend arbitrary other application classes, thereby affecting application semantics.

The tie approach solves this problem by allowing programmers to implement the
servant functionality and application logic in separate classes. Using this approach, the
servant extends the special base class but holds a reference to an instance of the remote
class that implements the application logic. The remote class is free to extend any

arbitrary base class as shown in Figure 3.1.

ServantBase ArbitraryBase

i

Componentimpl TieServant TiedComponentimpl

Figure 3.1: CORBA servant classes.

3.3.1.2 Dynamic Invocation

Programmers typically need static knowledge of the objects that clients will
access at client compile-time. CORBA solves this problem by providing the Dynamic
Invocation Interface, which allows clients to access remote objects for which static type
information was unavailable at client compilation. Programmers must explicitly construct

remote method call requests by defining the names of the operations and providing

34

Chapter 3: Related Work

arguments. If the arguments are of unknown types, the client must also describe the
structure of these types to the infrastructure in order than they can be marshalled.

To allow programmers to construct servants that can tie to objects for which static
type information was not available at servant compilation time, the Dynamic Skeleton
Interface (DSI) is provided. DSI servants extract the name of the operation to call and any
associated arguments from an incoming remote method call request, and perform the
requisite call. CORBA does not serialize objects in a self-describing manner and so
programmers must write code to extract type information from the request and deserialize
the arguments. The tie approach offers increased flexibility at the cost of increased
complexity. Programmers lose the abstraction over the inter-address-space
communication afforded when using proxies and objects created from IDL. Since
serialized data is not self-describing it is possible to construct applications in which
methods are invoked with inappropriate arguments, particularly when using dynamic
invocation [33]. This leads to unexpected application semantics and may cause run-time

problems in strongly typed languages.

3.3.1.3 Implementation

To ensure interoperability among different CORBA implementations, there is a
standard representation of remote references called the Interoperable Object Reference
(IOR) that must be supported by all ORBs. ORBs must also be capable of performing
inter-address-space communication using the Internet Inter-ORB Protocol (IIOP). This
protocol specifies the range, size and encoding for basic types and an encoding for
complex types called the Common Data Representation.

CORBA objects, data structures and primitive values may be passed as arguments
or return values when remote methods are called. Each parameter of the methods defined
in IDL is marked as in, out or inout indicating whether that parameter should be passed
by-value, by-result or by-value-result [39] respectively. When arguments are passed by-
result or passed by-value-result, this indicates that the server will modify the arguments
and copy the modified values back to the client. Pass-by-result semantics indicate that the
server is not interested in the client-side value of the argument before the call and is
simply using the argument as a way to return values to the caller. In languages that have
no support for pass-by-result, such as Java, programmers must wrap, unwrap and update

out and inout parameters to ensure the by-result semantics are preserved.

35

Chapter 3: Related Work

CORBA objects are passed by-reference by default and the in, out and inout
semantics are applied to the associated IORs, not the objects themselves. Types may
alternatively be defined in IDL as pass-by-value types and in such cases these semantics
are adopted instead of the default. Only CORBA objects may be passed by-reference,
leading to limitations with respect to shared data. Application flexibility and code reuse
are hindered because passing semantics are defined statically.

CORBA is a powerful but complex middleware tool that exposes much of the
complexity of distribution to programmers, particularly those using the dynamic
invocation mechanisms. Programmers must define distribution boundaries statically,

leading to inflexibility in application distribution.

3.3.2 Java Remote Method Invocation (Java RMI)

Java Remote Method Invocation (Java RMI) [9] is a DOM included as part of Java
2 Standard Edition (J2SE) [40]. It permits the creation of classes whose instances can be
accessed remotely from other Java Virtual Machines (JVMs) [41]. Remotely accessible
classes must implement interfaces that meet a number of requirements:

e The interfaces must extend a special marker interface (java.rmi.Remote) either

directly or indirectly.

e FEach method must throw a special remote exception class

(java.rmi.RemoteException).

Programmers must ensure that the methods inherited from class java.lang.Object,
the root of the class hierarchy in Java, are modified to support distribution. This is
achieved either by extending a special Java RMI base class or by overriding these
methods in any classes that support remote access. These requirements erode the
abstraction over the network provided by the middleware system because support for

distribution pervades classes.

3.3.2.1 Creating a Distributed Application

In the most recent version of Java (J2SE 5.0 [40]), the Java RMI infrastructure can
make use of the reflection technology integrated into Java to provide generic skeleton and
proxy implementations. Programmers can instead employ a Java RMI compiler to
generate ancillary distribution-related code such as skeletons and proxies (the latter
known in Java RMI as stubs) for all remotely accessible classes to avoid the run-time cost

of reflection.

36

Chapter 3: Related Work

The process of exposing an object to remote access is known as export. On export,
objects are registered with a name service called the rmiregistry that runs in a separate
process on a known machine and port. Clients can obtain references to exported objects
by contacting the rmiregistry and specifying the names with which the objects were
registered initially. The rmiregistry returns remote references to the exported objects.

Java RMI determines the parameter-passing semantics to apply when remote
methods are called based on whether the argument objects have been exported to remote
access. Exported objects are always passed by-reference and all other objects are passed
by-value. Even instances of classes supporting remote access are passed by-value if they
have not yet been exported. Consequently, the parameter-passing semantics are tightly
bound to the distribution of the application and can be unpredictable.

Java RMI implements distributed garbage collection using a reference-counting
scheme in which each JVM keeps track of its own reference count for each remote object.
This distributed garbage collection scheme cannot detect distributed cycles of garbage
[42] and so an additional lease-based scheme is employed to ensure that exported objects
in cycles will eventually be collected. Distributed garbage collection in Java RMI is

complete but not safe - the integrity of remote references cannot be ensured.

3.3.2.2 Semantic Limitations

Java RMI places a number of semantic limitations on classes that support remote
access. If a remote class extends a super-class that is not remote, it must override all of
the inherited methods to meet the semantic restrictions placed on remotely accessible
methods with respect to network error related exceptions. Only methods written with
concern for distribution can be inherited directly. Programmers may be forced to re-
implement inherited methods as only arguments of interface types can be passed by-
reference. The advantages of inheritance in terms of code reuse can be lost.

Classes supporting remote access and their associated proxy classes are type-
compatible in terms of interface only. Instances of the proxy class cannot be cast into the
associated remote class, which can have consequences for the client applications. For
example, the observer/observable design pattern [43] is implemented in Java using the
Observable class and the Observer interface. Instances of the classes that extend
Observable allow observers to register an interest in them. These observers implement the
Observer interface, which includes a call-back method that is invoked by Observable

objects to indicate that events have occurred.

37

Chapter 3: Related Work

Each observer can be registered with multiple Observable objects and so the
Observable objects pass references to themselves to these call-back methods, to allow the
observers to identify where the events originated. Since the call-back methods take
arguments typed as the Observable class, proxies to instances of classes that extend
Observable cannot be passed in their place. Proxies to instances of Observable classes are
not themselves instances of the Observable class. Observers and Observable objects
cannot therefore be separated into different address-spaces.

One solution appears to be the conversion of the Observable class into an
interface. This is a viable solution to the problem but, because the newly created interface
would need to have explicit support for remote access, it would be forced to extend the
Remote interface and meet the semantics limitations described above. Support for
distribution would permeate library code, whether the classes were used in distributed
applications or not.

Java RMI places major semantic limitations on classes that support remote access
and the parameter-passing semantics are tightly bound to the application distribution. It

provides no support for the dynamic reconfiguration of application distribution.

3.3.3 Distributed COM

Distributed COM (DCOM) introduces distribution into the Component Object
Model (COM) [32, 34, 44]. COM is a Microsoft developed component technology,
primarily for use with the Windows operating system. Although reduced feature
implementations exist on other operating systems (MacOSX and several flavours of
Unix), this tight association with Windows restricts interoperability across operating
systems. COM and DCOM have been subsumed into a single entity called COM+ with
the release of Windows 2000.

COM is a binary standard that permits programmers to create components, which
are coarse-grained reusable units of software that can be combined to create complete
applications. COM components implement multiple interfaces that are defined in
Microsoft Interface Description Language (MIDL), a language that provides mechanisms
similar to CORBA IDL. An MIDL compiler is used to produce partial implementations in
one of several programming languages including C, C++ and Visual Basic. The COM
specification indicates how the compiled code in the component is structured and
provides binary level interoperability between components written using different

implementation languages.

38

Chapter 3: Related Work

Each interface and implementation class is identified using a Globally Unique
IDentifier (GUID). A component is created using a factory by specifying the GUID of the
required component and the context in which the component should be created.
Programmers can instruct factories to instantiate components on remote machines by
either identifying the machine explicitly or deferring to the Service Control Manager
(SCM).

The SCM makes decisions based on component information that has been
explicitly stored in the Windows registry by programmers. This information may include
details about the machines that are present in the distributed system and the component
factories provided by these machines. In this way, object placement policies are defined
in terms of one-to-one mappings between component identifiers and machines.

Clients can access (particular interfaces of) remotely accessible components using
proxies in the conventional manner. Though a DOM, DCOM is built on top of DCE-RPC
[28], an RPC technology, and supports pass-by-reference semantics by extending the data
representation to include interface references. Like CORBA, DCOM determines
parameter-passing semantics based on the statically defined MIDL.

DCOM does not support garbage collection. Once instantiated, component
lifetime must be managed manually by programmers using a built-in reference-counting
scheme. Programmers must increase and decrease the reference count associated with
each component as they create and destroy references to it.

Programmers using DCOM must support remote access explicitly in each
component. Though DCOM enforces the use of factories when instantiating components
thereby making the location of components transparent with respect to the client, it is
inflexible in terms of changing distribution boundaries. DCOM does not support dynamic
alterations to application distribution and does not permit migration. Modifications to
existing components require considerable programmer effort which, combined with the
lack of support for automatic memory management, makes the creation of distributed

applications difficult and error-prone.

3.3.4 Microsoft NET framework

The .NET framework [45] is a component technology that includes operating
system extensions to provide a run-time infrastructure for applications, DOM

functionality known as .NET remoting [10] and technology for the provision of Web

39

Chapter 3: Related Work

Services [46]. The .NET framework supersedes COM though the two technologies are
interoperable for legacy reasons.

Currently, the only fully featured implementation of the .NET framework runs on
the Windows operating system and so cross-platform interoperability is limited. Two
different feature-limited versions of the framework for other operating systems including
MacOSX and GNU/Linux exist, namely Microsoft’s own Shared Source Common

Language Infrastructure (SSCLI) [47] and the Mono project [48].

3.3.4.1 Microsoft Intermediate Language (MSIL)

NET components are known as assemblies and can be written in any .NET
enabled language, of which the main ones are C#, Managed C++ and Visual Basic. All
NET-enabled languages are compiled into a single intermediate language called
Microsoft Intermediate Language (MSIL), a singly-inherited, object-oriented language
with automatic memory management. The run-time system, called the Common
Language Runtime (CLR) compiles the MSIL into platform-specific binary code at run-
time.

The wuse of this common intermediate language allows cross-language
interoperability. Classes written in one .NET enabled language may extend classes
written in another or may throw exceptions across language boundaries. Assemblies
written in different languages can be tightly integrated but the cost of this interoperability
is the loss of each language’s unique properties. Managed C++ illustrates this problem
clearly; it is not source compatible with C++ and, in effect, is C# with C++ syntax. In
general, there are no reasons to choose one .NET implementation language over another

beyond programmer preference.

3.3.4.2 Creating a Distributed Application

Programmers need not define separate interfaces for the classes that support
remote access though all remotely accessible classes must extend a special base class
called MarshalByRefObject. There are two conceptually different approaches to making
instances of classes available: object-based and class-based. The first approach adheres to
the typical DOM model in which programmers instantiate objects then make them
accessible remotely by registering them with the infrastructure. The second approach
adheres to a Web Service style model in which programmers register classes with the

infrastructure rather than objects. This indicates to the run-time that any instances of the

40

Chapter 3: Related Work

specified classes can be used to handle incoming method calls. The .NET infrastructure
then creates instances of these classes on each call or on first access.

The first step using either approach is to create and register a communications
channel for the local application domain. Application domains are analogous to address-
spaces and multiple channels can be registered with a single application domain.
Channels bind to particular ports and can use either a proprietary binary transport
protocol or SOAP. To make objects remotely accessible, the programmer registers them
with channels using names that identify them uniquely among the other remotely
accessible objects in the application domain. All remotely accessible objects registered
with the .NET run-time in that application domain will be accessible via any of that
domain’s channels.

Clients using the .NET framework obtain proxy objects that reference objects in
remote address-spaces using the registered names and invoke methods in the usual DOM
fashion. The .NET infrastructure provides special treatment for proxy objects allowing a
client to cast a proxy object into the same class as its associated remote object.

The .NET framework implements a lease-based distributed garbage collection
scheme and garbage collects objects with expired leases. This approach is complete but
not safe and can result in the collection of live objects.

The .NET remoting infrastructure places semantic restrictions on the inheritance
hierarchies of classes supporting remote access and tightly binds parameter-passing
semantics to the distribution of the application. No support for migration or the
instantiation of objects in remote address-spaces is provided, meaning that applications

are inflexible to dynamically changing requirements.

3.3.5 Component Models

Component models such as Enterprise Java Beans (EJB) [49] or the CORBA
Component Model (CCM) [50] are specifications defining how programmers can create
software components that execute within server-side application containers. The
application containers manage non-functional considerations such as transactions,
persistence, load-balancing or security, allowing programmers to abstract over these
concerns.

Component models use first generation middleware systems to provide their

underlying inter-address-space connectivity, for example, EJB builds on Java RMI and

41

Chapter 3: Related Work

CCM is part of the CORBA specification. Consequently, these systems are not examined
any further.

3.4 First Generation Service-Oriented Architectures

Service-Oriented Architectures (SOAs) provide one-way-call or call-return
semantics and so superficially appear similar to RPC systems or DOMs. However, there
are a series of differences between SOAs and more traditional systems [51]. DOMs
provide an abstraction over operations on remote objects by implicitly passing messages
between address-spaces to perform remote calls, as the result of local calls on proxy
objects. SOAs are often more explicit about this message passing, bringing it up into the
application level. Indeed, some authors define services as entities that operate over
messages [52]. SOAs operate at the granularity of the service, rather than the object,
resulting in differences in the way in which application requirements are modelled.

Services are intended to provide abstractions at the level of business entities.

3.4.1 Web Services Architecture

The Web Services Architecture [46] is a W3C specification for Web Services,
which provides a standardized mechanism to allow interoperability between applications
across programming languages and operating systems (promoted via the WS-I Basic
Profile [53]). Web Services allow web servers to expose methods to remote access by
clients using an XML-based protocol called SOAP [54-56]'. SOAP implementations are
available on many platforms and for many languages, for example, Apache Axis [57] and
Microsoft .NET Web Services [45].

Each Web Service is associated with a particular URL. HTTP requests posted to
that URL correspond to calls on that service. The body of each request is a SOAP
message containing the name of the method to invoke and any arguments in serialized
form. Web Services do not support remote references and can employ only pass-by-value
semantics for remote method calls. Consequently, references are typically exchanged
between web services in an ad-hoc fashion, for example, using invoice numbers rather

than remote programming language references to invoice objects.

! Prior to version 1.2, SOAP stood for Simple Object Access Protocol, though it was also known as the

Service Oriented Architecture Protocol. The latest specification does not spell out the acronym.

42

Chapter 3: Related Work

Methods invoked on Web Services are performed on underlying service objects.
The majority of Web Service technologies do not allow programmers to associate
particular service objects with Web Services. They operate at class granularity, allowing
programmers to associate implementation classes with Web Services. The Web Services
infrastructure instantiates the specified class to handle incoming calls on a per-call basis,
a per-session basis or on first access.

The Web Services Description Language (WSDL) [58] is used to describe the
methods provided by particular Web Services. WSDL defines the available methods in an
abstract manner, in terms of the requests that clients can make and the responses they can
expect to receive. WSDL then defines services in terms of:

e Abstract method definitions.

e URLs for the services.

e The transport protocols that must be employed to access the services.

Programmers can access Web Service functionality from client applications by
generating proxies based on the WSDL. Using Web Services, all types that may be passed
as arguments are described and associated with name-spaces in the WSDL describing the
service. Programmers define application-specific mappings between namespaces and

concrete programming language classes.

3.4.2 JBoss Remoting

The JBoss Enterprise Middleware System, known as JBoss or JEMS [59], is a
Java-based application server for developing enterprise and web applications. JBoss AOP
Remoting uses aspect-oriented programming techniques to instrument instances of
existing classes for remote access. AOP Remoting allows the exposure of application
objects to remote access as services using SOAP or Java RMI (described later in Section
3.3.2).

AOP Remoting places some semantic restrictions on the classes of object that can
be exposed. All classes must provide default constructors and all method arguments and
return values must be Serializable. AOP Remoting adopts a service-oriented model in
which methods of the underlying objects are provided to remote clients, if the objects
meet the above semantic requirements. Pass-by-value semantics are always employed.

AOP Remoting simplifies the process of service design, implementation and

exposure of objects to remote access, provided they meet some minor semantic

43

Chapter 3: Related Work

restrictions, but fixes the parameter-passing semantics. No dynamic control over object

placement, via remote instantiation or migration, is provided.

3.5 Second Generation Middleware Systems

There exist several second generation middleware systems that build on the first
generation systems described so far. These second generation systems aim to tackle the
limitations of first generation systems either by performing code transformations that help
programmers to introduce distribution or by providing libraries that programmers can

employ directly.

3.5.1 Emerald

Emerald [60, 61] is an object-based language and associated run-time
infrastructure with integrated support for distribution and object mobility. While Emerald
pre-dates all of the first generation systems described previously, it provides functionality
such as migration and dynamic control over application distribution that is found only in
more recent second generation systems.

Emerald does not adopt the usual object-oriented paradigm in which programmers
specify classes that are instantiated to create objects. Instead each object is declared and
constructed in a single operation that defines its state and the operations that it supports.
Emerald provides a number of primitive instructions that allow control over the
placement of objects:

e Locate X, returns the identity of the address-space in which object X exists.

o Move X to Y, tells the Emerald infrastructure that object X should be migrated

to the address-space in which object Y exists.

e Fix X at Y, is similar to a move operation. It migrates object X to the address-
space in which object Y exists but will not subsequently allow object X to
move away from that address-space. It is not permitted to move or fix an object
that is already fixed.

e Unfix X, removes the fixed status from X, allowing it to be migrated or fixed
again. Once fixed, an object cannot be migrated or fixed until it is unfixed.

e Refix X at Y, atomically performs an unfix of object X then a fix of object X at
the address-space of object Y.

44

Chapter 3: Related Work

When object migration occurs, the Emerald infrastructure updates all references
internal to the object, such that references previously held by the migratory object to local
objects are converted into remote references, and vice versa as required. Remote
references held by other objects to migratory objects are updated lazily, through a scheme
whereby each address-space holds tombstones for the objects that migrate away from that
address-space. The first time a client attempts to access an object at an address-space
from which it has migrated, the call is forwarded automatically to the correct address-
space. For example, if object 4 migrates from address-space 1 to address-space 2, each
time a client holding a reference to 4 attempts to access it at address-space 1, the call is
forwarded to address-space 2. The invocation response sent back to the client indicates
that the object has moved to the new address-space. The client can then update its remote
reference.

Emerald provides several different parameter-passing mechanisms. Arguments to
remote method calls are passed by-reference by default though programmers can choose
to mark arguments statically as by-move or by-visit. Pass-by-move is identical to pass-by-
migrate, as described in Chapter 2. Pass-by-visit is similar to pass-by-migrate but the
arguments are migrated back to their original locations once the remote method calls are
complete.

Emerald is an impractical choice for creating real-world applications because it is
a relatively unknown and unsupported language, with little library support in comparison
to language such as Java or C++. However, it provides true transparency between local
and remote method calls and allows programmer control over application distribution

through its provision of object migration.

3.5.2 JavaParty

JavaParty [62] extends the Java language with the addition of the keyword
remote, which is permissible only in class signatures and indicates that the class must
support remote access. Classes are compiled with the JavaParty compiler, which

generates pure Java source code that uses Java RMI to implement remote accessibility.

3.5.2.1 Introducing Support for Remote Access

The remote keyword acts as a marker indicating to the JavaParty compiler which
classes must be transformed into remotely accessible versions. The JavaParty compiler

makes all members (that is, methods and fields) of each remote application class public

45

Chapter 3: Related Work

and generates get/set accessor methods for all fields. Each remote application class is then
transformed into five distinct classes. The non-static and static members of the original
class are separated into two Java RMI-enabled implementation classes. One
implementation class contains only the non-static members of the application class and
the other contains only the static members transformed into isomorphic non-static
versions. Java RMI compliant interfaces are then extracted from both implementation
classes. Finally, a wrapper class with the same name as the original class is generated.
Figure 3.2 shows an application class X and the five classes that are generated
from it. Class XImpl contains Java RMI-compliant versions of all the non-static methods
that were in X and class XImplStatic contains Java RMI-compliant non-static versions of
all the static methods that were in X. Interfaces /X and IXStatic are extracted from the
implementation classes. The wrapper class X is structurally equivalent to the original X

but all methods have been converted into wrapper methods.

<<interface>>
IX Ximpl

X X Signatures of Non-

Static Methods <& - - - Non-Static Methods

Non-Static Wrapper

Non-Static Methods

Methods
<<interface>>
b .
_ soomes Static Wrapper IXStatic P HEEE
Static Methods
Methods L . .
Non-Static sigs of I Non-Static versions
Static Methods of Static Methods

Figure 3.2: The JavaParty remote class transformations.

Each instance of the wrapper class references an instance of each implementation
class via its Java RMI-compliant interface. These implementation instances may be in the
same address-space, in which case the associated wrapper object references them directly,
or may be in remote address-spaces, in which case the wrapper object references the
associated Java RMI proxy objects.

The wrapper implements the same methods and has the same name as the original
class. When called, each method in the wrapper calls its counterpart in one of the
implementation objects. The JavaParty wrapper ignores any Java RMI exceptions that
occur, except for those that are caused by unchecked exceptions’, which are thrown back

to the application.

? Java has two kinds of exception, checked and unchecked. Programmers must explicitly handle checked

exceptions. Unchecked exceptions may be handled or ignored, in which case the JVM terminates.

46

Chapter 3: Related Work

3.5.2.2 Additional Functionality

JavaParty introduces new functionality that is not provided by Java RMI. It allows
programmers to instantiate objects in any remote address-spaces in which the JavaParty
infrastructure is executing. Object placement policies may be associated with classes,
meaning schemes such as round-robin placement can be implemented. However, by
applying policy at the granularity of class, the same placement policies must be applied to
all instances of a class, limiting the flexibility of these policies.

Objects may be migrated from one address-space to another, provided no methods
are currently executing on those objects. Instances of the wrapper classes keep track of
the threads that are executing on the wrapped objects and ensure that this rule is not
broken. To migrate an object, the two implementation class instances and their closures
are serialized using Java RMI then passed across the network by-value. The wrapper
remains in the original address-space and is updated to reference the migrated
implementation objects remotely using Java RMI.

JavaParty implements migration without concern for referential integrity. The
entire closures of the implementation instances are serialized. Programmers must ensure
that references to objects within the migrated objects’ closures remain consistent. All
remotely accessible objects in JavaParty directly or indirectly extend a special base class
that implements the migration functionality. This approach cannot support the migration

of non-transformable classes, such as system classes or those with native members.

3.5.2.3 JavaParty Semantics

JavaParty allows instances of non-transformed classes to hold references to
instances of the transformed class wrapper and treat them as though they were instances
of the original, untransformed class. The underlying transformations are based on Java
RMI and consequently JavaParty exhibits Java RMI remote call semantics. If instances of
non-remote classes are passed as arguments to remote method calls, they are passed by-
value. Passing semantics are decided based on whether arguments support remote access,
but as JavaParty is designed to hide this information, these semantics can be difficult for
programmers to predict.

JavaParty is a tool to simplify creation of Java RMI-based applications. It allows
programmers to define Java RMI-compliant classes without needing to write the Java

RMI code manually. Using Java RMI directly, programmers create remote interfaces and

47

Chapter 3: Related Work

associated implementations. They ensure that all references to instances of the
implementation classes are interface references. JavaParty reduces the number of steps
required to create Java RMI compliant classes. Programmers identify the remote classes
and the compiler alters method signatures and extracts interfaces automatically.

JavaParty applications cannot introduce support for remote access into classes
dynamically. Programmers must know statically which classes will need to support
distribution. The parameter-passing semantics are the same as Java RMI and are decided
based on the remote accessibility of the arguments. Though JavaParty hides the
distribution-related code from programmers, it does not attempt to preserve non-
distributed calling semantics. Further, it transforms code at the source level and so cannot

modify classes for which source is unavailable, such as system classes or native classes.

3.5.3 J-Orchestra

J-Orchestra [63-66] transforms non-distributed Java applications into isomorphic
distributed versions. J-Orchestra introduces distribution into existing applications while
retaining local method calling semantics using byte-code transformations and Java RMI.
It is not a tool set for the creation of general distributed applications. Applications must
have a single entry point and must push objects across the address-spaces in the
distributed system, rendering it unsuitable as a platform on which to build distributed
applications with multiple entry points.

Programmers use the J-Orchestra tool to describe how a given application will be
distributed among the available address-spaces. To transform an application, J-Orchestra
analyses it statically and determines all places in the code where object construction is
performed. Programmers are shown a list of these constructor calls and a list of all
address-spaces in the distributed system. Programmers use a graphical tool to associate
constructor calls with address-spaces to create a distribution plan. Constructor calls are
replaced with calls into factories that will instantiate the requisite objects in remote
address-spaces according to the distribution plan.

J-Orchestra modifies applications statically and creates multiple transformed
classes for each application class in almost the same manner as JavaParty. However, J-
Orchestra transforms all the classes it can instead of transforming only particular remote
classes.

J-Orchestra supports the migration of instances of transformed classes though

non-transformable classes cannot migrate from the address-spaces in which they were

48

Chapter 3: Related Work

instantiated. Using the J-Orchestra tool, programmers can statically associate a pass-by-
move [61] policy with classes that support migration. If instances of these classes are
passed as arguments to remote method calls, they will migrate to the target address-space.

J-Orchestra is designed to analyse a non-distributed application statically in order
to create a distributed version of that application. The application begins execution in a
single address-space and creates objects in remote address-spaces in the distributed
system. The overhead of indirection exists between all application objects, whether or not
the objects exist in the same address-space, thereby increasing the cost of application
execution.

J-Orchestra is unsuitable for the creation of distributed applications in general. It
cannot support multiple entry points into the application to allow asynchronous
deployment of the application across the distributed system. Programmers cannot alter
application semantics to take advantage of their application-specific knowledge to
replicate or cache objects. J-Orchestra preserves local application semantics strictly.
Control over object placement policy is provided, through distribution plans and pass-by-
move semantics when remote methods are called. This control is limited as distribution

polices may only be applied at class granularity and are limited in their expressiveness.

3.54 Do!

Do! [67, 68] is a Java RMI-based system that aims to reduce the complexity of
distributed application creation by generating the Java RMI code automatically but does
not hide the distributed nature of the applications. The system deliberately exposes
distribution and provides tools to enable programmers to create parallel distributed
applications.

As with Java RMI and JavaParty, programmers determine at design-time which
classes are to be accessible remotely. Classes that must support remote access are
modified to implement a marker interface called Accessible. The Do! framework
generates Java RMI code by reflectively analysing all Accessible application classes in
order to create:

e Java RMI-compliant interfaces that capture the functionality of each

Accessible class.

e Implementations of these interfaces that are functionally identical to the

original classes but have modified method signatures which throw Java RMI

exceptions.

49

Chapter 3: Related Work

e Wrapper classes with the same names as the original classes.

These transformations are similar to those carried out by both JavaParty and J-
Orchestra though Do! provides no support for static members. Consequently, Do! is
limited in comparison to these other systems as programmers cannot access static
members remotely.

Programmers instantiate objects in remote address-spaces explicitly using factory
methods provided by the Do! infrastructure, which registers the objects with the
rmiregistry automatically. Do! provides no bootstrapping mechanism beyond that which
is supplied by the rmiregistry. Each application starts running in a single JVM and pushes
objects out to remote machines during execution. The Do! framework adopts
conventional Java RMI passing semantics.

Do! is a toolkit to allow programmers to create parallel applications in which units
of work can be pushed out to machines in the distributed system. In comparison to

JavaParty, it provides little support for the creation of general distributed applications.

3.5.5 Pangaea

Pangaea [69, 70] is a Java-based system that introduces distribution into non-
distributed applications according to programmer supplied constraints using static code
analysis. Existing non-distributed applications are instrumented to introduce distribution,
using JavaParty as the underlying distribution mechanism.

Pangaea performs static code analysis on an existing application to create an
application graph that approximates the set of objects that will exist when the application
executes. Pangaea identifies constructor calls in the non-distributed application and
estimates how many times each constructor will be called at run-time using static byte-
code analysis. Though not decidable in general, Pangaea can identify the number of times
certain constructors are called, for example, those inside loops that execute a statically
defined number of times. Pangaea cannot analyse classes that contain native code, which
includes some system classes.

Each node represents a particular constructor call in the application and represents
the zero or more Java objects that will be instantiated by that constructor call at run-time.
The distribution of the application is constrained by associating each graph node with a
single address-space or some set of address-spaces. Constructor calls are replaced with

factory calls which instantiate objects in the appropriate address-spaces. Programmers do

50

Chapter 3: Related Work

not need to assign every graph node to an address-space since Pangaea will instantiate
unassigned objects in the same address-spaces as the objects that created them.

Pangaca makes use of the underlying migration support in JavaParty. It is
therefore not concerned with the implementation of an object migration mechanism.
Instead, it provides a policy mechanism that can determine when and to where object
migration should take place [71]. The same application graph that is used to define the
application distribution is used by programmers to determine which objects support
migration. Pangaea evaluates migration policies by polling migration strategy objects on
a synchronous basis, after a certain number of calls, or on an asynchronous basis, after a
certain period has elapsed. The migration strategies indicate whether the objects should
be migrated based on one of three strategies:

e Never advocate a migration.

e Choose an address-space at random.

e Move the object to the address-space from which it has received most remote

calls.

The Pangaea infrastructure associates a watcher object with each of the objects
that supports migration. The watcher objects perform these polling operations on behalf
of their associated objects.

Pangaea allows support for distribution and migration in an application by
building on an existing middleware system. It has advantages over the underlying
middleware system because it employs static code analysis to help programmers visualize
the approximate run-time structure of applications. Like J-Orchestra, the object placement
policies are based on constructor calls and cannot be extended to take advantage of run-
time information about the context in which instantiations are performed to guide the
policy decisions. Similarly, migration policies cannot evolve at run-time or respond to
application events. In order to modify placement policies or alter the set of objects that

supports migration, the programmer must stop and re-analyse applications.

3.5.6 XRMI

XRMI [72] is designed to allow the dynamic reconfiguration of Java RMI-based
distributed applications. XRMI does not attempt to hide distribution from programmers
but rather introduces a layer of indirection in order that applications can be reconfigured

dynamically. Reconfiguration is the replacement of one Java RMI object with another in a

51

Chapter 3: Related Work

manner transparent with respect to the object’s reference holders. XRMI can convert
references to local objects into references to remote objects and vice versa.

A programmer creates distributed applications using standard Java RMI in the
traditional manner. Consequently, XRMI exhibits all the limitations of Java RMI in terms
of flexibility to change, complexity and restricted application semantics. XRMI uses a
custom compiler to generate replacement Java RMI proxies, known as virtual stubs,
which can be used to control access to the remotely accessible objects.

Virtual stubs are wrappers that can reference either local application objects or
Java RMI proxies to remote objects. XRMI keeps references from remotely accessible
objects back to the virtual stubs that reference them. When replacing one object with
another, XRMI eagerly updates all the virtual stubs that reference the old object to
reference the new one. XRMI provides a locking mechanism to ensure that no threads are
executing on a wrapped object before substitution occurs. The implementation of this
mechanism, as it is described in Chen [72], is not thread-safe and so may lead to loss of
referential integrity in multi-threaded applications.

XRMI aims to provide dynamic reconfiguration of Java RMI applications to allow
flexibility in application distribution. However, it provides a sub-set of the functionality

found in JavaParty or Do! with no advantages over either system.

3.5.7 Coign

Coign [73-75] automatically redistributes client/server distributed COM
applications based on run-time profiling in order to minimize the inter-address-space
communication cost incurred. Coign instruments an application in order to establish
which components interact at run-time [76]. The application is run several times under
typical conditions in order that usage data can be collected. This data allows the Coign
system to determine how much inter-address-space communication occurred during these
typical runs and to assign a cost to it based on the number of remote calls and the amount
of serialized data passed. Coign transforms the application so that its distribution can be
decided dynamically. At run-time, the Coign infrastructure decides the application
distribution based on the usage data, in order to minimize the inter-address-space

communication cost.

52

Chapter 3: Related Work

3.5.7.1 Application Profiling

During the profiling stage, Coign tracks contextual information about each
component instantiation, such as the class of component created or the name of the
method that performed the instantiation. The number of inter-component method calls
performed by each component to both local and remote components is recorded. Coign
also tracks the amount of data that was serialized for these calls, or would have been
serialized had the components been in separate address-spaces.

Using this profiling information, Coign creates a graph representing the inter-
component communication that occurred in the application. A graph-cutting algorithm is
applied to determine how the applications could be distributed to reduce the inter-address-
space communication cost. One of the main limitations of Coign is that it can only re-
distribute applications that are already divided into two partitions. Coign assumes that
some components are fixed in each partition and uses the graph-cutting techniques to
determine how the remaining components are divided between these two partitions. It
cannot transform non-distributed applications or applications that are distributed into
three or more parts.

A cut graph indicates the optimal distribution of an application with respect to
inter-address-space communication cost, given a particular set of usage data. This
distribution is optimal if the application behaviour does not change and so it is important
that the profiled runs of the application are representative of typical application usage.
During future application runs, Coign distributes the application dynamically based on the
optimal distribution. In order to make use of information gained during profiling, Coign
classifies components and assumes that any components existing in the future that are

classified as the same can be placed in the same partition.

3.5.7.2 Distributing Applications

Coign transforms each application so that its distribution can be decided
dynamically. When an application is run, Coign classifies each new component before
creation then finds the component from the profiled run that most closely matches it in
classification. The optimal distribution is examined to determine in which address-space
the matching component from the profiled runs was placed. Coign then instantiates the

new component in that address-space. Coign places the new component in the address-

53

Chapter 3: Related Work

space in which the profiled component should have been placed, not necessarily the one
in which it was placed.

Coign does not support component migration and so it must ensure that
components are instantiated in the correct address-space, since they cannot be moved
after creation. Components must be classified before they are instantiated and a variety of
different component classification schemes are employed [73]. These schemes classify
components based on combinations of the Coign classification, the class of the
component performing the instantiation and the specific method in which the instantiation
is performed.

Coign provides completely automated re-distribution of applications based on
typical usage data gained by profiling the original untransformed applications. Coign
relies on the enforced use of factories in COM to allow application instrumentation.
Further, it can distribute only at the granularity of COM components, which have been

explicitly created with support for remote accessibility.

3.5.8 JavaSymphony

JavaSymphony [77-79] provides Java libraries to help programmers create
distributed applications with particular emphasis on parallel tasks. JavaSymphony does
not attempt to hide the distributed nature of applications from programmers. Instead, it
allows programmers to specify the resource requirements for applications in abstract
terms and employs system profiling to match the resources that are available at run-time
to those specified.

