RAFDA Run-Time (RRT)
Beginner’s Guide v1.0

Scott M. Walker
RAFDA Project
School of Computer Science

University of St Andrews
http://www-systems.dcs.st-and.ac.uk/rafda/

RRT Beginner’s Guide v1.0 1

Abstract

The RAFDA Run-Time is a Java based middleware system that minimizes the programmer effort
required to create a distributed application. A single line of code can make instances of any class
remotely accessible or allow clients to obtain remote references to remotely accessible object
transparently.

The sections entitled Deploying a Web Service and Accessing a Deployed Object Remotely on
pages 3 to 5 can be used as a Quick Start Guide.

Downloads of all software and user guides along with complete JavaDoc can be found at the
website http://www-systems.dcs.st-and.ac.uk/rafda/

Contents
Introduction 3
Installation 3
Deploying a Web Service 3
Limitations of the standard class loader 5
Remotely Accessing a Deployed Object 5
Pass-by-value vs. Pass-by-reference 6
Automatic Deployment Semantics 8
Smart Proxies 8
Exceptions 9
Advanced Server and Client 9
Custom Class Loader 9
Deploying a Single Object with Multiple Deployment interfaces 10
Transmission Policy 11
Class Policy Example 12
Method Transmission Policy and Smart Proxy Example 15
Configuration 18
How the RRT chooses which network interface and port to bind to 18
Firewall 18
Socket Factories 19
Socket Listener 19

RRT Beginner’s Guide v1.0 2

Introduction

The RAFDA Run-Time (RRT) is a middleware system that permits the arbitrary exposure of
application objects to remote access irrespective of their class. It provides a remote reference
scheme that allows inter-address-space references between arbitrary application objects in order to
preserve non-distributed application semantics. The RRT separates the roles of application
developer and application distributor by providing a policy framework that allows control over the
parameter passing semantics used during remote method call without modification to application
source. The RRT is a standalone middleware system for the development of distributed systems and
addresses the requirements of three distinct use case scenarios:

e Developing new distributed applications.

¢ Introducing distribution into non-distributed applications.

e Developing and deploying Web Services.

This guide describes RRT version 1.0, which is available at (http://www-systems.dcs.st-
and.ac.uk/rafda/). It permits the creation of distributed applications and its capabilities are
illustrated by the various examples in this guide. This guide does not describe the RAFDA
transformation tools, which are distributed separately. See the document Performing Automatic
Application Transformation using the RAFDA Tools for additional information about using the
RRT in conjunction with the transformation tools and how distribution polices are defined.

Installation

The RRT is distributed in the JAR file 7r¢.jar which must be present in the classpath along with the
following dependencies:
o The Java 2 Platform, Standard Edition. We wuse v1.4.2 available at
(http://java.sun.com/j2se/1.4.2/download.html).
e The Byte Code Engineering Library (BCEL). We use v5.1 available at
(http://jakarta.apache.org/site/binindex.cgi).
e The Java Uuid Generator (JUG). We use Vvl.l.1 available at
(http://www.doomdark.org/doomdark/proj/jug/curr/jug.jar).
e The University of St Andrews Dynamic Java Compiler. We use v1.4 available at
(http://www-ppg.dcs.st-and.ac.uk/Java/DynamicCompilation/javacompiler.jar).
o The Dynamic Compiler requires fools.jar, which is distributed with the J2SE. It can
usually be found in the JAVA HOME/lib folder but is not in the classpath by
default.

All methods within the RRT are accessed via the RafdaRunTime class (uk.ac.stand.dcs.rafda.
rrt.RafdaRunTime) and the full JavaDoc API for this class can be found in the 7#¢.jar. In this guide,
several examples are used to illustrate how to use the RRT. All examples are included in the rrt.jar
distribution.

Deploying a Web Service
This section shows how an instance of an arbitrary class, Person, can be deployed as a Web
Service. The Person code is as follows:

public class Person {
public String name = null;

public Person(String name) {
this.name = name;

}

public Person() {
}

RRT Beginner’s Guide v1.0 3

public String getName () {
return name;

}

public void setName (String name) {
this.name = name;
}
}

The Person class has not been written with any consideration for remote access; however, an
instance of a Person can be deployed as a Web Service using the RRT. To deploy an object the
following is required:

e A reference to the object to deploy

e A list of the methods within this object that should be remotely accessible

e A name for the Web Service

To deploy an object, the server makes a single call to the deploy method in the RafdaRunTime class:

public static void deploy(Class interfaze, Object object, String name) throws Exception

