Promoting Component Reuse by Separating
Transmission Policy from Implementation

Scott M. Walker
University of St Andrews
scott@dcs.st-and.ac.uk

Graham N. C. Kirby
University of St Andrews
graham@dcs.st-and.ac.uk

Abstract

In this paper we present a methodology and set of
tools which assist the construction of applications from
components, by separating the issues of transmission
policy from component definition and implementation.
This promotes a greater degree of software reuse than
is possible using traditional middleware environments.

Whilst component technologies are usually
presented as a mechanism for promoting reuse, reuse
is often limited due to design choices that permeate
component implementation. The programmer has no
direct control over inter-address-space parameter
passing semantics: it is fixed by the distributed
application’s structure, based on the remote
accessibility of the components. Using traditional
middleware tools and environments, the application
designer may be forced to use an unnatural encoding
of application level semantics since application
parameter passing semantics are tightly coupled with
the component deployment topology.

This paper describes how inter-address-space
parameter passing semantics may be decided
independently of component implementation.
Transmission policy may be dynamically defined on a
per-class, per-method or per-parameter basis.

Introduction

During remote method call, different transmission
policies can be applied to components that are passed
across address space boundaries. The requirements of
each particular application dictate the parameter
passing semantics applied to particular arguments and
return values. Typically, components are either passed-
by-reference or passed-by-value though variations such
as pass-by-migrate or pass-by-visit exist. This paper

Alan Dearle
University of St Andrews
al@dcs.st-and.ac.uk

Stuart Norcross
University of St Andrews
stuart@dcs.st-and.ac.uk

describes a methodology and set of tools that allow an
application programmer to separate the issues of
component transmission policy from component
definition and implementation. The advantage of this
separation is that it aids component reusability since
components can be used in applications in a more
flexible manner.

An environment in which transmission policy is
distinct from component implementation promotes
software reuse to a greater degree than is possible
using traditional middleware systems. A single
component can be reused in multiple applications with
different parameter passing semantics without the need
to modify the component.

Consider the following use-case: Some address
book software models each entry in the address book
as a component. The software runs on a desktop
machine and holds references to these components.
Using traditional middleware the PDA must either
obtain the components by-reference, meaning that they
are unavailable when disconnected from the network,
or by-value, meaning coherency control must be
performed on each update. Using the described
technology, the PDA can obtain components by-
reference while it is connected to the network,
obviating the need for coherency control on update.
Only when disconnecting from the network does the
PDA obtain components by-value in order that they
remain available offline. At any given moment, the
programmer can employ the most advantageous
transmission policy for the circumstances.

By allowing the specification of transmission policy
dynamically and independently of component
implementation, the roles of component programmer
and application programmer are separated. The
component programmer is concerned only with the
functional requirements of the components, not the

parameter passing semantics that may be applied to it
when it is deployed in an application. Components
make fewer assumptions about the environment in
which they are to be used. The application programmer
has the freedom to apply any transmission policy to
any component, thereby increasing the likelihood that
any given component will be reusable in another
context.

The technology that permits the separation of
transmission policy from component creation has been
implemented as part of a middleware system known as
the RAFDA Run Time (RRT). No special steps need be
taken during component implementation and
components can be assembled into applications in the
conventional manner. Both component programmer
and application programmer can benefit from using the
RRT without having to alter their development
process.

Typical middleware systems do not allow this
separation of transmission policy from implementation.
Transmission policy is decided statically and cannot be
changed without modifying the component. This
inflexibility = hampers reuse. The application
programmer has no control over the transmission
policy applied to components — it is hard-coded by the
component programmer.

Component transmission policy is commonly based
on whether a component is remotely accessible.
Choosing transmission policy in this manner can force
the application programmer to use an unnatural
encoding of application level semantics. Either the
application programmer must create an application
within the constraints of the available components or
the component programmer must know at component
creation time the semantics of the application in which
it is to be deployed.

This paper describes several notable traits of the
RRT middleware system, namely the following:

e A single component can be passed-by-
reference or passed-by-value.

e Transmission policy and application
distribution are not tightly coupled.

e Inter-address-space parameter
semantics can be controlled.