The JavaSymphony run-time executes on all machines in the distributed system
and performs profiling of metrics such as CPU load or available memory. When creating
a distributed application, the programmer defines the architecture in which the application
must run in abstract terms using constraints based on the profiled metrics. For example,
programmers may specify that the application runs on machines with at least 128MB of
free memory and a processor with no more than 50% load. When the application is run,
JavaSymphony distributes it over the sub-set of the available machines that best reflects
the abstract architecture defined by the programmer.

JavaSymphony allows programmers to make instances of any class accessible
remotely using JSObjects. JSObjects adopt the active object pattern [80] in which each
object has its own unique thread. All method calls on an object are queued and executed

serially by the same thread. JavaSymphony extends this model by permitting concurrency

54

Chapter 3: Related Work

and providing thread pooling to reduce the overhead inherent in a strict one-to-one
correspondence between threads and objects.

Programmers can introduce support for remote access to arbitrary application
classes, providing the classes are instantiated using JavaSymphony factory methods.
When using one of these factory methods, programmers specify an application class and a
series of constraints. The JavaSymphony infrastructure creates an instance of the
specified class on a machine that meets these constraints then wraps it in a JSObject. A
remote reference to the JSObject, not the application object, is returned to the client
application.

JavaSymphony does not offer the usual abstraction of proxies and so programmers
must explicitly call a remote invocation method provided by JSObjects, supplying method
names and arguments. This invocation method propagates the remote method call across
the network. JSObjects cannot be passed as arguments to remote methods and so all
method arguments are passed by-value. JavaSymphony does not provide DOM
functionality that can be used to preserve local by-reference calling semantics, making it
is unsuitable for the introduction of distribution into existing applications.

JavaSymphony implements both persistence and migration but without concern
for referential integrity. When an object is serialized for persistent storage or for
migration, the object’s closure is serialized. Programmers must ensure that references to
any objects within the closures are updated appropriately.

JavaSymphony is primarily aimed at tasks for which local application semantics
need not be preserved. It does not hide the fact that the application is distributed. Instead
it attempts to make inter-address-space communication explicit, though with minimal

programmer effort.

3.5.9 ProActive

ProActive [81] is a Java library that provides tools for the creation of distributed
applications using Java RMI or the Java Message Service (JMS) [4] as the underlying
transport protocol. Remotely accessible objects in ProActive adopt the active object
pattern. Each remotely accessible application object is wrapped and accessed only via this
wrapper. Method calls are queued by the wrapper and there is a thread per active object
that executes the calls serially. Concurrent execution of methods on active objects is not

permitted.

55

Chapter 3: Related Work

Remotely accessible objects are known as active objects while non-remotely-
accessible objects are known as passive objects. Objects may only be activated if they are
instances of non-final classes that support serialization. The programmer must ensure
manually that no two active objects reference a single shared passive object and that all
passive objects support serialization. If these rules are not adhered to, threading and
migration semantics become inconsistent. Remote method calls may only be performed
on active objects and, since passive objects may not be shared, only active objects may be
passed as arguments. ProActive is aimed at applications in which active objects are
coarse-grained application components rather than individual programming language
objects.

Proxy classes in ProActive are sub-classes of the original application classes with
which they are associated (hence the requirement that classes are non-final) and so a
client can treat a proxy object as if it were an instance of the same class as the
corresponding remote object. In this way, ProActive avoids one of the main limitations of
Java RMI, which is that interface references must be used when referring to objects that
support remote access.

ProActive permits migration of active objects but relies on Java serialization, so
all active objects and the objects in their closures must support serialization. When an
active object migrates to a new address-space, its wrapper remains in the old one and acts
as a tombstone. When a client attempts to access an object that has migrated using a
remote reference that is out-of-date, the remote reference is updated lazily using the
information in the tombstone.

By strictly adopting the policy that passive objects may not be shared ProActive
avoids the difficult problems inherent in preserving referential integrity when performing
object migration. It further ensures that thread synchronization problems do not result as a
consequence of the changes made to each application’s threading model. The active
model allows no concurrent access to any objects, active or passive and so avoids the
need for standard thread synchronization.

This approach avoids problems with referential integrity and thread
synchronization but is inflexible as a result. Programmers must ensure that they adhere to
the rules and so the semantics of existing applications must be modified to fit the active
object model. Further, programmers must rely on the thread synchronization provided by
the active object model. Standard thread synchronization techniques cannot be used in a

ProActive application without risking unpredictable application behaviour. ProActive has

56

Chapter 3: Related Work

significant overheads because the number of threads required for each application is
potentially unbounded. There is further overhead in terms of the ancillary objects required
to implement the active object model, such as the wrappers and associated method calls

queues.

3.5.10 FarGo

FarGo [82-84] is a Java RMI-based DOM that allows programmers to create
classes with explicit support for migration. Programmers define classes called complets
and instances of these classes can be referenced remotely or migrated between address-
spaces. The granularity of distribution is at the complet level.

The mechanism for creating distributed applications in FarGo is similar to that
employed when using the Do! framework. Classes that support remote access or
migration must extend special interfaces and a special compiler is used to generate
versions of these classes that are accessible remotely using Java RMI.

Programmers define event handler methods that are called when particular system
events occur, such as migration or JVM shutdown. For example, these methods can
perform housekeeping tasks then migrate objects to new address-spaces when the local
JVM terminates. Programmers can also define event handlers using a scripting language
that supports particular FarGo primitives e.g. move, which causes migration to occur.

FarGo allows types that represent different migration policies to be imposed onto
complet references. These policies can control the migration policies applied to both
referenced objects and reference holders. By altering the types of references dynamically,
programmers can define migration policies. There are five types of remote reference
supported by FarGo:

e Link references ensure referential integrity if the referenced complet migrates.

e Pull references indicate that if the reference holder migrates to another

address-space then the referenced complet should follow.

e Duplicate references indicate that if the reference holder migrates to another

address-space then a copy of the referenced complet should follow.

o Stamp references indicate that if the reference holder migrates to another

address-space then it should rebind to a complet of the same type as the
previously referenced complet. This allows complets to rebind to physical

resources such as disks or displays after migration.

57

Chapter 3: Related Work

e Bi-directional pull references indicate that if either the reference holder or
referenced complet migrates to another address-space, the other should follow.

FarGo gives programmers explicit control over the migration. Migration policy is
defined by converting references in the application into one of the above types
dynamically. FarGo does not abstract over the distributed nature of applications and
requires programmers to construct classes with explicit support for remote access. It does
not consider initial complet placement policy, which renders its approach to policy
specification inappropriate for use with middleware systems that do not support
migration. Control over the initial placement policy is useful even in systems supporting
migration, as migration has non-zero cost. It is preferable to avoid unnecessary migration
operations by instantiating objects in suitable locations, rather than migrating them as

required.

3.6 Limitations of Existing Middleware Systems

This chapter has described both first generation and second generation
middleware systems. As described in Chapter 1, there are five main problems inherent in
first generation middleware systems, namely:

1. Design decisions must be made early in the design process.

Applications are inflexible to dynamic changes in their distribution.
Middleware systems are complex and error-prone.

An unnatural encoding of application-level semantics may be forced.

A T

Programmers have little control over distribution policies.

The described second generation systems each tackle some of the problems,
though none circumvents them all. Each limitation is now examined in turn to explain
how it is manifested in the systems that exhibit it, and to address the reasons why it
presents a problem to programmers. Table 3.1 relates these five problems to the described
middleware systems and shows whether each system offers a full solution, partial solution

or no solution to each of the problems.

58

Chapter 3: Related Work

Middleware Forcing Brittleness . A][))i;lti(::teign Support For
System Early.D.es1gn with Respect Complexity Level Placefnent
Decisions to Change Semantics Policy

Sun-RPC x x x x x
XML-RPC x x x x x
Web Services x x x x x
JBoss Remoting x X x x
CORBA x x x x x
Java RMI x x x x x
DCOM x x x x x
.NET Remoting x x x x x
Emerald x
JavaParty x x !
J-Orchestra ! !
Do! x x x !
Pangaea ! |
XRMI ! x x x

Coign x !

JavaSymphony ! ! x
ProActive ! ! x x

FarGo ! ! x

The system offers a solution to this problem
x The system offers no solution to this problem

! The system offers a partial solution to this problem
Table 3.1: The problems exhibited by existing middleware systems.

The problems are now each examined in more detail in the context of the systems

described in this chapter.

3.6.1 Forcing Early Design Decisions

Only instances of classes that support remote access may be separated into
different address-spaces from their reference holders, constraining the ways in which
applications can be distributed. To change an application’s distribution, programmers
may be forced to introduce support for distribution into classes without it and vice versa.

Programmers must determine whether the additional application complexity inherent in

59

Chapter 3: Related Work

unnecessarily supporting remote access outweighs the cost of removing it in terms of
programmer effort.

First generation middleware systems require programmers to decide which classes
will support remote access at application design-time. Programmers must specify the
interfaces between distribution boundaries. Only the application classes that implement
these interfaces can be accessed remotely. This support is hard-coded at the source level
and so changes to an application’s distribution may result in source-level changes.
Programmers must know enough about how application objects will be distributed at run-
time to be able to determine which application classes need to support remote access.
CORBA tackles this problem by providing a dynamic invocation mechanism that allows
programmers to create invocation requests explicitly. This mechanism can be used to
expose objects to remote access without static type information but forces programmers
to implement middleware level functionality at the application level.

Without the ability to expose objects to remote access dynamically, application
distribution is inflexible. It is not possible to introduce support for remote access into
every application class using existing systems because of the semantic restrictions placed
on remote classes. For instance, application classes cannot pass remote references to
instances of pre-defined library classes that do not support remote access.

The second generation systems that employ custom compilers, such as JavaParty
[62] and Do! [67], still force programmers to make early design decisions. These systems
simplify the process of creating distributed applications through automated generation of
distribution-related code but it is the programmers that must determine which classes will
support remote access.

Tools such as J-Orchestra [65] and Pangaea [70] are designed to transform a
single non-distributed application into a distributed version that pushes itself out into the
distributed system at run-time. They perform static code analysis and code
transformations to help programmers choose suitable distributions. The distributed
version of an application is generated automatically and in this respect these systems
tackle this middleware system limitation. However, both transform only local applications
and are unsuitable tools for the creation of general distributed applications because
programmers cannot include multiple entry points.

Using these systems, programmers define initial application distributions using the
provided tools. Both systems support changes to application distribution using migration,

however it is not possible to migrate arbitrary application objects. If fundamental changes

60

Chapter 3: Related Work

are made to application distributions then the applications must be re-transformed,
limiting the effectiveness of these systems in dynamically changing applications.
ProActive [81] and JavaSymphony [77] allow programmers to expose objects to
remote access dynamically. However, both adopt the active object [80] model which
associates a thread with each remotely accessible application object. The conversion of
existing application objects into active objects alters the threading semantics of the
application. Further, active objects may not have shared access to any non-active objects.
Programmers may need to alter the structure of the application to ensure that this strict

separation of active object closures is preserved.

3.6.2 Brittleness with Respect to Dynamic Change

In addition to forcing decisions early in the design process, which results in static
inflexibility to change, distributed applications created using existing middleware systems
also exhibit brittleness with respect to dynamic change. Brittleness and inflexibility to
change occurs in middleware systems that do not support object migration. None of the
first generation middleware systems are capable of migrating objects between address-
spaces and so objects are fixed in the address-spaces in which they are instantiated. This
hinders the adaptability of applications to changing execution environments, for example,
objects on heavily loaded machines cannot migrate to other machines. It also has
implications for long running systems because applications cannot be re-distributed as
machines join and leave the distributed system. Several of the second generation systems
provide object migration mechanisms, including JavaParty [62], J-Orchestra [65],

ProActive [81], JavaSymphony [77], FarGo [82] and Pangaea [70].

3.6.3 Complexity

The creation of distributed applications using first generation middleware systems
can be a difficult and error-prone task due to the complexity of these systems.
Programmers using first generation middleware systems (CORBA [8], Java RMI [9],
Microsoft COM [32] and Microsoft .NET remoting [10]) must ensure that the application
classes supporting remote access adhere to particular semantic rules. These rules are
specific to the middleware system in use. For instance, Java RMI forces application
classes to implement certain interfaces, places restrictions on the types that may be used
in method signatures and forces programmers to handle distribution-related error

conditions explicitly. CORBA and COM require that programmers define IDL interfaces

61

Chapter 3: Related Work

and implement ancillary classes. Microsoft .NET remoting forces application classes to
extend certain base classes. The Observer/Observable example described previously in
the context of Java RMI illustrates the problems that result from these restrictions.

Configuration of the middleware system can be a complex process as
programmers must ensure that all aspects of the infrastructure are running, that remotely
accessible objects are registered and that necessary application code has been distributed
to all address-spaces or made accessible through a centralized code repository. Some first
generation systems, such as CORBA [8], Microsoft COM [32] and Web Services [46], do
not generate ancillary distribution-related code such as skeletons and proxy classes
automatically. They provide tools that programmers must employ to generate ancillary
code for the required classes. Programmers must either distribute code among all address-
spaces or must configure the code distribution infrastructure explicitly. Several additional
steps, and consequently potential points of failure, are introduced into the software
development process.

The complexity inherent in creating and configuring distributed applications using
first generation systems is addressed by many of the second generation systems. Systems
such as JavaParty [62], J-Orchestra [65] and Pangaea [70] employ customized compilers

or code transformation techniques to generate the distribution-related code automatically.

3.6.4 Distorted Application Level Semantics

The semantic limitations forced on application classes in order to support
distribution affect application semantics. Inheritance relationships between classes are
affected and it is difficult to make application classes remotely accessible if their super-
classes do not meet the necessary requirements. This causes an unnatural or inappropriate
encoding of application semantics because classes are forced to support remote access for
the benefit of their sub-classes, entangling application logic and distribution. This is
particularly a problem for application classes that need to extend pre-compiled classes
without support for remote access.

First generation middleware systems decide statically which parameter-passing
semantics should be applied when remote methods are called. In Java RMI [9], only
classes that implement the java.rmi.Remote interface and handle network related errors
explicitly in application logic can be exposed to remote access or passed by-reference. All
other objects that are passed as arguments or return values to remote methods must be

instances of classes that implement the Serializable interface. Parameter-passing

62

Chapter 3: Related Work

semantics are affected by static design level decisions and are tightly coupled with
application distribution.

Microsoft .NET remoting [45] adopts semantics that are similar to Java RMI.
Instances of classes that extend the MarshalByRefObject class are passed by-reference
and all other objects that are passed to remote methods must be instances of Serializable
classes. The .NET remoting framework incrementally improves on Java RMI by applying
these semantics consistently to objects. However, parameter-passing semantics are still
fixed statically and are dependent on the distribution of the application.

In CORBA and COM, arguments are marked in IDL with the passing semantics to
be applied. Further, CORBA component classes are defined statically as either pass-by-
reference or pass-by-value. CORBA and COM allow only components and data structures
that have been explicitly described to be passed across address-space boundaries. Web
Services and other RPC systems allow pass-by-value semantics and permit only objects
of pre-determined types to be passed.

Several of the second generation middleware systems build on Java RMI, namely
JavaParty, J-Orchestra, Do! and ProActive. However, these second generation systems
strive to preserve local Java method calling semantics and so fix parameter-passing
semantics statically.

In general, reusability and application semantics are restricted for the following
reasons:

o Some systems allow no programmer control over parameter-passing

semantics at all.

Systems that allow no control over passing semantics lack flexibility as
programmers cannot employ the most suitable parameter-passing mechanisms
on a per-application basis. With control over passing semantics, programmers
can manage the trade-offs between different parameter-passing mechanisms to
reduce network traffic, introduce resiliency or permit caching.

o When programmers can decide parameter-passing semantics, they cannot do

so dynamically.

Application programmers have limited dynamic control over inter-address-
space parameter-passing semantics. Within a single application, it may be
required that objects are transmitted by-value or by-reference depending on

the circumstances and in most existing middleware systems this would require

63

Chapter 3: Related Work

that different classes be created. Complexity is introduced into applications
due to the limitations of the middleware system.

o The parameter-passing semantics and application distribution are tightly
bound.
The parameter-passing semantics and application distribution are tightly
coupled. Reuse of large-grained components, composed of instances of
multiple classes, is hindered because concrete class implementations must be
developed in the context of some planned deployment environment. Various
physical considerations dictate the nature of the implementation, such as the
available computational resources, network connectivity, latency or
bandwidth. These considerations influence the implementation of classes
limiting reuse [85]. For example, in a poorly connected environment, it may
be appropriate that pass-by-value semantics are adopted in order that the
called methods can continue to perform computation over arguments, even if
the network connection to the caller is lost transiently. Conversely, in a well-
connected environment, it may be appropriate to adopt pass-by-reference

semantics to allow shared access to arguments and ensure coherency.

3.6.5 Lack of Support for Object Placement Policy

Some of the second generation middleware systems support the creation of objects
in remote address-spaces or the migration of objects between address-spaces. Each
system provides a mechanism to define the distribution policy that controls these
operations. Some of the systems that support this functionality, e.g. ProActive [81], defer
these policy decisions to the programmers, who trigger object migration directly. Others,
e.g. Coign [73], Pangaea [70], J-Orchestra [65], FarGo [82] and JavaSymphony [77],
provide a policy mechanism that allows control over object placement.

Coign makes extensive use of instrumentation and component classification to re-
distribute client/server COM applications. The component classification schemes in
Coign [73] classify components before they are created. Coign then performs component
placement based on this classification, providing completely automated distribution of
applications based on profiling. However, it does not allow programmers to exploit the
classification schemes to distribute applications into more than two address-spaces or to
define placement policies directly. Further, it does not support migration or the definition

of migration policy.

64

Chapter 3: Related Work

Pangaea and J-Orchestra both perform static analysis of applications and allow
placement policies to be associated with constructor calls in source code. This allows
specification of policies at a finer granularity than class though the placement policies
that can be associated with each constructor call are basic. Objects can be placed in a
particular address-space or can be distributed among a group of address-spaces in a
round-robin manner. This approach to policy specification cannot be reused as a general
mechanism because it is tightly bound to the capabilities of these systems, i.e. policies
may only be associated with constructor calls. It provides no scope for alternative
approaches to imposing object identity, such as Coign-style classification.

FarGo allows programmers to associate migration policies with references.
References are associated with policy information describing how the referenced objects
behave when migration occurs. FarGo allows dynamic control over aspects of migration
policy but only pre-defined migration policies can be used. FarGo’s approach to object
placement policy does not consider initial object placement, limiting its reusability.

JavaSymphony allows programmers to define constraints when performing remote
object instantiation. These constraints can be considered an object placement policy as
they define metrics that the target address-space of the instantiation must meet.

Without the separation of distribution policy from implementation, programmers
cannot re-distribute existing applications without altering the application classes
themselves and must re-implement placement policy on a per-application basis. None of
the existing systems provides a flexible mechanism for the specification of placement

policy.

3.6.6 JChord Case Study

The JChord case study described in the previous chapter has a number of
requirements that render current systems inappropriate for its implementation, namely:

e JChord was initially developed as a local application.

e JChord must adapt to changing requirements.
The semantic limitations placed by current systems on classes that support
remote access would force design level changes to the JChord application in
order to introduce distribution. Application logic would be affected, risking
the addition of errors into a tested and stable application. Further, the

inflexibility to change inherent in existing systems would not permit JChord to

65

Chapter 3: Related Work

adapt to changing research goals in the required manner without extensive re-
engineering.

Systems such as J-Orchestra and Pangaea that transform existing applications
into distributed versions do not provide sufficient flexibility. The distributed
version of JChord has multiple entry points and exposes certain aspects of its
distribution to programmer control.

e FEach JChord node presents a multiplicity of interfaces to clients.

Current systems permit exposed objects to implement multiple interfaces
statically. It may be necessary to make changes to application source in order
to present particular interfaces to clients, making it difficult to expose
instances of pre-compiled classes with the desired interfaces.

e References to remote JChord nodes must cache some of the state of the remote
nodes locally for efficiency and for use during failure, to identify the failed
nodes.

None of the systems described above provide support for smart proxies.

e [t must be possible to create nodes on remote machines to automate ring
deployment.

None of the first generation systems provide support for remote object
instantiation, though several of the second generation systems do, including
JavaSymphony, ProActive and Do!.

e The Data Store point-of-presence needs to alter parameter-passing semantics

dynamically when accessing the individual Data Store objects.
None of the described systems permit dynamic control over parameter-passing
semantics meaning that it is difficult to implement the Data Store in the
desired manner using these systems. Some systems provide no control at all
over these semantics or decide them as a consequence of application
distribution.

e [t must be possible to migrate objects that are remotely referenced by Data
Store objects from one address-space to another.

Migration is supported by several second generation systems, though always
with restrictions. JavaParty [62], and therefore also Pangaea [70], do not
ensure referential integrity throughout the closure of the migratory objects. J-

Orchestra [65] permits only transformed objects to migrate. FarGo [82] allows

66

Chapter 3: Related Work

only complets created with explicit support for migration to be moved.
ProActive [81] and JavaSymphony [77] permit migration though force
applications to adopt the active object model which does not permit shared
access to non-active objects.

e Distribution policies to control the deployment of JChord ring nodes and the
migration of stored objects must be defined.
In the systems that support remote object instantiation and migration, policies

to control distribution are inflexible and non-adaptive.

3.7 Conclusion

This chapter has investigated and evaluated current middleware systems,
describing first generation and second generation systems. All of these systems exhibit
limitations, indicating the need for a third generation middleware system that provides

flexibility throughout the creation, maintenance and evolution of distributed applications.

67

Chapter 4: Requirements of a Third Generation Middleware System

Chapter 4

Requirements of a Third Generation

Middleware System

This chapter builds on the work in previous chapters to define the
requirements of a third generation middleware system that allows

programmers to create flexible distributed applications.

68

Chapter 4: Requirements of a Third Generation Middleware System

4.1 Introduction to Chapter 4

This thesis describes the design and implementation of a third generation
middleware system that aids the creation, maintenance and evolution of distributed
applications. This system will separate functional and non-functional considerations, and
hide the complexity of distribution where appropriate. Applications will be flexible with
respect to change and programmers will be able to control both parameter-passing
semantics and object placement dynamically.

This chapter defines the requirements that a third generation system must meet,
based on the taxonomy of existing systems defined in the previous chapter. This
combination of requirements is unique to a third generation system, though several of the
individual requirements are not. The chapter concludes by showing how such a third
generation middleware system meets the requirements of the JChord case study described

in Chapter 2.

4.2 Requirements

There are twenty requirements in total, which have been divided in four sub-

groups, as indicated by the following four sub-sections.

4.2.1 Server-Side Functionality

A third generation system must abstract over the complexity inherent in
distributed application creation and the configuration of the underlying infrastructure.
Programmers must not be required to create distribution-related ancillary code so the
creation of such code should be automated and hidden from the programmer. To avoid
the overhead of superfluous code, ancillary code must only be generated for classes that
require support for remote access.

Requirement 1: A/l the ancillary code required to perform inter-address-space
communication, namely proxy classes, skeletons, serializers and deserializers, must be

created automatically.

To allow application logic to be separated from the non-functional considerations
of distribution, it must be possible to expose instances of arbitrary classes to remote
access. Programmers must not be forced to decide statically which classes of object will

participate in inter-address-space communication.

69

Chapter 4: Requirements of a Third Generation Middleware System

Changes to application requirements may force classes that are not remotely
accessible to become so or vice versa. Programmers must not be forced to re-engineer
classes in either case. Since source code may not be available for all application classes, it
must be possible to expose pre-compiled classes to remote access, thus promoting code
reuse.

Requirement 2: [t must be possible to expose instances of arbitrary classes to remote

access without modifications to their source code.

It must be possible to control which particular objects are remotely accessible
dynamically in order that objects can be exposed to remote access at any time.

Requirement 3: It must be possible to expose objects to remote access dynamically.

It must be possible to control which of the methods provided by application
classes are remotely accessible. Different objects of the same class must be able to expose
different subsets of the available methods. A single object must be able to expose
different sets of methods to different remote clients, allowing the clients to have multiple
views over the object.

Requirement 4: [t must possible to control which methods are accessible remotely on a

per-object basis, allowing remote clients to have multiple views over a single object.

Programmers must be able to retain the access semantics of non-distributed
applications after distribution is introduced. It must be possible to control whether the
local protection semantics provided by the implementation language (such as the public,
protected, private and default modifiers in Java) are preserved when remote methods are
called.

Requirement 5: The local protection mechanisms of the implementation language must

be preserved.

Since the exposure of arbitrary objects to remote access can result in the
transmission of arbitrary objects as arguments or return values, it must be possible to pass
instances of any class across address-space boundaries by-value. Further, since the cost of
remote method calls is many magnitudes greater than the cost of local method calls,
support for pass-by-value semantics allows programmers to avoid the cost of unnecessary

inter-address-space communication.

70

Chapter 4: Requirements of a Third Generation Middleware System

Requirement 6: [t must be possible to pass any objects by-value as arguments or return

values to remote method calls.

Since arbitrary objects can be passed by-value, the middleware infrastructure in a
given address-space may receive serialized instances of unknown classes from other
address-spaces. The middleware system must be able to obtain and load the appropriate
classes dynamically from a code repository. The code repository should be scalable and
exhibit resilience to failure.

Requirement 7: A scalable resilient code distribution scheme must be provided.

4.2.2 Client-Side Functionality

It must be possible to call methods directly on remote references and to pass them
as arguments and return values. Reference equality semantics should also be preserved.
The middleware system must provide a remote reference scheme that permits references
to remotely accessible object to be used interchangeably with local references.
Requirement 8: /¢ must be possible to hold remote references to arbitrary objects and

to treat local and remote references in the same manner.

The middleware system must provide a name service that allows programmers to
assign names to remotely accessible objects. The middleware system must associate
automatically generated names with remotely accessible objects if none are provided by
the programmers.

Requirement 9: [t must be possible to associate names with remotely accessible
objects, either implicitly or explicitly, and to obtain remote references to objects based on

those names.

To allow programmers to retain non-distributed application semantics in
distributed applications, it must be possible to preserve pass-by-reference semantics
across address-space boundaries if desired.

Requirement 10: [t must be possible to pass any objects by-reference as arguments or

return values to remote method calls.

Static members do not exhibit the same semantics as instance members and so it

must be possible to preserve the static semantics found in non-distributed applications.

71

Chapter 4: Requirements of a Third Generation Middleware System

Programmers must be able to decide whether to preserve non-distributed static semantics
on a per-application basis.

Requirement 11: /¢t must be possible to control the semantics of static members on a per-
application basis and to preserve non-distributed static semantics in distributed

applications if required.

The addition of inter-address-space communication into applications unavoidably
introduces new failure modes related to network errors. The middleware must provide a
failure model that handles errors in a consistent manner and allows programmers to
specify whether distribution-related errors should be propagated back into applications. In
the event of distribution-related errors, the middleware system must offer the
programmers a choice between fast-failure and continued execution on a best-effort basis.
Requirement 12: The programmer must be able to control whether distribution-related
failures are propagated to the application or handled internally by the middleware

system.

It is desirable that remotely accessible application objects are local to the
reference holders that make greatest use of them, so that the cost of remote method calls
is not incurred more often than necessary. A mechanism that permits the instantiation of
objects in remote address-spaces ensures that application objects can be grouped into
address-spaces according to the needs of the application, rather than based on the initial
application distribution.

Requirement 13: [t must be possible to instantiate objects directly in remote address-

spaces.

Support for object migration allows applications to adapt to dynamically changing
execution environments by reconfiguring their distributions.
Requirement 14: It must be possible to perform the migration of objects from one

address-space to another without loss of application consistency.

4.2.3 Controlling Transmission Policy

The middleware system must allow control over the parameter-passing semantics
employed when remote methods are called. A framework that allows programmers to

define parameter-passing semantics both statically and dynamically must be provided.

72

Chapter 4: Requirements of a Third Generation Middleware System

Requirement 15: It must be possible to control parameter-passing semantics

dynamically.

Parameter-passing semantics should not be restricted to pass-by-reference or pass-
by-value only, as these two mechanisms represent two ends of a spectrum. Remote
references must be able to cache fields and methods of objects locally, in order that the
objects can be passed partially by-value and partially by-reference. When reference
holders access cached fields or methods, then no remote method calls take place and the
cached copies are used instead.

Requirement 16: Remote references must be capable of caching fields and methods

locally.

4.2.4 Controlling Distribution Policy

With the provision of remote instantiation and object migration, it must be
possible to control the object placement policies applied when these operations are
performed.

Requirement 17: It must be possible to create policies to control the placement o

objects when instantiation and migration operations are performed.

Applications must be able to delegate to the policy framework when they require
object placement decisions to be made. The creation of application logic can therefore be
separated from the determination of application distribution. To allow programmers to
focus on creating application logic, the mechanisms providing control over object
placement policy must allow the separation of functional and distribution-related
concerns.

Requirement 18: It must be possible to define object placement policies independently of]

application logic.

It must be possible to construct new placement policies from existing policies by
reusing and recombining aspects of those policies. Reuse of existing policies can simplify
the policy creation and testing process. It must be possible to create policies of arbitrary
complexity.

Requirement 19: It must be possible to define arbitrarily complex object placement

policies in terms of reusable policy components.

73

Chapter 4: Requirements of a Third Generation Middleware System

Policies must be able to use information about the application context in which the
instantiation and migration operations are performed to aid policy decisions. This permits,
for example, placement policies to be decided using profiling tools external to the
middleware system, which can measure system profiling metrics (such as CPU load or
free memory) or application profiling metrics (such as the number of method calls
performed on particular objects).

Requirement 20: It must be possible for policies to use application context to aid policy

decisions.

4.3 Meeting the Requirements of JChord

The previous chapter showed that existing systems were unsuited to the
implementation of the JChord and Data Store applications. The requirements of the case
study are re-examined here to show that a third generation system meeting these
requirements is a more suitable choice of implementation platform.

o JChord was initially developed as a local application.

By allowing instances of arbitrary classes to be exposed to remote access and
by supporting remote references, distribution can be introduced with minimal
changes to application logic. This reduces the likelihood of new errors in
application logic. The adaptive failure model allows the distributed JChord
application to be developed without concern for distribution-related failure.
Explicit error handling code can be introduced later, as required.

e JChord must adapt to changing requirements.

By exhibiting flexibility to static changes in the application distribution, the
third generation middleware system allows JChord, in its remit as a research
tool, to adapt easily to modifications in application requirements caused by
changes in research direction.

e FEach JChord node presents a multiplicity of interfaces to clients.

The object-oriented principles of encapsulation can be preserved as the set of
methods that each node exposes to remote clients can be controlled and the
local protection semantics of the original JChord application retained.

® References to remote JChord nodes must cache some of the state of the remote

nodes locally for efficiency and for use during failure, to identify the failed

nodes.

74

Chapter 4: Requirements of a Third Generation Middleware System

Control over parameter-passing semantics and support for smart proxies,
allows JChord to replicate ring state, pass immutable objects by-value and
cache immutable state in remote references.

e [t must be possible to create nodes on remote machines to automate ring
deployment.
This functionality is provided by any system that meets the above
requirements.

o The Data Store point-of-presence needs to alter parameter-passing semantics
dynamically when accessing the individual Data Store objects.
A system meeting these requirements permits flexibility in parameter-passing
mechanisms and allows dynamic control over them. This dynamic flexibility
allows objects to be stored both by-reference and by-value.

e [t must be possible to migrate objects that are remotely referenced by Data
Store objects from one address-space to another.
This functionality is provided by any system that meets the above
requirements.

e Distribution policies to control the deployment of JChord ring nodes and the
migration of stored objects must be defined.
The control permitted over distribution policies allows the deployment of
JChord rings according to flexible policies that are separated from the

application logic.

4.4 Conclusion

This chapter has stated the requirements that must be fulfilled by the third
generation middleware system that is designed and implemented in this thesis. These
requirements define the functionality that the system must provide in order to aid the
creation, maintenance and evolution of distributed applications. Complexity is hidden
where appropriate yet the system allows programmers fine-grained dynamic control over
the parameter-passing semantics employed when remote methods are called and the
placement of objects in the distributed systems.

The remainder of the thesis is structured as follows. Chapter 5 describes the
design of a middleware system that meets these requirements and provides qualitative

evaluation of this system. Chapter 6 examines the implementation details of this third

75

Chapter 4: Requirements of a Third Generation Middleware System

generation middleware system and provides quantitative evaluation of this
implementation. Chapter 7 concludes the thesis by summarizing and evaluating the

contribution of the described research.

76

Chapter 5: The RAFDA Run-Time (RRT)

Chapter 5

The RAFDA Run-Time (RRT)

This chapter describes the design of the RAFDA Run-Time (RRT), a
reflective third generation middleware system that permits application
logic to be designed and implemented completely independently of
distribution-related concerns. This simplifies the software engineering
process to aid the creation, maintenance and evolution of distributed

applications.

77

Chapter 5: The RAFDA Run-Time (RRT)

5.1 Introduction to Chapter 5

The RAFDA Run-Time (RRT) is a middleware system that meets the
requirements identified in the previous chapter. The RRT conceals inter-address-space
communication by default but allows programmers to expose and control all aspects of
middleware behaviour. The RRT provides programmers with flexible control over its
behaviour and can be used for quick application prototyping or to create fully featured
distributed applications.

Throughout this chapter, the functionality provided by the RRT is illustrated using
the JChord case study, to demonstrate the benefits of the RRT over traditional approaches
to middleware. This chapter contains code examples that illustrate the use of the RRT.
These code examples are all written in Java, although the RRT does not take advantage of
any features unique to Java and the techniques described here are applicable in other
languages. The RRT can be downloaded from #Attp://www-systems.dcs.st-and.ac.uk/
rafda/rrt.html.

5.2 Overview of the RRT

The RRT permits arbitrary application objects to be exposed to remote access
through standard Web Services [46]. The RRT provides:

e Full DOM functionality to RRT-based clients, making it a suitable tool for the
creation of new distributed applications and for the introduction of distribution
into existing non-distributed applications.

e RPC functionality to clients using other Web Services technologies, allowing
programmers to provide service-oriented functionality that supports
conventional Web Services calling semantics.

The RRT allows specific application objects to be exposed via Web Services.
Programmers need not decide statically which application classes support remote access.
Instances of any classes from any applications, including previously compiled classes and
those with native members, can be exposed to remote access as Web Services without the
need to access or alter source code. Using the RRT, programmers can adopt a
methodology for developing and deploying distributed applications that permits

application logic to be designed and implemented completely independently of

78

Chapter 5: The RAFDA Run-Time (RRT)

distribution concerns [86]. This eases the development process and permits the alteration
of distribution decisions late in the development cycle.

The RRT aids the creation of tools such as debuggers or application probes that
need to access object state from other address-spaces. For example, programmers can
introduce remote observers to observable objects or can attach object browsers to

arbitrary application objects, permitting them to be browsed remotely.

5.2.1 RRT Infrastructure

The primary purpose of the RRT is to abstract over the inter-address-space
communication in distributed applications. This is achieved by allowing instances of
arbitrary classes to be exposed to remote access and by permitting clients to obtain remote
references to these exposed objects.