The first argument specifies the methods within the object that should be remotely accessible. A list
of methods can be unambiguously specified using a Java class or interface in the form of a Java
Jjava.lang.Class object (Note that interfaces in Java are still represented by java.lang.Class objects).
It is important to note that the deployed object does not need to extend or implement the class or
interface specified by the java.lang.Class object. This type is known as the deployment interface
though it can be a class or an interface. If a class is used then the code in the class is ignored; only
the method signatures are relevant. Remote reference holders believe the type of the deployed
object is that of the deployment interface, irrespective of their actual classes! In this example, all
methods in the object are to be deployed and so the object’s own class can be used. The second
argument is a reference to the object to be deployed and the third is a name for the deployed Web
Service. The server code follows:

import uk.ac.stand.dcs.rafda.rrt.RafdaRunTime;

public class Server {
public static void main (String[] args) throws Exception {
Person p = new Person("Scott");
RafdaRunTime.deploy (Person.class, p, "somePerson");

}

When this server class is compiled and run, the following output is produced by the RRT:

CLI UI ** RRT started on anya at port 5001 [Socket Listener on port 5001]

CLI UI ** The current class loader is sun.misc.Launcher$AppClassLoader@53ba3d

CLI UI ** Deployed instance of (examplel.Person) with name (somePerson). UUID = 59c¢78a73-
0le7-4b8c-8045-b3d77c0c8d1l1l

The parts in bold will change from machine to machine. This output was produced by an RRT
running on a machine called anya on port 5001. Indeed, all example output in this guide is
generated from a machine called anya using the default port configuration. The manner in which the
RRT determines which network interface and port to bind to, and how it can be overridden, is
described later. The hexadecimal string is an automatically generated UUID. Note that this output
states the class of Person to be examplel.Person, indicating that the Person class is in package
examplel. This reflects the actual output that will be obtained when running the examples. The
package statements have been omitted from the code here for brevity.

The Web Service is now deployed and ready for use via the following URLSs:

RRT Beginner’s Guide v1.0 4

http://anya:5001/somePerson

and:

http://anya:5001/59c78a73-01e7-4b8c-8045-b3d77c0c8d11l

which can be more generally specified as:

http://<hostname>:<port>/<name>

and:

http://<hostname>:<port>/<uuid>
The above code is included in example 1 supplied with the rr.jar.

Limitations of the standard class loader

If the RAFDA custom class loader is not employed, as described later, then some limitations apply
to the objects that can be deployed:

e A deployed object must have a no-arguments constructor.

o A final class cannot be used as the deployment interface.

e No direct field access should be performed on a remote reference; instead, get and set
methods must always be used. Such direct field access operations are possible but the
semantics are undefined.

The first limitations can be overcome using the RAFDA custom class loader.

Remotely Accessing a Deployed Object

A client can obtain a remote reference to a deployed object based on its name and the name of the
machine and port on which the RRT that deployed it is running. The client makes a call to the
RafdaRunTime method getObjectByName() and specifies the host name and port of the RRT to
connect to, along with the name of the deployed object. The returned object can be cast into the
correct type. Note that unlike many middleware systems, the client does not need to refer to remote
objects using interface types. The class of the remote reference is that of the deployment interface
with which the remotely referenced object was deployed, not the class of the deployed object!

public static Object getObjectByName (String host, int port, String name) throws Exception

Note that the RRT binds to a specific interface on its host, which is displayed at startup:

CLI UI ** RRT started on hostName at port ...

During a call to getObjectByName(), it is this hostname that must be specified; generally the RRT
does not bind to the localhost interface. Network interface bindings are discussed later.

The following client code obtains a remote reference to the Person object deployed by the server,
above and calls some methods on it. To the client it is indistinguishable whether the referenced
object is local or remote.

import uk.ac.stand.dcs.rafda.rrt.RafdaRunTime;

public class Client {
public static void main(String[] args) throws Exception ({

Person p = (Person) RafdaRunTime.getObjectByName (“anya”, 5001,
"somePerson") ;

System.out.println("pl name is " + p.getName());

p.setName ("Stuart") ;

System.out.println("pl name is " + p.getName());

RRT Beginner’s Guide v1.0 5

}
The above code is also included in example 1 supplied with the rrt.jar.

Pass-by-value vs. Pass-by-reference

During remote method call, the arguments and return values that cross address-space boundaries
may be primitive types or reference types. Primitive types are immutable in Java and so are always
passed by-value. Interface types can be passed across the network by-value or by-reference though
Java local semantics are pass-by-reference. The RRT is capable of passing objects both by reference
and by value.
Conventional Web Service semantics are pass-by-value and so if the client accessing the a deployed
object in an RRT is a client implemented using another Web Service technology the RRT will
employ standard pass-by-value Web Service semantics. The RRT can serialize instances of any
class for transmission across the network using automatically generated custom serializers. If an
object is to be transmitted by-value then some limitations apply:

e The object cannot make use of native code.

e All fields must be publicly accessible. This limitation can be overcome using the RAFDA

custom class loader, discussed later.

