An Active Architecture Approach to COTS Integration

Brian Warboysl, Bob Snowdon', R Mark Greenwood', Wykeen Seet', Tan Robertson’,
Ron Morrison?, Dharini Balasubramaniam?, Graham Kirbyz, Kath Mickan®
'School of Computer Science, University of Manchester, Manchester M13 9PL, UK
2School of Computer Science, University of St Andrews, St Andrews, Fife KY16 95X, UK

{brian, rsnowdon, markg, seetw, robertsi}@cs.man.ac.uk
{ron, dharini, graham, kath}@dcs.st-and.ac.uk

Abstract

Commercial off-the-shelf (COTS) software products are increasingly used as standard components within
integrated information systems. This creates challenges since both their developers and source code are not usually
available, and the ongoing development of COTS cannot be predicted. The ArchWare Framework approach
recognises COTS products as part of the ambient environment of an information system and therefore an important
part of development is incorporating COTS as effective system components. This integration of COTS components,
and the composition of components, is captured by an active architecture model which changes as the system
evolves. Indeed the architecture modelling language used enables it to express the monitoring and evolution of a
system. This active architecture model is structured using control system principles. By modelling both integration

and evolution it can guide the system’s response to both predicted and emergent changes that arise from the use of
COTS products.

Keywords : software architecture, active architecture, COTS, hyper-code, cybernetics, evolution,
integration, composition and decomposition

1 Introduction

Commercial off-the-shelf (COTS) software products are increasingly becoming standard
components from which integrated information systems are constructed; it is the latest phase of
component engineering approaches to software reuse. Indeed standards for the configuration and
deployment of component-based software applications have started to emerge. However, at the
same time, the growth of electronic trading, turbulent market conditions and a project style
approach to business has created a demand for information systems which can be rapidly adapted
to suit business process demands which might be subject to continuous change. The inherent
contradiction between long-lived, general purpose COTS components and the demand for highly
adaptable information systems creates a challenging problem. The goal is highly-flexible systems
that are assembled to exploit their dynamic environment of COTS components, whose capability
and availability is emergent and not predicted. In particular, the development of COTS
components is unconstrained by the systems that use them.

Our approach to solving this problem is based on the observation that flexible information
systems use COTS components because they are cost-effective suppliers of required component
functionality. Software architecture can capture a system design as a set of interacting
components, and how certain components are “implemented” by COTS software. The
architecture captures the role, or roles, of each COTS component within the system. In addition,
we observe that increasingly information systems will need to address the context of ubiquitous
computing, or what has recently been termed the ambient intelligent environment, a world in
which programmable devices greatly outnumber people. An important property of these systems
is their ability to cope with this dynamic environment, where there is both anticipated change,
e.g. the release of a new COTS component version, and emergent behaviour. Emergent
behaviour arises from interactions between a system’s components, including its environment,
and by definition is not anticipated when the system is constructed.

Classical software engineering has, for the most part, adopted a reductionist component
engineering style towards COTS-based systems. One consequence of this is that the dynamic
nature of a system’s environment has either been:
o ignored, leading to so called legacy software,
o partially treated using techniques such as parameterisation, inheritance or
polymorphism,
o dealt with as a connectivity problem using plug and socket mechanisms to soften
the effects of misfitting componentry.
All of these approaches leave the impression that the dynamic environment, and in particular
‘emergent’ behaviour, should be treated as a trait to be suppressed. Our viewpoint is different.
Since a large class of software systems (including many constructed through the integration of
COTS components) need to exploit their dynamic environment, emergent behaviour is not only
inevitable, but should be recognised and exploited. The architecture of such flexible systems
must not only reflect the initial static configuration of components. It must also reflect the
ongoing re-configuration of components, capturing the system’s evolution at an architectural
level. Thus, it is important to design systems not merely as products but as processes capable of
supporting dynamic evolution. We regard our approach as being process-centred in that the core

system is implemented as a network of evolvable cooperating processes. The architecture
captures how each COTS component fits as a cooperating process within the system, and how
new COTS are incorporated, or existing COTS replaced, as the process network evolves.