Applications access the functionality provided by the RRT system by calling
methods on infrastructure objects called RRT instances. There is an RRT instance in each
address-space in the distributed system, analogous to a CORBA ORB. Each RRT instance
provides three interfaces to application programmers. The first, called /RafdaRunTime,
provides server-side operations to application objects collocated with the RRT instance,
allowing programmers to expose objects or access frameworks that control transmission
policy and distribution policy. The second, called IRafdaRunTimeRemote, provides client-
side functionality to application objects that are remote with respect to the RRT instance,
allowing programmers to obtain remote references to existing objects or to perform object
migration. The third, called /RafdaRunTimeConfig, is used to control the behaviour of an
RRT instance.

Figure 5.1 shows the RRT instances present in two address-spaces. The large
circles represent objects in the distributed application. Each RRT instance is represented
by a shaded box with the [RafdaRunTime, IRafdaRunTimeRemote and IRafdaRunTime-
Config interfaces shown. Each RRT instance is accessible locally via the /RafdaRunTime
and [RafdaRunTimeConfig interfaces and remotely via the [RafdaRunTimeRemote

interface.

79

Chapter 5: The RAFDA Run-Time (RRT)

IRafdaRunTimeConfig

—_—— IRafdaRunTimeRemote ()
T = |- _ RRT
Instance

IRafdaRunTime

IRafdaRunTime

(D____

IRafdaRunTimeConfig
Address Space 1 Address Space 2

IRafdaRunTimeRemote

RRT
Instance

Figure 5.1: RRT instances exposing different interfaces to local and remote objects.

Figure 5.2 shows a subset of the functionality provided by the IRafdaRunTime
interface. The expose() method is used to expose an object to remote access as a Web
Service. The remote type argument is used to control which of the methods provided by
the object will be remotely accessible. Remote types are discussed in detail later. The
service name argument associates a name with the exposed object that can be used by

clients to obtain remote references to the object.

public interface IRafdaRunTime {
void expose (Object objectToExpose,
Class remoteType,
String serviceName) ;

/* Other IRafdaRunTime methods omitted */

Figure 5.2: A subset of the IRafdaRunTime interface.
Figure 5.3 shows a subset of the functionality provided by the

IRafdaRunTimeRemote interface. The getRemoteReference() method is used to obtain a

remote reference to an exposed object using its name.

public interface IRafdaRunTimeRemote {
Object getRemoteReference (String serviceName) ;

/* Other IRafdaRunTimeRemote methods omitted */

Figure 5.3: A subset of the IRafdaRunTimeRemote interface.

The RRT provides a bootstrapping mechanism that allows programmers to obtain
references to RRT instances, both local and remote. The RRT class shown in Figure 5.4

provides this functionality; it is assumed that this RRT class is available in every address-

80

Chapter 5: The RAFDA Run-Time (RRT)

space. The get() method returns a reference to the /RafdaRunTime interface of the local
RRT instance, the getRemote() method returns a remote reference to the
IRafdaRunTimeRemote interface of the RRT instance connected to the specified socket
address and the getConfig() method returns a reference to the [RafdaRunTimeConfig

interface of the local RRT instance.

public class RRT {
public static IRafdaRunTime get () {..}
public static IRafdaRunTimeRemote getRemote (
InetSocketAddress isa) {..}

public static IRafdaRunTimeConfig getConfig() {..}

Figure 5.4: The RRT class used by applications to obtain references to RRT instances.

5.2.2 Introducing Distribution into Applications

This section describes a simple example that illustrates how connectivity between
address-spaces can be achieved. The JChord case study introduced in Chapter 2 is used
throughout this chapter to illustrate the functionality provided by the RRT. Figure 5.5
shows the Chord abstract class, which implements the basic functionality of a Chord node
implementation and declares several abstract methods that are implemented by a

particular Chord node implementation.

public abstract class Chord {

private Key key = null;

public abstract Chord lookup (Key key) ;

public abstract void addNode (Chord node) ;

public abstract Chord getSuccessorNode () ;

public Key getKey() {return key;}

protected void setKey (Key key) {this.key = key;}

public void printKeyInfo() ({
System.out.println("Key = " + key);
System.out.println ("Successor Key = " +

getSuccessorNode () .getKey ()) ;

Figure 5.5: The Chord abstract class.

81

Chapter 5: The RAFDA Run-Time (RRT)

Figure 5.6 shows the JChordNode class, which extends the Chord abstract class.
The implementation details have been omitted as they are not important in this example.
The Chord and JChordNode classes were designed to allow non-distributed simulations
of Chord peer-to-peer networks and have not been written with concern for distribution.

These classes do not extend any special base classes or implement any special interfaces.

public class JChordNode extends Chord {
public JChordNode (Key key) {..}
public Chord lookup (Key key) {..}
public void addNode (Chord node) {..}
public Chord getSuccessorNode () {..}
public String getLog() {..}
public void stop() {..}
public void start() {..}
public static String getVersion() {..}

Figure 5.6: The JChordNode implementation class.

An instance of JChordNode can be exposed to remote access as shown in Figure
5.7. Once an instance of JChordNode has been created, the expose() method provided by
the local RRT instance is called. In this example, the exposed object’s own class has been
specified as the remote type, indicating that all methods should be exposed to remote
access. The object has been exposed using the name “JCNode”. When this application is
run, the RRT instance binds to the default port (5001) on the local host and exposes the
JChordNode instance as a Web Service that can be remotely accessed using any Web

Services technology.

public class JChordServer (
public static void main(String[] args) {
JChordNode jchordNode = new JChordNode (new Key ()) ;
IRafdaRunTime rrt = RRT.get();
rrt.expose (jchordNode,
JChordNode.class,
"JCNode") ;

Figure 5.7: Exposing an instance of JChordNode to remote access.

82

Chapter 5: The RAFDA Run-Time (RRT)

In the client-side address-space, an application can obtain a remote reference to
the exposed object directly from the RRT instance that exposes it. In Figure 5.8, the client
obtains a remote reference to that RRT instance based on its socket address. It is assumed
that this RRT instance is running on a machine called “host.rafda.org”, connected to the
default port (5001). The client calls getRemoteReference() on the remote RRT instance,
specifying the service name “JCNode”. A remote reference to the exposed object is
returned, which the client casts into class JChordNode. This remote reference can be used

as though it were a local reference to a local instance of JChordNode.

public class JChordClient ({
public static void main(String[] args) throws Exception {
InetSocketAddress isa =
new InetSocketAddress ("host.rafda.org", 5001) ;
IRafdaRunTimeRemote remoteRRT = RRT.getRemote(isa) ;
JChordNode node = (JChordNode) remoteRRT.
getRemoteReference ("JCNode") ;
System.out.println(node.getLog()) ;

Figure 5.8: Obtaining and using a remote reference to the exposed JChordNode instance.

Inter-address-space connectivity has thus been achieved without taking any
special steps when creating the functional application classes Chord and JChordNode.
Clients can access remote instances of the JChordNode class in the same manner as local
instances. Thus, programmers have complete separation of functional concerns from
those related to application distribution.

Thus far, only a subset of the functionality provided by the /RafdaRunTime and
IRafdaRunTimeRemote interfaces has been shown. The following sections describe all the
features provided by the RRT, both server-side and client-side, to allow programmers
fine-grained control over application semantics. The functionality provided by the RRT is

described in the context of the requirements stated in the previous chapter.

5.3 Server-Side Functionality

This section describes the server-side functionality of the RRT provided through
the IRafdaRunTime interface. Using this interface, programmers can expose objects,

perform migration, access the transmission policy manager that controls parameter-

83

Chapter 5: The RAFDA Run-Time (RRT)

passing semantics and access the distribution policy manager that controls object

placement policy. The complete /RafdaRunTime interface is shown in Figure 5.9.

public interface IRafdaRunTime {

/* Exposing objects to remote access */

void expose (Object objectToExpose,

Class remoteType,

String serviceName) ;

/* Migration */

Object makeMigratable (Object object, Class remoteType) ;

/* Automatically exposing objects to remote access */

void associateClassWithRemoteType (

Class applicationClass,

Class remoteType) ;

/* Policy Managers */

ITransmissionPolicyManager getTransmissionPolicyManager () ;

IDistributionPolicyManager getDistributionPolicyManager () ;

/* Utility methods */

IRafdaRunTimeRemote getExposingRRT (Object object) ;

Figure 5.9: The IRafdaRunTime interface.

The purpose of each of these methods is briefly summarized:

The expose() method exposes objects to remote access.

The makeMigratable() method converts application objects into functionally
identical versions with support for object migration.

The associateClassWithRemoteType() method controls which methods of a
particular class are exposed to remote access when automatic exposure is
performed. This method is described in Section 5.6.5.

The getTransmissionPolicyManager() and getDistributionPolicyManager()
methods allow access to the transmission policy framework and distribution
policy framework respectively.

The getExposingRRT() method is a utility method used to obtain a remote

reference to the RRT instance that exposes a particular object.

84

Chapter 5: The RAFDA Run-Time (RRT)

This functionality is now examined in more detail in the context of the

requirements defined in the previous chapter.

5.3.1 Exposing Objects as Web Services

Any object in a running application can be exposed at any point in its lifetime. A
Web Service is created when an object is exposed, and the exposed object is the
underlying object on which incoming requests to this service are performed. The
attachment of a Web Service to an application object occurs transparently from the
perspective of the application and so does not affect the execution semantics of the
underlying application. Figure 5.10 shows a conceptual diagram in which an application
consisting of objects labelled 4-E exposes some of those objects as Web Services (objects

A, B and E).

O_

Web Service

O

Web Service

Address-Space

Web Service

Figure 5.10: An application with some exposed objects.

Using standard Web Services has several advantages over a proprietary approach.
Web Services provide interoperability across programming languages, architectures and
operating systems. The underlying protocol, SOAP [87], is simple, standard, well
supported and firewall-friendly (from the perspective of the application programmers).

Consider the first three requirements of a third generation middleware system as

defined in the last chapter:

1: All the ancillary code required to perform inter-address-space communication,
namely proxy classes, skeletons, serializers and deserializers, must be created
automatically.

2: It must be possible to expose instances of arbitrary classes to remote access

without modifications to their source code.

85

Chapter 5: The RAFDA Run-Time (RRT)

3: It must be possible to expose objects to remote access dynamically.

These requirements have been fulfilled by the functionality shown in the

introductory example.

5.3.1.1 Remote Types

In the example shown in Figure 5.7, exposing the JChordNode instance meant
exposing all of its method to remote access. Programmers need fine-grained control over
the set of remotely available methods in order to allow information hiding. Further, it is
often useful to allow a single object to present multiple views to remote clients, much as a
conventional application class can implement multiple interfaces in order to present

different encapsulated views over its functionality. The 4™ requirement states:

4: 1t must possible to control which methods are accessible remotely on a per-object

basis, allowing remote clients to have multiple views over a single object.

Every exposed object is associated, either implicitly or explicitly, with a remote
type that controls which of its methods may be called remotely. A remote type is the
distributed equivalent of an interface in a non-distributed application class and is used to
control method visibility. Remote types provide multiple views over exposed objects to
remote clients. From the perspective of clients, exposed objects are instances of their
associated remote types. Different instances of a single class can be exposed with
different remote types and a single object can be exposed multiple times with different
remote types.

The RRT allows an object to be exposed using a particular remote type if and only
if that remote type is structurally compliant with the exposed object’s class, meaning that
every method in the remote type has a counterpart with an identical signature in the
exposed object’s class. Therefore, the remote type associated with an exposed object need
not be a super-class of the object’s class nor an interface implemented by it. Programmers

can expose instances of classes without the overhead of source level modifications.

5.3.1.2 Local Protection Mechanism

When determining which methods an object exposes to remote access,

consideration must be given to the local protection mechanisms provided by the

86

Chapter 5: The RAFDA Run-Time (RRT)

implementation language, which control how instances of different classes can interact
with each other. In Java, this protection is provided by the public, protected, private and
default modifiers. For instance, in a Java class, public methods may be accessed from
instances of any other class but private methods may only be accessed by instances of the
same class.

If local protection semantics are preserved in a distributed application, the private
methods of an exposed object must be accessible to remote objects of the same class but
not to remote objects of other classes. As a consequence, methods cannot be universally
defined as either accessible or inaccessible remotely.

The 5™ requirement defined in the previous chapter states:

5: The local protection mechanism must be preserved.

When the RRT is used both server-side and client-side, local protection semantics
are preserved. When an exposed object is accessed from clients using conventional (non-
RRT-based) Web Service technologies, non-public methods may not be called by default.
Programmers can override this behaviour to allow non-public access by altering the RRT
configuration via the /RafdaRunTimeConfig interface, described at the end of this chapter.
By allowing non-public access, programmers can attach debuggers or probes to existing

applications without restricting which methods can be called.

5.3.1.3 Exposing Objects

The expose() method provided by the IRafdaRunTime interface is shown in Figure
5.11. It takes three arguments:

e A local reference to the object to be exposed.

e The remote type, as an instance of java.lang.Class, representing either a

reified Java interface or a reified Java class.

e A service name.
void expose (Object objectToExpose,

Class remoteType,

String serviceName) ;

Figure 5.11: The expose() method.

87

Chapter 5: The RAFDA Run-Time (RRT)

The specified object is exposed, with the methods defined in the remote type made
accessible to remote clients. Methods that the remote type inherits from its super-classes
or super-interfaces are also exposed to remote access. If a Java class is specified as
remote type, its method implementations are ignored and the class is treated as an
interface. If the object to expose is remote with respect to this RRT instance or if the
specified remote type is not structurally compliant with the object’s class, meaning the
remote type contains one or more methods for which there are no counterparts of the
same signature in the object’s class, the RRT throws an lllegalArgumentException. This
exception is an unchecked exception, meaning that applications calling the expose()
method need not statically define handlers, though if an unchecked exception occurs and
is not caught, the RRT instance will immediately terminate.

The current RRT implementation does not permit remote types to be final classes
or to contain final methods. Exposure will fail if exposure using such a remote type is
attempted. The RRT provides a class loader that can be used to change application classes
and methods such that they are non-final to overcome this limitation. However, the class
loader cannot transform system classes dynamically, meaning that system classes that are
final or contain final methods cannot be used as remote types. Implementations of the
RRT in other languages may not exhibit this problem. A detailed description of the RRT
prototype implementation is provided in the next chapter.

The following two figures show an example in which a JChordNode instance
(Figure 5.6) is exposed three times with different remote types. The three remote types
used are the Chord abstract class (Figure 5.5), the IMonitor interface (shown in Figure
5.12) and the IManage interface (also shown in Figure 5.12). The IMonitor interface
provides methods used to monitor the running peer-to-peer system and the /Manage

interface provides methods used to manage nodes remotely.

public interface IMonitor (

String getLog() ;

}

public interface IManage {
void stop() ;

void start () ;

Figure 5.12: The IMonitor and IManage interfaces.

88

Chapter 5: The RAFDA Run-Time (RRT)

The JChordNode class (Figure 5.6) does not implement either of these interfaces,
though both interfaces are structurally compliant with the JChordNode class. Figure 5.13
shows an application in which an instance of JChordNode is exposed three times, once

with each of the interfaces.

public class JChordServer ({
public static void main(String[] args) {
JChordNode jchordNode = new JChordNode (new Key()) ;
IRafdaRunTime rrt = RRT.get () ;
rrt.expose (jchordNode, IManage.class, "Manage");
rrt.expose (jchordNode, IMonitor.class, "Monitor");

rrt.expose (jchordNode, Chord.class, "Chord");

Figure 5.13: Exposing an instance of JChordNode with multiple remote types.

Each time the object is exposed, a new Web Service is created. This Web Service
is accessible via two URLs. One is based on the service name supplied by the
programmer. However, this service name may subsequently be rebound to another
service. In order to impose identity on services, a second URL is created for each service
based on a randomly generated Universally Unique ID (UUID). This UUID-based URL is
guaranteed to bind to the same Web Service for the service’s lifetime. The service-name-

based URL is an alias to this UUID-based URL. Web Service URLs take the form:

http://<machineNames>:<port>/<serviceName or UUID>

For example:

http://host.rafda.org:5001/Manage
http://host.rafda.org:5001/b9d1052f-83f1-42f3-bf85-72fe6el17b169

The names of the methods provided by a Web Service attached to an object match
the corresponding Java method names where possible. However, Java allows method
names to be overloaded but Web Services do not. Figure 5.14 shows an interface that
contains three methods to perform application profiling. Two methods are called
startProfiling() and one is called stopProfiling(). The method name “startProfiling” is

therefore overloaded whereas the method name “stopProfiling” is not.

89

Chapter 5: The RAFDA Run-Time (RRT)

public interface Profiler (
void startProfiling(Chord ring, int time) ;
void startProfiling(String profileName) ;

void stopProfiling(String profileName) ;

Figure 5.14: An interface with an overloaded method.

If an object is exposed with a remote type that contains multiple methods with the
same name, a naming scheme is employed to ensure that the names of the associated
methods presented by the Web Service are unique within that service. A unique name for
each overloaded method is constructed by appending the type signature of the method to
its Java method name.

Figure 5.15 shows how the naming scheme is applied to this interface when it is
used as a remote type. Since the stopProfiling() method is not overloaded, the name of the
method provided by the Web Service is the same as the Java method name. Unique names
for the two startProfiling() methods are generated based on their signature types. The §
character is reserved in the Java Language Specification [17] for use in automatically
generated code only. Therefore, the generated method names can be relied upon not to

clash with existing application method names.

void startProfiling(Chord ring, int time)
becomes startProfiling$Chords$int

void startProfiling(String profileName)
becomes startProfiling$java.lang.String

void stopProfiling(String profileName)

remains stopProfiling

Figure 5.15: Naming scheme for overloaded methods.

5.3.1.4 Limitations

The RRT does not expose fields to remote access directly. Fields can only be
remotely accessed via get/set methods. If programmers perform direct field access on
remote objects, application semantics are unpredictable. However, it is generally
considered bad software engineering practice to access state in other objects directly, as

encapsulation is lost. Thus, this limitation is not considered serious. Proposed future work

90

Chapter 5: The RAFDA Run-Time (RRT)

could transform applications dynamically to ensure that all direct field access operations

are changed into accessor method calls, thereby completely removing this limitation.

5.3.1.5 Exposed Object Lifetime

When creating applications using garbage collected languages such as Java, the
memory used by objects is reclaimed when those objects are no longer referenced directly
or indirectly from the running application [78]. Once objects are exposed to remote
access, they may at some time be referenced only remotely from outwith their local
address-spaces. The local garbage collector in each address-space cannot detect these
remote references and so may collect the objects. The RRT infrastructure can hold local
references to exposed objects in order to prevent their collection. The RRT offers three
approaches to controlling the lifetime of exposed objects:

1. Always allow the local collector to collect exposed objects when they are no

longer referenced locally, even if remotely referenced.

2. Allow the local collector to collect exposed objects that have not been

remotely accessed within a particular lease time.

3. Never allow the local collector to collect exposed objects.

These three approaches allow programmers to trade off safety for completeness in
garbage collection terms. Programmers determine which approach is adopted on a per-
RRT-instance basis via the /RafdaRunTimeConfig interface.

The first approach is complete but unsafe as it allows objects to be collected while
still remotely referenced. It is particularly suitable for applications like probes or
debuggers in which clients do not wish to hold references to objects once they are no
longer live within the application. When exposed objects are collected, the Web Services
associated with these objects are shut down. Extant remote references to collected objects
become invalid. Any attempts to perform remote method calls on these references will
fail.

The second approach is particularly suitable when the RRT is employed as a
traditional DOM as it allows the system to perform lease-based distributed garbage
collection [88]. It is assumed that any objects that are not remotely accessed within a
programmer-defined lease time are not remotely referenced and so may be collected. It
balances completeness and safety by ensuring that any objects that are frequently
accessed remain live in the distributed applications, even if they are not referenced

locally. Programmers can increase the lease time to decrease the risk that remotely

91

Chapter 5: The RAFDA Run-Time (RRT)

referenced application objects will be collected with the increased risk that the available
memory will fill with garbage objects that cannot be collected because they hold valid
leases.

The third approach is safe but not complete. Exposed objects will never be
collected until they are removed from remote access manually. This approach is
particularly suitable when the RRT is used as a conventional application container
providing services to remote clients. In this case the availability of services is the primary

concern and services must remain live even if not accessed for long periods.

5.3.1.6 Accessing the RRT via a Web Browser

Each RRT instance can be accessed using a conventional web browser to show all
available Web Services. This allows application programmers to gain a global view of all
remotely accessible objects in the RRT instance and to inspect the state of the running
application.

The list of available Web Services is shown, with the following information:

e The remote type.

e The service name (URL).

e The class of the exposed object.

e A string representation of the exposed object.

Figure 5.16 shows the results of attaching a web browser to the RRT instance that
is running the application shown in Figure 5.13, which exposes an instance of
JChordNode with three different remote types. Note that all classes are in a Java package
named jchord and that the RRT instance is bound to port 5001 on a machine called
“host.rafda.org”. Since each Web Service is accessible via a URL based on the service
UUID and a URL based on the service name, the three calls to the expose() method have

resulted in six entries in the table shown.

92

Chapter 5: The RAFDA Run-Time (RRT)

(& RAFDA RunTime - Mozilla Firefox g@
)

Ele Edit View Go Bookmarks Tools Help

<:| - Bl - @ @ http://host.rafda.org: 5001/ i) © e G,

RAFDA RunTime

School of Computer Science, University of St Andrews

Welcome to the RAFDA RunTime on host.rafda.org:5001

Available Services

|Remute Type |URL |E:u:|:losed Object Type |String Representation
|jch0rd.Ch0rd |M |jch0rd.JCh0rdN0dE |JCh0rcI node with key 827628
[ichord.Chord |[8850echf-6c6d-493b-bf43-fS5c05c82b4b |[jchord.JChordNode [1Chord node with key 827623
jchord.IManage| |Manage jchord.JChordNode 1Chord node with key 827628
jchord.IManage||bSd1052f-83f1-42f3-bf85-72fe6e17b169 ||jchord.JChordNode JChord node with key 827628
|jchord.IMonitor |Monitor |ju:hord.JChordNodE |JChord node with key 827628
[ichord.IMonitor |[fade3890-cfb2-459d-846e-e3e077c9cd0c [jcherd.JChordNode [1Chord node with key 8276238

[|
Done

Figure 5.16: A web page generated by an RRT instance showing the objects it exposes.

The links in the URL column refer to service-specific pages that provide:

e A list of the methods provided by the remote type.

e A list of the methods and fields provided by the exposed object’s class.

e The current state of these fields in the exposed object.

By default, RRT instances show information only about the remote types. The
information about the underlying exposed object is not available unless this functionality
is explicitly enabled in the RRT configuration.

Figure 5.17 shows the page associated with the service named “Manage”. This
page shows the methods specified by the remote type (IManage). Only these methods
may be accessed remotely. The methods implemented by the exposed object’s class and

the current state of the exposed object are shown in this case.

93

Chapter 5: The RAFDA Run-Time (RRT)

@ RAFDA RunTime - Mozilla Firefox

M= X

File Edit View @Go EBookmarks Tools Help

- - @ @ http:ffhost rafda.org: 5001 Manage | % @ G0

#

RAFDA RunTime

School of Computer Science, University of St Andrews

|Remnte Type

Interface jchord.IManage
Methods (declared in johord iManage)

woid start ()
woid stopi)

|Seruice Object

Class jchord. ?ChordNode extends jchord.Chord

Fields (declared in fohowrd . Chorg)

private jchord.Eey key = "johord. Hey@bafedz"

Methods (declared in johord, JChordhods)

public Chord lockup (Eey kevy)
public void addNode(Chord node)
public Chord getSuccessorNode()
public String getLogi)

public void stop i)

public wvoid starti)

public static String getVWersiond)

Methods {declared in fohord. Chorgh

public abstract Chord lookup (Fey key)
public abgtract woid addMNode (Chord node)
public abgtract Chord getBuccessorMNode()
public Eey getEeyi)

public void setEey (Fey kevy)

public void printKeyInfol)

Done

Figure 5.17: Detailed information about the Manage service.

5.3.1.7 Security

As described so far, the RRT exposes application objects to remote access and
provides information to clients connecting through web browsers without concern for
security. Though the RRT is primarily intended for use in environments where

programmers have complete control over all machines in the distributed system and

connecting network, several security features are provided.

A firewall built into each RRT instance can be configured to allow connections

only from trusted addresses. When active, only clients on trusted machines can perform

94

Chapter 5: The RAFDA Run-Time (RRT)

remote calls on exposed objects or otherwise interact with the RRT instance. Similarly,
only web browsers running on trusted machines are allowed to connect.

The RRT permits programmers to provide custom socket implementations, such
as encrypted sockets, which are wused when performing inter-address-space
communication. When encrypted sockets are used in conjunction with the firewall, RRT-
based applications can be deployed securely on a trusted subset of machines on an un-
trusted network. This functionality can also be exploited to simulate network connections

with varying bandwidths, latencies or failure rates.

5.3.2 Passing Arbitrary Objects By-Value

The RRT permits the transmission of arbitrary objects across the network by-
value to implement conventional Web Service semantics when communicating with
clients using traditional Web Services technologies. This mechanism is also useful when
both client and server are RRT-based as it can be used to cache and replicate application
objects. The RRT must therefore be capable of serializing and deserializing instances of

any classes. The 6" and 7™ requirements from the previous chapter state:

6: It must be possible to pass any objects by-value as arguments or return values to
remote method calls.

7: A scalable resilient code distribution scheme must be provided.

Each RRT instance provides two approaches to serialization/deserialization.
Programmers may choose which is adopted via the RRT configuration. The approaches
are:

1. Perform all serialization/deserialization using a generic, reflection-based

serializer/deserializer.

2. Perform serialization/deserialization using per-class custom serializer/

deserializers, which are generated and compiled dynamically by the RRT. The
RRT employs generative techniques to create serializers/deserializers that are
tuned to work with the classes in each particular application.

The approaches offer different trade-offs [79]. The generic serializer/deserializer
can serialize and deserialize instances of any class, using reflective techniques to access
the internal state of objects. Each generated per-class serializer/deserializer can serialize

and deserialize only instances of one particular class but does not employ reflection at

95

Chapter 5: The RAFDA Run-Time (RRT)

serialization/deserialization time. The advantage of the latter approach lies in the cost
difference between accessing fields in objects directly and accessing them using the
reflection tools, which is typically an expensive operation.

There is a one-time cost incurred by generating and compiling the per-class
serializer/deserializers. In applications that serialize/deserialize a large number of
instances of the same class, the one-time cost of creating the per-class serializer/
deserializers is outweighed by the lower cost of each serialization/deserialization
operation. By default, per-class serializer/deserializers are discarded when the RRT
instance terminates. Programmers can alter the RRT configuration so that RRT instances
cache the per-class serializer/deserializers for future use, thereby avoiding the cost of re-
generation.

When deserializing data into an object, the RRT needs access to the code
associated with the serialized object in order to instantiate it. If the associated class file
cannot be loaded, the RRT obtains the code automatically from the RRT instance that
serialized the object, which necessarily has access to the class. Code is lazily distributed
throughout the distributed system as necessary, negating the need to perform code
distribution manually. The risk of programmer-related errors caused by failure to

distribute code correctly is removed.

5.3.3 Summary

This section has described the server-side functionality of the RRT provided via
the IRafdaRunTime interface. The RRT allows the exposure of arbitrary objects to remote
access by clients in remote address-spaces. Remote types allow programmers control over
the methods that objects expose to remote access. This provides multiple views over
exposed objects to clients, allowing programmers to preserve encapsulation in distributed
applications. The RRT conceals the distributed nature of applications unless programmers
explicitly expose the inter-address-space communication. Programmers benefit by using
the RRT due to the simplified software engineering process, separation of concerns and
the flexibility of the RRT to adapt to the requirements of different distributed
applications.

The RRT provides several approaches to exposed object lifetime management,
which can allow the local garbage collector to reclaim remotely accessed objects if they

are no longer referenced locally, provide DOM-style lease-based garbage collection or

96

Chapter 5: The RAFDA Run-Time (RRT)

retain the semantics of service-oriented application containers by permitting no collection
of exposed objects.

The RRT is capable of serializing and deserializing instances of arbitrary classes,
allowing these objects to be transmitted across the network by-value. Thus, conventional
Web Services semantics can be preserved and the RRT can cache or replicate application

objects across multiple address-spaces.

5.4 Client-Side Functionality

The server-side functionality described in Section 5.3 is sufficient to allow the
exposure of objects to access by clients using the RRT and other Web Services
technologies. This section fully describes the RRT client-side functionality and shows its
advantages over other technologies. Full Distributed Object Model functionality is
provided when the RRT is used both server- and client-side, allowing the creation of
isomorphic distributed versions of non-distributed applications.

Conventional Web Services technologies do not provide remote reference
schemes and so objects may only be passed across address-space boundaries by-value.
Without the ability to pass-by-reference, programmers are limited in terms of the
applications that can be created. The 8", 9™ and 10™ requirements express the necessity of

support for remote references and pass-by-reference semantics. They state:

8: It must be possible to hold remote references to arbitrary objects and to treat
local and remote references in the same manner.

9: It must be possible to associate names with remotely accessible objects, either
implicitly or explicitly, and to obtain remote references to objects based on those
names.

10: [t must be possible to pass any objects by-reference as arguments or return values

to remote method calls.

The 9™ requirement has already been partially met as the RRT allows service
names to be associated with objects at exposure. In order to fully meet all three
requirements, the RRT introduces a remote reference scheme that is synergistic with
existing Web Services technologies. Using the remote reference scheme built into the

RRT, remote references to exposed objects can be passed across address-space

97

Chapter 5: The RAFDA Run-Time (RRT)

boundaries as arguments or return values to remote method calls. When methods are
invoked on remote references, the calls are propagated across the network and performed
on the exposed objects.

To allow any object to be passed by-reference, including those that are not yet
exposed, the RRT provides automatic exposure of objects on demand. This ensures that
any application object that is passed by-reference is remotely accessible. Each RRT
instance differentiates between RRT-based clients and those that use conventional Web
Services technologies. It ensures that remote references are never transmitted to clients
that are not RRT-based.

Each RRT instance provides functionality to remote clients through the
IRafdaRunTimeRemote interface shown in its entirety in Figure 5.18. This interface
captures the functionality that RRT instances provide to application objects in remote
address-spaces.
public interface IRafdaRunTimeRemote {

Object getRemoteReference (String serviceName) ;

Object instantiateAndExpose (Class classToInstantiate,

Object [] constructorArguments,
Class remoteType,
String serviceName) ;

void migrate (Object objectToMigrate) ;

IDistributionPolicyManager getDistributionPolicyManager () ;

Figure 5.18: The IRafdaRunTimeRemote() interface.

This purpose of each of these methods is briefly summarized here, then described
in detail later in this section:

e The getRemoteReference() method was introduced in Section 5.2. It is used to
obtain a remote reference to an object exposed by this RRT instance.

e The instantiateAndExpose() method instantiates an object in this RRT instance
and exposes it immediately to remote access.

e The migrate() method migrates an object to this RRT instance.

e The getDistributionPolicy Manager() method allows remote clients access to
the distribution policy framework on this RRT instance.

Clients obtain references to the /RafdaRunTimeRemote interface using the RRT

class introduced previously (Figure 5.4).

98

Chapter 5: The RAFDA Run-Time (RRT)

5.4.1 Accessing Remote Objects

The getRemoteReference() method allows programmers to bootstrap distributed
applications; using this method, application objects in separate address-spaces can obtain
references to each other, based on service names. The returned remote references will
bind to particular services for their lifetimes, even if the specified service names are
rebound to different services. This approach ensures that the rebinding of service names
to different objects does not alter existing references as a side-effect.

Returning to the JChord case study, the non-distributed JChord implementation
allows researchers to simulate JChord rings in a single address-space. Figure 5.19 shows
an application that creates a non-distributed simulation of a JChord ring. The application
performs two distinct tasks. An initial node is created, then multiple peers are added to
the ring through repeated calls to the addNode() method of the initial node.
public class LocalRing

public static void main(String[] args) {

JChordNode jchordNode = new JChordNode (new Key()) ;
jchordNode .addNode (new JChordNode (new Key ())) ;

jchordNode . addNode (new JChordNode (new Key ())) ;
jchordNode . addNode (new JChordNode (new Key ())) ;

Figure 5.19: A JChord ring created in a single address-space.

A distributed version of this application can be created by creating two entry
points into the application, one of which is used to create a ring while the other is used to
join an existing ring. Figure 5.20 shows the former. The initial JChord node is created and

exposed to remote access with the name “initialNode”.

public class NewRing {
public static void main(String[] args) {
JChordNode jchordNode = new JChordNode (new Key ()) ;
RRT.get () .expose (jchordNode,
JChordNode.class,

"initialNode") ;

Figure 5.20: Creating the initial node.

99

Chapter 5: The RAFDA Run-Time (RRT)

The other entry point, which creates a node and then joins it to an existing ring by
calling the addNode() method of the initial node, is shown in Figure 5.21. A truly
distributed version of the original JChord application has been created without making
changes to any of the underlying JChordNode implementation classes.
public class JoinRing {

public static void main(String[] args) throws Exception

InetSocketAddress isa = new

InetSocketAddress ("host.rafda.org", 5001) ;
IRafdaRunTimeRemote remoteRRT = RRT.getRemote (isa) ;
JChordNode jchordNode = (JChordNode) remoteRRT.

getRemoteReference ("initialNode") ;

jchordNode . addNode (new JChordNode (new Key ())) ;

Figure 5.21: Joining an existing JChord ring.
When the addNode() method is called in the original application shown in Figure

5.19, Java semantics dictate that the argument is passed by-reference. The RRT allows
programmers control over the parameter-passing mechanisms applied to arguments when
remote method calls are performed but adopts pass-by-reference by default. This
distributed JChord implementation takes advantage of the default pass-by-reference
semantics in order to retain local calling semantics when remote calls are performed.
When addNode() is called, the JChordNode argument will be passed by-reference thereby

concealing distribution from the programmers.

5.4.2 Static Members

The semantics of static members (that is, methods and fields) differ from instance
methods and fields as static members are associated with classes rather than objects. The

11™ requirement in the previous chapter states:

11: It must be possible to preserve non-distributed static semantics in distributed
applications and to control the semantics of static members on a per-application

basis.

100

Chapter 5: The RAFDA Run-Time (RRT)

In local applications, there is one unique copy of each static field in each class that
is shared by all objects in the application. The RRT allows static members to be handled
in one of two ways in distributed applications:

1. A copy of each static field is stored in each address-space and is only ever
accessed locally. This approach has the benefit that no remote calls need ever
be performed to access static methods. Static methods execute locally and
access only their local copy of the fields.

2. A single copy of each static field in stored in the entire distributed system.
This approach preserves non-distributed static semantics but can incur the cost
of remote method calls when accessing static members.

Using the first approach, each class is loaded in each address-space and stores a
complete copy of all static fields. All static methods execute locally when called. Using
the second approach, exactly one RRT instance in the distributed system is designated the
root RRT instance. The root is responsible for managing static member access in the
distributed system and the application programmer must define which particular RRT
instance is the root in the configuration of every RRT instance in the distributed system.

The second approach requires that the RRT use a class loader to transform
application classes automatically. When the distributed application is run, the
programmer specifies a command line argument to indicate whether the class loader is
employed. If an application is run without using the class loader, the first approach is
adopted. If the class loader is employed, then the second approach is adopted. The use or
otherwise of the command line argument implicitly indicates which approach should be
employed. As a consequence of using Java as the underlying implementation language,
this dynamic transformational approach is limited with respect to system classes because
these classes cannot be altered dynamically. Non-distributed static functionality may
therefore only be preserved for application classes.