If the client is also executing within an RRT, then the system behaves as a Distributed Object
Model and will default to pass objects by-reference in order to preserve local semantics. The
parameter passing semantics are completely under the control of the programmer and the manner in
which they are altered is described later. If an object is passed by-reference then it must be remotely
accessible to the remote reference holder. The RRT must therefore automatically deploy objects that
are passed by-reference. The semantics of this are discussed after the following example.
This example illustrates the pass-by-reference semantics employed when using the RRT as a
Distributed Object Model. The server deploys a Person instance as before, though in this case the
Person holds a reference to a Dog instance. The revised Person class follows.

public class Person {
public String name = null;
public Dog dog = null;

public Person(String name, Dog dog) {
this.name = name;
this.dog = dog;

}

public Person() {
}

public String getName () {
return name;

}

public void setName (String string) {
name = string;

}

public Dog getDog () {
return dog;

}
public void setDog(Dog d) {

dog = d;
}

RRT Beginner’s Guide v1.0 6

The Dog class is as follows:

public class Dog {
public String name = null;
public int age = 0;

public Dog () {
}

public Dog(String name, int age) {
this.name = name;
this.age = age;

}

public String getDogName () {
return name;

}

public void setDogName (String n) {
name = nj;

}

public int getAge() {
return age;

}

public void setAge (int a) {
age = a;

}

public void sayHello () {
System.out.println("Dog is " + name + " aged " + age);

}

An instance of a Person with a Dog is instantiated in a server as follows:

import uk.ac.stand.dcs.rafda.rrt.RafdaRunTime;

public class Server {
public static void main (String[] args) throws Exception ({
Person p = new Person ("Scott", new Dog("serverDog", 10));
RafdaRunTime.deploy (Person.class, p, "somePerson");

The following client is created to access the remote Person, obtain a reference to its Dog instance
and perform some operations on that Dog.

import uk.ac.stand.dcs.rafda.rrt.RafdaRunTime;
public class Client {

// Edit this line
private static final String HOSTNAME = "anya";

public static void main(String[] args) throws Exception {

Person p = (Person) RafdaRunTime.getObjectByName (HOSTNAME, 5001,
"somePerson") ;

p.getDog () .sayHello();

Dog d = new Dog("clientDog", 5);

p.setDog(d) ;

p.getDog () .sayHello();

System.out.println("dog is " + d);

System.out.println("dog is " + p.getDog());

RRT Beginner’s Guide v1.0 7

This client first accesses the Person’s existing Dog, which is server-side. It then creates a new Dog
and sets the Person’s Dog to be this new Dog. The server output follows and has been annotated to
indicate what is occurring;:

CLI UI ** RRT started on anya at port 5001 [Socket Listener on port 5001]

CLI UI ** The current class loader is sun.misc.Launcher$AppClassLoader@53ba3d

CLI UI ** Deployed instance of (example2.Person) with name (somePerson). UUID = 512lacll-
6826-4a50-bfe2-4f64bc5a7ddd

The Person instance has been deployed in the server.
CLI UI ** Deployed instance of (example2.Dog) with no name. UUID = 79ded07e-3c59-464d-
bd77-9970£0751dcc

The client has called getDog() and so the Dog is automatically deployed and passed by reference.

Dog is serverDog aged 10

The sayHello() method is called on the deployed Dog.

The annotated client output follows:

CLI UI ** Port 5001 is busy. Automatically choosing port: Trying 5002
CLI UI ** RRT started on anya at port 5002 [Socket Listener on port 5002]
CLI UI ** The current class loader is sun.misc.Launcher$AppClassLoader@53ba3d

The client has accessed the remote Dog and called sayHello(), neither of which results in output

here.
CLI UI ** Deployed instance of (example2.Dog) with no name. UUID = fb932334-ee83-4bd4-
914f-de8c4831lca6’

The client has instantiated a new Dog and has called setDog(). This new Dog instance must then be

automatically deployed here if it is to be passed by-reference.
Dog is clientDog aged 5

The getDog method is called on the remote Person and sayHello() is called on the Dog, which is in

the local address space.
dog is example2.Dog@cdfe76
dog is example2.Dog@cdfe76

It can be seen that the local reference to the new Dog and the Person’s dog field reference exactly
the same Java object.

This code is example 2 supplied with the rrt.jar.

Automatic Deployment Semantics

When automatically deploying an argument or return value during a remote method call, the RRT
decides which deployment interface is appropriate using the following rules.

1. If the object is already deployed using its own class as a deployment interface, then no steps
need to be taken.

2. The object may already be deployed using another deployment interface or not deployed at
all. The RRT checks the signature of the argument or return value in the method being
called and deploys the object using that signature class as the deployment interface. For
example, if a method putFish(Fish f) is called and an instance of BigFish (where BigFish is
a subtype of Fish) is supplied then the BigFish instance will be automatically deployed
using Fish as the deployment interface.