2 The ArchWare Framework

This paper outlines the ArchWare Framework approach that has been developed and
implemented as part of the ArchWare project [1]. It addresses the development of COTS-based
software systems that are inherently capable of changing and of being changed. The Framework
provides an approach to the integration of COTS components into adaptable distributed software
systems, ArchWare-based Information Systems (AISs). There are four fundamental elements:
COTS components, ArchWare Transformer/Connectors (T/Cs), ArchWare ADL components,
and Users. T/Cs provide the wrappers that capture the role of a COTS component within the
system. The ADL components are the active architecture model that describes the COTS
integration.

The ArchWare Framework is an example of using a run-time architecture to integrate COTS
components into a flexible information system. Such a system is not isolated but exists in a
dynamic environment, and must evolve to incorporate new capabilities from that environment.
Our contribution lies with the development of a set of mechanisms that integrate COTS
components and incorporate control systems principles so that the architecture model can guide
the ongoing evolution of the system. The ArchWare ADL provides the capabilities for modelling
the malleability of the system so that it can be evolved contemporaneously with its operation [2].
Through this approach the system can evolve: to extend its use of COTS components’
capabilities, to replace one COTS component with another, and to refine its own architecture
based on the COTS components available in its environment. In addition, given this generic
change capability, the ArchWare Framework needs to provide mechanisms for sensible
engineering control of changes.

3 Flexible COTS Integration

Our approach’s philosophy puts emphasis on the socio-technical nature of organizational
systems. It stresses that the relationship between social and technical domains is one of co-
evolution. This suggests that it may be appropriate to consider these organizations as autopoietic
(self-producing). They are not static; they are continually trying to re-invent themselves to
exploit the opportunities presented by their dynamic environment. The incorporation of COTS
components into flexible systems is based on an interface that explicitly models the role of those
components. This interface also acts as the soft layer, previously we have termed this the co-
ordination layer [3], acting as the flexible membrane integrating the COTS components into the
overall system.

business system

react
proact

IT environment
(active model
integrating COTS)

Figure 1. Co-evolution of Business System and IT environment including COTS

In the ArchWare Framework the soft, flexible layer that integrates COTS components into
ArchWare-based Information Systems (AISs) is the architecture model. This model is part of the
run-time system and used to guide the evolution of the system throughout its lifetime. It is an
active model: it maintains its state as the business system changes (the ‘react’ relationship), and
may be used to constrain or guide the changes in the business system (the ‘proact’ relationship)
as in Figure 1. The execution of the run-time architectural model on a process-based server
provides the orchestration of the components. This is hence an example of a ‘wrapped” COTS
approach. Each COTS component is ‘wrapped’ to enable two-way communication with the
active architecture model, which takes responsibility for the management of the co-evolution of
the information system with its socio-technical environment.

The ArchWare Framework does not place any constraints on the COTS components. The
motivation is to allow users to reuse available COTS as components within their AISs. A COTS
component is effectively a black-box that behaves as a source and destination of messages. The
ongoing development of any COTS component is outside the domain of influence of the AIS, but
users may want the AIS to evolve and incorporate new capabilities from the COTS components.

The active architecture model is implemented as a set of ArchWare ADL components. It
includes the integration and control capabilities for other components. One, or more, ArchWare
ADL Environments provide the context for the definition and modification of ArchWare ADL
components, through an ADL Virtual Machine (ADLVM) that executes and ‘manages’ ADL
definitions.

The ArchWare Transformer/Connectors (T/Cs) form the bridge between the COTS components
and the ArchWare ADL components (see Figure 2). There is a T/C for each COTS component. It
provides the view of the COTS component as seen from the AIS, as an application may only be
using some of its capabilities. The T/C as a connector can check that the behaviour, in terms of
that pattern of observed messages, of a COTS component is that expected by the ADL
component, and vice versa. The T/C also transforms messages between the formats expected by
the components it connects.