The manner in which the RRT handles static members differentiates it from other
middleware systems, all of which adopt only one of the above approaches. Neither of the
approaches is suitable for all distributed applications so the RRT allows programmers to

adapt middleware behaviour to the particular requirements of each application.

5.4.3 Failure

The RRT provides a failure model that offers programmers a number of

approaches to handling errors. The introduction of distribution into applications brings

101

Chapter 5: The RAFDA Run-Time (RRT)

new types of failure mode. For certain types of distributed application any such failure is
immediately terminal, much as a failure within a single machine is terminal for local
applications. For other types of distributed application, the programmer may need to
handle errors occurring due to network failure explicitly or to continue execution on a
best-effort basis. The RRT allows programmers to decide on a per-application basis
whether to handle such errors manually or defer responsibility to the RRT.
There are two kinds of failure that can occur in distributed applications, namely:
e Distribution-related exceptions that occur as a direct result of the distributed
nature of the application, such as network failure or remote machine failure.
e Application exceptions that occur for reasons orthogonal to the distributed
nature of the application.

The 12" requirement from the previous chapter states:

12: The programmer must be able to control whether distribution-related failures are

propagated to the application or handled internally by the middleware system.

Application exceptions are always thrown back to clients as they are not the
concern of the RRT. Distribution-related exceptions are either handled directly by the
RRT instance or propagated back to clients. Programmers control which approach is
utilized in the RRT configuration, which is summarized in Appendix C.

There are three approaches to handling distribution-related errors that are open to
developers:

1. Configure the RRT to handle all distribution-related exceptions internally. If
failure occurs, default values are returned. No application-level exception
handlers need to be defined in this case.

2. Configure the RRT to propagate all distribution-related exceptions to the
clients but do not define application-level exception handlers. If failure occurs,
the uncaught exception causes the RRT instance to terminate immediately.

3. Configure the RRT to propagate all distribution-related exceptions to the
clients and define application-level exception handlers statically at any points
in the application where failure can occur. If a distribution-related exception

occurs, it is handled in a programmer-defined manner.

102

Chapter 5: The RAFDA Run-Time (RRT)

If the RRT is configured to handle all distribution-related errors internally, it logs
failures and returns default values to the clients (null, 0, etc.). The client code need not
create any special handlers for distribution-related exceptions, provided that programmers
accept that remote method calls may return default values. This approach is suitable for
application prototyping or for applications in which it is assumed that network failure will
not occur (a reasonable assumption on a LAN).

Figure 5.22 shows part of an application in which the RRT handles all
distribution-related errors internally. The application obtains a remote reference to an
object exposed using the IMonitor interface (Figure 5.12). When the remote call is made
to getLog(), no exception handler is defined and a null value is returned if the remote call

fails.

IRafdaRunTimeRemote remoteRRT = RRT.getRemote (
new InetSocketAddress ("host.rafda.org", 5001));
IMonitor monitoredNode = (IMonitor) remoteRRT.
getRemoteReference ("Monitor") ;
/* ‘log’ will be set to null if a distribution-related
* exception occurs when getLog() is called */

String log = monitoredNode.getLog() ;

Figure 5.22: An application in which the RRT handles distribution-related errors.

Distribution-related exceptions are wrapped in unchecked exceptions. In Java,
methods do not need to declare statically that they throw unchecked exceptions and
callers are not forced to define handlers. If the RRT is configured to propagate
distributed-related exceptions, but clients do not define handlers then the Java Virtual
Machine terminates if an exception occurs. Programmers are not forced to handle errors
explicitly. In applications that consider distribution-related failures to be terminal, the
application logic is not permeated by distribution-related code. The code in an application
adopting this approach is unchanged from that shown in Figure 5.22.

In order to handle distribution-related exceptions, programmers must define
handlers that catch instances of RafdaRuntimeException as shown in Figure 5.23. The
RafdaRuntimeException wraps the distribution-related exception, which can be extracted

with a call to getCause().

103

Chapter 5: The RAFDA Run-Time (RRT)

IRafdaRunTimeRemote remoteRRT = RRT.getRemote (
new InetSocketAddress ("host.rafda.org", 5001)) ;
IMonitor monitoredNode = (IMonitor) remoteRRT.
getRemoteReference ("Monitor") ;
String log = null;
try {

/* Distribution-related exception could occur here */
log = monitoredNode.getLog() ;
} cateh (RafdaRuntimeException rre) {
/* Handle the exception */
Throwable cause = rre.getCause() ;

cause.printStackTrace () ;

Figure 5.23: An application that handles distribution-related errors.

By providing a multiplicity of approaches to handling failure, the RRT simplifies
application prototyping as programmers can ignore the possibility of distribution-related
exceptions during initial development. The RRT offers programmers the flexibility to

introduce error handling code into applications only where it is deemed necessary.

5.4.4 Creating Objects in Remote Address-Spaces

The RRT provides a mechanism that allows programmers to instantiate
application objects in arbitrary address-spaces in the distributed system, thereby

implementing the 13t requirement, which states that:

13: It must be possible to instantiate objects directly in remote address-spaces.

The RRT provides the instantiateAndExpose() ~method in the
IRafdaRunTimeRemote interface, which allows applications to be deployed across the
distributed system from a single starting point. This method, shown in Figure 5.24,
permits programmers to instantiate arbitrary classes in remote address-spaces then expose
the instantiated objects to remote access. It takes the following parameters:

e The class of the object to instantiate.

e Constructor arguments.

e The remote type with which the newly created object should be exposed.

104

Chapter 5: The RAFDA Run-Time (RRT)

e The service name with which the newly created object should be exposed.

A remote reference to the exposed object is returned to the caller. The remote
RRT instance automatically determines which constructor to use based on the types of the
constructor arguments. If no constructor that takes the specified constructor arguments is

found, an lllegalArgumentException is thrown.

Object instantiateAndExpose (Class classTolInstantiate,
Object [] constructorArguments,
Class remoteType,

String serviceName) ;

Figure 5.24: The instantiateAndExpose() method used to create objects in remote address-spaces.

Figure 5.25 shows how this method can be used to distribute JChord nodes across
a distributed system. Initially, an array of remote references to the available RRT
instances in the system is created. The instantiateAndExpose() method is called on each
remote RRT instance instructing it to create an instance of the JChordNode class with a
single constructor argument of type Key.

Once created, each JChordNode instance is exposed with remote type Chord and
service name “Node”. A remote reference to the newly created node is returned and
passed as argument to the addNode() method of its predecessor, in order to connect the
deployed nodes together into a ring. The programmer can deploy a complete ring from a

single application entry point, mimicking local application behaviour.

105

Chapter 5: The RAFDA Run-Time (RRT)

public void deployRing() ({
/* Get references to the RRTs in the distributed system */
IRafdaRunTimeRemote remoteRRTs[] = new IRafdaRunTimeRemote[] {
RRT.getRemote (
new InetSocketAddress("hostl.rafda.org", 5001)),
RRT.getRemote (
new InetSocketAddress("host2.rafda.org", 5001)),
RRT.getRemote (
new InetSocketAddress ("host3.rafda.org", 5001)),
RRT.getRemote (
new InetSocketAddress ("host4.rafda.org", 5001))
}i
/* Create a node in each RRT instance and add it to the ring */
Chord[] remoteNodes = new Chord[4];
for (int x = 0; x < remoteRRTs.length; x++) {
remoteNodes [x] = (Chord) remoteRRTs [x].
instantiateAndExpose (
JChordNode.class,
new Object[] { new Key() },
Chord.class,
"Node") ;
if (x > 0)

remoteNodes [x - 1] .addNode (remoteNodes [x]) ;

Figure 5.25: Deploying a JChord ring using the instantiateAndExpose() method.

There are security implications for the remote RRT instances involved in this
process. No sandboxing mechanisms are provided to restrict the operations that remotely
instantiated objects can perform. This functionality is intended for use in trusted
distributed systems, in which no byzantine RRT instances are present. Such a system can
be constructed using the firewall and secure socket functionality described earlier.
However, support for remote instantiation is not available by default and must be

activated explicitly via the RRT configuration.

5.4.5 Migrating Objects to Remote Address-Spaces

The RRT allows the migration of objects between address-spaces, permitting

application distribution boundaries to be modified to take advantage of changes in the

106

Chapter 5: The RAFDA Run-Time (RRT)

underlying distributed system or in the application itself. For example, as new machines
are added to the distributed system, it may be desirable to re-distribute application objects
to reduce the overall load on each machine in the system. Similarly, if objects that interact
heavily are collocated then the number of (expensive) remote method calls that need to be
performed can be reduced. Application objects can be migrated between address-spaces
in order to collocate objects with their working sets as the application executes. Thus, the

RRT implements the 14™h requirement from the previous chapter, which states:

14: It must be possible to perform the migration of objects from one address-space to

another without loss of application consistency.

Migration is completely transparent to reference holders but requires that
programmers perform an explicit preparatory step. This step is performed dynamically by
calling the makeMigratable() method, which is provided by the local /RafdaRunTime

interface and shown in Figure 5.26
Object makeMigratable (Object object, Class remoteType) ;

Figure 5.26: The makeMigratable() method used to introduces support for migration into objects.

The programmer supplies a reference to an arbitrary local object and a remote
type as arguments to this method. If, in the future, the object is migrated to a remote
address-space, it will be exposed in that address-space using this remote type. The
makeMigratable() method returns a wrapper that encapsulates the application object but
is an instance of the remote type. This wrapper introduces a layer of indirection between
local reference holders and the wrapped application object. All local references to the
application object must be updated, by the programmer, to refer to the wrapper, therefore
providing location transparency. If the application holds any direct references to the
original application object, rather than the returned wrapper, migration will not proceed
correctly resulting in the loss of application coherency.

Once an object has been wrapped by passing it as an argument to the
makeMigratable() method, it may be migrated directly by programmers, passed by-
migrate as an argument or return value, or migrated as the result of distribution policy

evaluation. Object migration is performed by calling the migrate() method (Figure 5.27)

107

Chapter 5: The RAFDA Run-Time (RRT)

provided by the /RafdaRunTimeRemote interface. Passing objects by-migrate and the use

of distribution policy are discussed in Sections 5.5 and 5.7 respectively.

void migrate (Object objectToMigrate) ;

Figure 5.27: The migrate() method used to migrate objects between address-spaces.

The Data Store built on JChord that was introduced in Chapter 2 is used to
illustrate migration. To implement the Data Store service, multiple Data Store objects are
created in the distributed system, each of which holds references to a sub-set of the stored
objects. Figure 5.28 shows a distributed system in which a Data Store object in
host2.rafda.org (labelled DS) is storing a database object (labelled DB). The database
object is referenced by multiple application objects, A, B and C.

~ T

host1.rafda.org:5001 1 | host2.rafda.org:5001

e -7 ‘

P \

g \
7 \
N
~

host3.rafda.org:5001 host4.rafda.org:5001

Figure 5.28: A stored database object that is referenced by multiple application objects.

At some point, the Data Store object determines that resources are running low on
host2.rafda.org and determines that the database object should be migrated to another
machine, namely hostl.rafda.org. Figure 5.29 shows the code executing within the Data
Store object that performs this migration. It is assumed that the database object is held in
the db field and is of class Database (not shown). Initially, support for migration is
introduced into the database object by calling makeMigratable() and the db field is
updated to refer to the migratory version of the database object. A remote reference to the

RRT instance in hostl.rafda.org is obtained and the migration performed.

108

Chapter 5: The RAFDA Run-Time (RRT)

IRafdaRunTime rrt = RRT.get () ;

db = (Database) rrt.makeMigratable (db, Database.class);
InetSocketAddress isa = new InetSocketAddress ("hostl.rafda.org", 5001);
IRafdaRunTimeRemote remoteRRT = RRT.getRemote (isa) ;

remoteRRT.migrate (db) ;

Figure 5.29: Migrating the database object to another address-space.

Figure 5.30 shows the application after the migration has completed. Once the
one-time preparatory step that wraps the database object has been taken, the object can

migrate transparently with respect to its reference holders.

B ~

host1.rafda.org:5001 | ~ ~ host2.rafda.org:5001

I N

N
/ N
/ N
/ N
s
-

host3.rafda.org:5001 host4.rafda.org:5001

Figure 5.30: The database application after migration.

5.4.6 Summary

The section has described the main client-side functionality of the RRT, which
allows the creation of distributed applications by permitting clients to obtain remote
references to exposed objects. Remote references can be treated in the same manner as
local references and may be passed between address-spaces as arguments or return
values. Application distribution and logic are separated so programmers need not consider
at design time which class of object will participate in inter-address-space
communication.

Multiple failure models are provided, giving programmers freedom to handle
distribution-related errors, or to allow the RRT to handle them in a best effort fashion.

Control over static members provides a choice between the preservation of local

109

Chapter 5: The RAFDA Run-Time (RRT)

semantics and the introduction of per-address-space copies of static fields. The RRT
provides support for remote object instantiation and object migration, allowing
applications to adapt dynamically to changes in the underlying distributed systems or in
the applications themselves.

The purpose of this client-side functionality is to aid the software engineering
process so that distribution can be treated as a non-functional concern. The RRT conceals
inter-address-space communication by providing remote calling semantics that reflect
local calling semantics. An isomorphic distributed version of an existing application can
be created with minimal programming effort. The RRT allows programmers fine-grained
control over the behaviour of the RRT in order to expose and control the distributed
nature of an application to an arbitrary extent. Programmers have the flexibility to
configure the middleware to meet the requirements of a particular application instead of

adapting the application to accommodate the limitations of the middleware system.

5.5 Summarizing the Limitations of the RRT

The current Java-based implementation of the RRT exhibits some limitations,
which are described throughout this chapter. These limitations are summarized here.

1. Remote types may not be system classes that are final or contain final

methods.

2. Non-distributed static semantics cannot be preserved for system classes.

3. Arrays may not be passed by-reference.

4. Accessor methods must be defined for all fields.

Limitations 1 and 2 could be resolved through the use of a tool that transforms
system classes ahead of application run-time. This tool would perform the same
transformations as the class loader, which cannot itself perform the transformations as the
Java Virtual Machine does not permit alterations to system classes dynamically.
Limitations 3 and 4 could be resolved for application classes by the RRT class loader or

ahead of application execution using this offline transformation tool.

5.6 Controlling Transmission Policy

The transmission policy active in an application determines the parameter-passing
semantics employed when remote methods are called. The RRT allows programmer

control over the parameter-passing mechanisms that apply to objects:

110

Chapter 5: The RAFDA Run-Time (RRT)

e Pass-by-value, which passes duplicate copies of arguments across address-
space boundaries.
e Pass-by-reference, which passes remote references to arguments across
address-space boundaries.
e Pass-by-migrate, which migrates arguments across address-space boundaries.
Hybridisation, whereby some object state is cached at a client whilst other state is
remotely accessed, is supported. Using the transmission policy framework, programmers
can employ the most advantageous parameter passing semantics for the circumstances of
each application. This provides programmers with control over application semantics and
promotes reuse of library classes in distributed contexts since the transmission policy can
be specified independently of class implementation. Library classes need make fewer
assumptions about the environment in which they are to be deployed since programmers
have the freedom to apply any parameter-passing policy to instances of any class,

increasing the likelihood that any given class will be reusable in another context.

5.6.1 Defining Transmission Policy

When interacting with clients using standard Web Services technologies, RRT
instances adopt pass-by-value semantics, as required by standard Web Services.
However, when interacting with RRT based clients, any of the three parameter-passing
mechanisms can be employed. The transmission policy framework described here
provides a mechanism to allow the programmer to specify dynamically how objects are
marshalled when passed as arguments and return values when remote methods are called.
This transmission policy framework allows programmers to define transmission policy,
which controls parameter-passing semantics, and caching policy which controls caching
and hybridization of the by-reference and by-value mechanisms. The framework supports
four types of rule governing transmission policy and two types of rules governing caching

of methods and fields in remote references.

5.6.1.1 Transmission Policy Rules

Programmers can specify four types of transmission policy rule:

e Method policy rules are associated with methods and specify how all the
arguments to those methods are marshalled. For example, a method policy rule
might specify that all arguments must be passed by-reference when calling a

particular method.

111

Chapter 5: The RAFDA Run-Time (RRT)

Return policy rules are also associated with methods and control how the
return values are marshalled. For example, a return policy rule might specify
that the return value from a particular method must be passed by-value. The
method policy rule and return policy rule associated with a single method are
independent of each other.

Argument policy rules are associated with individual method arguments to
indicate how they are marshalled to allow programmers fine-grained control
over transmission policy. For example, an argument policy rule might specify
that the second argument must be passed by-migrate when calling a particular
method.

Class policy rules are associated with classes rather than methods and indicate
how instances of particular classes are marshalled. For example, a class policy
rule might specify that all instances of a particular class must be passed by-

value.

Policy rules apply to all objects that are marshalled in the local address-space for

transmission to remote address-spaces, namely arguments passed when calling remote

methods, return values passed when local methods are called by remote clients, and any

objects in the closures of these arguments/return values. When an RRT instance is

marshalling objects, it queries the transmission policy framework to determine whether to

pass the objects by-reference, by-value or by-migrate.

Method policy rules, return policy rules and argument policy rules are specified

with depth constraints that indicates how deep into the closure of the arguments/return

values the rules apply. The depth of an object in an argument/return value’s closure is

based on the shortest path from that argument/return value to the object. A depth of zero

indicates infinite depth.

5.6.1.2 Caching Policy Rules

There are two types of caching policy rule available to programmers;

Method caching rules are associated with methods and specify that these
methods should be cached by remote references. Calls on cached methods are
executed locally with respect to the reference holder rather than propagated

across the network.

112

Chapter 5: The RAFDA Run-Time (RRT)

e Field caching rules are associated with fields and specify that these fields and
their accessor methods should be cached by remote references. Any calls to
the accessor methods are executed locally with respect to the reference holder
and modify only the local cached copies of the fields.

Using these rules, individual objects can be marshalled not just by-value or by-
reference but as a combination of both. The spectrum ranges from standard remote
references at one end to remote references with all fields and methods cached, which are
effectively by-value copies, at the other. Caching state in remote references allows them
to remain partially usable even when connectivity is lost. The RRT does not provide
automatic coherency control over cached fields, meaning caching is particularly
appropriate for use with fields that are immutable within the context of the current
application.

The transmission policy framework meets the 15™ and 16" requirements, that:

15: It must be possible to control parameter-passing semantics dynamically.

16: Remote references must be capable of caching fields and methods locally.

5.6.2 Transmission Policy Manager

There is a transmission policy manager in each address-space in the distributed
system, through which programmers control transmission policy. Figure 5.31 shows the
ITransmissionPolicyManager interface, which provides methods to control transmission
policy rules and caching policy rules. Only the set() methods that allow programmers to
define rules are shown. The interface also provides a series of ge#() methods that allow
the currently active rules to be accessed but these methods are omitted for brevity. This
interface is implemented by each transmission policy manager instance. Programmers can
obtain a reference to the local transmission policy manager using the
getTransmissionPolicyManager() method in the [RafdaRunTime interface. The
PassingMechanism class, which defines constants to enumerate the parameter-passing
mechanisms supported by the RRT, namely pass-by-reference, pass-by-value and pass-

by-migrate, is also shown in Figure 5.31.

113

Chapter 5: The RAFDA Run-Time (RRT)

public interface ITransmissionPolicyManager {

/* Setting transmission policies */

void setMethodPolicy (Method methodIdentifier,
PassingMechanism passingMechanism,
int depth,
int priority);

void setReturnPolicy(Method methodIdentifier,
PassingMechanism passingMechanism,
int depth,
int priority);

void setArgumentPolicy (Method methodIdentifier,
int argumentNumber,
PassingMechanism passingMechanism,
int depth,
int priority);

void setClassPolicy(Class classIdentifier,
PassingMechanism passingMechanism,

int priority);

/* Caching */

void setFieldToCache (Field fieldIdentifier,
Method getMethodIdentifier,
Method setMethodIdentifier) ;

void setMethodToCache (Method methodIdentifier) ;

/* File-based policies */
void getPolicyFromFile (File policyFile,
boolean replaceCurrentPolicy) ;

void writeCurrentPolicyToFile(File policyFile) ;

public class PassingMechanism {
public static final PassingMechanism BY REFERENCE = ..;
public static final PassingMechanism BY VALUE = ..;
public static final PassingMechanism BY MIGRATE = ..;

Figure 5.31: The ITransmissionPolicyManager interface and PassingMechanism class.

114

Chapter 5: The RAFDA Run-Time (RRT)

5.6.2.1 Setting Transmission Policy Rules

The setMethodPolicy() method is used to control how arguments passed to
particular methods should be marshalled using method policy rules. Programmers identify
a method using an instance of the java.lang.reflect. Method class and indicate an
associated parameter-passing mechanism, a depth indicating how far into the closures of
each argument this rule applies, and a priority. Priority plays a role in resolving conflicts
between policy rules that specify contradictory parameter-passing policies. Conflict
resolution is discussed later in Section 5.6.6.

The setReturnPolicy() method is used to specify return policy rules that control
how the return values of particular methods should be marshalled. It takes the same set of
arguments as setMethodPolicy().

The setArgumentPolicy() method is used to specify argument policy rules that
control how one particular argument of a method should be marshalled. It takes the same
arguments as setMethodPolicy() plus an extra parameter which identifies the particular
argument to which this policy applies.

The setClassPolicy() method is used to specify class policy rules that control how
instances of particular classes are marshalled when passed across the network as

arguments or return values.

5.6.2.2 Setting Caching Policy Rules

The setFieldToCache() method is used to indicate that a particular field in a
particular class should be cached in remote references to instances of that class.
Programmers identify fields using instances of the java.lang.reflect.Field class. In
addition they must identify the accessor methods of the specified field, which are also
cached. Calls to these accessor methods are not propagated across the network but instead
access the locally stored copy of the field.

The setMethodToCache() method is used to indicate that a particular method in a
particular class should be cached in remote references to instances of that class. Any calls
to cached methods will be performed locally with respect to the caller.

These rules allow a hybridization of pass-by-reference and pass-by-value that
permits objects to be passed partially by-reference and partially by-value. Immutable state
within objects can be cached in remote references to reduce the need for remote method

call.

115

Chapter 5: The RAFDA Run-Time (RRT)

5.6.3 File-Based Policy Rules

Policy rules can be defined directly in application source code using the
ITransmissionPolicyManager interface. This provides a mechanism allowing appropriate
default policy to be specified directly in classes but does not provide complete separation
of transmission policy from the functional application. To address this need, the
transmission policy framework allows policies to be stored in a policy file, which
describes one or more policy rules, meaning:

e Transmission policy can be completely separated from source code.

e Transmission policies can be reused in multiple applications.

The getPolicyFromFile() method reads rules from the specified file. The second
argument indicates whether the currently active rules are deleted before the policy rules
defined in the file become active. The writeCurrentPolicyToFile() method writes the
complete set of currently active policy rules back to file.

Policy rule files contain transmission and caching policy. Programmers can
modify the policy files directly in order to change the policy associated with applications
without the need to recompile application source. A simple example policy file in shown
in the following section. Appendix B shows a fuller example and defines the XML
schema of the policy files.

5.6.4 Using Transmission Policy in JChord

In the JChord implementation, keys are immutable and small. Therefore it is
desirable that keys are always passed by-value in order that the application need not
perform remote method calls to access key state. Figure 5.32 shows a class policy rule of
priority 0 associated with class Key that defines this policy. This rule could be defined

when the Key class is loaded, by specifying it in initialization code.

RRT.get () .getTransmissionPolicyManager () .setClassPolicy(Key.class,
PassingMechanism.BY VALUE,
0);

Figure 5.32: Setting pass-by-value transmission policy for keys.

It is also desirable that keys are cached in remote references to instances of
JChordNode, since they are immutable. The Chord class (Figure 5.5) defines a key field
along with two accessor methods, getKey() and setKey(). The printKeyInfo() method is

116

Chapter 5: The RAFDA Run-Time (RRT)

also cached as it makes use only of keys. Figure 5.33 shows a caching policy rule that
caches the key field in instances of any class that extends the Chord class, and a method

caching policy rule that caches the printKeyInfo() method.

/* Caching the key field */

Method getKeyMethod = Chord.class.getDeclaredMethod (
"getKey",
null) ;

Method setKeyMethod = Chord.class.getDeclaredMethod (
"setKey",
new Class[] { Key.class });
Field keyField = Chord.class.getDeclaredField("key") ;
RRT.get () .getTransmissionPolicyManager () .setFieldToCache (
keyField,
getKeyMethod,
setKeyMethod) ;
/* Caching the printKeyInfo method */
Method printKeyInfoMethod = Chord.class.getDeclaredMethod (
"printKeyInfo", null);
RRT.get () .getTransmissionPolicyManager () .setMethodToCache (
printKeyInfoMethod) ;

Figure 5.33: Setting the caching policy for keys.

It would be possible to create a version of the Key class that was always passed
by-value using traditional middleware. However, this key implementation could not be
reused in a different context in which it was mutable. Another by-reference version of the
key would be necessary for such applications.

This following example illustrates the use of transmission policy rules and
caching rules in the context of the Data Store application implemented as part of the
JChord case study. Chapter 2 described the behaviour of the Data Store service and
explained that each Data Store object presented the [DataStorelnternal interface to
remote clients. This is implemented by exposing a JChord node and a Data Store object in
each RRT instance in the distributed system. Each Data Store object is exposed using the
IDataStorelnternal interface shown in Figure 5.34 as remote type with the service name

“DataStore”.

117

Chapter 5: The RAFDA Run-Time (RRT)

public interface IDataStorelInternal {
public void put (Key key, Object data);
public Object get (Key key) ;

Figure 5.34: The IDataStorelnternal interface exposed by the Data Store service.

When an object is stored in the Data Store, a key is generated and associated with
the object. This key has a dual role:

e [t identifies the address-space in which the object is stored. A JChord lookup

of the key maps to the single live JChord node that is collocated with the Data
Store instance holding the object.

e [t identifies the object within the Data Store instance in that address-space.

The Data Store service is accessed via a point-of-presence (POP) that is
implemented by the DataStorePOP class shown in Figure 5.35. This class implements the
IDataStorePOP interface shown previously in Figure 2.14 and takes advantage of the
transmission policy framework.

The store() method is used to insert objects into the store. Objects can be passed to
the store by-reference or by-value. When the store() method is called, an object to store
and a Boolean indicating whether the object will be passed by-reference or by-value are
supplied. Every Data Store object is collocated with a JChord node. The method begins
by generating a key for the application object then performing a JChord lookup on the
key. The application object will be stored by the Data Store object collocated with the
looked up JChord node.

The store() method gets a reference to the RRT instance that exposes this JChord
node using the getExposingRRT() method provided by the IRafdaRunTime interface. A
remote reference to the Data Store object that is exposed by this RRT instance is then
obtained.

The application object and generated key are passed as arguments to the put()
method provided by that remote Data Store object, via the IDataStorelnternal interface.
Using the transmission policy framework, an argument policy rule is created to control

the parameter-passing semantics applied to the stored object.

118

Chapter 5: The RAFDA Run-Time (RRT)

public class DataStorePOP implements IDataStorePOP

private JChordNode localJdChordNode = ..;

public synchronized Key store (Object objectToStore,

}

boolean storeByRef) {
/* Generate and lookup the key for the object to store */
Key key = generateKeyForData (objectToStore) ;
Chord node = localdChordNode.lookup (key) ;
/* Get a remote reference to the Data Store object
* collocated with that JChord node */
IRafdaRunTimeRemote remoteRRT = RRT.get ().
getExposingRRT (node) ;
IDataStoreInternal store = (IDataStoreInternal) remoteRRT
.getRemoteReference ("DataStore") ;
/* Decide the parameter passing semantics */
PassingMechanism passingMechanism = null;
if (storeByRef) ({
passingMechanism = PassingMechanism.BY REFERENCE;
} else {
passingMechanism = PassingMechanism.BY VALUE;
}
/* Set an argument policy controlling how the object will
* be passed to the Data Store object’s put () method */
Method putMethod = null;
try {
putMethod = IDataStoreInternal.class.
getDeclaredMethod ("put",
new Class[] { Key.class, Object.class });
} catch (Exception e) {e.printStackTrace();}
IRafdaRunTime localRRT = RRT.get () ;
localRRT.getTransmissionPolicyManager () .setArgumentPolicy (
putMethod, 1, passingMechanism, 0, 0);
/* Add the data to the store */
store.put (key, objectToStore) ;

return key;

public Object retrieve (Key key) {..}

public Key generateKeyForData (Object data) {..}

Figure 5.35: The DataStorePOP class, which dynamically changes transmission policy.

119

Chapter 5: The RAFDA Run-Time (RRT)

Using conventional middleware, in which the parameter-passing semantics
applied to objects are decided statically, it would not be possible to implement the Data
Store in this flexible manner. The programmer would be forced to apply the same passing
mechanism to all instances of a single class. Using the RRT, class reuse is promoted and
code to handle non-functional considerations does not pervade application classes.

The transmission policy framework promotes the reuse of application classes in
different contexts by allowing the creation of a single implementation to which widely
varying parameter-passing mechanisms can be applied. Programmers can create classes
without concern for the application context in which the classes will be deployed,
provided greater separation of concerns than is possible using traditional middleware
systems.

An example of a transmission policy file is shown in Figure 5.36. This file defines
the class policy shown in Figure 5.32 and the caching policies shown in Figure 5.33. A
more complete example which includes all types of rule is shown in Appendix B. To
allow the framework to identify methods uniquely, the name, class and argument types of
each method are specified. This enables the framework to differentiate between

overloaded methods.

120

Chapter 5: The RAFDA Run-Time (RRT)

<?xml version="1.0" encoding="UTF-8" ?>
<transmissionPolicy>
<classPolicy>
<className>Key</className>
<paramPassingMechanism>byvalue</paramPassingMechanism>
<priority>0</priority>
</classPolicy>
<cachedField>
<className>Chord</className>
<fieldName>key</fieldName>
</cachedField>
<cachedMethod>
<method>
<className>Chord</className>
<methodName >getKey</methodName >
</method>
</cachedMethods>
<cachedMethod>
<method>
<className>Chord</className>
<methodName>setKey</methodName>
<argumentType>Key</argumentType>
</method>
</cachedMethods>
<cachedMethod>
<method>
<className>Chord</className>
<methodName>printKeyInfo</methodName>
</method>
</cachedMethod>

</transmissionPolicy>

Figure 5.36: An example transmission policy file.

5.6.5 Automatic Exposure

If an RRT instance needs to pass a remote reference to an object across the
network but that object has not been exposed, then that RRT instance performs automatic
exposure. By default, the RRT exposes objects using their own classes as remote types,

with automatically generated service names. However, the concept of remote types stems

121

Chapter 5: The RAFDA Run-Time (RRT)

from the fact that it is not always desirable to expose all methods of a given object to
remote access. Programmers can therefore associate particular remote types with
particular application classes, meaning that the RRT will employ the specified remote
types when automatically exposing any instances of the specified application classes. This
association between application class and remote type is created using the
associateClassWithRemoteType() method shown in Figure 5.37, which is provided by the
IRafdaRunTime interface.

void associateClassWithRemoteType (
Class applicationClass,

Class remoteType) ;

Figure 5.37: The associateClassWithRemoteType() method.

5.6.6 Resolving Policy Rule Contention

Contention can occur when two or more rules contradict each other. Consider the
policy rules shown in Figure 5.38, which indicate that the parameters to the addNode()
method are passed by-value to a depth of 0 and that instances of JChordNode are passed
by-reference. These rules contradict each other when an instance of JChordNode is
passed as an argument to the addNode() method. The transmission policy framework

requires meta-rules to determine which transmission policy rules to adopt.

Method addNodeMethod = JChordNode.class.getDeclaredMethod (
"addNode",
new Class[] { Chord.class });

RRT.get () .getTransmissionPolicyManager () .setMethodPolicy (
addNodeMethod,
PassingMechanism.BY VALUE,
0,
0);

RRT.get () .getTransmissionPolicyManager () .setClassPolicy(
JChordNode.class,
PassingMechanism.BY REFERENCE,
0);

Figure 5.38: Policy rule contention.

122

Chapter 5: The RAFDA Run-Time (RRT)

When programmers specify transmission policy rules they must associate
priorities with the rules. When contention occurs, the highest priority rule that applies is
chosen over all others. As a consequence, the transmission policy framework does not
permit the following:

e Two method policy rules of the same priority to be associated with the same

method.

e Two return policy rules of the same priority to be associated with the same

method.

e Two argument policy rules of the same priority to be associated with the same

method and argument.

e Two class policy rules of the same priority to be associated with the same

class.

If a programmer specifies a rule of the same type and priority as an existing rule,
the existing rule is discarded and the new rule adopted. Consequently, when an object is
marshalled during a call to a particular method, there cannot be two applicable rules of
the same type with the same priority. There can however be two conflicting rules of the
same priority but different types.

In Figure 5.38, the two conflicting rules are of different types and were specified
with the same priority of 0. An order of precedence is imposed on policy rules based on
their types to allow the framework to choose between rules of different types with the
same priority. Argument rules are a specialization of method rules, so are defined to have
a higher precedence. Contention cannot exist between return policy rules and
method/argument rules as the former apply policies to return values and the latter to
arguments. Return policy rules are defined (arbitrarily) to be of lower precedence than
method/argument rules. Class policy rules are defined (again arbitrarily) as having the
lowest precedence.

The overall ordering of rules is summarized in Figure 5.39. The rules of higher
priority and precedence will be chosen and followed before the rules of lower priority and
precedence. This approach to rule priority and precedence ensures that the temporal order
in which rules are specified is not relevant, which is important given that policy rules may
be defined dynamically in arbitrary application classes at any time during execution. If no
policy rules are associated with the object to be marshalled then the default by-reference

policy is chosen.

123

Chapter 5: The RAFDA Run-Time (RRT)

Argument policy rule
Chosen Method policy rule Priority
First Return policy rule n
Class policy rule
Argument policy rule
Method policy rule Priority
Return policy rule n-1
Class policy rule
Argument policy rule
Method policy rule Priority
Return policy rule 1
Class policy rule
Argument policy rule
Method policy rule Priority
Chosen Return policy rule 0
Last Class policy rule
Default policy

Figure 5.39: Policy rules ordered by dominance.

5.6.7 Summary of the Transmission Policy Framework

The transmission policy framework allows dynamic control over the parameter-
passing mechanisms employed when calling remote methods. It separates the
specification of the parameter-passing semantics applied to objects from the creation and
implementation of their classes. Policies may be defined dynamically on a per-class, per-
method, per-return-value or per-argument basis. Application semantics are not driven by
decisions made statically. Programmers can also specify caching policies that control
which fields and methods are cached in remote references, allowing hybridization of
pass-by-value and pass-by-reference.

Since transmission policies can be associated with classes on a per-application
basis, a greater degree of class reuse is possible. The most appropriate passing
mechanisms for the circumstances can be applied to instances of arbitrary classes. Classes
can be reused in distributed and non-distributed contexts as policy is controlled

independently of source code. A distributed application can be optimized using

124

Chapter 5: The RAFDA Run-Time (RRT)

hybridized remote references that cache particular fields and methods in order to take

advantage of the programmers’ knowledge of the distributed nature of the application.