Smart Proxies

Smart proxies allow the remote references to cache some of the deployed object’s state locally, thus
avoiding the cost of a remote method call. The fields to be cached in the smart proxy are defined
server-side using this method in the TransmissionPolicyManager class (uk.ac.stand.dcs.rafda.rrt.
policy.transmission. TransmissionPolicyManager).

public static void setFieldToBeCached (String className, String field);

RRT Beginner’s Guide v1.0 8

For example, the following indicates that the field named dog in the Person class should be cached:

TransmissionPolicyManager.setFieldToBeCached ("Person", "dog"):;

ensures that the field dog in class Person will be cached in the remote reference. It is essential that
the remote reference holder access the field using the get and set accessor methods that adhere
exactly to the following naming scheme:

public <fieldClass> get<fieldNameWithCaptializedFirstLetter>();
public void set<fieldNameWithCaptializedFirstLetter>(<fieldClass>);

For example:

public DogImpl getDog() ;
public void setDog (DogImpl) ;

No automatic coherency control is performed by the RRT and full responsibility for ensuring
correct application semantics remains with the developer. Changes to the caching policy do not
affect existing references, which continue to cache the same set of fields. Clients can obtain an
updated reference that caches different fields, to reflect this new policy, directly from the RRT
using getObjectByName() in the normal manner.

Exceptions

The RRT will propagate exceptions across the network. The programmer can specify whether or not
exceptions should be handled by the RRT or propagated back into the application as follows. If the
deployment interface specifies that a method throws a java.lang.Exception then all exceptions,
including network related expectations, are propagated back into the application by the RRT. In this
case, the deployment interface and the actual class of the deployed object may differ as the former
is permitted to specify that a method throws a java.lang. Exception when the actual method does not.
As a result, unchecked Exceptions can be propagated across the network. If the deployment
interface does not indicate tjat a method throws a java.lang.Exception, then any Exceptions that
occur during its execution are consumed by the RRT.

Advanced Server and Client

Example 3 illustrates a more advanced server and client that make use of remote reference, smart
proxies, transmission policy (discussed later) and the propagation of exceptions across the network.

Custom Class Loader

The RAFDA custom class loader is found in class RafdaClassLoader (uk.ac.stand.dcs.rafda.rrt.
infrastructure.RafdaClassLoader) and will transform application classes at load time to ensure that
all fields are public, to enable the serializer to work, and that no classes are final, to allow the
deployment of an object using a final class as deployment interface.

To use the custom class loader, all RRTs that cooperate in running a single distributed application
must be running the RAFDA class loader. If some RRTs use the RAFDA class loader and some do
not then semantics are unpredictable. The following Java Virtual Machine argument must be used
when running clients and servers (and all other JVMs that participate in a single application) to
make use of the RAFDA custom class loader:

-Djava.system.class.loader=uk.ac.stand.dcs.rafda.rrt.infrastructure.RafdaClassLoader

Example 4 supplied with the r7t.jar illustrates the use of the custom RAFDA class loader.

RRT Beginner’s Guide v1.0 9

Deploying a Single Object with Multiple Deployment interfaces

A single object can be deployed multiple times under different deployment interfaces. Provided
there is a structurally equivalent method in the class of the object to be deployed for every method
in the deployment interface, the deployment will succeed. The deployed object does not need to be
of a class that extends or implements the deployment interface. Example 5 consists of a Student
deployed in multiple different fashions. The Student class appears as follows:

public class Student implements StudentInterface ({
public String getName () {
return "Bob";

}

public int getMatricNumber () {
return 1234567;

}

public boolean hasTail () {
return false;

}

Several interfaces are defined, all of which contain methods present in the Student class:

public interface StudentInterface {
public String getName () ;
public int getMatricNumber () ;

}

public interface PersonInterface {
public String getName () ;

}

public interface MammalInterface {
public String getName () ;
public boolean hasTail();

A Student is instantiated and deployed three times using different deployment interfaces. A single
object appears as if it is three separate Web Services as it is deployed multiple times using these
different deployment interfaces (actually, interfaces in this case). Note that the Student does not
need to implement the interface under which it is deployed.

import uk.ac.stand.dcs.rafda.rrt.RafdaRunTime;

public class Server {
public static void main(String[] args) throws Exception {
Student s = new Student();
RafdaRunTime.deploy (PersonInterface.class, s, "person");
RafdaRunTime.deploy (MammalInterface.class, s, "mammal");
RafdaRunTime.deploy (StudentInterface.class, s, "student");

The client then obtains three distinct remote references to the three different Web Services. To the
client each reference appears to reference a distinct that is typed the same as the respective
deployment interface.

import uk.ac.stand.dcs.rafda.rrt.RafdaRunTime;

public class Client {
public static void main(String[] args) throws Exception ({
PersonInterface p = (PersonInterface) RafdaRunTime.getObjectByName (
“anya”, 5001, "person");

RRT Beginner’s Guide v1.0 10

MammalInterface m = (MammalInterface) RafdaRunTime.getObjectByName (
“anya”, 5001, "mammal");

StudentInterface s = (StudentInterface) RafdaRunTime.getObjectByName (
“anya”, 5001, "student");