Users interact with the system in two ways. They may be users of the COTS systems that are
components within the overall system. They may also be users who interact with the active ADL
model to monitor and evolve the system. An ArchWare Environment provides an interface to its
own T/C. This allows a user of an appropriate software client to interact with the active ADL
model, observe its state, introduce new ADL and direct the evolution of the system. (Although
there is an ArchWare ADL client, this could be replaced by a COTS system that interacted with
the ArchWare Environment’s T/C.)

In Figure 2 we show the simplest possible AIS composed of one COTS component, one T/C and
one ArchWare Environment. The ArchWare Environment consists of a single ArchWare
Component together with an ADL Proxy acting as the interface to the T/C.

ArchWare ArchWare

COTS-based .
ase Transformer/Connector Environment

component

Generic AW T/C
Web service/client

/ ADL connection

ADL
components

Web service/web / Proxy objegt in ADL
client wrapper for COTS specific (Webservice/Web

COTS) Web . Client)
client/service

Figure 2. Integrating COTS and ArchWare ADL Components with Transformer/Connector
(T/IC)

The underlying network is basically independent of this architecture and at present we use a Web
Services infrastructure (http://www.w3.0rg/2002/ws/) since this is rapidly becoming a useful
industry standard for component integration. That is, web services based behaviours implement
the interactions between COTS Components and T/Cs, and between T/Cs and ArchWare
Environment(s).

The integration of COTS systems as components within an AIS is essentially process integration.
The active architecture model, written in the ArchWare ADL, describes the system as a set of
coordinated behaviours. Within this active model there is one ADL behaviour for each COTS
component that describes its interaction with the other system components. The T/C for each
COTS component performs the necessary syntactic and semantic mediation between the COTS
component’s domain and the active model domain. The active model based process integration
does not need to model all the potential interactions for a COTS component. It only needs to
model the current expected interactions: if the COTS component does not match its expected
behaviour then this is the signal for the system to change and is handled by the evolution
capabilities.

4 Modelling Composition and Evolution

The ArchWare ADL was designed to support the composition of systems from components and
the evolution of such composed systems [2]. It is based on the m-calculus, a formal process
algebra that was designed to model interactive and mobile systems [4]. An ADL model consists
of a set of concurrent behaviours linked by connections. The behaviours interact by passing
messages along these connections. The ability of behaviours to create new behaviours and
connections, and to communicate connections over existing connections, allows dynamic
networks of components to be modelled. The ADL also provides explicit compose and
decompose operators. Decomposition breaks up (part of) an executing system into its constituent
components. These can then be changed and recomposed to form an evolved system.

Hyper-code technology is used to support the ArchWare ADL. A hyper-code program is created
in its execution environment. References that would otherwise need run-time binding can be
replaced by explicit links. Thus a hyper-code program is an active executing graph linking
source code and existing values [5]. By unifying the concepts of source code, executable code
and data, hyper-code provides a single representation (as a combination of source code text and
hyperlinks to existing values) of software throughout its life cycle. Sharing is represented by
multiple links to the same value. Hyper-code allows developers to explicitly refer to existing
state, including behaviours, and shared data, including connections, when evolving an ADL
model. At all times an ADL model may be inspected by viewing its hyper-code representation.

An ArchWare Environment is a reflective system, able to manipulate its own definition. When a
system is decomposed, its current state is reified giving a hyper-code representation of its
components and their connections. These representations may be evolved to capture new
requirements without losing their context. A compiler for ADL hyper-code is provided as a
callable function in the ADL so that evolved or new components can be created and bound back
into the system. The ArchWare ADL capabilities are not COTS specific; they are relevant to any
situation where components need to be composed in a flexible fashion and they may need to be
de-composed, modified and recomposed while maintaining important shared context.