5.7 Controlling Distribution Policy

The RRT provides mechanisms through which remote instantiation and object
migration can be performed. These operations can be invoked directly by programmers,
who specify the target address-spaces in which objects are instantiated or to which
migration occurs. In addition to these mechanisms, the RRT provides a distribution policy
framework that allows programmers to specify distribution policies that determine how
application objects are partitioned among the address-spaces in the distributed system
automatically at run-time.

Control over distribution policy is useful as it introduces location transparency
into applications. Applications perform all object instantiation and migration operations
through the framework. The framework determines in which address-spaces in the
distributed system the objects are created or to which address-spaces the objects are
migrated using the active distribution policy. A single application can be distributed in
multiple different ways without changes to its underlying source code. By allowing
programmers to defer distribution decisions to a separate policy framework, the RRT
promotes the separation of application logic from distribution

Changes to the policy that controls remote instantiation and migration allow
programmers to re-configure application partitions to adapt to changes in the distributed
system (e.g. to take advantage of extra machines added to a distributed system) or in the
application itself (e.g. to collocate an object with its current working set). Applications
can evolve dynamically and fine-tune their distributions to maximize performance.

The last four requirements defined in the previous chapter state:

17: It must be possible to create policies to control the placement of objects when
instantiation and migration operations are performed.

18: It must be possible to define object placement policies independently of
application logic.

19: It must be possible to define arbitrarily complex object placement policies in
terms of reusable policy components.

20: It must be possible for policies to use application context to aid policy decisions.

125

Chapter 5: The RAFDA Run-Time (RRT)

The distribution policy framework meets these requirements as follows:

It permits the separation of application logic from application distribution.

It allows the creation of reusable, modular object placement policies.

It permits arbitrarily complex policies.

It permits remote instantiation and migration to be performed consistently with

the object placement policies that apply in remote address-spaces.

Distribution policies are defined at object granularity, rather than a coarse-grained

component level. However, the latter can be achieved by associating distribution policies

with the objects at the edges of the components.

Programmers define distribution policies that, when evaluated, return references

to the RRT instances in the distributed system that meet that particular policy, for

example, a “round robin” policy initialized with a set of RRT instances returns references

to them in a round robin order while a “machines with no more than 50% CPU usage”

policy returns references to machines that meet this criterion. Each application class is

associated with exactly two policies, one to control remote instantiation of the class and

one to control the migration of instances of the class.

5.7.1 Architectural Overview

The distribution policy framework is made up of five conceptual parts:

Policy objects are stateful objects that capture particular distinct distribution
policies, for example, “round robin” or “machines with less than 50% CPU
load”. Policy objects are associated with application classes, but may define
policies at finer-than-class granularity based on programmer supplied
information describing the application context of the instantiation or migration
operation. A single policy object can define the distribution policy for multiple
application classes, allowing policy to be defined at greater-than-class
granularity also.

Factories perform all policy-based object instantiation. They can instantiate
objects locally or remotely in conjunction with factories in remote address-
spaces. Factories query policies to determine in which address-spaces objects

should be instantiated.

126

Chapter 5: The RAFDA Run-Time (RRT)

e Migration controllers perform all policy-based object migration. They query
policies to determine to which address-spaces objects should migrate.

e Distribution policy managers allow applications to obtain references to
factories or migration controllers when they need to perform remote
instantiation or migration.

e Feedback on policy decisions is provided to policy objects by the policy
objects in other address-spaces with which they interact. This allows policy
objects to adapt their behaviour based on responses received from their remote
counterparts.

Figure 5.40 shows the structure of the distribution policy framework and the
relationships between these components. There is a single distribution policy manager in
each address-space, through which applications can access factories and migration
controllers. Each application class is associated with a single factory and migration
controller, though a single factory/migration controller may be associated with multiple
application classes. Each application class is associated with two policy objects; one that
controls the policy applied during remote instantiation (used by the class’s factory) and

one that controls the policy applied during migration (used by the class’s migration

controller).
S IDistributionPolicy
Application Manager
1
IMigrationController IFactory
IFeedback IPolicy

Figure 5.40: The structure of the distribution policy framework.

127

Chapter 5: The RAFDA Run-Time (RRT)

5.7.2 Evaluating Distribution Policies

In order to instantiate or migrate objects according to the active distribution
policy, programmers use the distribution policy manager, which is accessible via the
getDistributionPolicyManager() method provided by the /RafdaRunTime interface. This
method returns a reference to the local distribution policy manager, which meets the

IDistributionPolicyManager interface shown in Figure 5.41.

public interface IDistributionPolicyManager
/* Factories */
IFactory getFactory(Class applicationClass) ;
void setFactoryPolicy(Class applicationClass, IPolicy policy);
void associateFactoryWithClass (
Class applicationClass,

Class factoryClass) ;

/* Migration Controllers */
IMigrationController getMigrationController (Object object) ;
void setMigrationControllerPolicy(Class applicationClass,
IPolicy policy);
void associateMigrationControllerWithClass (
Class applicationClass,

Class migContollerClass) ;

Figure 5.41: The IDistributionPolicyManager interface.
The role of each of these methods is briefly described:

e The getFactory() method returns a reference to a factory that can create
instances of the specified class.

e The setFactoryPolicy() method associates a particular policy object with an
application class to control the policy applied when this class is instantiated
using a factory.

e The associateFactoryWithClass() method allows the programmer to override
the default factory implementation with a customized factory implementation.

e The getMigrationController() method returns a reference to a migration

controller that can be used to migrate the specified object.

128

Chapter 5: The RAFDA Run-Time (RRT)

e The setMigrationControllerPolicy() method associates a particular policy
object with an application class to control the migration policy applied to
instances of this class.

e The associateMigrationControllerWithClass() method allows the programmer
to override the default migration controller implementation with a customized

migration controller implementation.

5.7.3 Defining Distribution Policies

Policy objects are instances of policy classes that implement the /Policy interface
shown in Figure 5.42. The Feedback class, through which policy objects exchange

feedback, is also shown.

public interface IPolicy {
IRafdaRunTimeRemote getRRT (Object context) ;
Feedback evaluatePolicy(Object context) ;

void handleFeedback (Feedback feedback) ;

}

public class Feedback {
private boolean positive = false;

private Object instantiatedObject = null;

public Feedback (boolean positive) {
this.positive = positive;

}

public Feedback (Object instantiatedObject, boolean positive) {
this.instantiatedObject = instantiatedObject;
this.positive = positive;

}

public boolean isPositive() {return positive;}

public Object getInstantiatedObject () {return instantiatedObject;}

Figure 5.42: The IPolicy interface and Feedback class.
The [Policy interface provides the following methods:
e The getRRT() method, which makes the policy decisions. This method returns
the RRT instance that best meets the captured policy at that moment. It takes

an object that describes the application context in which the instantiation or

129

Chapter 5: The RAFDA Run-Time (RRT)

migration operation is performed. This argument can contain any arbitrary
data that the programmer wishes to supply to the policy object. If context is to
have any benefit, programmers must create policy objects that understand it.
The distribution policy framework does not analyse the context directly; it
propagates the context from the application to the policy objects.

e The evaluatePolicy() method returns feedback that is used to determine
whether the local address-space is a suitable choice for an instantiation or
migration. This method is called by factories and migration controllers before
they perform operations on behalf of remote clients.

e The handleFeedback() method is used to pass feedback received from remote
policy evaluation back into the local policy object.

The Feedback class provides the following two methods:

e The isPositive() method is used to indicate whether the returned feedback is
positive or negative.

e The getinstantiatedObject() method is used by factories to access newly
instantiated objects, which are returned from remote factories as part of the
feedback.

Programmers can associate two policy objects with each application class, one to
determine placement during instantiation and one to determine migration policy, using the
setFactoryPolicy() and setMigrationControllerPolicy() methods provided by the
IDistributionPolicyManager interface. If no policy objects are associated with an
application class, then instances of this class will always be instantiated locally by
factories and will never be migrated.

The setFactoryPolicy() method is used to indicate the policy object that must be
evaluated by factories that create instances of the specified application class. The
setMigrationControllerPolicy() method is used to indicate the policy object that must be
evaluated by migration controllers that migrate instances of the specified class.

A simple “single RRT policy” that always returns a reference to a particular RRT
instance is shown in Figure 5.43. It ignores any application context provided by
programmers and returns positive feedback. When queried, this policy will always return

a reference to the RRT instance with which it was initialized.

130

Chapter 5: The RAFDA Run-Time (RRT)

public class SingleRRTPolicy implements IPolicy

private IRafdaRunTimeRemote remoteRRT = null;

public SingleRRTPolicy (IRafdaRunTimeRemote remoteRRT) {

this.remoteRRT = remoteRRT;

}

public IRafdaRunTimeRemote getRRT (Object context) {

return remoteRRT;

}

public Feedback evaluatePolicy (Object context) {

return new Feedback (true) ;

}

public void handleFeedback (Feedback feedback) {}

Figure 5.43: A single RRT policy.

This policy may be used to ensure that all instances of a particular class are
instantiated on a single machine or are migrated to a single machine. For example, the
code fragment in Figure 5.44 specifies that all instances of JChordNode created by the
code running in this RRT instance should be instantiated on the RRT instance bound to
port 5001 of machine “host.rafda.org” by associating an instance of the “single RRT
policy” class with the JChordNode factory.

IDistributionPolicyManager dpm = RRT.get ().
getDistributionPolicyManager () ;

SingleRRTPolicy singleRRTpolicy = new SingleRRTPolicy (
RRT.getRemote (new InetSocketAddress ("host.rafda.org", 5001)));

dpm.setFactoryPolicy (JChordNode.class, singleRRTpolicy) ;

Figure 5.44: Using the single RRT policy.

Figure 5.45 shows a simple round robin policy. Again, this policy does not make
use of application context but exhibits more complex behaviour than the single RRT
policy. It is initialized with a set of RRT instances (perhaps obtained by querying another
policy) and returns references to these RRT instances in round robin order. This policy is

used to distribute objects of a particular class evenly among a number of RRT instances.

131

Chapter 5: The RAFDA Run-Time (RRT)

public class RoundRobinPolicy implements IPolicy {
private IRafdaRunTimeRemote[] remoteRRTs = null;

private int current = -1;

public RoundRobinPolicy (IRafdaRunTimeRemote [] remoteRRTs) {

this.remoteRRTs = remoteRRTSs;

}

public IRafdaRunTimeRemote getRRT (Object context) {

[)

current = (++current) % remoteRRTs.length;

return remoteRRTs [current] ;

}

public Feedback evaluatePolicy(Object context) {

return new Feedback (true) ;

}

public void handleFeedback (Feedback feedback) {

}

Figure 5.45: A round robin policy class.

Figure 5.46 shows how a round robin policy can be associated with both the
JChordNode factory and the DataStore factory. It is notable that both factories are
associated with the same instance of the round robin policy class. The policy object is not
concerned whether it is accessed by the JChordNode factory or DataStore factory; it
simply returns the specified RRT instances in round robin order. For example, if two
instances of JChordNode are created, then two instances of DataStore, the former will be
created on “hostl” and “host2” while the latter will be created on “host3”" and “host4”.
This many-to-one relationship between factories/migration controllers and policy objects
helps avoid a preponderance of policy objects in the system and allows a single policy to

be applied to instances of multiple classes.

132

Chapter 5: The RAFDA Run-Time (RRT)

IDistributionPolicyManager dpm = RRT.get ().
getDistributionPolicyManager () ;

IRafdaRunTimeRemote remoteRRTs[] = new IRafdaRunTimeRemote[] {
RRT.getRemote (new InetSocketAddress ("hostl.rafda.org", 5001)),
RRT.getRemote (new InetSocketAddress ("host2.rafda.org", 5001)),
RRT.getRemote (new InetSocketAddress ("host3.rafda.org", 5001)),
RRT.getRemote (new InetSocketAddress ("host4.rafda.org", 5001)) };

RoundRobinPolicy roundRobinPolicy = new RoundRobinPolicy (remoteRRTs) ;

dpm.setFactoryPolicy (JChordNode.class, roundRobinPolicy) ;

dpm.setFactoryPolicy (DataStore.class, roundRobinPolicy) ;

Figure 5.46: Using the round robin policy.

Policies of greater complexity could be created in several ways:

e Policy objects could make use of profiling tools external to the RRT to base
policy decisions on system or application metrics.

e Multiple policies could be composed together. For example, the round robin
policy could be initialized using the output of another policy object.

e Policy objects that aggregate the output of other policy objects could be
created, such as policies which determine the union or intersection of several
policy objects, effectively acting as filters over this output.

Context can be employed to aid the policy decisions. Context indicates any
additional information that the programmer wishes to supply to aid policy decisions, for
example, the identity of the method or class that is performing the given operation or
meta-data associated with a class or object. This allows policies to differentiate between
instances of the same application class, based on their application context.

Feedback allows policies to exchange arbitrary information. By default, feedback
is positive or negative but programmers are free to extend the Feedback class to provide
an arbitrarily rich explanation of a policy decision. Feedback is not used directly by the
distribution framework; rather it is a vehicle for information interchange that can be
employed by policy objects, much as context allows information to be passed from the
application to the policy objects.

The JChordLookupPolicy class shown in Figure 5.47 illustrates the use of context
and feedback. This policy expects the application to provide a JChord key as context and
returns a reference to the RRT instance exposing the JChord node associated with this

key. When the evaluatePolicy() method is called, this policy casts the context into a key

133

Chapter 5: The RAFDA Run-Time (RRT)

and confirms whether the JChord node associated with the supplied key is the local
JChord node. If so, positive feedback is returned otherwise negative feedback is returned.
The handleFeedback() method expects always to receive positive feedback, since
a single key should always map to the same JChord node unless the underlying ring has
changed. If negative feedback is received, the policy performs some ring maintenance to
confirm the local JChord node’s ring state information is up-to-date. The code shown in

this class omits error-checking and assumes that the context object is the key.

public class JChordLookupPolicy implements IPolicy
private JChordNode localJdChordNode = ..;

public IRafdaRunTimeRemote getRRT (Object context) {
/* Assume context is the key associated with the object */
Key key = (Key) context;
Chord nodeAssociatedWithKey = localJdChordNode.lookup (key) ;
return RRT.get () .getExposingRRT (nodeAssociatedWithKey) ;

}

public Feedback evaluatePolicy(Object context) {
/* Assume context is the key associated with the object */
Key key = (Key) context;
Chord nodeAssociatedWithKey = localdChordNode.lookup (key) ;
if (nodeAssociatedWithKey.equals (localJChordNode)) {

return new Feedback (true) ;

} else {

return new Feedback (false) ;

}

public void handleFeedback (Feedback feedback) {
if (!feedback.isPositive()) ({
/*
* Indicates that the underlying ring has changed.
* Perform some checks to ensure the local ring state
* information is up-to-date

*/

Figure 5.47: The JChordLookupPolicy class.

134

Chapter 5: The RAFDA Run-Time (RRT)

5.7.4 Factories

A default factory implementation is provided with the distribution policy
framework though programmers can create custom implementations of factories in order
to provide arbitrarily complex factory behaviour. This allows programmers control over
the manner in which factories evaluate policies. Factories must trade off the cost of
evaluating distribution policy against the benefits. For instance, it may be advantageous to
spend time evaluating policy carefully for long-lived objects that are instantiated rarely
but not for objects that are instantiated often.

Factories must implement the [Factory interface shown in Figure 5.48. No
semantic restrictions are placed on programmers though the instantiateObject() method is
intended for use by the application to instantiate objects. The method takes five
arguments, namely the class of the object to create, an array of constructor arguments,
application context information, a remote type and a service name. The context argument
holds additional information that the policy can use to aid the placement decision.

The instantiateObjectForRemoteFactory() method is intended for use by remote
factories to perform instantiation in the local address-space. It takes the same arguments

as the previous method but returns a feedback object, rather than a remote reference.

public interface IFactory ({

Object instantiateObject (

Class applicationClass,
Object [] constructorArguments,
Object context,

Class remoteType,

String serviceName) ;

Feedback instantiateObjectForRemoteFactory (
Class applicationClass,
Object [] constructorArguments,
Object context,

Class remoteType,

String serviceName) ;

Figure 5.48: The IFactory interface.

Programmers must implement both of these methods to create a factory

implementation but are free to alter factory behaviour as required. Custom factories are

135

Chapter 5: The RAFDA Run-Time (RRT)

associated with application classes using the associateFactoryWithClass() method, which
is provided by the I[DistributionPolicyManager interface. The distribution policy

framework instantiates the custom factories as required.

5.7.4.1 The Default Factory

The default factory is employed when the distribution policy framework needs to
instantiate classes for which no customized factory implementations exist. To create
instances of a class, the default factory queries the policy associated with that class and
instantiates the object in the RRT instance specified by the policy. Figure 5.49 shows a
sequence diagram describing the flow of control during a particular remote object
instantiation. The general case is discussed after this example. The components of the
distribution policy framework are marked in bold.

The sequence diagram shows the following objects, divided between two RRT
instances, which are marked by large dotted rectangles:

e The application object performing the instantiation.

e The distribution policy managers in the local and remote RRT instances.

e The factories in the local and remote RRT instances associated with the class

to be instantiated.

e The policy objects in the local and remote RRT instances that are associated
with the class to be instantiated.

e The created object.

The sequence diagram contains the following steps:

1. The application needs to instantiate a new object. It obtains a reference to a
factory that can create instances of the required class from the local
distribution policy manager.

2. The distribution policy manager returns a reference to a suitable factory.
The application instructs the factory to create an instance of a particular class.

4. The factory queries the policy associated with that class to determine in which
RRT instance to instantiate the new object.

5. The policy determines that RRT instance 2 is the best choice.

6. The factory asks the distribution policy manager in RRT instance 2 for a

reference to a factory that can create instances of the required class in that

136

Chapter 5:

The RAFDA Run-Time (RRT)

10.

11.
12.

13.
14.

address-space. A reference to a remote distribution policy manager can be
obtained using the /RafdaRunTimeRemote interface.

The distribution policy manager returns a remote reference to a suitable
remote factory.

The local factory asks the remote factory to instantiate the object.

The remote factory evaluates its policy to determine if it deems RRT instance
2 a suitable target in which to instantiate the object.

The policy returns positive feedback indicating that RRT instance 2 is a
suitable target.

The remote factory instantiates the new object.

The remote factory returns feedback, which contains a remote reference to
the new object.

The local factory passes the feedback into its policy.

The local factory returns the remote reference to the application.

137

Chapter 5: The RAFDA Run-Time (RRT)

:Application f1

:Factory

p1:Policy

dpm1:
Distribution
Policy
Manager

14. Reference to
new object

| I
1. Get a reference to the factory
| i
T
|
|
|
|
I
|
|
|
|

dpm2:
Distribution
Policy
Manager

f2:Factory

p2:Policy

9. Evaluate policy

10. Positive
feedback

11. <<create object>>
|

[
[
[
[
[
[
[
[
[
[
o | |
[I I
! [i I
| [} | |
| . L] | |
2.1 | . | |
| ‘ ' | |
]
3. Instantiate ! ! : N } !
j [
object 4. Choose | | 1] | !
optimal RRT ! ; HEH ; !
| 'l | |
5.RRT | : : | |
instance 2 |] ! !
[
! 1 v 1 1
| | [| |
6. Get a reference to the remote factory : : ! !
; ‘ L] v |
| | ' |
! A B HEH !
T T -4 T |
| | L] | I
| | . L] | |
} 8. Instantiate object ¢ ¢ } }
\ 1 — \
| | o |
I I [I
I | [|
	[}
	. .
] L]
! () !	
	[(]
	o
I I [I	
I	[
	[
}12. Feedback including remote reference}o new object}
T v T
13. Handle | ' |
feedback | N !
]
‘ |
. I
] I
' I
[|
' |
H |
' I
' I
. I
' I
]
.

RRT Instance 1

+ RRT Instance 2

Figure 5.49: Sequence diagram showing a remote object instantiation.

138

Chapter 5: The RAFDA Run-Time (RRT)

The sequence diagram shows the flow of control during a particular remote

instantiation. In other circumstances, the policy in the local RRT instance may determine

that the object should be instantiated locally. Alternatively, the factory in the remote RRT

instance may refuse to instantiate the object because its policy returns negative feedback.

The following describes the flow of control during remote instantiation in general terms.

1. The programmer obtains a reference to a factory that can create instances of the

required class via the distribution policy manager.

2. The programmer instructs the factory to instantiate the object.

3. The factory queries the policy to determine which RRT instance is the optimal choice

in which to instantiate the object. The policy returns a reference to that RRT instance.

3.1.

OR
3.1.

3.2.

3.3.
3.4.

3.5.

3.6.

If the policy has specified that the local RRT instance is the optimal
choice, the factory instantiates the object immediately and returns a

reference to the programmer.

If the policy has specified that a remote RRT instance is the optimal

choice, the factory attempts to instantiate the object in the remote RRT

instance specified by the policy.

The local factory uses the distribution policy manager in the remote

RRT instance to obtain a reference to a remote factory that is capable of

instantiating instances of the required class.

The local factory instructs the remote factory to instantiate the object.

The remote factory checks with its policy to determine whether the

instantiation should be performed based on the feedback provided by its

policy.

The remote factory returns the feedback to the local factory. If the

instantiation was successful, this feedback contains a remote reference to

the newly created object.

The local factory passes the feedback into its policy.

3.6.1. If instantiation was successful, the remote reference to the new
object included in the feedback is returned to the programmer.

OR

139

Chapter 5: The RAFDA Run-Time (RRT)

3.6.1. If instantiation was not successful, the local factory queries its
policy again to determine which other RRT instances the policy
deems as suitable targets for instantiation.

3.6.2. The factory attempts remote instantiation, as described above, at
each RRT instance in turn, until the object is instantiated
successfully. If all possible RRT instances are tried without

success, the factory instantiates the required object locally.

This approach shares the responsibility for choosing the target address-space
among the policies in all participating address-spaces, though the local policy retains
responsibility for ensuring that the operation completes. Remote policies have the power

to veto the local policy to ensure that instantiation does not occur in their address-spaces.

5.7.5 Deploying a JChord Ring using the Framework

When remote instantiation was described earlier in Section 5.4.4, a ring of JChord
nodes was deployed by instantiating and exposing nodes in remote address-spaces. The
example in Figure 5.50 shows how the code to perform those instantiations (Figure 5.25)
can be modified to deploy the nodes according to an active distribution policy, rather than
explicitly. Initially, a round robin policy object is created and associated with instances of
the JChordNode class. Association of a policy object with an application class can be
performed at any point during the application initialization, not necessarily immediately
before the distribution policy framework is employed, as in this example.

A reference to a factory that can create instances of JChordNode is obtained from
the local distribution policy manager. The application performs four instantiation
operations by calling the instantiateObject() method four times, specifying the Chord
class as remote type and the service names “Node(”, “Nodel”, etc. Aside from the node
created first, each instance of JChordNode that is created is passed as an argument to the
addNode() method, in order to connect it to the ring. Location transparency has been
introduced into the JChord deployment application. By altering the distribution policy

associated with the application, the application can be deployed in different ways.

140

Chapter 5: The RAFDA Run-Time (RRT)

public void deployRingAccordingToPolicy () ({
/* Create an array of references to available RRT instances */
IRafdaRunTimeRemote remoteRRTs[] = new IRafdaRunTimeRemote[] {
RRT.getRemote (new InetSocketAddress (
"hostl.rafda.org", 5001)),
RRT.getRemote (new InetSocketAddress (
"host2.rafda.org", 5001)),
RRT.getRemote (new InetSocketAddress (
"host3.rafda.org", 5001)),
RRT.getRemote (new InetSocketAddress (
"host4.rafda.org", 5001)) };
/* Create the round robin policy object */
RoundRobinPolicy roundRobinPolicy =
new RoundRobinPolicy (remoteRRTs) ;
/* Associate the round robin policy with the JChordNode class */
IDistributionPolicyManager dpm = RRT.get() .
getDistributionPolicyManager () ;
dpm.setFactoryPolicy (JChordNode.class, roundRobinPolicy) ;
/* Get a reference to a suitable factory */
IFactory nodeFactory = dpm.getFactory (JChordNode.class) ;
Chord[] remoteNodes = new Chord[4];
for (int x = 0; x < 4; x++) {
/* Perform remote instantiation using the factory */
remoteNodes [x] = (Chord) nodeFactory.instantiateObject (
JChordNode.class,
new Object[] { new Key() },
null,
Chord.class,
"Node"+Xx) ;
/* Add each newly created node to the ring */

if (x > 0) remoteNodes[x - 1] .addNode (remoteNodes [x]) ;

Figure 5.50: Deploying a JChord ring using the distribution policy framework.

5.7.6 Migration Controllers

Migration controllers decide when and to where migration will occur.

Applications must poll migration controllers to evaluate migration policy, otherwise no

141

Chapter 5: The RAFDA Run-Time (RRT)

policy evaluation occurs and no migration occurs. Programmers decide on a per-object
basis how often to poll the migration controller.

Migration controllers implement the /MigrationController interface shown in
Figure 5.51. Although programmers are free to decide the semantics of these custom
implementations, the migrateObject() method is intended for use by applications to
evaluate migration policy and perform any required migration. The
isSuitableTargetAddressSpace() is intended for use by remote migration controllers to

evaluate the policy in the local address-space.

public interface IMigrationController {
void migrateObject (
Object object,
Object context) ;
Feedback isSuitableTargetAddressSpace (
Object object,

Object context) ;

Figure 5.51: The IMigrationController interface.

Programmers associate custom migration controller implementations with
application classes using the associateMigrationControllerWithClass() method, which is
provided by the IDistributionPolicyManager interface. Custom migration controllers are

instantiated as required.

5.7.6.1 The Default Migration Controller

The default migration controller implementation is used to evaluate the migration
policy for any classes that are not associated with customized migration controllers.
Figure 5.52 shows a sequence diagram describing the flow of control during a particular
migration operation. The general case is discussed after this example.

The sequence diagram shows the following objects, divided between two RRT
instances, which are marked by large dotted rectangles:

e The application object performing the migration.

e The distribution policy managers in the local and remote RRT instances.

e The migration controllers in the local and remote RRT instances associated

with the migratory object’s class.

142

Chapter 5:

The RAFDA Run-Time (RRT)

The policy objects in the local and remote RRT instances that are associated
with the migratory object’s class.

The migratory application object.

The sequence diagram contains the following steps:

l.

10.

11.
12.
13.

14.

The application polls the framework to determine whether an object should
migrate. It asks the local distribution policy manager for a reference to a
migration controller associated with this object.

The distribution policy manager returns a reference to a suitable migration
controller.

The application asks the migration controller to evaluate the migration
policy for the object and perform the migration if necessary.

The migration controller queries its policy to determine in which RRT
instance the object should be located.

The policy determines that RRT instance 2 is the best choice.

The migration controller asks the distribution policy manager in RRT
instance 2 for a reference to a migration controller in that address-space
which can evaluate the migration policy associated with this particular object.
The distribution policy manager returns a remote reference to a suitable
remote migration controller.

The local migration controller instructs the remote migration controller to
evaluate whether RRT instance 2 is a suitable target for migration.

The remote migration controller evaluates its policy.

The policy returns positive feedback indicating that it deems RRT instance 2
a suitable target.

The remote migration controller returns the feedback.

The migration controller passes the feedback into its policy.

The local migration controller performs the migration.

The migration controller method returns.

143

Chapter 5: The RAFDA Run-Time (RRT)

RRT Instance 1+

+ RRT Instance 2

Figure 5.52: Sequence diagram showing a migration operation.

. H :
: dpm1: : H dpm2:
: ' :
[. [] e . . .
H . e mc1:Migration DAl Distribution o ! Distribution mc2:Migration I
(] ‘Application Controller p1:Policy Policy [} : Policy Controller p2:Policy
H Manager H ! Manager
[) [Y
: L | i i : ' i | I
H 1. Get migration controller } N : } } }
' r r '
. | | [| | |
[) | | [| | |
] } 2. met } [} } }
H ” T 1 T H H I I I
H 3. Migrate } ! | [| | i
] i .
] object } 4. Choose } } : : } } :
H optimal RRT | } 0 ! } } !
. | . . | | I
' 5.RRT } H l | i
] instance 2 |] : | | !
. T | [| | |
. | | [| | I
. | | [Y | | |
: 6. Get remote migration controller : ' } } }
. ; 7 LJ : | |
' | | H | |
; | T.me2 | P | |
] T 1 -y T | |
: | | ' | | !
' 8. Check if RRT Instance 2 is a suitable target for migration | 1
' i | v . | | 9. Evaluate |
T T " T . 1
: ! ! 4 : ! policy !
: | | :] |
; | | ' |
H ! ! HE ! 10. Positive
H ! ! I ! feedback
]]
] ! 11. Positive feedbac.k H ! |
' i f " i . |
]
H 12.Handle | | . ! l 1 |
4 feedback ! ! [! ! !
] | | [| | |
. | [| | |
' | H | | |
: | :) | | |
: | b : | |
] | | LI | | 1
] | o | | | 1
: 13. <<perform migration>> } } } }
: 14. Return } } Object | i i
| | | | |
]
; L | | | | | | |
.
. | | | 1 - 1 | |
H I I I I : 4 I I I
; by
]
L

144

Chapter 5: The RAFDA Run-Time (RRT)

The sequence diagram shows the flow of control during a particular migration
operation. Under different circumstances, the policy in the local RRT instance may
determine that migration should not occur at all. Alternatively, the migration controller in
the remote RRT instance may return negative feedback. The following describes the flow

of control during the evaluation of migration policy in general terms.

1. The programmer obtains a reference to a migration controller associated with the
migratory object via the distribution policy manager.

2. The programmer polls the migration controller to determine whether migration
should occur.

3. The migration controller queries the policy to determine in which RRT instance the
object should be located.

4.1. If the policy has specified that the local RRT instance is the optimal
choice, then no migration occurs.

OR

4.1. If the policy has specified a remote RRT instance as the optimal choice,
the migration controller evaluates the policy in that RRT instance.

4.2. The local migration controller uses the distribution policy manager in
the remote RRT instance to obtain a reference to a remote migration
controller associated with the migratory object.

4.3. The local migration controller requests that the remote migration
controller evaluate its policy.

4.4. The remote migration controller evaluates its policy to determine
whether the migration should be performed. The remote migration
controller receives feedback from its policy.

4.5. The remote migration controller returns the feedback to the local
migration controller.

4.6. The local migration controller passes the feedback into its policy.

4.6.1. If the feedback is positive then the migration controller
migrates the object to that RRT instance.

OR

4.6.1. If the feedback is negative then the migration controller queries
its policy again to determine which other RRT instances the

policy deems as suitable targets for migration.

145

Chapter 5: The RAFDA Run-Time (RRT)

4.6.2. The migration controller re-evaluates the remote policy at each
RRT instance in turn, as described above, until a suitable target is
found. If all possible RRT instances are tried without success,

then no migration is performed.

Like the default factory implementation, the default migration controller offers a
balanced approach to policy evaluation. Ultimate responsibility for determining whether
migration takes place remains with a single policy but policies in remote address-spaces

can participate in the decision.

5.7.7 Migrating Objects in JChord Automatically

Object migration was described in Section 5.4.5. The example in that section
shows a database object migrating between address-spaces to free resources without loss
of referential integrity. The following example modifies that original example by
associating a round robin distribution policy with that migratory database object’s class.
Initially the database object exists in host2.rafda.org (Figure 5.28). A round robin policy
(Figure 5.45) associated with the remaining machines is created as shown in Figure 5.53.

This round robin policy is associated with the database (db) object’s class.

/* Configure the distribution policy framework */
IRafdaRunTime localRRT = RRT.get () ;
IRafdaRunTimeRemote remoteRRTs[] = new IRafdaRunTimeRemote[] {
RRT.getRemote (new InetSocketAddress (
"hostl.rafda.org", 5001)),
RRT.getRemote (new InetSocketAddress (
"host3.rafda.org", 5001)),
RRT.getRemote (new InetSocketAddress (
"host4.rafda.org", 5001)) };
RoundRobinPolicy roundRobinPolicy = new RoundRobinPolicy (remoteRRTs) ;
IDistributionPolicyManager dpm = localRRT.
getDistributionPolicyManager () ;

dpm.setMigrationControllerPolicy (db.getClass (), roundRobinPolicy) ;

Figure 5.53: Associating a round robin policy with the database object.

When the database application detects resources running low in host2.rafda.org it
polls the distribution policy framework to determine the RRT instance to which the object

will migrate, by calling the migrateObject() method. The application does not explicitly

146

Chapter 5: The RAFDA Run-Time (RRT)

choose the RRT instance to which the database object migrates. Instead, it performs a call
into the distribution policy framework as shown in Figure 5.54, thereby delegating the
policy decision. The round robin policy will cause the migration to hostl.rafda.org to

occur, as shown in Figure 5.30.

IRafdaRunTime localRRT = RRT.get () ;

IDistributionPolicyManager dpm = localRRT.
getDistributionPolicyManager () ;

IMigrationController dbmc = dpm.getMigrationController (db) ;

dbmc.migrateObject (db, null);

Figure 5.54: Evaluating the migration policy associated with the database object.

5.7.8 Summarizing the Distribution Policy Framework

The distribution policy framework controls the placement of objects in the
distributed system when remote instantiation and migration operations are performed.
Arbitrarily complex distribution policies can be created and associated with application
classes. Policy objects can make use of the application context in which operations occur
to aid policy decisions and can exchange feedback to allow cooperation between multiple
address-spaces.

The framework uses factories to perform all policy-based remote instantiation and
migration controllers to control object migration. Default implementations of factories
and migration controllers are provided though programmers can create customized
versions on a per-class basis to allow factory and migration controller behaviour to be
defined on a per-application basis, allowing complete customization of the distribution
policy framework. Programmers can use the default implementations for convenience but
can obtain full control over the semantics of policy-based remote instantiation and
migration if required.

The distribution policy framework separates application logic from distribution by
introducing location transparency into remote instantiation and migration. Unlike existing
approaches to the specification of distribution policy, the framework provides a flexible
and expressive approach to defining application distribution dynamically and does not
make assumptions about the granularity at which policies will be applied. Further, no

limitations are placed on the kinds of distribution policy that can be specified.

147

Chapter 5: The RAFDA Run-Time (RRT)

5.8 Configuring the RRT

The IRafdaRunTimeConfig interface shown in Figure 5.55 allows control over
RRT behaviour. Each configurable property of the RRT has a unique name that is used by
programmers to get and set its value. The complete configuration can also be read from or

written to file.

public interface IRafdaRunTimeConfig {
void setProperty (String property, String value);
String getProperty (String property) throws Exception;
void writeConfigurationToFile(File configurationFile) ;

void readConfigurationFromFile (File configurationFile) ;

Figure 5.55: The IRafdaRunTimeConfig interface policies.

The complete set of configurable aspects is listed in Appendix C along with a
description of valid values for each. Examples of the configurable properties include:

e The network interface or port to which an RRT instance is bound.

e Control over code generators.

e Firewall configuration.

e Control over the approach to memory management adopted by each RRT

instance.

The code fragment shown in Figure 5.56 sets properties that cause the RRT
instance to bind to the network interface associated with the host name “host.rafda.org”
and port 12345, with a socket timeout of 60 seconds (60000ms). The configuration can be
altered at any time with a few exceptions, for example, the network interface or port to

which an RRT instance binds cannot be changed after an object has been exposed.