System.out.println (p.getName()) ;

System.out.println (m.hasTail());

System.out.println(s.getMatricNumber());

Transmission Policy

The complete transmission policy framework is too complex to be fully described here. See A
Middleware System that Promotes Reuse by Separating Transmission Policy from
Implementation [[icdcs]] for a more complete explanation. This sections explains the outline of the
transmission policy framework and shows some examples.
During remote method calls, objects are passed across address space boundaries as arguments and
return values. When the RRT is used as a Distributed Object Model, the programmer can control the
parameter passing semantics, known as the transmission policy, in order to determine whether
objects cross address-space boundaries by-reference or by-value. The transmission policy dictates
the manner in which objects are encoded for transmission and decides which parameter passing
semantics will be employed during remote method calls.
In order to define the transmission policy for an application, the programmer specifies a series of
policy rules. There are four kinds of policy rule:

e Parameter policy rules

e Method policy rules

e Return Value policy rules

e C(Class policy rules
Parameter policy rules are associated with individual method parameters and they indicate how
particular method arguments should be passed across address-space boundaries during a call to the
specified method. They allow fine-grain control over the transmission policy that is applied to the
parameters of a method. For example, a parameter policy rule might specify that during a call to a
particular method, the second parameter should be passed-by-value.
Method and Return Value policy rules are associated with methods as a whole and they specify how
return values from methods should be passed across address-space boundaries. For example, a
method policy rule might specify that during a call to a particular method, the return value should
be passed-by-reference. Additionally, they allow a single transmission policy to be associated with
all parameters of a method, avoiding the need to specify a parameter policy rule for each. For
example, a method policy rule might specify that during a call to a particular method, all parameters
should be passed-by-value. Policies associated with parameters and methods take a depth argument.
This indicates how deep into the closure of an object the policy should be applied, after which the
default pass-by-reference semantics are used.
Class policy rules are associated with classes and they indicate how instances of classes should be
passed across address-space boundaries. For example, a class policy rule might specify that all
instances of a particular class are passed-by-value. Each class policy rule applies to exactly one
class and does not apply to sub-classes of that class. Class policy rules are applied based on the
actual classes of the arguments, rather than those specified in the method signature, which may be
super-classes of the arguments.
Policy rules apply only in the address space in which they are specified, and they apply to all
objects in that address space. Policy rules can be specified either statically or dynamically. To
specify policy rules statically, a library class programmer can specify the policy rules in the class’s
initialization code. For example, in Java, policy rules may be specified in the static initializer and
are then active from class load time.

RRT Beginner’s Guide v1.0 11

In contrast, an application programmer may specify or change policy rules at any point during
application execution, in which case they come into force immediately—thus allowing for dynamic
adaptation of the application.
Valid transmission policies are defined in the PolicyType class and are:
e By-reference
e By-value
e Undefined
Transmission policies are defined by calling into the TransmissionPolicyManager class which
contains a series of static methods. setClassPolicy()
e setMethodPolicy()
e setParamPolicy()
e setReturnValuePolicy()
These classes are fully described in the JavaDoc supplied with the RRT.
The RRT effectively prioritizes the rules as follows:
1. Parameter policy rule
2. Method policy rule
3. Class policy rule
4. Default policy
However, each rule can also be defined by the programmer as non- overridable and so the RRT
actual prioritizes the rules as follows:
1. Parameter policy rule (non-overridable)
Method policy rule (non-overridable)
Class policy rule (non-overridable)
Parameter policy rule (overridable)
Method policy rule (overridable)
Class policy rule (overridable)
7. Default policy
In this ordering, it is possible that a non-overridable class policy rule will still be overridden by a
non-overridable method policy.

AN

Class Policy Example

The following shows example 6 in which several Person objects are placed into a House. The
House appears as follows:

import java.util.HashSet;
import java.util.Iterator;

public class House {
HashSet persons = new HashSet () ;

public void showContents () {
for (Iterator i = persons.iterator(); i.hasNext();) {
Person p = ((Person) i.next());
System.out.print (p.getName ()) ;
if (p.getFriend() != null) {
System.out.println (" has a friend called "
+ p.getFriend () .getName()) ;
} else {
System.out.println (" has no friend");
}
}
System.out.println();
}

public void addPerson (Person p) {
persons.add(p) ;
}

RRT Beginner’s Guide v1.0 12

The Person class is as follow:

public

class Person {

public String name = null;

public Person friend = null;

public Person (String name) {

}

this.name = name;

public Person() {

}

public String getName () {

}

return name;

public void setName (String name) {

}

this.name = name;

public void setFriend(Person friend) {

}

this.friend = friend;

public Person getFriend() {

}

return friend;

The House is deployed as normal:

import

public

uk.ac.stand.dcs.rafda.rrt.RafdaRunTime;

class Server {

public static void main(String[] args) throws Exception ({

}

RafdaRunTime.deploy (House.class, new House (), "house");