5 Exploiting Cybernetic Principles

Since we wish systems to be responsive to both predicted and unanticipated (emergent) change,
the integration of the COTS components needs to be evolvable at all levels of granularity. The
mechanisms which bind components together need to be dynamically changeable, as do the
wrappings which realise the integration of the components. Exploiting cybernetic principles to
achieve this, the active architecture is built using elements which conform to a standard structure
ensuring the system’s potential for change. Each ArchWare Component contains both a
‘produce’ process, that represents its production or operational behaviour, and an ‘evolve’
process, that represents its “management” behaviour and is responsible for ensuring the
continuing relevance of the production process.

Formally, the basic building block of an ArchWare Environment is the ArchWare Component.
An ArchWare Component is a process (a behaviour in ADL terms) formed from a pair of
interacting behaviours (we will now use this term rather than process when referring to the active
model in ADL) Evolve (E) and Produce (P) as shown in Figure 3.

An active component

Environment

Evolve

Raw Widgets

Produce }—+——»

—

Figure 3. The basic structure of an ArchWare Component.

Produce (P) represents the behaviour which fulfils the purpose of the ArchWare Component.
That is, if a particular ArchWare Component is supposed to transform input Raw to output
Widgets then this transformation will be fulfilled by the behaviour P. Evolve (E) represents the
behaviour which ensures the effectiveness of P in circumstances which may require change.
Thus E affects P. The interaction < in Figure 3 represents both feedback from P to E and the
effect of E on P. Firstly, E may affect the behaviour P because P’s performance is deficient in
some way (a standard feedback control loop). Secondly, E may affect the behaviour P because E
receives an external stimulus from the Environment to change P.

Such an approach has its roots in classical cybernetics and its application to software architecture
[6]. It was also reflected in Shaw’s observations [7] that an important characteristic of the control
paradigm is the separation of the operation (Produce in Figure 3) from the compensation for
external disturbances, the control (Evolve in Figure 3).

Each of the behaviours E and P will, in general, be themselves ArchWare Components. That is,
each of E and P can be formed from a further produce element and a further evolve element.
Thus, this E/P building block allows components to be structured both co-operatively and
hierarchically. For example, Figure 4 illustrates two components co-operatively bound at the
same level, together with an evolve co-evolution component to form a hierarchical component at
the next level.

50

. (
Environment |
{ Evolve o }

[

(Produce, o)

Environme@
Widgets 4

Raw] ol,

Ravhy

. J

Figure 4. Composition of ArchWare Components

Thus ArchWare Components can be constructed from a set of recursive E/P components, and
composed into more complex structures. The grounding of this recursive structure can occur
— when an ArchWare Component is considered not to contain an E behaviour. That is, the
ArchWare Component does not have any means of adaptation.
— when the P behaviour is considered “atomic”. That is, the architecture of the component
does not expose any further structure.
Typically these circumstances, for the produce behaviour, occur when the ArchWare Component
being considered is implemented by a COTS component (Figure 5).

Environment
—_— manual

g

Raw Widgets

COTS)Jt——»

|

Figure 5. ArchWare component incorporating COTS product

An active architecture model is constructed of ArchWare Components, where the evolve parts of
each component use the evolutionary capabilities provided by the ADL. The
Transformer/Connectors (T/Cs) will similarly be structured with both produce and evolve parts.
Just as the produce parts of the ArchWare Components and T/Cs will interact during normal
operation, their corresponding evolve parts will interact to achieve any required evolutions.
COTS components are outside the control of the system and can be manually evolved

independently. This means that the evolution capabilities in the ADL model and the T/Cs must
be reactive to emergent COTS changes, as well as implementing predicted changes when the
appropriate circumstances are recognised.

6 Related Approaches

Recent specifications address the deployment and configuration of COTS-based software
systems. The OMG has adopted a platform independent level infrastucture which seeks to allow
the ‘automated’ deployment and configuration of distributed component-based systems [8]. This
standard can be customised for different application domains (eg CORBA Component Model
(CCM), I2EE and .NET). The Java community also recently adopted a deployment API
specification that aims at such a standard across J2EE servers [9]. However these standards
envisage a classical software engineering approach to the development of COTS-based software
systems and thus do not address the inevitable emergent behaviour issues of ubiquitous
computing systems. The basic Evolve-Produce structure has many similarities with the
autonomic managers and managed elements proposed for autonomic computing [10]; indeed
both aim to create cellular self-managing components. Autonomics emphasises the application of
pre-defined management policies. Our evolve elements are open to environmental influence,
including external user feedback, and changes may combine automatic and user-supplied
elements.