IRafdaRunTimeConfig rrtConfig = ..;

rrtConfig.setProperty ("networkInterface", "host.rafda.org");
rrtConfig.setProperty ("port", "12345");
rrtConfig.setProperty ("socketTimeout", "60000");

Figure 5.56: Setting properties to control RRT behaviour.

148

Chapter 5: The RAFDA Run-Time (RRT)

5.9 Conclusion

The RAFDA Run-Time (RRT) is a middleware system providing a rich feature set
that meets the requirements of a third generation middleware system that were defined in
the previous chapter. The RRT allows programmers to separate the design and
implementation of application logic from distribution-related concerns. As a result, the
development effort required when creating distributed applications or when introducing
distribution into existing application is reduced. Distributed applications created using the
RRT are more maintainable and more easily evolvable than applications created using

traditional systems.

149

Chapter 6: Implementing the RAFDA Run-Time

Chapter 6
-
Implementing the RAFDA Run-Time

A prototype implementation of the RRT is described and evaluated
quantitatively in this chapter. Particular attention is given to the manner
in which the RRT attaches to arbitrary application objects dynamically,
provides remote references that are type-compatible with local references,
supports remote instantiation, implements migration, offers flexibility in
parameter-passing semantics and provides efficient implementations of

the policy frameworks.

150

Chapter 6: Implementing the RAFDA Run-Time

6.1 Introduction

This chapter describes the implementation of the RRT prototype. The previous
chapter introduced the [RafdaRunTime, I[RafdaRunTimeRemote and I[RafdaRunTime-
Config interfaces (shown in Figure 5.9, Figure 5.18 and Figure 5.55 respectively) through
which programmers access the RRT. The RRT prototype addresses several difficulties
inherent in implementing the design described in the previous chapter, the main ones
being:

e Attaching the middleware system to arbitrary application objects dynamically.

e C(reating remote references that can be used interchangeably with local

references.

e Support for remote instantiation of objects.

e Support for object migration.

e Allowing the middleware system to alter the parameter-passing mechanisms

applied to arguments and return values dynamically.

e Creating optimized implementations of policy frameworks.

The RRT prototype has been implemented using Java and so all code examples
are in this language. While the RRT prototype does not employ any unique features of
Java, some of the implementation details, such as the special steps taken to handle static

members, are specific to a Java implementation of the RRT.

6.2 Overview of the RRT Implementation

Figure 6.1 shows an overview of the RRT architecture. It illustrates the flow of
control when a remote method call is performed by object 4 on object B. Circles represent
objects and rectangles represent components of the RRT. The large dotted rectangles in

each address-space represent RRT instances.

151

Chapter 6: Implementing the RAFDA Run-Time

[RRT ~ RRT!
SOAP |
Transmitter Request Receiver
| Serializer Deserializer :
|

Il

B Invocation
[Interface

Service |\,
Adaptor

e

.
| soAP |4 SOAP

|

|

|

|

|

|

|

|

T

r—
~a
|
|
|
|
|
|
|
|
/I/ SOAP
L

Proxy to B | |
| Deserializer Serializer |
| SOAP |
Receiver \E_/ Transmitter
I— - — SOAP - |
Address-Space 1 Response Address-Space 2

Figure 6.1: Flow of control through the RRT when a remote method call is performed.

Object 4 holds a reference to a proxy object associated with object B. When
object 4 invokes a method on the proxy, the proxy forwards the call into the invocation
interface provided by the client-side RRT instance. The client-side RRT instance
marshals the method call and arguments, serializing arguments as required, and constructs
a SOAP request. The request is passed to the server-side RRT instance, which
deserializes the arguments and un-marshals the method call. The call on object B is
performed by a service adaptor, which allows the server-side RRT instance to attach to
any application object.

The return value is passed to the service adaptor, serialized then passed back
across the network to the client-side RRT instance in a SOAP response. The client-side
RRT instance deserializes the return value and passes it to the proxy object. The proxy
object returns this value to object 4.

Figure 6.2 shows a UML class diagram showing the structure of the RRT
prototype implementation. The RRT implementation classes and interfaces are shaded.
The RRT implementation can automatically generate ancillary code required to
implement inter-address-space communication and these classes are represented by un-

shaded boxes.

152

Chapter 6: Implementing the RAFDA Run-Time

Figure 6.2: The structure of the classes and interfaces in the RRT implementation.

A — <<interface>> <<interface>> <<interface>> <<interface>>
' IRafdaRunTime IRafdaRunTime IRafdaRunTime IRafdaRunTime
IRafdaRunTime y . .
Remote Config Private RemotePrivate
RRT RRTImplementation RRTPrivate
Key
RRT Classes
& Interfaces
Public RRT
Interfaces
Generic Generic <<interface>>
ServiceAdaptor SerializerDeserializer Proxy
Generated
Automatically
\ \ \
\ \
PerClass PerClass PerClassProx
ServiceAdaptor SerializerDeserializer y

The main RRT implementation class, called RRTImplementation, implements five

interfaces. The [RafdaRunTime, I[RafdaRunTimeRemote and I[RafdaRunTimeConfig

interfaces, which allow programmers to access RRT instances, were introduced in the

previous chapter. These are the only publicly accessible interfaces and are marked in

bold. The other two interfaces, called /RafdaRunTimePrivate and IRafdaRunTimeRemote-

Private, define methods that are for internal use.

The IRafdaRunTimePrivate interface shown in Figure 6.3 defines a series of

methods that are used by automatically generated client-side code to access the local RRT

instance.

153

Chapter 6: Implementing the RAFDA Run-Time

interface IRafdaRunTimePrivate ({
Object invokeRemoteInstanceMethod (RafdaIOR rafdaIOR,
String methodIdentifier,
Object [] arguments) ;
Object invokeRemoteStaticMethod (Class applicationClass,
String methodIdentifier,
Object [] arguments) ;
boolean isHandlingStaticMethods (Class applicationClass) ;
PassingMechanism evaluateTransmissionPolicy (
Class argumentClass,
Method methodIdentifier,
int argumentNumber,
int depth,

boolean isReturnValue) ;

Figure 6.3: The IRafdaRunTimePrivate interface.

This interface provides the following methods:

e The invokeRemotelnstanceMethod() method which allows proxy objects to
perform remote method calls.

e The invokeRemoteStaticMethod() and isHandlingStaticMethods() methods,
both of which are used to preserve non-distributed static method semantics.

e The evaluateTransmissionPolicy() method which determines the parameter-
passing semantics to apply to objects that are passed across address-space
boundaries.

The [RafdaRunTimeRemotePrivate interface, shown in Figure 6.4, provides

functionality to remote RRT instances.
interface IRafdaRunTimeRemotePrivate {

byte[] getClassCode (String className) ;

RafdaIOR migrateObject (Object objectToMigrate) ;

Figure 6.4: The IRafdaRunTimeRemotePrivate interface.

This interface provides the following methods:
e The getClassCode() method which is used to perform code distribution.

e The migrateObject() method which implements object migration.

154

Chapter 6: Implementing the RAFDA Run-Time

The functionality provided by both interfaces is examined in more detail
throughout this chapter.

The RRT class introduced in the previous chapter in Figure 5.4 is used by
programmers to access RRT instances. The RRTPrivate class shown in Figure 6.5 is used
only by RRT instances and proxy objects to obtain references to the /RafdaRunTime-
Private and [RafdaRunTimeRemotePrivate interfaces of other RRT instances. The

RRTPrivate class is not accessible to programmers.

class RRTPrivate {
public static IRafdaRunTimePrivate get () {..}

public static IRafdaRunTimeRemotePrivate getRemote () {..}

Figure 6.5: The RRTPrivate class.

The class diagram in Figure 6.2 contains five further classes and an interface:

o GenericServiceAdaptor provides a generic implementation of the service
adaptor functionality which allows the RRT to attach to arbitrary application
objects. The RRT can generate per-class implementations of service adaptors
automatically. These per-class service adaptors extend the generic
implementation class. They are represented on the diagram by the class
PerClassServiceAdaptor.

e GenericSerializerDeserializer provides a generic serializer/deserializer, which
is capable of serializing and deserializing instances of arbitrary application
classes. The RRT can generate per-class implementations of
serializer/deserializers automatically. These per-class implementations extend
the generic implementation class. They are represented on the diagram by the
class PerClassSerializerDeserializer.

e All proxy classes (represented by the PerClassProxy class) are generated on a

per-class basis and implement the Proxy interface.

6.3 Implementing Server-Side Functionality

Each RRT instance is an instance of class RRTImplementation. Each RRT
instance is exposed to remote access twice, using the [RafdaRunTimeRemote and
IRafdaRunTimeRemotePrivate interfaces as its remote types. The basic connectivity that

is provided by the RRT via remote method invocation is exploited to simplify the

155

Chapter 6: Implementing the RAFDA Run-Time

implementation of the RRT itself. Clients can access remote RRT instances as easily as
any other remote objects.

Self-exposure allows the RRT implementation to be easily maintained and
extended. New functionality could be introduced to RRT instances by declaring new
methods in [IRafdaRunTimeRemote and implementing them in RRTImplementation,
without the need to modify the underlying protocols or perform custom inter-address-
space communication. Changes to the RRT implementation itself can be made as easily as

changes to a distributed application created using the RRT as a middleware system.

6.3.1 Identifying Exposed Objects

Remotely accessible objects are associated with identifiers called RAFDA
Interoperable Object References (RafdalORs), from CORBA parlance, that uniquely
identify the objects in the distributed system. RafdalORs implement the remote reference
functionality in the RRT and allow clients to identify remote objects. If an object is
passed by-reference, it is the RafdalOR associated with the object that is passed across the
network. Each RafdalOR identifies an exposed Web Service rather than an individual
object so a single object that is exposed multiple times is associated with multiple
RafdalORs. The RafdalOR associated with a particular object contains:

e The InetSocketAddress of the RRT instance exposing the object. When remote
method calls are performed on the object, this address determines the RRT
instance to which the SOAP requests are sent.

e A string representation of a 160-bit Universally Unique Identifier (UUID) that
identifies the Web Service associated with the exposed object. UUIDs are
generated randomly by the RRT such that no two services will ever have the
same UUID.

e An instance of java.lang.Class capturing the remote type associated with the
object, which was specified at exposure time. This remote type is used client-
side during proxy generation and indicates which methods of those provided
by the object’s class will be remotely accessible. The automatic generation of
proxy classes is described in Section 6.4.2.

e An instance of java.lang.Class capturing the class of the object. This is
identified as the real class to differentiate it from the object’s remote type.

This class is also used during proxy generation.

156

Chapter 6: Implementing the RAFDA Run-Time

e A list of the fields to be cached in any remote references to the object, which
is used during proxy generation.

e A list of the methods to be cached in any remote references to the object,
which is also used during proxy generation.

e The current values of any cached fields.

The RafdalOR implementation class is shown in Figure 6.6.

public class RafdaIOR {
private InetSocketAddress rrtInstance = null;
private Class remoteType = null;
private Class realClass = null;
private String uuid = null;
private Field[] cachedFields = null;
private Object[] cachedFieldvValues = null;
private Method[] cachedMethods = null;

public RafdaIOR (InetSocketAddress rrtInstance,
Class remoteType,
Class realClass) {
this.uuid = ..; // Generate UUID string
this.rrtInstance = rrtInstance;
this.remoteType = remoteType;

this.realClass = realClass;

}

/* Getters and setters omitted */

Figure 6.6: The RafdalOR class.

6.3.2 Service Adaptors

Service adaptors provide skeleton functionality in the RRT, allowing the
infrastructure to attach to arbitrary application objects. When a remote call is performed
on a remotely accessible object, the RRT instance exposing the object uses a service
adaptor to access the object. Service adaptors are similar to servants that adopt the tie
approach in CORBA [8]. There is a one-to-one correspondence between service adaptors

and exposed services, meaning that there will be multiple service adaptors associated with

157

Chapter 6: Implementing the RAFDA Run-Time

objects that are exposed with multiple remote types. Each service adaptor is an object that
holds the following:

e A local reference to the exposed object.

e The RafdalOR associated with the service, to allow the RRT to obtain the
RafdalOR associated with a particular object when passing that object across
the network.

e A timestamp indicating when the service was last accessed by a remote client.

e A map between the names of the methods provided by the Web Service and
instances of the java.lang.reflect. Method class, which allow reflective access
to the exposed methods of the object.

e A Boolean indicating whether this service adaptor is acting as a tombstone.
Tombstones are used during object migration and are described in Section
6.4.5.

The service adaptor permits only the methods defined in the remote type to be

invoked on the exposed object. If a client attempts to call a method that is not provided by
the remote type, the call will fail, even if the exposed object’s class implements that

method.

6.3.2.1 Generic Service Adaptor Implementation

The generic service adaptor implementation is shown in Figure 6.7. When an
object is exposed, an instance of this class is created. A map from Web Service method
names, which are used in SOAP requests, to instances of the Method class, which allow
the methods to be called reflectively, is initialized. This map allows direct lookup of
methods based on Web Service method names when handling remote calls, without the
need for any processing of the method name. The map is populated based on the remote
type and so it ensures that only methods defined in the remote type are accessible
remotely. An RRT instance can invoke a method on the exposed objects using the
invokeMethod() method, supplying the Web Service method name, any arguments and a
Boolean flag indicating whether the caller is permitted access to non-public methods.
Since the invoked method may throw exceptions, invokeMethod() throws an instance of

Throwable, the super-type of all exceptions and errors in Java.

158

Chapter 6: Implementing the RAFDA Run-Time

public class GenericServiceAdaptor
private Object exposedObject = null;
private RafdaIOR rafdaIOR = null;
private long timestamp = 0;
private HashMap<String, Method> nameToMethodMap = null;

private boolean isTombstone = false;

public GenericServiceAdaptor (Object exposedObject,
RafdaIOR rafdaIOR) ({
this.exposedObject = exposedObject;
this.rafdaIOR = rafdaIOR;
this.timestamp = System.currentTimeMillis() ;
/* Code to populate nameToMethodMap omitted */
}
public Object invokeMethod (String wsMethodName,
Object [] arguments,
boolean callerHasNonPublicAccess) throws Throwable
/* Get hold of the java.lang.reflect.Method object
* gssociated with this Web Service method name */
Method m = nameToMethodMap.get (wsMethodName) ;
if (m != null) {
/* If the caller has access, invoke the method */
if (callerHasNonPublicAccess ||
Modifier.isPublic (m.getModifiers())) {
this.timestamp = System.currentTimeMillis() ;

return m.invoke (exposedObject, arguments) ;

}

throw new NoSuchMethodException ("Unknown method " +
wsMethodName + " ().");
}
public Object getExposedObject () {return exposedObject;}
public RafdaIOR getRafdaIOR() {return rafdaIOR; |}
public long getTimestamp() {return timestamp;}
/* Methods used to implement migration */
public void becomeTombstone () {isTombstone = true;}

public boolean isTombstone() {return isTombstone;}

Figure 6.7: The GenericServiceAdaptor class.

159

Chapter 6: Implementing the RAFDA Run-Time

Clients may only access non-public methods of exposed objects if the local
protection semantics permit it. RRT instances can distinguish between clients that use the
RRT and other clients by the HTTP headers supplied with SOAP requests. Clients using
other technologies are not permitted to access non-public methods by default. Conversely,
clients using the RRT are always permitted to access them. Each server-side RRT
instance relies on its client-side counterpart to preserve local protection semantics. Each
RRT instance trusts that no other RRT instance will permit a remote call that violates the

local protection mechanism.

6.3.2.2 Automatically Generated Service Adaptors

Instances of the GenericServiceAdaptor class can be used to expose instances of
any application class. However, the cost of Java reflection is incurred on every method
call. In Java, it is more expensive to perform a method call using the reflection tools than
it is to call the same method directly. The RRT can employ generative programming
techniques to create customized service adaptors on a per-class basis. The per-class
service adaptors call methods on exposed objects directly without using runtime
reflection, with the reflective step moved to the time when the per-class service adaptors
are generated. Per-class service adaptors all extend the GenericServiceAdaptor class and
override invokeMethod() to create a version that is specific to a particular application
class and remote type. The classes are generated and compiled dynamically by the RRT.

Dynamic compilation is performed using tools that are currently provided as part
of the Java 2 SDK, Standard Edition (up to and including version 5.0 [40]) and the St
Andrews Dynamic Java Compiler [89]. These tools are not guaranteed to be present in
every Java implementation though dynamic compilation can be performed reliably under
Microsoft Windows, RedHat Linux and MacOSX.

The example in Figure 6.8 shows a generated service adaptor that is associated
with instances of class JChordNode (Figure 5.6) that have been exposed using class
Chord (Figure 5.5) as remote type. The remote type dictates which of the exposed
object’s methods will be remotely accessible. Note that the exposedObject field must be
typed according to the exposed object’s real class. This is necessary because the exposed
object’s class does not necessarily implement or extend the remote type (though in this
particular case it does); they need only be structurally compliant such that every method

in the remote type has a counterpart with an identical signature in the exposed object’s

160

Chapter 6: Implementing the RAFDA Run-Time

class. Both the real class of the exposed object and the remote type with which is has been

exposed must be known in order to generate the associated service adaptor.

public class JChordNode$Chord$ServiceAdaptor
extends GenericServiceAdaptor {

private JChordNode exposedObject = null;

public JChordNode$Chord$ServiceAdaptor (
JChordNode exposedObject,
RafdaIOR rafdaIOR) ({
this.exposedObject = exposedObject;
this.rafdaIOR = rafdaIOR;
this.timestamp = System.currentTimeMillis() ;
}
public Object invokeMethod (String wsMethodName ,
Object[] arguments,
boolean callerHasNonPublicAccess) throws Exception ({
if (wsMethodName .equals ("lookup")) {
return exposedObject.lookup ((Key) arguments[0]) ;
} else if (wsMethodName .equals ("addNode")) {
exposedObject .addNode ((Chord) arguments[0]) ;
return null;
} else if (wsMethodName .equals ("getSuccessorNode")) {
return exposedObject.getSuccessorNode () ;
} else if (wsMethodName .equals ("getKey")) ({
return exposedObject.getKey () ;
} else if (wsMethodName .equals ("setKey") &&
callerHasNonPublicAccess) {
exposedObject.setKey ((Key) arguments[0]) ;
return null;
} else if (wsMethodName .equals ("printKeyInfo")) ({
exposedObject.printKeyInfo() ;
return null;
}
throw new NoSuchMethodException ("Unknown method " +

wsMethodName + " ().");

Figure 6.8: The per-class service adaptor associated with class JChordNode and remote type Chord.

161

Chapter 6: Implementing the RAFDA Run-Time

The constructor in this generated class behaves differently to the inherited super
constructor as it does not need to initialize the Web Service method name to Method
object map required by the generic service adaptor. Also, the setKey() method declared in
Chord is protected and so invokeMethod() must check whether the caller has non-public
access before calling this method. The generated service adaptor class is created in the
same Java package as the exposed object’s class and so has access to methods with
public, protected and default modifiers. However, it cannot access private methods of the
exposed object directly. Generated service adaptors employ reflection to access private
methods, negating their advantage over the generic implementation.

In order to allow generated service adaptors to access all methods directly, the
RRT implementation provides a class loader that makes all application class members
public at class load-time. If this class loader is employed, then the service adaptor will be
able to access any of the exposed object’s methods. This process is considered safe as the

transformations are performed on code that has been verified by a standard compiler.

6.3.2.3 Generic vs. Generated Service Adaptors

Programmers specify in the RRT configuration whether the RRT should use the
generic service adaptor or generate them on a per-class basis (see Appendix C for details).
The two types of service adaptor offer different trade-offs [90]. The per-class versions are
more efficient than the generic alternative in terms of per-call cost but incur the one-time
cost of code generation and compilation. The generic implementation is more suitable for
applications in which a large number of different classes of object are exposed and few
remote calls are performed on each class of object. In such an environment, each
generated per-class service adaptor would be used a small number of times, meaning that
the cost of generation and compilation would outweigh the cost of incurring reflection on
each method call. The generated per-class implementations are more suitable for use in
applications in which exposed object lifetime is long or in which many remote calls are
made to instances of each class. The cost of generation and compilation in these
circumstances is amortized over many method calls.

By default, all generated code is discarded when the RRT instance that generated
it terminates. However, programmers can configure the RRT to indicate that the
generated code should be cached for future runs of the application. Currently, the RRT
does not detect if the application classes associated with cached code have been modified

since the code was created, necessitating another configuration option to indicate that all

162

Chapter 6: Implementing the RAFDA Run-Time

cached code should be discarded and re-generated. Future work may address this problem
by including a content hash in the cached code that is used to detect changes in the

underlying application classes.

6.3.3 Service Adaptor Infrastructure

As described in the previous chapter, services are always accessible via URLs
based on their UUIDs and, provided the services were not automatically deployed, are
accessible via URLs based on programmer-specified service names. SOAP requests are
passed to specific URLs and RRT instances must associate these URLs with service
adaptors, in order to perform the calls. Each RRT instance holds a service map that is
used for this purpose. The service map associates service URLs with service adaptors.

The RRT also holds an object map mapping from objects to service adaptors,
which is used for server-side object management. Each entry in the object map associates
an exposed application object with a secondary map, called the remote type map. The
remote type map associates all the remote types with which an object is exposed to the
corresponding service adaptors. The object map allows the RRT instance to find all the
Web Services and corresponding remote types associated with a particular object, in order
to determine whether an object is currently exposed or to obtain the RafdalORs associated
with a particular object. Figure 6.9 shows the service map and object map data structures

present in an RRT instance and an application object A.
RRT

Object Map Service Map
Key | Value Key | Value

L ___ —_— [=

Object Map ///
Reference |

Remote
Type Map

; Key | Value

— — Service

Adaptor RafdalOR

/

/
// ;U
/ [
// 3
/ (o]
/ =
/ D
| —
! <
! el

0] }

Figure 6.9: The Service Map and Object Map data structures, including an application object.

163

Chapter 6: Implementing the RAFDA Run-Time

When an object is exposed with a particular remote type, a RafdalOR is generated
for the newly exposed service. A service adaptor is instantiated and initialized with the
reference to the exposed object and the RafdalOR. The last access time in the service
adaptor is set to the current system time. Mappings are then created:

e Between the object and its service adaptor in the object map.

e Between the UUID-based URL and the service adaptor in the service map.

e Between the service-name-based URL and the service adaptor in the service

map, if a service name has been specified.

The object map also controls whether the local garbage collector is allowed to
collect exposed objects. As described in the previous chapter, the RRT provides
programmers with three approaches to object lifetime management:

1. The RRT infrastructure allows exposed objects to be collected when they are
no longer referenced locally by the running application, even if referenced
remotely. To achieve this, the RRT holds only weak references to exposed
objects, which are ignored by the local garbage collector when determining
whether an object is referenced.

2. The RRT holds (conventional strong) references to exposed objects and
continues to do so until they are removed from remote access manually.

3. The RRT holds (conventional strong) references to exposed objects. However,
the references to any exposed objects that are not accessed remotely within a
programmer-defined lease time are changed into weak references, allowing the
local collector to reclaim them.

Figure 6.9 shows the references that exist when the RRT instance adopts approach

1. Conventional strong references are shown as solid arrows and weak references are
shown as dashed arrows. In this example, both the service map and object map are
implemented in Java using weak maps. Weak maps hold weak references to keys and so
the keys may collected by the local collector, despite their presence in the weak map. The
weak map detects when collection of keys has occurred and automatically removes the
associated mappings, thereby releasing any references held to values associated with
those keys.

The RRT infrastructure holds no strong references to the application object 4. The
object map holds a weak reference to the application object and as long as the application

object is extant, the object map will hold a strong reference to the associated remote type

164

Chapter 6: Implementing the RAFDA Run-Time

map. Consequently, the remote type map will not be collected, nor will the object’s
service adaptor, RafdalOR or service URL.

The local collector is free to reclaim object A. If it does so, the weak object map
will detect the collection of one of its keys (object 4) and will release the reference it
holds to the value associated with this key (object A’s remote type map). The remote type
map is no longer referenced and so will eventually be reclaimed, along with the service
adaptor, RafdalOR and service URL object.

The two other approaches to memory management can be adopted on a per-RRT-
instance basis through the RRT configuration. If the second approach to memory
management is taken, in which application objects are never collected, the object map is
implemented as a conventional map rather than a weak map. The reference held by the
object map to the application object, marked Object Map Reference would be a strong
reference. This ensures that the application object is always (strongly) locally referenced
and so will never be collected until it is explicitly removed from remote access by the
programmer.

The third approach to memory management, in which objects not accessed within
the lease time are collected, is implemented using two object maps, one conventional and
one weak. Initially, objects are placed into a conventional object map that strongly
references them. Periodically, the RRT instance checks to see whether objects have been
accessed within the lease time. Those that have not are moved from the conventional
(strong) object map to the weak object map.

As with the first approach, the local collector may now reclaim the objects if
necessary but the RRT instances can still access the corresponding service adaptors if any
incoming remote calls to the objects arrive before collection. If remote calls occur, the
objects are moved back into the conventional object map and their last access time is
updated.

Using two separate object maps has advantages over an approach based on a
single object map that holds both strong and weak references. Weak maps in Java have
subtly different semantics to conventional maps holding weak references to keys. Even
when a key is collected, a conventional map will continue to hold a strong reference to
the associated remote type map, forcing programmers to remove the mapping manually.
Using a weak map ensures that housekeeping is performed automatically by the local
garbage collector when the application object 4 is collected. RRT instances do not need

to take any special steps to detect the collection of exposed application objects.

165

Chapter 6: Implementing the RAFDA Run-Time

6.3.4 Serializers and Deserializers

The RRT is capable of passing instances of arbitrary classes by-value. The
implementation of appropriate serializers and deserializers that allow the transmission of

arbitrary objects across the network is described here.

6.3.4.1 Serializers

A generic reflective serializer is provided. It is a generic object browser that
examines the fields present in any arbitrary object and generates a corresponding SOAP
encoded representation of the object using reflection. Using generative programming
techniques, the RRT can generate and compile customized per-class serializers that
directly access fields when serializing instances of a particular class. The per-class
serializers do not use reflection when accessing public, protected and default fields
though do when accessing private fields. The RRT class loader described previously in
the context of service adaptors can again be employed to make all fields in application
classes public to avoid the need for any reflection when serializing objects using the
generated serializers.

The trade-offs between the generic and per-class implementations are similar to
those faced when deciding which kind of service adaptor implementation to employ. The
per-class generated serializers are more appropriate than the generic implementation
when many instances of each class are serialized, allowing the one-time cost of
generation and compilation to be amortized over many serialization operations. By
default, the per-class serializers are deleted when the RRT instance that generated them
terminates. The generated code may be cached across multiple runs of the application, in

the same manner as per-class service adaptors, in order to avoid the cost of re-generation.

6.3.4.2 The Sub-type Problem

Conventional Web Services semantics dictate that return values are passed by-
value. Each method provided by a Web Service has a statically defined return type and
Web Services can return only objects that are of exactly this type. Instances of sub-types
of the statically defined return types cannot be returned when using standard Web
Services. The reason for this limitation with respect to sub-types is as follows.

Standard Web Services perform inter-address-space communication using the

SOAP protocol. When an object is serialized into XML using SOAP, the middleware

166

Chapter 6: Implementing the RAFDA Run-Time

needs to associate a type with this serialized object to permit deserialization. Using
standard Web Services technology, each client holds a mapping between programming
language types and XML namespaces. The XML namespace corresponding to the
serialized object’s type is included in the serialized object data. From this namespace, a
deserializer can map the namespace back to a programming language type in order to
instantiate the object.

Since there are an infinite number of possible sub-types of a statically defined
return type, it is not possible to associate a unique XML namespace with every sub-type
statically. Thus, conventional Web Services technologies cannot return arbitrary types
because serializers cannot capture type information in the serialized object data.

Support for sub-typing is provided through an extension to Web Services
semantics, which is incompatible with standard Web Services. The RRT employs the
extended semantics when both client and server are RRT-based to allow full support for
the transmission of sub-types. When the RRT is used in conjunction with conventional
Web Services technology, standard Web Services semantics are adopted. The RRT
determines whether to employ extended semantics on a per-class basis.

Transmission of sub-types is achieved using an approach similar to autotyping in
Apache Axis [57]. A deterministic mapping from programming language class to
namespace is adopted at serialization time. The namespace consists of two parts. The first
part indicates that the RRT performed the serialization using this deterministic naming
scheme and identifies the programming language in use. The second part contains the
fully qualified name of the associated class. This approach allows the deserializer to
determine the class of a serialized object directly from its namespace, negating the need
for explicit mappings between namespaces and types. Figure 6.10 shows the namespace

generated when an instance of Java class JChordNode in package jchord is serialized.

"uk.ac.stand.dcs.rafda/java:jchord.JChordNode"

Figure 6.10: Deterministically generated namespace.

6.3.4.3 Deserializers

The RRT implementation includes a generic deserializer that performs all object
creation and initialization reflectively. To create objects, the generic deserializer uses the

default constructor if one exists otherwise it uses one of the other constructors, specifying

167

Chapter 6: Implementing the RAFDA Run-Time

default values for the initialization arguments. These default values are overwritten when
the deserialized state is written into the newly instantiated object. This approach to object
creation can have unexpected consequences if any of the constructors have side-effects.
This problem could be solved in future work by generating a special RRT constructor for
each application at load-time, to be used only for object instantiation during
deserialization.

When performing deserialization, an RRT instance may need to instantiate a class
for which it has no locally accessible code. A code distribution system that allows the
deserializing RRT instance to query the serializing RRT instance in order to obtain the
required code in binary form is provided. The received code can then be loaded
dynamically and the instantiation performed.

Code is obtained from a remote RRT instance via the getClassCode() method
(shown in Figure 6.11) provided by the IRafdaRunTimeRemotePrivate interface (shown
in Figure 6.4). Given the name of a class, it returns an array of bytes that encodes that
particular class. Application code is distributed throughout the distributed system lazily

using this mechanism.
byte[] getClassCode (String className) ;

Figure 6.11: The getClassCode() method, used for code distribution.

Per-class deserializers can be generated to complement per-class serializers, in
order to avoid the cost of reflection. Much like per-class serializers, per-class deserializers
are beneficial in applications in which many instances of a particular application class are
deserialized over the lifetime of the RRT instance. Generated deserializers cannot directly
modify final or private fields though this limitation is overcome by reverting to reflective
access where necessary. Programmers can employ the RRT class loader, to makes all
fields non-final and public, in order to avoid the need for any reflective operations in

generated deserializers.

6.4 Implementing Client-Side Functionality

As discussed at the beginning of this chapter, each RRT instance exposes itself to
remote access using the /RafdaRunTimeRemote interface. Clients can obtain a reference

to a remote RRT instance using the getRemote() method in the RRT class. Clients can

168

Chapter 6: Implementing the RAFDA Run-Time

obtain references to remote objects, instantiate objects in remote address-spaces and

migrate objects between address-spaces using this interface.

6.4.1 Proxy Objects

An application can call the getRemoteReference() method on a remote RRT
instance to obtain a reference to an exposed object. The remote RRT instance returns the
RafdalOR associated with the exposed object. The RafdalOR is not type-compatible with
the application object it represents so the client cannot call methods directly on the
RafdalOR, therefore a type-compatible proxy object is created to encapsulate the
RafdalOR.

Proxy objects in the RRT adopt a dual role:

1. They act as conventional middleware proxies, namely as local handles on
remote objects that propagate method calls across the network.

2. They act as wrappers that introduce a layer of indirection into applications
to allow object migration to be performed transparently with respect to the
objects’ reference holders.

Each role is now examined in turn.

6.4.1.1 Conventional Proxy Behaviour

Each proxy object is associated with a single remote object. The proxy object
appears to clients to be an instance of the remote type, irrespective of the real class of the
remote object. Proxy classes are generated from remote types but contain only non-static
methods. Static methods are handled as described later in Section 6.4.3. For each non-
static method declared in the remote type, a type equivalent proxy method is created in
the proxy class.

A proxy method propagates calls across the network using the remote invocation
method provided by the local RRT instance. This remote invocation method, called
invokeRemotelnstanceMethod(), is found in the [RafdaRunTimePrivate interface. This
interface, shown in Figure 6.12, is not publicly accessible and is used only by proxy

objects to perform remote method calls.

169

Chapter 6: Implementing the RAFDA Run-Time

Object invokeRemoteInstanceMethod (RafdaIOR rafdaIOR,

String wsMethodName,

Object [] arguments) ;

Figure 6.12: The invokeRemotelnstanceMethod() invocation method.

When calling the invokeRemotelnstanceMethod() method, the proxy object passes

the RafdalOR of the remote object to be called, the name of the method to be called and

any arguments. The local RRT instance marshals the method call according to the active

transmission policy. Arguments may be passed by-reference, by-value or by-migrate.

If an argument is passed by-reference, then the associated RafdalOR is
transmitted across the network. The argument is automatically exposed if
necessary. Before serializing a RafdalOR, the RRT examines the active
transmission policy to determine if any fields or methods of the referenced
object are cached. If so, the RRT updates the cached field and method
information in the RafdalOR. The RafdalOR is then serialized and added to
the SOAP message.

If an argument is passed by-value, it is serialized and added to the SOAP
message. Pass-by-value semantics may only be applied to objects that exist
locally. If the transmission policy dictates that by-value semantics should be
applied to an argument which itself is a remote reference, then the RRT passes
that argument by-reference.

If an argument is passed by-migrate, then the RRT initially checks whether the
argument has been wrapped through a call to makeMigratable(), in preparation
for migration. If so, the object is migrated immediately to the remote address-
space then passed by-reference. If the argument does not support migration

then it is passed by-reference.

The resulting SOAP message consists of the Web Service method name and a

series of serialized arguments, some of which are remote references. The RRT instance

sends the SOAP message to the corresponding remote RRT instance using the socket

address stored in the RafdalOR.

The server-side RRT instance receives and deserializes the SOAP request

resulting in a Web Service method name along with a series of arguments, some of which

are RafdalORs. RafdalORs are not type-compatible with the arguments they represent.

170

Chapter 6: Implementing the RAFDA Run-Time

The RRT instance checks whether the RafdalOR corresponds to a local object and, if so,
will pass that object to the method call instead of the RafdalOR. Alternatively, if a proxy
object corresponding to the RafdalOR already exists then that proxy object is passed to
the method call. If no proxy object exists, one is created. The appropriate proxy class is

generated and compiled automatically if necessary.

6.4.1.2 Wrapper Behaviour

Proxy classes in the RRT also play a role in object migration, which is
implemented using Stub Scion Pair (SSP) Chains [91]. Instances of a particular proxy
class can act as a wrapper to instances of the associated application class. By introducing
this layer of indirection, the RRT can ensure referential integrity when a migratory object
is copied from one address-space to another. All local and remote references to the
original copy of the migratory object in the old address-space must be updated to refer to
the copy in the new address-space. It is desirable, though not logically necessary, to
change all remote references in the new address-space into local references to the copy in
that address-space.

The substitution of an application object with a proxy object is difficult as there is
no mechanism in Java, or in other typical object-oriented languages, to substitute one
object directly for another i.e. to substitute an application object with a proxy object.
Further, given an arbitrary object, it is not possible to determine which other objects
reference it locally when using typical languages, making direct update of references in
place difficult. The following example illustrates how wrappers can be used to allow
substitution. Figure 6.13 shows an application in which object 4 in address-space 1 is
exposed to remote access. Object 4 is locally referenced by multiple objects in address-
space 1 and remotely referenced by multiple objects in address-spaces 2 and 3. There is
one proxy object in each of address-spaces 2 and 3 that allow the reference holders to call
methods in the remote object A. Application objects are darkly shaded whilst proxy
objects are lightly shaded.