The client then accesses the house, applying different class policies to the Person class:

import
import
import

public

uk.ac.stand.dcs.rafda.rrt.RafdaRunTime;
uk.ac.stand.dcs.rafda.rrt.policy.transmission.PolicyType;
uk.ac.stand.dcs.rafda.rrt.policy.transmission.TransmissionPolicyManager;

class Client {

public static void main(String[] args) throws Exception ({

Person pl = new Person("Scott");
Person p2 = new Person ("Stuart");
Person p3 = new Person("Alvaro");
Person p4 = new Person ("Kath");

pl.setFriend(p3);
p2.setFriend(p4) ;

House house = (House) RafdaRunTime.getObjectByName (“anya”, 5001,
"house") ;

TransmissionPolicyManager.setClassPolicy (Person.class.getName (),
PolicyType.BY REFERENCE, true);

house.addPerson (pl) ;

TransmissionPolicyManager.setClassPolicy (Person.class.getName (),
PolicyType.BY VALUE, true);

RRT Beginner’s Guide v1.0 13

house.addPerson (p2) ;

// Do some output

up4 1
System.out.println();
house.showContents

System.out.println("pl = " + pl.getName());
System.out.println("p2 = " + p2.getName());
System.out.println("p3 = " + p3.getName());
System.out.println("p4 = " + pd.getName());
System.out.println();
house.showContents () ;
pl.setName ("He");
p2.setName ("She") ;
p3.setName ("Him") ;
p4.setName ("Her") ;
System.out.println("pl = " + pl.getName());
System.out.println("p2 = " + p2.getName());
System.out.println("p3 = " + p3.getName());
System.out.println (+ pd.getName ());
(
(

)
) .

’

System.exit (0) ;

The client-side output look like this:

CLI UI ** Port 5001 is busy. Automatically choosing port: Trying 5002

CLI UI ** RRT started on anya at port 5002 [Socket Listener on port 5002]

CLI UI ** The current class loader is sun.misc.Launcher$AppClassLoader@53ba3d

CLI UI ** Deployed instance of (example7.Person) with no name. UUID = 2e497426-6dbf-435d-
8c36-aa9968cffadc

pl = Scott
p2 = Stuart
p3 = Alvaro
p4 = Kath

Initally the Person names are set to as shown...

pl = He

p2 = She
p3 = Him
p4 = Her

But then the client performs a series of setName() calls and changes the names.

The server-side output look like this:

CLI UI ** RRT started on anya at port 5001 [Socket Listener on port 5001]

CLI UI ** The current class loader is sun.misc.Launcher$AppClassLoader@53ba3d

CLI UI ** Deployed instance of (example7.House) with name (house). UUID = 30bafl8a-5e8b-
4352-b958-069480cc8b8c

Scott has a friend called Alvaro

Stuart has a friend called Kath

The output of the first call to showContents(). The names are as expected.

He has a friend called Him
Stuart has a friend called Kath

The output of the second call to showContents(). This illustrates that pl and p3 were passed by-
reference, as the changes made to the names client-side are reflected here, while p2 and p4 must
have been passed by-value because they retain the old names.

In this example, Persons pl, p2, p3 and p4 exist client-side. During insertion into the remote house,
pl, and hence its referenced friend p3, are passed-by-reference while p2, and hence its referenced

RRT Beginner’s Guide v1.0 14

friend p4, are passed-by-value, as dictated by the transmission policy. When changes are made to
the names of the Person instances on the client side, only those Person objects that were passed by-
reference show the changes. Those that were passed by-value are unchanged.

Method Transmission Policy and Smart Proxy Example

In this example, which is example 7 in the 77t.jar, method transmission policies are used. Initially a
Person class is defined, in which it is specified that the dob (date of birth) field should be cached in
the remote reference, since the date of birth of a Person cannot change. The methods in Person
have been extended to print a message to standard out when called in order to help illustrate in
which address-space the Person objects exists.

import uk.ac.stand.dcs.rafda.rrt.policy.transmission.TransmissionPolicyManager;
public class Person {

static {
TransmissionPolicyManager.setFieldToBeCached ("example7.Person", "dob");

}

public String name = null;
public int dob = 0;

public Person() {
}

public Person(String name, int dob) {
this.name = name;
this.dob = dob;

}

public int getDob () {
System.out.println("Call to getDob() of (" + name + ", " + dob + ", "
+ hashCode () + ")");
return dob;

}

public String getName () {
System.out.println("Call to getName() of (" + name + ", " + dob + ", "
+ hashCode () + ")");
return name;

}

public void setName (String name) {
System.out.println("Call to setName() of (" + name + ", " + dob + ", "
+ hashCode () + ")");
this.name = name;

}

public String toString() {

return "Person is " + name + " born " + dob + " [" + hashCode() + "1";

}

A PersonManager class, which is capable of performing some operations on Person, is defined.