Some aspects of what we term active model systems have been partially addressed. In particular
the issue of dynamic reconfiguration has been thoroughly studied but, in general, research has
approached this problem by restricting it and implementing predetermined change management
solutions wherever possible [11,12,13]. Many solutions include a configuration manager, which
actually ensure that no change occurs that is not already specified. Using a predetermined set of
allowable state changes of course eases the task of ensuring that a dynamically changeable
system remains in an architecturally permitted state. However it also excludes the possibility of
dealing generally with the concept of emergent behaviour.

7 Discussion and Further Work

The ArchWare Framework has been implemented as part of the ArchWare project where it is
used to integrate both COTS and project-developed tools from various European partners. The
working prototype is being evaluated in the environment of the industrial partners. The
Framework also builds on experience integrating COTS tools with the ProcessWeb system, an
earlier persistent, reflective system designed to support system development through evolution.
This is sufficient evidence to convince us that the approach can work technically, but there is not
sufficient independent experience to report any empirical results.

There are two main areas of technical development when exploiting that ArchWare Framework:
developing and evolving the active architecture model in the ArchWare ADL, and integrating
with the required COTS tools. Various ArchWare project tools address the former including: the
use of styles to define a domain-specific ADL variant, UML stereotypes for ADL development,
model checking of ADL models, and a generic refinement process that can be specialised by
users. The latter is one motivation behind the explicit Transformer/Connectors. This allows the

development of a library of generic wrapping code, and by adopting web services it is possible to
introspect over interfaces and exploit existing web service toolkits.

The major strength of the active architecture approach, the ability to incrementally evolve the
system, can also be a weakness. The ability to evolve an architecture model when mistakes are
noticed can encourage a lack of care. The ability to evolve does not help a user faced with the
task of understanding a complicated erroneous model, and define an appropriate “correcting”
evolution. The cooperative and recursive E/P structures are one element of good practice but
further research and experience is required. In general, asking users to browse the current system
state and define an appropriate evolution is the default (last-resort) technique for resolving
problems.

One danger of a highly-flexible system is that it may evolve in an undesirable direction.
Evolution strategies need to be developed to ensure that appropriate engineering discipline is
applied to reduce the risk of inappropriate evolutions. Run-time verification techniques may
provide early warnings when a system is not behaving as expected and should be changed. The
process of system evolution may incorporate a range to checks and tests before any proposed
change is implemented. There also need to be techniques that manage users’ access to the
mechanisms for evolving systems. These need to be flexible so that users can themselves decide
and change their change control policies, for example whether it is highly centralised or
distributed. Much of our ongoing research can be characterised as the development of
refinements of the basic P/E structure to show how such good engineering practice can be
embedded in the basic architectural structures of highly-flexible systems. Finally there is the
challenge of the most effective incorporation of autonomic techniques so that we are able to
develop systems that manage themselves where appropriate, and also allow innovation through
their ability to incorporate unforeseen changes provided by users.

8 Conclusions

The ArchWare Framework provides the architectural building blocks for developing flexible
information systems that exploit their dynamic environment and incorporating COTS systems is
an essential part of this. Indeed the use of COTS as components is a vital way of incorporating
innovation into ongoing system development. The independent development of COTS is an
opportunity as well as a problem. Innovation may arise through examining new COTS features,
which cannot be predicted. One pleasant feature of our approach is that COTS systems are not
considered special: using dynamically located off the net services, open-source software,
exploratory tools created by users, are all examples of the exploiting emergent behaviour of the
dynamic environment and require flexible integration mechanisms.