171

Chapter 6: Implementing the RAFDA Run-Time

: / Address-Space 2

|
Address-Space 1 @

Address-Space 3

Figure 6.13: An example application in which both local and remote references to object A exist.

When the makeMigratable() method is called on object 4 to introduce support for
migration, the object is wrapped using a proxy object. A reference to the wrapper returned
to the application and all references to object 4 are updated (by programmers) to
reference the proxy object. Figure 6.14 illustrates the resultant changes to the application.

Object 4 is referenced directly only by the wrapper (local proxy object). The
proxy in address-space 1 forwards any calls performed by reference holders onto the
wrapped object. The proxy objects in address-spaces 2 and 3 are conventional proxies,
forwarding calls across the network. Any of the proxy objects in the system can act as
wrappers meaning that the location of 4 is now transparent with respect to its reference

holders, whether local or remote.

: : @ “ Address-Space 2
Address-Space 1 @ .

Address-Space 3

Figure 6.14: The application structure after makeMigratable() has been called on object 4.

172

Chapter 6: Implementing the RAFDA Run-Time

To migrate object A4 to address-space 2, it is first copied to that address-space as
shown in Figure 6.15. The proxy in address-space 2 becomes a wrapper and the proxy in
address-space 1 becomes a conventional proxy. The only references that need to be
updated are those present in the proxy objects themselves, all of which are known and
accessible to the RRT. In address-space 1, the service adaptor associated with the object
begins to act as a tombstone so that other remote references can be updated lazily when
they attempt to access object A4 in address-space 1. The details of migration
implementation and the manner in which references are updated coherently are discussed

later.

' B '
: : @ @ Address-Space 2

Address-Space 1 @ '

Address-Space 3

Figure 6.15: The application structure after object 4 has migrated from address-space 1 to 2.

Without the layer of indirection introduced by the wrapper object, it would not be
possible to convert all local references in address-space 1 into remote references (by
substituting object A4 with a proxy) or to convert the remote references in address-space 2

into local references (by substituting the proxy with the new copy of object 4).

6.4.2 Implementing Proxy Classes

It has been shown that proxy objects adopt two distinct roles as:
e Conventional middleware proxies used to perform remote method calls.
e Wrappers used to introduce indirection into applications to allow the
implementation of transparent object migration.
Proxy objects are instances of proxy classes, which are always generated
automatically. No generic proxy implementation exists as it is not possible to create proxy

objects that appear to clients to be instances of the associated remote types without using

173

Chapter 6: Implementing the RAFDA Run-Time

code generation. Each proxy class is constructed based on the real class of an exposed
object, the remote type with which the object is exposed and the lists of cached fields and
methods included in the RafdalOR.

Each proxy class implements the methods defined in the remote type. When
acting as a conventional proxy, these methods are either un-cached, meaning that they
propagate the call into the RRT infrastructure, or are cached, meaning that they execute
locally. When acting as a wrapper, all method calls are forwarded onto the locally
wrapped application object.

Each proxy object holds a reference to a wrapped application object or the
RafdalOR associated with a remote object but never both. When behaving as a wrapper,
each proxy object also hold a reference to a reader/writer lock of class ReadWriteLock.
This lock is used at migration time to lock access to the local object while it is copied to
another address-space and the references are updated. The behaviour of this lock is
described later in the context of migration.

Each proxy class implements the interface shown in Figure 6.16, which allows
access to the locally wrapped object, the RafdalOR associated with the proxy and the

reader/writer lock.

public interface Proxy (
Object getLocalObject () ;
void setLocalObject (Object localObject) ;
RafdaIOR getRafdaIOR() ;
void setRafdaIOR (RafdaIOR rafdaIOR) ;
ReadWriteLock getReadWriteLock () ;

Figure 6.16: The Proxy interface implemented by all proxy classes.

Since Java supports only single class inheritance, the inheritance hierarchy
adopted by generated proxy classes differs depending on whether the remote types with
which they are associated are Java interfaces or Java classes. When a remote type is a
Java interface, the associated proxy class extends the real class of the exposed object and
implements the remote type and Proxy interfaces as shown in Figure 6.17. Consequently,
instances of the proxy class appear to clients to be instances of both the remote type and
the real class. In addition to extending the application, the proxy class contains a field

typed as the application class, in order to implement wrapper behaviour.

174

Chapter 6: Implementing the RAFDA Run-Time

<<interface>> <<interface>> <<class>>
Proxy RemoteType ApplicationClass
1
<<class>>
Per-ClassProxy

Figure 6.17: Proxy class derived from a remote type that is a Java interface.

When a remote type is a Java class, the associated proxy class extends the remote
type and the Proxy interface only, as shown in Figure 6.18. Though the proxy class does
not extend the application class, it still contains a field typed as the application class to
allow it to wrap an instance of that class. Instances of the proxy class appear to be

instances of the remote type, not instances of the exposed object’s real class.

<<interface>> <<class>> <<class>>
Proxy RemoteType ApplicationClass
1
Per-ClassProxy

Figure 6.18: Proxy classes derived from remote types that are Java classes.

Figure 6.19 shows the proxy class generated when an instance of the JChordNode
class is exposed to remote access using the Chord class as remote type. In this example, it
is assumed that the lookup() method is un-cached and so behaves as a conventional proxy
method but that the getKey() method is cached and so executes locally.

When called, the lookup() proxy method will either invoke the method locally on
the wrapped object or invoke it remotely through the RRT instance, depending on

whether the proxy object is acting as a conventional middleware proxy or a wrapper. The

175

Chapter 6: Implementing the RAFDA Run-Time

getKey() method is cached so either accesses the method directly on the wrapped object
(when behaving as a wrapper), or accesses a local implementation (when acting as a
proxy with a cached method). It is important to note the distinction between cached
methods and wrapper methods. The proxy class inherits cached methods from its super-
class so they execute on the proxy object while wrapper methods execute on the wrapped
object.

The reader/writer lock is used to implement migration and is described in detail
later. Each method must ensure it holds a reader lock before accessing the locally
wrapped object. The try-finally construct ensures that the lock is always released, even if

exceptions are thrown.

public class JChordNodesChord$Proxy extends Chord implements Proxy {
private RafdaIOR rafdaIOR = null;
private JChordNode localObject = null;

private ReadWriteLock readWriteLock = new ReadWriteLock () ;

/* Un-cached method */
public Chord lookup (Key key) {
readWriteLock.getReadLock () ;
try {
if (localObject != null) {
return localObject.lookup (key) ;
} else {
IRafdaRunTimePrivate rrt = RRTPrivate.get () ;
return (Chord) rrt.
invokeRemoteInstanceMethod (
rafdalIOR,
"lookup",
new Object[] { key });
}
} finally ({

readWriteLock.releaseReadLock () ;

176

Chapter 6: Implementing the RAFDA Run-Time

/* Cached method */
public Key getKey() {
readWriteLock.getReadLock () ;

try {
if (localObject != null) {
return localObject.getKey () ;
} else {
/* Call inherited method implementation */

return super.getKey () ;

}

} finally {

readWriteLock.releaseReadLock () ;

}

/* Other methods from Chord omitted */

public Object getLocalObject () {return localObject;}

public void setLocalObject (Object localObject)
this.localObject = (JChordNode) localObject;

}

public RafdaIOR getRafdaIOR() {return rafdalOR;}
public void setRafdalIOR(RafdaIOR rafdalIOR)
this.rafdaIOR = rafdaIOR;

}

public ReadWriteLock getReadWriteLock() {return readWriteLock; }

Figure 6.19: The proxy class associated with JChordNode instances exposed with remote type Chord.

6.4.3 Static Members

Static members (that is, methods and fields) are associated with classes rather than
objects. The RRT provides two alternatives to handling static members. The first
approach does not intercept static method calls, thereby allowing all of them to execute
locally. The consequence of this is that each Java Virtual Machine holds a private copy of
the fields. This approach has the advantages that it is efficient in terms of execution time
as no remote calls occur and that the RRT is not required to take special steps to handle
static members.

Using the second approach, programmers must identify a single RRT instance in

the distributed system as the root. The root has responsibility for tracking which RRT

177

Chapter 6: Implementing the RAFDA Run-Time

instances have responsibility for the static members of which classes. The root RRT must
be set in every RRT instance in the distributed system via the RRT configuration.

The second approach requires the use of the RRT class loader, which can
transform applications to allow interception of static method calls. The RRT instance in
which the static members of a particular class are first accessed is assigned to be the home
RRT instance for that class, in which its static fields will be stored. The root acts as arbiter
to ensure that exactly one RRT instance becomes home instance for each application
class. If static methods of a class are called by objects in the home RRT instance, they
execute as normal, accessing the locally held copies of the static fields. If static methods
of a class are accessed by objects in any other RRT instances, the calls are intercepted and
the equivalent static methods remotely invoked on the home RRT instance.

The class loader transforms all static methods dynamically at class load-time.
When called, each static method will check with the local RRT instance to determine
whether the method executes locally or remotely. It then either executes the method as
normal or performs a remote call to the equivalent method in another RRT instance.
Figure 6.20 shows an example class called JChordNodeSingleton, which has not yet been
transformed to support remote access to static members. It contains a static field called

singleton that is accessed via the getSingleton() method.

public class JChordNodeSingleton {

private static JChordNode singleton = ..;

public static JChordNode getSingleton() {

return singleton;

Figure 6.20: An untransformed class containing a static method.

Figure 6.21 shows the JChordNodeSingleton class after transformation. The
existing code is unchanged aside from the introduction of several lines at the beginning of
the static method that use the IRafdaRunTimePrivate interface to determine whether the

static member should be accessed remotely, and if so, to perform the remote call.

178

Chapter 6: Implementing the RAFDA Run-Time

public class JChordNodeSingleton

private static JChordNode singleton = ..;

public static JChordNode getSingleton() {
IRafdaRunTimePrivate rrt = RRTPrivate.get () ;
if (!rrt.isHandlingStaticMethods (JChordNode.class)) {
return (JChordNode) rrt.
invokeRemoteStaticMethod (

JChordNode.class,
"getSingleton",
null) ;

}

return singleton;

Figure 6.21: A class with a transformed static method.

The isHandlingStaticMethods() is used to determine whether the local RRT
instance is the home of the specified class. If so, then the method executes locally as
normal. If not, the invokeRemoteStaticMethod() method is called. This method propagates
the call to that home RRT instance of the specified class. The root RRT instance can be
used to determine the home RRT instance of any class.

The failure model adopted by the RRT when calling remote static methods is
identical to that used when calling remote instance methods. The RRT can consume

distribution-related exceptions or can propagate them back to the application.

6.4.4 Creating Objects in Remote Address-Spaces

The instantiateAndExpose() method defined in the I[RafdaRunTimeRemote
interface allows a programmer to create an instance of any arbitrary class in a remote

RRT instance and expose it for remote access. This method is shown in Figure 6.22.

Object instantiateAndExpose (Class classToInstantiate,
Object [] constructorArguments,
Class remoteType,

String serviceName) ;

Figure 6.22: The instantiateAndExpose() method.

179

Chapter 6: Implementing the RAFDA Run-Time

The implementation of this method relies on the transmission policy framework
and the self-exposure provided by the RRT instances. The Java reflection tools are used
to instantiate and initialize an instance of the specified class. The remote RRT determines
which constructor to use based on the types of the specified constructor arguments. The
object is then exposed with the remote type and service name. Finally, a remote reference
to the newly created object is returned to the caller.

This functionality is implemented in a few lines of code in the RRT. This is as a
direct consequence of the RRT’s exposure of itself to remote access and the control over
parameter-passing semantics afforded by the transmission policy framework. By building
on the flexibility provided by the RRT infrastructure, advanced middleware functionality

can be easily provided.

6.4.5 Migrating Objects to Remote Address-Spaces

Migration is implemented by building on the transmission policy framework and
the dual nature of proxy objects. When programmers call the makeMigratable() method
provided by the /IRafdaRunTime interface, a proxy object is created and used to wrap the
supplied application object. A reference to this wrapper is returned and the programmer
must ensure that all objects holding references to the application object are updated to
refer to the wrapper, as shown previously in Figure 6.14. Once this has been achieved, the
location of the application object is transparent to all its reference holders.

The RRT implements migration by copying the migratory object to the remote
address-space then updating all references to it. In order to achieve this consistently, no
clients can be permitted to call methods on the migratory object after the migration
process has begun, until it is completed and all references have been updated. If updates
to the old copy of the object were allowed after it had been duplicated into the remote
address-space, those changes would not be reflected in the new copy of the object, and so
would be lost.

To ensure application coherency, the RRT employs a locking mechanism that
ensures migration will only be performed when no methods are executing on the object
and that no method calls will be performed until the migration operation completes. A
reader/writer lock is used to provide the required functionality. This lock allows multiple
readers but only one writer to hold the lock simultaneously. When a writer tries to obtain
the lock, it is blocked until all readers holding the lock release it. If a reader attempts to

obtain the lock while a writer is blocked waiting for it, that reader is also blocked.

180

Chapter 6: Implementing the RAFDA Run-Time

The reader/writer lock is used as follows. A read lock must be obtained in order to
call a method on a wrapped object. A write lock must be obtained in order to migrate the
wrapped object to another address-space. Thus, multiple methods may be executed
simultaneously on the wrapped object but migration cannot proceed until all methods
executing on the wrapped object complete. Any attempt to call a method on a wrapped
object in the middle of a migration operation is blocked until that operation is completed
and the writer lock released.

Thus migration of a particular object proceeds as follows:

e The local RRT instance obtains a write lock on the reader/writer lock in the

service adaptor associated with the migratory object.

e The migratory object is copied to the new RRT instance and exposed using the
remote type specified when makeMigratable() was called. If the migratory
object was exposed in the old address-space using other remote types, it is re-
exposed with those remote types also.

e The RRT permits at most one proxy object in a single address-space to be
associated with the same object and remote type. If there is an extant proxy
object associated with this migratory object in the remote address-space, it is
used as a wrapper for the new copy of the migratory object.

e The wrapper in the old address-space is updated with the RafdalOR of the
object in the remote address-space and begins to act as a conventional proxy.

e All service adaptors associated with the object are updated to become
tombstones, by calling their becomeTombstone() methods. If any clients
attempt to access the object at the old address-space, the RRT detects that
migration has occurred through the presence of the tombstone. The service
adaptors hold the new RafdalOR of the migrated object and return it to the
caller by returning a response indicating that migration has occurred. The
client updates its remote references with this RafdalOR and reattempts the
call.

The RRT provides a migrate() method through the [RafdaRunTimeRemote
interface, allowing migration to be performed by programmers. This method is
implemented using the RRT’s support for pass-by-migrate semantics. The migrate()
method in the RRT instance is an empty method that performs no computation but is

associated with a method policy rule indicating that pass-by-migrate semantics should be

181

Chapter 6: Implementing the RAFDA Run-Time

applied to an infinite depth when it is called. Thus, when called, it will immediately return
but any arguments passed to it will be migrated to the remote RRT instance as a result of

the active transmission policy.

6.4.6 Remote Method Call Cost

The cost of remote method calls in the RRT prototype was compared with the
equivalent calls using other middleware systems. A test application was created then
distributed using multiple different middleware technologies. The run-time cost of
method calls was determined to allow comparisons between the RRT and existing
middleware systems. The following Java-based systems were evaluated:

e The RRT.

e Java RMI (J2SE 1.5).

e (CORBA (using the ORB supplied with J2SE 1.5).

e Apache Axis (version 1.2 final) deployed in Tomcat (version 5.5) [92].

Additional versions of the test application were created to execute under the
Microsoft .NET framework, which permits programmers to choose between SOAP and a
proprietary TCP-based transport protocol when performing remote method calls. The
following .NET based systems were evaluated:

e Microsoft NET framework using SOAP channels (version 1.0).

e Microsoft .NET framework using TCP channels (version 1.0).

Tests were run on a two machine network. The first machine, designated the
“server”, was used to execute the server-side applications that exposed objects to remote
access. It contained a 2.7GHz Pentium 4 with 512MB RAM. The second machine,
designated the “client”, was used to execute the client-side applications that performed
the remote calls. It contained a 1.2GHz Pentium 3 with 256MB RAM. The machines
were connected using an isolated 100Mb/s Ethernet. Since the .NET framework executes
only under the Windows operating system, all tests on both machines were run under
Windows XP Service Pack 2, fully patched, with only default services running.

The first test evaluates the cost of a remote method call to a method that took no
arguments, performed no computation and returned no results. The clock resolution
provided by the test machines was 10ms, which is considerably greater than the average
method call time. Therefore the test application performed 100 batches of 4000 method

calls using each middleware system, resulting in a total run-time of between two and

182

Chapter 6: Implementing the RAFDA Run-Time

twenty minutes wall clock time. The system clock was used to measure the time taken to
perform each of the 100 batches of method calls. Apache Axis received special treatment
as it ran around an order of magnitude slower than all other systems. Each batch
performed only 400 method calls, rather than 4000, in order to achieve reasonable total
test execution time.

This test determines the lower bound of call cost, since there are no arguments or
return values to pass, meaning no marshalling is performed. Table 6.1 shows the average
time in milliseconds for a remote method call and the minimum and maximum call times

observed.

Middleware Average Min Max
Java RMI 0.26 0.25 0.26
.NET (TCP) 0.44 0.44 0.47
CORBA 0.87 0.85 0.91
RRT 2.10 2.02 222
.NET (SOAP) 2.94 291 3.03
Apache Axis 12.60 11.87 14.43

Table 6.1: The time in milliseconds for a remote method call to an empty method.

The second test was run under the same conditions as the first test but introduced
arguments that required serialization. The method called by this test application took ten
arguments, all of which were passed by-value. The arguments were all instances of the
same complex type, which contained a 10 character string, a 25 character string and an
integer. In all tests the arguments were initialized identically.

Table 6.2 shows the time in milliseconds for a remote method call to this method,
which required the middleware system to perform serialization. The table shows the

average call time along with the minimum and maximum call times observed.

Middleware Average Min Max
Java RM1 0.43 0.42 0.45
.NET (TCP) 0.86 0.86 0.88
CORBA 1.41 1.40 1.49
RRT 2.63 2.53 2.89
.NET (SOAP) 5.07 5.04 5.17
Apache Axis 20.88 16.24 24.24

Table 6.2: The time in milliseconds for a remote method call to a method with arguments.

The figures obtained from both tests are graphed in Figure 6.23.

183

Chapter 6: Implementing the RAFDA Run-Time

Method Call Time

20

Call time in ms
—
o

5 |
0 1 T ,_ T
Java .NET CORBA RRT .NET Apache
RMI (TCP) (SOAP) Axis

B Without Serialization [0 With Serialization

Figure 6.23: Method call time in milliseconds.

A clear difference can be seen between the middleware systems that use XML-
based SOAP as their transport protocol (the RRT, Apache Axis and the .NET framework
employing SOAP channels) and those that use binary protocols (Java RMI, CORBA and
the .NET framework employing TCP channels). The RRT outperforms both its SOAP-
based counterparts; the application employing the RRT ran more than 25% more quickly
than the equivalent .NET application and around a factor of six times more quickly than
the application employing Apache Axis. When serializing a large number of arguments,
the RRT is again the quickest of the SOAP-based systems. During this test, the RRT used
cached per-class serializers in order to optimize the serialization process, giving it a large
advantage over the other systems, which do not generate such serializers.

The applications using Java RMI, CORBA and TCP-based .NET all executed two
to five times as quickly as the RRT. It should be noted that there are many
implementations of the CORBA specification and that the one tested is that supplied with
the J2SDK 5.0. It is reasonable to suggest that commercial ORBs may be better tuned for
performance than this implementation and that the call time could be reduced more in line
with the other systems that employ binary protocols. While the middleware systems that
employ binary protocols outperform the RRT, the binary approach has disadvantages in

184

Chapter 6: Implementing the RAFDA Run-Time

that it does not provide the meta-data and opportunities for validation that XML does.
SOAP can be considered the safer approach as the data is self-describing and less prone
to problems with type safety [33].

SOAP-based systems offer a high degree of interoperability and a transport
protocol with multiple advantages over binary approaches, as discussed above. Of the
SOAP systems tested, the RRT prototype performed best, indicating that the advantage
provided by the RRT’s approach to application creation need not come at the cost of

degraded performance.

6.5 Transmission Policy Framework

The transmission policy framework allows programmers to control the parameter-
passing semantics employed when remote methods are called. There are four kinds of
transmission policy rules that can be specified:

e Method policy rules are associated with methods. They specify how all the

arguments to the methods are marshalled.

e Return policy rules are also associated with methods. They control how the

return values are marshalled.

e Argument policy rules are associated with individual method arguments. They

indicate how particular arguments within method signatures are marshalled.

e C(lass policy rules are associated with classes rather than methods. They

indicate how instances of particular classes are marshalled.

The transmission policy framework needs to optimize lookup of policy rules, as
these rules must be checked every time an object is marshalled. The RRT trades quicker
lookup for increased rule addition and removal time since it is expected that rules will be
looked up much more often than they are altered. The transmission policy manager uses
two associative stores to hold rules. One contains class policy rules alone and the other
contains all rules related to methods, namely, method policy rules, return policy rules and
argument policy rules.

Programmers also use the transmission policy manager to manage caching policy
rules, which indicate the fields and methods that are cached in particular remote
references. Caching rules do not require any evaluation as there cannot be contention
between separate rules. These rules are therefore recorded in simple associative stores

keyed using classes, which are not examined in detail here.

185

Chapter 6: Implementing the RAFDA Run-Time

6.5.1 Flow of Control during Policy Evaluation

To determine how a particular object should be marshalled, the RRT instance
queries the transmission policy via the evaluateTransmissionPolicy() method provided by
the IRafdaRunTimePrivate interface, which is shown in Figure 6.24. The object to be
marshalled may be an argument, a return value or an object within the closure of an

argument or return value.

PassingMechanism evaluateTransmissionPolicy (
Class objectClass,
Method methodIdentifier,
int argumentNumber,
int depth,

boolean isReturnValue) ;

Figure 6.24: The evaluate TransmissionPolicy() method used during marshalling.

This method takes the following arguments:

e The class of the object being marshalled.

e The identity of the method being called.

e The identity of the argument being marshalled.

e The depth of object in the argument/return value closure.

e A Boolean indicating whether this is an argument or return value.

The algorithm that evaluates transmission policy for a particular object considers
all policy rules that are associated with the specified class, method and argument. Rules
that are not applicable at the current depth are ignored. The rule that is chosen by the
transmission policy manager is called the dominant rule. The dominant rule defines
which parameter-passing mechanism is applied to the specified object.

The dominant rule is chosen from all applicable rules based on rule priority and
precedence (argument policy rules override method policy rules of the same priority,
which override class policy rules of the same priority) as follows:

1. The class policy rule with the highest priority that is associated with the

object’s class is found. This rule becomes the provisional dominant rule.

2. Either the method policy rules or the return policy rules are evaluated

depending on the isReturnValue Boolean. The highest priority rule that is valid
at the current depth is found. If this rule is of equal or higher priority than the

186

Chapter 6: Implementing the RAFDA Run-Time

current provisional dominant rule, then it becomes the provisional dominant
rule.

The highest priority argument policy rule that is valid at the current depth is
found. If this rule is of equal or higher priority than the current provisional
dominant rule, then it becomes the provisional dominant rule.

The provisional dominant rule becomes the dominant rule. It dictates the

parameter-passing mechanism to use.

The data structures used to store rules are now described in the context of the

following policy rules:

Class policy rule associated with the JChordNode class indicating pass-by-
reference with a priority of 3.

Class policy rule associated with the JChordNode class indicating pass-by-
value with a priority of 0.

Class policy rule associated with the Key class indicating pass-by-migrate
with a priority of 1.

Class policy rule associated with the Key class indicating pass-by-value with
a priority of 0.

Method policy rule associated with the lookup() method indicating pass-by-
reference to depth 2 with a priority of 3.

Method policy rule associated with the lookup() method indicating pass-by-
value to depth 0 with a priority of 1.

Return policy rule associated with the lookup() method indicating pass-by-
migrate to depth 0 with a priority of 3.

Return policy rule associated with the lookup() method indicating pass-by-
reference to depth 4 with a priority of 0.

Argument policy rule associated with the second argument of /ookup()

method indicating pass-by-value to depth 2 with a priority of 3.

6.5.2 Class Policy Map

The class policy map associates each class with a linked list of the class policy

rules associated with that class. Since each rule has a priority that determines its

precedence over other rules, the linked list of rules is sorted into priority order, such that

the highest priority rule is at the head of the list as shown in Figure 6.25. Since the RRT

187

Chapter 6: Implementing the RAFDA Run-Time

does not permit two rules of equal priority to be associated with a single class, there is
always a single rule associated with each class that is of higher priority than all other rules
associated with the same class.

Obtaining the class policy rule associated with a particular class requires a single
map lookup to obtain the head of the list. Insertion, modification or deletion of rules
requires a list traversal to locate the specified rule. If no rules are associated with a

particular class then no entry appears in this map.

Class Policy Map
Pass-by-Reference - Pass-by-Value
JChOl’dNOdec|aSS —— Priority =3 Priority =0
Key.class —
y || Pass-by-Migrate . | Pass-by-Value
Priority = 1 o Priority = 0

Figure 6.25: The transmission policy framework’s data structure for storing class policy rules.

6.5.3 Method Policy Map

The method policy map associates a method with its method policy rules, return
policy rules and argument policy rules. The method policy map associates each method
with a secondary map called the per-method map as shown in Figure 6.26. The per-
method map holds multiple linked lists of rules, sorted in priority order.

In the per-method map, method policy rules are associated with the key “All”,
return policy rules are associated with the key “Refurn”, and argument policy rules are

2

associated with keys based on their argument numbers, “/”, “2”, etc.

Lookup of a method policy, return policy or argument policy rule requires two
map lookups to obtain the required linked list of rules. The first to obtain the per-method
map associated with the required method and the second to obtain the link list of policy
rules from this per-method map. The first rule in this linked list that is valid at the current
depth is found by traversing the list.

For example, the policy rules shown are associated with the /ookup() method. The
method policy rules specify a pass-by-value policy to a depth of 2 with priority 3 then a
pass-by-reference policy to a depth of 0 with priority 1. Up to a depth of 2, the pass-by-
value rule at the head of the list is applied. Beyond this depth, the first rule is ignored as it

is no longer valid and the next valid rule (dictating pass-by-reference be adopted) is

followed.

188

Chapter 6: Implementing the RAFDA Run-Time

M.ethOd Method Policy Rule List
Policy Map
13 ” ¢
e Per-Method
“lookup” Map Pass-by-Reference Pass-by-Value
[Depth = 2 - Depth = 0
“addNode” All] Priority = 3 Priority = 1
Return — Pass-by-Migrate Pass-by-Reference
T Depth = > Depth = 4
1 Priority = 3 Priority =0
2 — Pass-by-Value ¢
T Depth = 2
Priority = 3 Return Policy Rule List

: ?

Parameter Policy Rule List

Figure 6.26: The data structure for storing method, return and argument policies.

6.5.4 Policy Evaluation Cost

The policy framework must be queried and the policy rules evaluated each time
objects are marshalled, affecting remote method call cost. This cost is heavily dependent
on the particular policy rules that are associated with the object to be marshalled. The
transmission policy framework is an integral part of the RRT and so cannot be switched
off under normal circumstances. To determine the cost of transmission policy evaluation,
a special build of the RRT that employed only pass-by-reference semantics was created.

A test application that performed multiple calls to a remote method was created.
This method took one argument and returned one return value, both by-reference. The test
application was run using the specially built RRT with the transmission policy framework
removed and again using the full RRT, using the test environment described in Section
6.4.6. In the former case, the special RRT was hard-coded to pass objects by-reference,
and in the latter case, the transmission policy consisted of a method policy rule and a
return policy rule stating that pass-by-reference semantics should be employed. The
parameter-passing semantics were therefore the same for each run of the application.

The cost of a remote call when the policy evaluation phase was performed was
around 2% to 3% greater than the cost of a remote call without the evaluation phase. The
introduction of additional arguments has no effect on the proportionate cost of the policy
evaluation phase as there is a one-to-one correspondence between the number of objects

marshalled and the number of transmission policy evaluations performed.

189

Chapter 6: Implementing the RAFDA Run-Time

From the perspective of the RRT prototype, this is considered a reasonable trade-
off in execution time for the benefits afforded by the transmission policy in its
implementation. Even incurring the cost of policy evaluation, the RRT prototype

outperforms the nearest comparable rival by a considerable margin.

6.6 Distribution Policy Framework

The distribution policy framework allows the dynamic specification of policies to
control object placement when remote instantiation and object migration operations are
performed. The distribution policy manager is used to obtain references to factories (used
for remote instantiation) and migration controllers (used for migration). Each factory and
migration controller is associated with a policy object, which is an instance of a
programmer-defined policy class that is used to determine the distribution policy.

Programmers can create custom re-implementations of the factories, migration
controllers, policy objects and feedback objects provided by the distribution policy
framework. Thus, implementation details concerning these components can be found in
Chapter 5, though are briefly summarized here:

e The distribution policy manager, which is accessible through the
IRafdaRunTime and [RafdaRunTimeRemote interfaces. There 1is one
distribution policy manager per address-space that provides two associative
stores, one of which maps classes to their associated factory objects and one of
which maps classes to their migration controllers.

e Factories, which perform all policy-based object instantiation. The default
factory class employs reflective techniques to instantiate objects in both the
local and remote RRT instances. Programmers can create custom factory
implementations in order to modify factory behaviour.

e Migration controllers, which perform all policy-based migration. A default
migration controller class is provided but programmers are free to implement
multiple different custom migration controllers.

e Policy objects, which make the object placement decisions.

e Feedback objects, which allow policies in multiple address-spaces to exchange
information. Feedback classes are also customizable.

The overhead incurred by policy evaluation is heavily dependent on the policy

implementation, which is provided by application developers. However, in order to gauge

190

Chapter 6: Implementing the RAFDA Run-Time

whether there is any additional cost incurred by using the distribution policy framework
mechanism instead of performing operations in remote RRT instances directly, the
following test was performed using the previously described test environment. Two
clients, each of which instantiated 5000 objects in a remote RRT instance, were created in
order to determine the cost of remote instantiation.

One client performed remote instantiation directly in a particular remote RRT
instance using the instantiateAndExpose() method provided in the /IRafdaRunTimeRemote
interface. The other performed the same remote instantiation operations but did so via the
distribution policy framework and a “single RRT instance” policy. This policy performed
minimal computation in order that the cost of instantiation through the framework could
be directly compared to the cost of instantiation performed directly by programmers.

The cost of instantiating the first remote object (cold instantiation) was
considerably greater in both clients than that of instantiating further objects (hot
instantiation). In both clients, hot instantiation took the same time, around 19ms,
indicating that the distribution policy framework introduces no significant overhead,
outside of policy evaluation, to the cost of performing the remote operation. Cold
instantiation however, was around five times slower when using the framework, caused
by the need to initialize the distribution policy framework components. In both clients,
cold instantiation was around two to three orders of magnitude slower than hot
instantiation, as the cost of RRT initialization was also incurred.

It can be concluded that the cost inherent in using the distribution policy
framework is heavily dependent on the implementation of the policy classes. The onus is

therefore on the programmers creating these policy classes to do so efficiently.

6.7 Conclusion

This chapter has examined the implementation of the prototype RRT and
evaluated it quantitatively. The RRT instances expose themselves to remote access
through multiple interfaces to provide functionality to programmers and RRT instances,
both local and remote. Functionality allowing programmers to obtain references to remote
objects, perform remote instantiation and migrate objects between address-spaces has
been implemented using the basic remote method invocation mechanism provided by the

RRT.

191

Chapter 6: Implementing the RAFDA Run-Time

Service adaptors allow the middleware system to attach to arbitrary application
objects. Serializers and deserializers permit the transmission of arbitrary objects across
the network by-value. Per-class customized implementations of the service adaptors,
serializers and deserializers can be generated and compiled automatically by the RRT.
These per-class implementations avoid the use of reflection and are optimized to work
with the classes in each particular distributed application.

Proxy objects provide both conventional proxy behaviour, allowing remote
method calls to be performed transparently, and wrapper behaviour, allowing the
implementation of migration. Combined with RafdalOR objects, the proxy objects
provide a complete remote reference scheme, allowing any object to be accessed remotely
or passed by-reference.

Though the RRT prototype has not been optimized for speed, the cost of remote
method calls is lower than the equivalent industry-standard systems. This indicates that
the benefits provided by the RRT in terms of flexibility and separation of concerns can be
achieved without incurring additional expense over comparable systems.

The structure of the transmission policy framework was examined. It is designed
to allow quick lookup of policy rules to optimize the object marshalling process. It was
shown that the transmission policy framework is an integral part of the RRT that
simplifies the implementation of middleware features such as remote instantiation and
migration. Further, the additional cost incurred querying the transmission policy
framework at marshalling time is low.

Finally, the implementation of the distribution policy framework was examined.
Though this framework can be customized extensively by programmers, it was shown
that the cost inherent in its use lies in the policy evaluation phase. Programmers trade
policy complexity for speed of evaluation when creating distribution policies.

The RRT prototype is a complete implementation of the middleware system
designed in Chapter 5. It is currently publicly available and is in use as a platform on
which to carry out research into peer-to-peer systems [27], resilient Web Services [25]

and automated application deployment.

192

Chapter 7: Conclusion

Chapter 7

Conclusion

This chapter concludes the thesis by summarizing the work carried
out and the contribution made. A synopsis of possible future work is also

provided.

193

Chapter 7: Conclusion

7.1 Conclusion

Middleware augments operating systems and network infrastructure to assist in

the creation of distributed applications in a heterogeneous environment. Multiple

approaches to middleware exist, though this thesis has focussed on a Distributed Object

Model (DOM) approach. DOMs provide a programming model similar to that adopted

when implementing non-distributed object-oriented applications and allow flexibility over

the extent to which inter-address-space communication is visible to programmers.

Current middleware systems exhibit five main limitations:

1.

Programmers are forced to make decisions early in the design process about
which types of application component may participate in inter-address-space
communication. Applications are therefore inflexible to static changes in their
distribution.

Applications created using existing middleware systems are inflexible to
dynamic changes in their distribution and cannot adapt to changes in the
underlying distributed systems or in the applications themselves.

The creation of code to handle inter-address-space communication is complex,
introducing additional points of potential failure into the software engineering
process.

It is difficult to understand and maintain distributed applications because
middleware systems may force an unnatural encoding of application-level
semantics. Application classes are forced to meet particular semantic
requirements, hampering the reuse in a distributed context of code written
without support for distribution. Parameter-passing semantics are fixed
statically and are inflexible, again limiting code reuse and preventing
programmers from performing optimizations that take advantage of the
distributed nature of applications.

It is difficult to control the way in which objects are distributed among
available address-spaces. Programmers must adopt ad-hoc approaches to the
definition of distribution policy if application logic and distribution are to be

separated.

This thesis defined a taxonomy of current middleware systems. First generation

RPC and DOM systems were described and shown to exhibit all five of these problems.

194

Chapter 7: Conclusion

Second generation DOM systems that tackle these limitations with varying success were
investigated. It was shown that all of these second generation DOMs exhibit some or all
of these problems.