import java.util.HashSet;
import java.util.Iterator;

import uk.ac.stand.dcs.rafda.rrt.policy.transmission.PolicyType;
import uk.ac.stand.dcs.rafda.rrt.policy.transmission.TransmissionPolicyManager;

public class PersonManager {
private HashSet persons = new HashSet();

static {
TransmissionPolicyManager.setMethodPolicy ("example7.PersonManager",

RRT Beginner’s Guide v1.0 15

"addPersonToRecords", PolicyType.BY REFERENCE, -1, true);
TransmissionPolicyManager.setReturnValuePolicy (
"example7.PersonManager", "getPersonFromRecords",
PolicyType.BY REFERENCE, true);
TransmissionPolicyManager.setMethodPolicy ("example7.PersonManager",
"getFirstInitial", PolicyType.BY VALUE, -1, true);
TransmissionPolicyManager.setMethodPolicy ("example7.PersonManager",
"isFirstPersonOlder", PolicyType.BY VALUE, -1, true);
TransmissionPolicyManager.setMethodPolicy ("example7.PersonManager",
"returnOlderPerson", PolicyType.BY REFERENCE, -1, true);

}

public void addPersonToRecords (Person p) {
persons.add (p) ;
}

public Person getPersonFromRecords (String name) {
for (Iterator i = persons.iterator(); i.hasNext();) {

Person p = ((Person) i.next());
if (p.getName () .equals (name))
return p;

}

return null;

}

public String getFirstInitial (Person p) {
return p.getName () .substring (0, 1);
}

public boolean isFirstPersonOlder (Person pl, Person p2) {
if (pl.getDob() < p2.getDbob())
return true;
else
return false;

}

public Person returnOlderPerson(Person pl, Person p2) {
if (pl.getDob() < p2.getDbob())
return pl;
else
return p2;

Consider the transmission policy defined here. The addPersonToRecords() has a policy that states
that its arguments should be passed by-reference and getPersonFromRecords() has a policy that
states that its return value should be passed by-reference. Conversely, the getFirstlnitial() is
defined as taking a Person object by-value. Two different but functionally similar methods,
isFirstPersonOlder() and returnOlderPerson(), are specified though they use different policies.

The PersonManager is deployed in the usual manner:

import uk.ac.stand.dcs.rafda.rrt.RafdaRunTime;
public class Server {
public static void main(String[] args) throws Exception {

PersonManager pm = new PersonManager () ;
RafdaRunTime.deploy (PersonManager.class, pm, "personManager");

The client makes several calls to the different PersonManager methods and the different
transmission policies are automatically enforced.

import uk.ac.stand.dcs.rafda.rrt.RafdaRunTime;

public class Client {
public static void main(String[] args) throws Exception ({

RRT Beginner’s Guide v1.0 16

RafdaRunTime.startConnectionListener () ;

PersonManager pm = (PersonManager) RafdaRunTime.getObjectByName (
“anya”, 5001, "personManager");
Person pl = new Person ("Scott", 19700101);
Person p2 = new Person ("Alvaro", 19720514);
System.out.println(pl);
System.out.println (p2);
pm.addPersonToRecords (pl) ;
System.out.println ("getPersonFromRecords:
+ pm.getPersonFromRecords ("Scott")) ;
System.out.println("getFirstInitial: " + pm.getFirstInitial(pl));
System.out.println("isFirstPersonOlder: "
+ pm.isFirstPersonOlder (pl, p2));
System.out.println("isFirstPersonOlder: "
+ pm.returnOlderPerson (pl, p2));

"

The resultant output client-side follows and has been annotated in bold italics to explain what is
occurring.

CLI UI ** Port 5001 is busy. Automatically choosing port: Trying 5002
CLI UI ** RRT started on anya at port 5002 [Socket Listener on port 5002]
CLI UI ** The current class loader is sun.misc.Launcher$AppClassLoader@53ba3d

The RRT has now started
Person is Scott born 19700101 [8442367]
Person is Alvaro born 19720514 [22725577]

The first two printin statements show the object hash codes in squares brackets

CLI UI ** Deployed instance of (example7.Person) with no name. UUID = £8312f00-65c9-4ed3-
8b29-8688c3c529al

Person pl is automatically deployed during the call to addPersonToRecords()

Call to getName() of (Scott, 19700101, 8442367)

getPersonFromRecords: Person is Scott born 19700101 [8442367]

During a call to getPersonFromRecords the Person is passed by reference and so the remote

PersonManager’s call to getName() can be seen. The resultant reference is to pl, as seen by the
hash code.

getFirstInitial: S

In contrast, the call to getFirstInitial() takes the Person by value and so no call is
seen to the local getName () method. Instead, the getName () call can be seen below in the
server output.

isFirstPersonOlder: true

Again, both Person objects are passed by value and so no calls to getDob() are seen here. Instead

these calls appear in the server output below.