The ArchWare Framework can be used to develop flexible systems, where the emphasis is on
run-time flexibility in the incorporation of COTS systems as components. These systems can
themselves be the software development environments for other software systems. The same
approach applies to the incorporation of COTS both at run-time, and during the development
process. The ArchWare Framework does not incorporate a particular development process, but a
specific ArchWare Information System can integrate a set of COTS software development tools
and a chosen development process. Of particular interest is the case where both the developing

-10 -

software system and the developed software system are based on the ArchWare Framework.
There is considerable flexibility over the relationship between these two systems. The interface
between them could be based on a standard release version style, with the evolution capabilities
of the developed system being the deployment of new versions. As an alternative to this ‘push’
approach, the developed system could request new capabilities from its developing system as and
when it requires them. The ArchWare Framework approach gives considerable flexibility in the
integration strategy for the COTS components, and value chains of systems can be assembled.

Stafford Beer [14] argued in his definition of the Viable System Model (VSM) that a Viable
System is one that is able to maintain a separate existence, a separate identity. This is a
characteristic of biological entities and also successful social organizations. That is such entities
are viable if they can survive in their environments with some degree of autonomy. We argue
that exploiting the ArchWare Framework endows a network of COTS components with this
necessary autonomy.

9 Acknowledgements

This work has been supported by the ArchWare European Project (http://www.arch-ware.org)
which is partially funded by the Commission of the European Union under contract No. IST-
2001-32360 in the IST-V Framework Programme. Thanks are also due to the anonymous
reviewers for their advice on improvements

10 References

1. Oquendo, F, Warboys, BC, Morrison, R, Dindeleux, R, Gallo, F, Garavel, H, and Occhipinti,
C., “ArchWARE: Architecting Evolvable Software” Proc. Ist European Workshop in
Software Achitecture (EWSA 2004), LNCS 3047, Springer-Verlag, 2004, pp. 257-277.

2. Morrison, R., Kirby, G., Balasubramaniam, D., Mickan, K., Oquendo, F., Cimpan, S.,
Warboys, B., Snowdon, B., and Greenwood, RM., “Support for evolving software
architectures in the ArchWare ADL” Proc. 4th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2004), June 2004, pp 69-78.

3. Warboys B.C., Kawalek P., Robertson T., and Greenwood R.M.: Business Information
Systems: a Process Approach. McGraw-Hill, Information Systems Series, 1999.

4. Milner, R. “Elements of Interaction”, Comm. of the ACM vol. 36 no. 1, 1993, pp. 78-89.

5. Zirintsis, E, Kirby, GNC, Morrison, R., “Hyper-Code Revisited: Unifying Program Source,
Executable and Data” Proc. 9th Int. Workshop on Persistent Object Systems (POS9), LNCS
2135, Springer-Verlag, 2000, pp. 232-246

6. Herring, C., Kaplan, S., “Viable systems: the control paradigm for software architecture
revisited” Proc. 2000 Australian Soft. Eng. Conf., Apr. 2000, pp. 97-105

7. Shaw, M., Beyond Objects: A software design paradigm based on process control, ACM
Software Engineering Notes vol. 20 no.1, 1995

8. Object Management Group (OMG). Deployment and Configuration of Component-Based
Distributed Applications. OMG specification ptc/2003-07-08.

9. Java 2 Enterprise Edition Deployment API Specification, Version 1.0.

10. Kephart, J, and Chess, DM. “The Vision of Autonomic Computing” IEEE Computer Journal
vol. 36 no.1, 2003, pp. 41-50

-11 -

11. R. Allen, R. Douence, D. Garlan, “Specifying Dynamism in Software Architectures” Proc.
Foundations of Component-Based Systems Workshop, Sept. 1997

12. N. Lynch, A. Shvartsman, “Communication and Data Sharing for Dynamic Distributed
Systems” Future Directions in Distributed Computing, LNCS 2584, Springer-Verlag, 2003.

13. M. Wermelingerl, and J. L. Fiadeiro, “Algebraic Software Architecture Reconfiguration”,
FSE’99, 1999.

14. Beer, S., Diagnosing the system for organizations, 1985, UK: Wiley and Sons

S 12 -