There are four roles in which programmers may employ middleware systems:

e To create new distributed applications.

e To introduce distribution into existing applications.

e To deploy services to remote clients.

e To integrate applications with legacy systems.

Each role makes different demands of a middleware system and none of the
existing systems are flexible enough to be applied in all circumstances. Systems such as
CORBA [8], Java RMI [9], JavaParty [62] and ProActive [81] expose the distributed
nature of applications to programmers. Explicit support for remote access must be
provided in application classes but it is difficult to introduce distribution into an existing
application using these systems without extensive engineering effort. Systems such as J-
Orchestra [65] and Pangaea [70] perform automatic application transformation to create
distributed applications in which local calling semantics are preserved. By hiding inter-
address-space communication completely, these systems cannot be employed to create
applications that adopt different semantics, and so are suitable for developing only certain
kinds of distributed application.

This thesis defined the requirements that must be fulfilled by a third generation
middleware system, based on an evaluation of current systems. The design and
implementation of the RAFDA Run-Time (RRT), a middleware system that meets these
requirements, were described. The RRT allows programmers to trade-off the simplicity
attained through the concealment of inter-address-space communication against the
flexibility realized by exposing it to fine-grained programmer control. The RRT aims to
provide intuitive distributed application semantics that reflect non-distributed semantics,
allowing programmers to ignore whichever distribution-related aspects are of no concern.

The RRT allows inter-address-space communication to be concealed or exposed
as required on a per-application basis. In order to conceal the distributed nature of
applications, the RRT allows the exposure of arbitrary objects to remote access as Web
Services. A remote reference scheme is introduced, allowing instances of any class to be
passed across the network by-reference or by-value. This provides a similar degree of

abstraction over the network as object-based Distributed Shared Memory systems. The

195

Chapter 7: Conclusion

RRT ensures that non-distributed semantics are preserved in applications by default,
unless programmers explicitly alter them. First generation systems cannot provide this
degree of transparency because programmers are forced to meet stringent semantic
requirements in order to support remote access.

Some second generation systems, such as JavaParty [62], ProActive [81] and Do!
[68], simplify the engineering process by automatically generating distribution-related
ancillary code but cannot support remote access to arbitrary objects. Consequently,
programmers must adapt applications to the middleware.

The RRT provides fully transparent inter-address-space communication while
allowing programmers, where appropriate, to take advantage of application-specific
knowledge. The RRT allows inter-address-space communication to be exposed and
controlled in several ways:

e Remote types can be associated with exposed objects in order to control which
methods are exposed to remote access. Remote types provide multiple views
over exposed objects and permit programmers to allow information hiding in
distributed applications.

e Applications can be initially created without concern for failure, then extended
to provide application-specific error handling as required.

e Multiple object lifetime policies are supported and managed on a per-RRT-
instance basis. The RRT can ensure that exposed objects are never collected,
are collected when no longer locally referenced, or collected when not
accessed within a programmer-defined lease time.

e Objects can be instantiated in remote address-spaces.

e Objects can migrate between address-spaces.

e The parameter-passing semantics applied when remote methods are called can
be controlled dynamically.

e Distribution policy can be associated with applications in a flexible manner.

The RRT is unique in its ability to provide abstraction over the network without
removing control from programmers. Control over the parameter-passing semantics
employed in remote calls is allowed to a degree that is not possible using traditional
systems, due to limitations in the mechanisms that support remote access and the
restrictions placed on application semantics. The transmission policy framework is used

to control parameter-passing semantics and object caching policies independently of

196

Chapter 7: Conclusion

application source. Transmission policy can be defined on a per-argument, per-method,
per-return-value or per-class basis. This ensures that the functional logic of an application
class is not affected by considerations related to the context in which instances of the
class will be deployed. Components need not be designed for particular deployment
environments, permitting reuse in a distributed context of components that were designed
without support for remote access.

Caching policy rules allow programmers to treat the pass-by-reference and pass-
by-value mechanisms as two ends of a spectrum. Remote references that cache fields and
methods can be created, reducing the need to perform remote method calls and permitting
remote references to remain partially usable even when connectivity is lost. Programmers
can take advantage of application knowledge to trade-off by-reference and by-value
semantics or to cache objects that are immutable in a particular application.

The RRT is novel both in its support for flexible parameter-passing mechanism
and its provision of a policy specification mechanism that allows programmers to define
application semantics dynamically.

Distribution policies can be defined through the distribution policy framework to
govern the placement of objects when remote instantiation and migration operations are
performed. By deferring placement decisions to the framework, programmers can create
applications with flexible distribution boundaries. None of the first generation systems
and few of the second generation systems support remote object instantiation or
migration. Those that do, provide only partial solutions to the problem of policy
specification, by limiting the expressiveness of policies and by allowing no flexibility in
the granularity at which distribution policies are applied, e.g. per-class, per-constructor
call.

Using the RRT, policies can be arbitrarily complex and may make use of
application context information in order to apply policies at finer-than-class granularity.
Policies can take advantage of tools external to the RRT, such as system or application
profiling tools, to control application distribution in a completely flexible manner. The
distribution policy framework provides location transparency, meaning that applications
can adapt dynamically to changes in the underlying distributed systems or can modify
their own distributions, for example, to minimize remote method calls.

The RRT has been evaluated using the JChord case study, which consists of a
peer-to-peer overlay network implementation and a distributed object store built on top of

this network. The JChord case study places a number of requirements on middleware

197

Chapter 7: Conclusion

systems that cannot be fully met by conventional systems but are fulfilled by the RRT.
JChord was originally developed as a non-distributed application and it was shown that
the unique properties of the RRT allowed an isomorphic distributed version to be created
without modifications to the JChord implementation classes. Distribution-related
concerns such as error handling and the caching and replication of state were handled late
in the development process. JChord is a research tool and its requirements change often,
as research goals change. Using a conventional middleware system, changes to the
distribution boundaries in JChord would require re-engineering of the application. Using
the RRT, the programmer need only modify the JChord application logic and can rely on
the middleware to accommodate these changes.

A prototype of the RRT design has been implemented and is currently publicly
available. This prototype is in use as a development platform for research into peer-to-
peer systems, resilient Web Services and automated application deployment. A
mechanism to allow the RRT to connect to arbitrary application objects is required in
order to expose objects to remote access. Serializers and deserializers that can handle
instances of any application class are necessary, as are proxy objects that preserve the
abstraction over the inter-address-space communication presented by the RRT.

The RRT employs generative programming techniques in three main areas:

e The creation of service adaptors that allow the RRT infrastructure to attach to

application objects.

e The creation of serializers and deserializers that can handle instances of

arbitrary classes.

e The generation of proxy classes to allow the implementation of remote

references that are interchangeable with local references.

The RRT can automatically generate and compile per-class implementations of
service adaptors, serializers, deserializers and proxy classes. Per-class implementations
avoid the cost of reflection at run-time but incur the one-time cost of code generation.
Generated code may be cached across multiple runs of the application to obviate the need
for re-generation.

Each RRT instance in a distributed system exposes itself to remote access. RRT
instances can therefore provide functionality to applications and other RRT instances in
remote address-spaces using the same mechanisms that provide connectivity in

distributed applications. The RRT implementation makes use of its own underlying

198

Chapter 7: Conclusion

functionality to abstract over the network allowing the provision of sophisticated
middleware functionality, such as remote instantiation of objects and migration, with
minimal programmer effort. The RRT prototype is as extensible and maintainable as any
other distributed application created using the RRT since code to perform inter-address-

space communication does not permeate application logic.

7.2 Future Work

The RRT has succeeded in providing next generation middleware functionality
and, as a consequence, has opened up interesting new research issues. Given mechanisms
to provide transparent inter-address-space communication and control over object
placement, the RRT could be used as a basis for developing support for dynamic re-
distribution of applications in a fully automatic manner. Programmers could adopt an
intentional programming model, in which they described the high level non-functional
requirements of applications in terms of availability, response time, maximal permitted
remote call time and so on. Using autonomic management tools in combination with
meta-level policy rules that define how the programmers’ requirements can be achieved,
the RRT could automatically control and modify the distribution policies that were
applied to the applications.

This model could be extended to investigate whether it is possible to capture a set
of properties that is universally desirable in all distributed applications. It might be
possible to define a set of definitive meta-level rules that could be used to completely
remove the need for programmers to make distribution-related decisions. Programmers
would provide only a non-distributed application to the middleware system, which would
automatically discover machines in the distributed system and perform negotiation of
resources. Each machine could be profiled to determine how best to distribute the
application based on these profiles and meta-level rules. The use of compliant
architectures [93, 94] that accommodate the needs of particular applications provide an
alternative approach to dynamic profiling, as the distributed system could adapt to the
needs of each application.

Part of the complexity inherent in implementing distributed applications results
from the limitations of the industry standard programming languages used. These
languages do not contain implicit support for distribution, hence the necessity of

middleware systems. By subsuming the functionality provided by the RRT directly into

199

Chapter 7: Conclusion

the programming language, the boundary between language and middleware system
could be dissolved to provide a single programming model that is applicable to both

distributed and non-distributed application development.

7.3 Finally

This thesis has described the requirements, design and implementation of a third
generation middleware system. The hypothesis investigated states:

A middleware system that provides control over the extent to which inter-

address-space communication is exposed to programmers aids the

creation, maintenance and evolution of distributed applications.

The RRT provides novel functionality that allows control over the extent to which
inter-address-space communication is exposed. It is a middleware system that adapts to
the needs of applications, rather than forcing distributed applications to adapt to the needs
of the middleware system, with direct benefits for programmers. The RRT provides a

solid foundation on which to develop the next generation of distributed applications.

200

Appendix A

Appendix A

Glossary

Terminology specific to the RAFDA Run-Time system is marked with a *.

Deserializer
Distributed Application
Distributed System

Distribution Policy*

DOM
Marshalling

Middleware System

Migration

Pass-By-Migrate

Pass-By-Reference

Pass-By-Value

Proxy Object
RAFDA*

Remote Reference
RMI

RPC

RRT Instance*
RRT*

Creates objects from serialized representations.

An application that runs in a distributed system.

A collection of distinct, spatially separate processes that
communicate by exchanging messages [1].

The policy controlling object placement when remote
object instantiation and migration operations are performed.
Distributed Object Model.

The conversion of a method call into an invocation request.
Part of the marshalling process includes object serialization.
Software that augments operating systems and network
infrastructure to make the creation of distributed
applications in a heterogeneous environment easier.

The movement of objects between address-spaces without
the loss of referential integrity.

Parameter-passing mechanism employed when remote
methods are called in which arguments are migrated to the
remote address-space.

Parameter-passing mechanism that passes remote
references to arguments to the remote address-space.
Parameter-passing mechanism that copies arguments to the
remote address-space.

A local handle on a remote object.

Reflective Application Framework for Distributed
Architectures.

A reference to an object in another address-space.

Remote Method Invocation.

Remote Procedure Call.

The RRT infrastructure present in a single address-space.

The RAFDA Run-Time middleware system.

201

Appendix A

Serializer

Service Adaptor*

Skeleton

Transmission Policy*

Un-marshalling

Wrapper

Creates serial data representations of objects.

Provides skeleton functionality in the RRT allowing it to
connect to arbitrary application objects.

The part of a middleware system that un-marshals incoming
remote method calls and performs invocations on local
objects.

The policy controlling the parameter-passing mechanisms
and caching semantics employed when remote methods are
called.

The conversion of an invocation request into a method call.
Part of the un-marshalling process includes object
deserialization.

A proxy object associated with a local object.

202

Appendix B

Appendix B Policy File XML Schema

Transmission Policy Configuration File Schema

<?xml version="1.0" encoding="UTF-8" ?>
<xXs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >
<xs:element name="transmissionPolicy"s>
<xs:complexType>
<XS:sequence>
<xs:element ref="argumentPolicy" minOccurs="0"
maxOccurs="unbounded" />
<xs:element ref="methodPolicy" minOccurs="0"
maxOccurs="unbounded" />
<xs:element ref="returnPolicy" minOccurs="0"
maxOccurs="unbounded" />
<xs:element ref="classPolicy" minOccurs="0"
maxOccurs="unbounded" />
<xs:element ref="cachedField" minOccurs="0"
maxOccurs="unbounded" />
<xs:element ref="cachedMethod" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="argumentPolicy">
<xs:complexType>
<xs:all>
<xs:element ref="method" />
<xs:element name="argumentNumber" type="xs:integer" />
<xs:element ref="paramPassingMechanism" />
<xs:element name="depth" type="xs:integer" />
<xg:element name="priority" type="xs:integer" />
</xs:all>
</xs:complexType>
</xs:element>
<xs:element name="methodPolicy">
<xs:complexType>
<xs:alls>

<xs:element ref="method" />

203

Appendix B

<xs:element ref="paramPassingMechanism" />
<xs:element name="depth" type="xs:integer" />
<xs:element name="priority" type="xs:integer" />
</xs:all>
</xs:complexType>
</xs:element>
<xs:element name="returnPolicy"s>
<xs:complexType>
<xs:all>
<xs:element ref="method" />
<xs:element ref="paramPassingMechanism" />
<xs:element name="depth" type="xs:integer" />
<xs:element name="priority" type="xs:integer" />
</xs:all>
</xs:complexType>
</xs:element>
<xs:element name="classPolicy">
<xs:complexType>
<xs:all>
<xg:element name="className" type="xs:string" />
<xs:element ref="paramPassingMechanism" />
<xs:element name="priority" type="xXs:integer" />
</xs:all>
</xs:complexType>
</xXs:element>
<xs:element name="cachedField">
<xs:complexType>
<xs:all>
<xs:element name="className" type="xs:string" />
<xsg:element name="fieldName" type="xs:string" />
</xs:all>
</xs:complexType>
</xs:element>
<xs:element name="cachedMethod">
<xs:complexType>
<xs:all>
<xs:element ref="method" />
</xs:all>
</xs:complexType>
</xXs:element>

<xs:element name="paramPassingMechanism">

204

Appendix B

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="byreference" />
<Xs:enumeration value="byvalue" />
<xg:enumeration value="bymigrate" />
</xs:restrictions>
</xs:simpleType>
</xs:element>
<xs:element name="method">
<xs:complexType>
<Xs:sequence>
<xs:element name="className" type="xs:string" />
<xs:element name="methodName" type="xs:string" />
<xs:element name="argumentType" type="xs:string" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>

</xXs:schema>

205

Appendix B

Transmission Policy Configuration File Example

This XML defines the following transmission policy rules:

An argument policy rule associated with the first argument of the method
IDataStorePOP.store(Object objectToStore, boolean storeReference) that
specifies a by-migrate policy to depth 2 and is of priority 1.

A method policy rule associated with the method IDataStorelnternal.put(Key
key, Object object) that specifies a by-reference policy to depth 0 and is of
priority 0.

A return policy rule associated with the method /DataStorelnternal.get() that
specifies a by-value policy to depth 4 and is of priority 3.

A class policy rule associated with the Key class that specifies a by-value
policy and is of priority 0.

A caching rule that caches the key field with accessor getKey() and setKey(Key
k) in instances of the Chord class.

A caching rule that caches the printKeyInfo() method in instances of the Chord

class.

<?xml version="1.0" encoding="UTF-8"?>

<transmissionPolicy>

<argumentPolicys>

<method>

<className>IDataStorePOP</className>

<methodNames>store</methodName>

<argumentType>java.lang.Object</argumentType>

<argumentTypes>boolean</argumentType>

</method>

<argumentNumber>1</argumentNumber>

<paramPassingMechanism>bymigrate</paramPassingMechanism>

<depth>2</depth>

<prioritys>l</priority>

</argumentPolicys>

<methodPolicy>

<method>

<className>IDataStoreInternal</className>

<methodName>put</methodName>

<argumentTypes>Key</argumentType>

206

Appendix B

<argumentType>java.lang.Object</argumentType>
</method>
<paramPassingMechanism>byreference</paramPassingMechanism>
<depth>0</depth>
<priority>0</priority>
</methodPolicy>
<returnPolicy>
<method>
<classNames>IDataStoreInternal</className>
<methodName>get</methodName>
</method>
<paramPassingMechanism>byvalue</paramPassingMechanism>
<depth>4</depth>
<priority>3</priority>
</returnPolicy>
<classPolicy>
<className>Key</className>
<paramPassingMechanism>byvalue</paramPassingMechanism>
<priority>0</priority>
</classPolicy>
<cachedFields>
<className>Chord</className>
<fieldName>key</fieldName>
</cachedField>
<cachedMethod>
<methods>
<className>Chord</className>
<methodName >getKey</methodName >
</method>
</cachedMethod>
<cachedMethod>
<method>
<className>Chord</className>
<methodName >setKey</methodName >
<argumentType>Key</argumentType>
</method>
</cachedMethods>
<cachedMethod>
<method>
<className>Chord</className>

<methodName>printKeyInfo</methodName>

207

Appendix B

</method>
</cachedMethod>

</transmissionPolicy>

208

Appendix C

Appendix C RRT Configuration Options

RRT configuration is described in Chapter 5 and allows control over various

aspects of system behaviour. These properties can be set using the setProperty() method

of the /RafdaRunTimeConfig interface by specifying a property name and associated

value. The following shows a full list of all configurable properties organized into groups,

with permitted and default values shown.

System Configuration

firewallAllowedAddresses

Permitted Values: Semi-colon separated list of IP addresses and partial IP
addresses
Default: Connections from any address permitted

Indicates a list of valid hosts from which incoming connections can be accepted.

networklInterface

port

Permitted Values: IP address/hostname
Default: Result of InetAddress.getLocalHost()

Indicates the network interface to which the RRT instance should bind.

Permitted Values: 1-65535

Default: 5001 upwards

Indicates which port the RRT instance should bind to when accepting socket
connections. If no port is specified the RRT will use the first free port in the range

5001 upwards.

socketTimeout

Permitted Values: integer
Default: Default platform socket timeout
Indicates how long a socket will wait for a response from a remote RRT before

determining that the host is off-line.

209

Appendix C

Handling Static Members

makeRootRRTInstance
Permitted Values: Boolean
Default: false
If true, this RRT instances acts as the root RRT instance that manages access to
static members.

If false, this RRT instance is not the root RRT instance.

setRootRR TInstance
Permitted Values: Socket address
Default: None

Indicates the socket address of the root RRT instance.

Code Generation

autoGenerateServiceAdaptors
Permitted Values: Boolean
Default: false
If true, service adaptors are generated and compiled dynamically on a per-
application-class basis.

If false, all objects are exposed using the generic reflective service adaptor.

autoGenerateSerializersDeserializers
Permitted Values: Boolean
Default: false
If true, per-class serializers and deserializers are generated and compiled
dynamically on a per-application-class basis.
If false, all serialization and deserialization is performed using the generic

reflective serializer/deserializer.

cacheGeneratedProxies

Permitted Values: Boolean

Default: false

210

Appendix C

If true, automatically generated proxy classes are cached locally for reuse during
subsequent runs of the application.
If false, automatically generated proxy classes exist only for the lifetime of the
JVM running the RRT instance.

cacheGeneratedServiceAdaptor
Permitted Values: Boolean
Default: false
If true, automatically generated service adaptors are cached locally for reuse
during subsequent runs of the application.
If false, automatically generated service adaptors exist only for the lifetime of the

JVM running the RRT instance.

cacheGeneratedSerializersDeserializers
Permitted Values: Boolean
Default: false
If true, automatically generated per-class serializer/deserializers are cached locally
for reuse during subsequent runs of the application.
If false, automatically generated per-class serializer/deserializers exist only for the

lifetime of the JVM running the RRT instance.

deleteAllCachedCode
Permitted Values: Boolean
Default: false
If true, all cached per-class service adaptors, serializers, deserializers and proxy
classes are deleted at start-time.

If false, cached code is re-used

Access Control

allowNonPublicMethodAccess
Permitted Values: Boolean
Default: false
If true, all clients are allowed access to the non-public methods of exposed

objects.

211

Appendix C

If false, clients may only access non-public methods if the local protection

semantics permit it.

allowBrowsing OfExposedQObjects
Permitted Values: Boolean
Default: false
If true, the service-specific web pages, accessible via a web browser, display
information about the real classes of exposed objects and their current state.

If false, this information is not displayed.

allowRemotelnstantiation
Permitted Values: Boolean
Default: false
If true, remote RRT instances can create objects in this RRT instance.

If false, remote instantiation is not permitted.

allowMigration
Permitted Values: Boolean
Default: false
If true, remote RRT instances can migrate objects to this RRT instance.

If false, migration is not permitted.

throwDistributionRelatedExceptions
Permitted Values: Boolean
Default: false
If true, distribution-related exceptions occurring during remote method calls are
wrapped in RafdaRuntimeExceptions and thrown back to clients.
If false, distribution-related exceptions occurring during remote method calls are

not thrown back to clients. The RRT logs the exception and returns default values.

Memory Management

memoryManagement

FE TS E2 T

Permitted Values: “none”, “manual”, “automatic”

212

Appendix C

Default: automatic

If “none”, the RRT holds weak references to exposed objects and so objects will
be garbage collected when they are no longer referenced locally. Once objects are
collected, the associated Web Services will be shut down and extant remote
references will become invalid.

If “manual”, the RRT (strongly) references all exposed objects and will continue
to do so until the programmer manually shut down the services.

If “automatic”, the RRT (strongly) references all the objects it exposes. It assumes
that any exposed objects not remotely accessed within a programmer-defined
lease time are no longer remotely referenced. These services will be shut down

and any extant remote references will become invalid.

213

References

[1] Lamport, L, Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 1978. 21(7): p. 558-565.

[2] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard.
1995.

[3] Geist, A, A, B, Dongarra, J, Weicheng, J, Manchek, R, and Sunderam, V, PVM:
Parallel Virtual Machine. A Users' Guide and Tutorial for Networked Parallel
Computing. 1994: MIT Press.

[4] Hapner, M, Burridge, R, Sharma, R, Fialli, J, and Stout, K, Java Message Service.
2002, Sun Microsystems.

[5] Birrell, A D and Nelson, B J, Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems, 1984. 2(1).

[6] White, J E. 4 High-Level Framework for Network-Based Resource Sharing (RFC
707). in Proc. National Computer Conference 76. 1976.

[7] Sun Microsystems. RPC: Remote Procedure Call Protocol specification: Version
2 (RFC 1057). 1988. http://www.fags.org/rfcs/rfc1057.html

[8] Object Management Group, Common Object Request Broker Architecture: Core
Specification 3.0.3. 2004.

[9] Sun Microsystems, Java™ Remote Method Invocation Specification. 1996-2005.

[10] Obermeyer, P and Hawkins, J, Microsoft .NET Remoting: A Technical Overview.
2001, Microsoft Corporation.

[11] Gelernter, D, Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 1985. 7(1): p. 80-112.

[12] Freeman, E, Hupfer, S, and Arnold, K, JavaSpaces: Principles, Patterns, and
Practice. 1999: Pearson Education.

[13] Li, K and Hudak, P, Memory Coherence in Shared Virtual Memory Systems.
ACM Transactions on Computing Systems, 1989. 7(4): p. 321-359.

[14] Yu, W and Cox, A, Java/DSM: A platform for heterogeneous computing.
Concurrency: Practice & Experience, 1997. 9(11).

[15] Bal, H and Kaashoek, F. Object Distribution in Orca using Compile-Time and
Run-Time Techniques. in Proceedings of the Conference on Object-Oriented

Programming Systems, Languages, and Applications (OOPSLA 93). 1993.

214

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Coulouris, G F and Dollimore, J, Distributed Systems, Concept and Design. 1988,
Wokingham: Addison-Wesley.

Gosling, J, Joy, B, and Steele, G, The Java™ Language Specification. 1996:
Addison-Wesley.

Ecma International, C# Language Specification, 3rd edition (ECMA Standard
334).2005.

Stroustrup, B, The C++ Programming Language (3rd edition). 1997: Addison
Wesley Longman.

Dearle, A and Kirby, G N C, Reflective Application Framework for Distributed
Architectures. 2001, EPSRC GR/R51872.

Rebon Portillo, A J, Walker, S, Kirby, G N C, and Dearle, A. A Reflective
Approach to Providing Flexibility in Application Distribution. in 2nd
International Workshop on Reflective and Adaptive Middleware,
ACM/IFIP/USENIX International Middleware Conference (Middleware 2003).
2003. Rio de Janeiro, Brazil: Pontificia Universidade Catolica do Rio de Janeiro.
Stoica, I, Morris, R, Karger, D, Kaashoek, F, and Balakrishnan, H. Chord: A
Scalable Peer-To-Peer Lookup Service for Internet Applications. in ACM
SIGCOMM 2001.2001. San Diego, CA, USA.

Shapiro, M, Structure and Encapsulation in Distributed Systems: the Proxy
Principle. IEEE Proc. 6th Intl. Conf. on Distributed Computing Systems, 1986: p.
198-204.

Martin, P, Callaghan, V, and Clark, A. High Performance Distributed Objects
using Caching Proxies for Large Scale Applications. in International Symposium
on Distributed Objects and Applications. 1999.

Norcross, S, Dearle, A, Kirby, G N C, and Walker, S M. 4 Peer-To-Peer
Infrastructure for Resilient Web Services. in IEEE International Workshop on
Advanced Architectures and Algorithms for Internet Delivery and Applications
(AAA-IDEA 2005). 2005. Orlando, Florida.

Dabek, F, Zhao, B, Druschel, P, Kubiatowicz, J, and Stoica, I. Towards a
Common API for Structured Peer-to-Peer Overlays. in 2nd International
Workshop on Peer-to-Peer Systems (IPTPS '03). 2003. Berkeley, CA, USA.
Kirby, G N C, Dearle, A, and Morrison, R, Secure Location-Independent
Autonomic Storage Architectures. 2003, EPSRC GR/S44501/01.

Open Group, DCE 1.1: Remote Procedure Call. 1997.

215

[34]
[35]
[36]

[37]

[38]
[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

ISO/IEC, ISO Remote Procedure Call Specification. 1991, ISO.

Barkley, J, Comparing Remote Procedure Calls. 1993, NIST.

Winer, D, XML-RPC Specification. 2003.

Microsoft Corporation, The Component Object Model Specification. 1995.
Lievens, D, An Investigation into the Mechanisms Provided by CORBA to
Preserve Strong Typing. 2001, University of Glasgow.

Pritchard, J, COM and CORBA Side by Side: Architectures, Strategies, and
Implementations. 1999: Addison Wesley.

Siegel, J, CORBA fundamentals and programming. 1996, New York: Wiley.
MICO Project Group, MICO (MICO is CORBA). 2004, ObjectSecurity Ltd.
Baker, S, CORBA Distributed Objects: Using Orbix. 1997, Harlow, England ;
Reading, Mass.: Addison-Wesley.

IONA Technologies, Orbix. 2004.

Sebesta, R, Concepts of Programming Languages. 6th ed. 2003: Addison Wesley
Professional.

Sun Microsystems, Java 2 Platform Standard Edition 5.0. 2004.

Lindholm, T and Yellin, F, The Java™ Virtual Machine Specification. 1996:
Addison-Wesley. 475.

Birrell, A, Nelson, G, Owicki, S, and Wobber, E, Network Objects. Software -
Practice and Experience, 1995. 25(S4): p. 87-130.

Gamma, E, Helm, R, Johnson, R, and Vlissides, J, Design Patterns. 1995:
Addison-Wesley Professional.

Box, D, Essential COM. Addison-Wesley object technology series. 1998,
Reading, Mass.: Addison Wesley.

Thai, T and Lam, H Q, .NET Framework Essentials. 2001: O'Reilly.

W3C, Web Services Architecture. 2004.

Microsoft Corporation. Shared Source Common Language Infrastructure 1.0
Release. 2002. http://msdn.microsoft.com/net/sscli

Mono Project. Mono FAQ - General. 2005. http://www.mono-
project.com/FAQ: General

Sun Microsystems, Enterprise JavaBeans Specification, Version 2.1. 2003.

OMG, CORBA Component Model. Vol. 3.0. 2004.

216

[51]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

Baker, S and Dobson, S, Comparing service-oriented and distributed object
architectures. Proceedings of the International Symposium on Distributed Objects
and Applications, 2005. LNCS 3760: p. p631-645.

Vogels, W, Web Services Are Not Distributed Objects. IEEE Internet Computing,
2003. 7(6): p. p59-66.

Web Services-Interoperability Organization (WS-I), Basic Profile Version 1.1.
2004.

W3C, SOAP Version 1.2 Part 0: Primer. 2003.

W3C, SOAP Version 1.2 Part 1: Messaging Framework. 2003.

W3C, SOAP Version 1.2 Part 2: Adjuncts. 2003.

Apache Software Foundation. Apache Axis. 2004. http://ws.apache.org/axis/
Christensen, E, Curbera, F, Meredith, G, and Weerawarana, S, Web Services
Description Language (WSDL) 1.1.2001, W3C.

JBoss Inc., JBoss Enterprise Middleware System (JEMS). 2005.

Hutchinson, N, Raj, R, Black, A, Levy, H, and Jul, E, The Emerald Programming
Language Report. 1991, University of British Columbia: Vancouver BC, Canada.
Jul, E, Levy, H, Hutchinson, N, and Black, A, Fine-Grained Mobility in the
Emerald System. ACM Trans. on Computer Systems, 1998. 6(1): p. 109-133.
Philippsen, M and Zenger, M, JavaParty - Transparent Remote Objects in Java.
Concurrency: Practice and Experience, 1997. 9(11): p. 1225-1242.

Smaragdakis, Y and J-Orchestra Group, Application Partitioning without
Programming (a White-Paper and Future Work Proposal). 2001, College of
Computing, Georgia Tech.

Smaragdakis, Y and Tilevich, E. Automatic Application Partitioning: The J-
Orchestra approach. in 8th ECOOP workshop on Mobile Object systems. 2002.
Malaga.

Tilevich, E and Smaragdakis, Y. J-Orchestra: Automatic Java Application
Partitioning. in European Conference on Object-Oriented Programming
(ECOOP). 2002. Malaga.

Liogkas, N, Maclntyre, B, Mynatt, E D, Smaragdakis, Y, Tilevich, E, and Voida,
S, Automatic Partitioning: A Promising Approach to Prototyping Ubiquitous
Computing Applications. IEEE Pervasive Computing, 2004(Special Issue on
Building and Evaluating Ubiquitous System Software).

217

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Launay, P and Pazat, J-L, A Framework for Parallel Programming in Java. 1997,
IRISA.

Launay, P and Pazat, J-L, Generation of distributed parallel Java programs. 1998,
IRISA.

Spiegel, A. Pangaea: An Automatic Distribution Front-End for Java. in Fourth
IEEE Workshop on High-Level Parallel Programming Models and Supportive
Environments (HIPS '99). 1999. San Juan, Puerto Rico: Springer-Verlag.
Spiegel, A, Automatic Distribution of Object-Oriented Programs, in FU Berlin,
FB Mathematik und Informatik. 2002.

Busch, M, Adding Dynamic Object Migration to the Distributing Compiler
Pangaea., in FB Mathematik und Informatik. 2001, FU Berlin: Berlin.

Chen, X. Extending RMI to Support Dynamic Reconfiguration of Distributed
Systems. in International Conference on Distributed Computing Systems. 2002.
Hunt, G C and Scott, M L, The Coign Automatic Distributed Partitioning System,
in Operating Systems Design and Implementation. 1999. p. 187-200.

Hunt, G C and Scott, M L, Coign: Efficient Instrumentation for Inter-Component
Communication Analysis. 1997, Dept. of Computer Science, University of
Rochester.

Hunt, G C and Scott, M L. 4 Guided Tour of the Coign Automatic Distributed
Partitioning System. in 2nd International Enterprise Distributed Object
Computing Workshop (EDOC "98). 1998. San Diego, CA.

Hunt, G C and Scott, M L. Intercepting and Instrumenting COM Applications. in
Proceedings of the 5th Conference on Object-Oriented Technologies and Systems
(COOTS 99). 1999. San Diego, CA.

Fahringer, T and Jugravu, A, JavaSymphony: A new programming paradigm to
control and to synchronize locality, parallelism, and load balancing for parallel
and distributed computing. Concurrency and Computation: Practice and
Experience, 2002. 17(7-8): p. 1005 -1025.

Fahringer, T. JavaSymphony: A System for Development of Locality-Oriented
Distributed and Parallel Java Applications. in IEEE International Conference on
Cluster Computing, CLUSTER 2000. 2000. Chemnitz, Germany.

Testori, J, Winnisch, M, and Wohlmann, M, JavaSymphony User Guide. 2002.

218

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Lavender, R G and Schmidt, D, Active Object - An Object Behavioral Pattern for
Concurrent Programming, in Pattern Languages of Program Design 2, J.
Vlissides, J. Coplien, and N. Kerth, Editors. 1996, Addison-Wesley.

Caromel, D, Klauser, W, and Vayssiere, J, Towards Seamless Computing and
Metacomputing in Java. Concurrency Practice and Experience, 1998. 10(11-13):
p. 1043-1061.

Holder, O, Ben-Shaul, I, and Gazit, H. Dynamic Layout of Distributed
Applications in FarGo. in 21st International Conference on Software Engineering
(ICSE'99). 1999. Los Angeles, California.

Abu, M and Ben-Shaul, I. 4 Multi-Threading Model for Distributed Mobile
Objects and Its Realization in FarGo. in 21st International Conference on
Distributed Computing Systems. 2001. Mesa, Arizona.

Holder, O and Gazit, H, FarGo Programming Guide. 1999, Electrical Engineering
Dept, Technion - Israel Institute of Technology.

Spiegel, A. Objects by value: Evaluating the trade-off. in PDCN '98. 1998.
Brisbane, Australia: ACTA Press.

Kirby, G N C, Walker, S M, Norcross, S, and Dearle, A. A Methodology for
Developing and Deploying Distributed Applications. in 3rd International Working
Conference on Component Deployment (CD 2005). 2005. Grenoble, France.

Box, D, Ehnebuske, D, Kakivaya, G, Layman, A, Mendelsohn, N, Nielsen, H F,
Thatte, S, and Winer, D, Simple Object Access Protocol (SOAP) 1.1. 2000, W3C.
Birrell, A D, Eyers, D, Nelson, G, Owicki, S, and Wobber, E, Distributed
Garbage Collection for Network Objects. 1993, DEC SRC.

Kirby, G N C and Morrison, R, Java Dynamic Compilation Package. 1998,
University of St Andrews.

Kirby, G N C, Morrison, R, and Stemple, D W, Linguistic Reflection in Java.
Software - Practice & Experience, 1998. 28(10): p. 1045-1077.

Shapiro, M, Dickman, P, and Plainfoss¢, D. Robust, Distributed References and
Acyclic Garbage Collection. in 11th ACM Symposium on Principles of Distributed
Computing (PODC). 1992. Vancouver, Canada: ACM.

Brittain, J and Darwin, I, Tomcat: The Definitive Guide, ed. B. McLaughlin. 2003:
O'Reilly & Associates.

Morrison, R, Balasubramaniam, D, Greenwood, R M, Kirby, G N C, Mayes, K,
Munro, D S, and Warboys, B, An Approach to Compliance in Software

219

Architectures. IEE Computing & Control Engineering Journal, Special Issue on
Informatics, 2000. 11(4): p. 195-200.

[94] Morrison, R, Balasubramaniam, D, Greenwood, R M, Kirby, G N C, Mayes, K,
Munro, D S, and Warboys, B C, 4 Compliant Persistent Architecture. Software -

Practice and Experience, Special Issue on Persistent Object Systems, 2000. 30(4):
p. 363-386.

220

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