CLI UI ** Deployed instance of (example7.Person) with no name. UUID = 332b29f0-0257-434a-
93ce-8023b76e24b4

isFirstPersonOlder: Person is Scott born 19700101 [8442367]

Finally, p2 must be deployed as both Person objects are passed by reference to the
isFirstPersonOlder() method. The returned reference is to pl, as seen by the hash code.

The server output follows and is again annotated:

CLI UI ** RRT started on anya at port 5001 [Socket Listener on port 5001]

CLI UI ** The current class loader is sun.misc.Launcher$AppClassLoader@53ba3d

CLI UI ** Deployed instance of (example7.PersonManager) with name (personManager). UUID =
47131ddc-3848-4486-b862-9ce244b59b6b

The RRT has started and deployed the PersonManager.
Call to getName() of (Scott, 19700101, 30844270)

This call to getName() is performed on a local copy of pl during the call to getFirstlnitial().
Call to getDob() of (Scott, 19700101, 28336193)
Call to getDob() of (Alvaro, 19720514, 8344960)

Here calls to getDob() on two local copies of pl and p2 during the call to isFirstPersonOlder() can
be seen.

RRT Beginner’s Guide v1.0 17

Configuration

Several aspects of RRT configuration can be overridden by the programmer. Configuration options
must be overridden before the RRT starts running. The RRT starts when an object is deployed,
either directly by the programmer or automatically as the result of a remote method call. It is
suggested that configuration be performed in a static initializer in the class containing the
application’s main() method.

How the RRT chooses which network interface and port to bind to

By default, the RRT binds to the network interface returned by the following Java library class call,
the semantics of which are defined in the Java API documentation.

InetAddress.getLocalHost () ;

Typically this method will not bind to localhost, instead using a DNS host name. The programmer
can override the network interface to which the RRT binds at any time before the RRT starts by
calling the setHost() method.

public static void setHost (InetAddress host);

The RRT uses an automated mechanism to determine which port to bind to, depending on whether
the programmer has specified a port explicitly. If the programmer has not explicitly stated which
port to use then the RRT will use the default port of 5001 if it is available. If 5001 is not available,
the RRT will try subsequent ports in increments of one until a free port is found and used.

The programmer explicitly chooses a port using the setPort() method:

public static void setPort (int newPort);

If a port has been explicitly stated, the RRT will only attempt to bind to this particular port at start
time; it will not automatically try other subsequent ports. If it cannot bind to the port, it will retry
five times at 10-second intervals before failing.

Firewall

A Dbasic firewall exists that allows the programmer to state complete [P addresses or prefixes of IP
addressed from which a client may connect. Wild cards or net-masks are not permitted. Valid
examples include:

138.252.1.1 - this address only

138.251 - any address beginning 138.251

138.252.0. - any address beginning exactly 138.251.0 i.e. NOT 138.251.1.x

127.0.0.1 - localhost

This is done via the useFirewall() method:

public static void useFireWall (String validAddresses);

The string of valid address must be specified in a semi-colon separated list. To specify a range
include only the part of the address that is common to all addresses in the range, for example:

RafdaRunTime.useFireWall ("138.251;127.0.0.1;138.252.0.;138.252.1.1");

RRT Beginner’s Guide v1.0 18

Socket Factories

The RRT will use conventional Java sockets for inter-address-space communication by default.
However, the programmer can associate a particular Socket class with a particular host and port,
perhaps to provide encryption, profiling or simulate changing network conditions,.

The programmer must obtain the singleton associated with class RafdaSocketFactory, as follows:

RafdaSocketFactory.getSingleton ()

Subsequently the programmer calls the following method on that singleton:

public void associateIpAddressWithSocketClass (String host, int port, String socketClass)
throws Exception;

For example, to state that a Socket of class java.example. EncryptedSocket should be used when
contacting host anya on port 5001, the following is specified:

RafdaSocketFactory.getSingleton () .associateIpAddressWithSocketClass ("anya", 5001, "java.
example.EncryptedSocket") ;

Socket Listener

In general, a socket listener allows a user to examine the bytes transmitted on a socket. It reads
bytes from the transmitter, displays them and then forwards them to the receiver. Typically, a socket
listener listens on port X and propagates all traffic straight through to port Y on some host Z.
Clients are instructed to connect to the server via port X on the machine the socket listener runs on,
despite the fact that the server runs on port Y on machine Z.

The RRT permits the connection of a socket listener to view all network traffic into and out of an
RRT. The observed RRT must be aware of the socket listener, as it must actually bind to port Y but
ensure that all remote references state that it actually binds to port X to ensure clients contact it via
the socket listener. Port X is known as the effective port while port Y is known as the actual port.
The programmer must call the following method in the RafdaRunTime class:

public static void switchSocketListenerOn();
The effective port is assumed to be the actual port, as specified using setPort() or determined

automatically by the system, plus 50. For example, if the actual port is 5001 then the effective port
is 5051.

RRT Beginner’s Guide v1.0 19