Using the RRT, components are written without
regard for their transmission policy. Applications are
constructed from components in the usual manner and
an application-specific component transmission policy
is specified separately. This transmission policy can be
dynamically altered and is defined on a per-class, per-
method or per-parameter basis.

passing

Related work

Whilst component technologies are usually
presented as a mechanism for promoting reuse, this
reuse is often limited due to design choices that
permeate component implementation. During the
creation of a distributed application, the programmer is
forced to decide statically how the application is
partitioned. Particular component classes are written to
be remotely accessible. The transmission policy
applied to components is decided statically.

Using Java RMI[1I] and Microsoft .NET
remoting[2] the programmer defines special remote
classes, instances of which are remotely accessible.
During remote calls, instances of (almost') any class
can be passed as arguments. Arguments that are
instances of remotely accessible classes are always
passed by-reference. Arguments that are not instances
of remotely accessible classes are always passed by-
value. The parameter passing semantics applied to
components are inflexible and tightly coupled with the
distribution of the application.

Using CORBA v2.3 or later[3], the component
programmer decides statically at component creation
time whether a component will cross network
boundaries by-reference or by-value. Initially, this
seems to offer moderately more control than RMI and
NET remoting. However, only components specified
as CORBA components can be passed as arguments,
unlike the others which permit other classes of
component to cross network boundaries, if only by-
value.

Web Services[4] technologies permit only pass-by-
value. The RRT includes some extensions to the Web
Services model that support pass-by-reference and are
described outwith this paper[5].

In all cases, typical middleware systems restrict
reusability and application semantics in the following
ways:

e They define transmission policy statically.
A component can only be passed-by-
reference or passed-by-value for the entire
duration of the application.

e They tightly couple transmission policy
and application distribution.

e The application programmer has no direct
control over inter-address space parameter
passing semantics.

These restrictions hamper component reuse because
application level semantics are built into components at
creation time in an unalterable fashion. We have
created the RRT in order to overcome these limitations.
The RRT has several features that differentiate it from
typical middleware systems, namely:

1 . L
Instances must be of a remotely accessible or serializable class

e The provision of a transmission policy
framework that allows the dynamic
definition of transmission policy on a:

o Per-parameter basis
o Per-method basis
o Per-class basis

e If an application component can cross
network boundaries then the RRT can
choose whether to pass it by-reference or
by-value

The RRT is capable of deploying arbitrary
components as Web Services. These components can
be referenced from remote address-spaces using a
remote reference scheme implemented by the RRT. If a
component is to be passed by-reference, the RRT will
automatically deploy the component to make it remote
accessible and will transmit a remote reference across
the network. If the component is to be passed by-value,
the RRT will serialize the component and transmit it
across the network. This functionality is described in
detail elsewhere.

The RRT is capable of transmitting any component
by-reference and any component by-value. The RRT
dynamically decides how to treat each component
based on the transmission policy. To exploit this
mechanism, the programmer must be able to define
transmission policy in an expressive and flexible
manner.

Defining transmission policy

During remote method call, components are passed
across address space boundaries as arguments and
return values. Transmission policy dictates the manner
in which components are encoded for transmission. It
decides which parameter passing semantics will be
employed during remote method calls.

Though the transmission policy framework has been
described in the context of the RRT it is applicable
with any middleware. The RRT supports passing
parameters by-reference or by-value but the described
transmission policy framework not restricted to these
two mechanisms. It is scalable to accommodate any
parameter passing mechanisms that the underlying
middleware supports.

In order to define the transmission policy for an
application, the programmer specifies a series of policy
rules. There are three kinds of policy rule:

e Parameter policy rules
e Method policy rules
e (lass policy rules

Parameter policy rules are associated with
individual method parameters. They indicate how
particular method arguments should be passed across

address-space boundaries during a call to the specified
method. They allow fine-grained control over the
transmission policy that is applied to the parameters of
a method. For example, a parameter policy rule might
specify that during a call to a particular method, the
second parameter should be passed-by-value.

Method policy rules are associated with methods as
a whole. They have a dual role. They specify how
return values from methods should be passed across
address-space boundaries. For example, a method
policy rule might specify that during a call to a
particular method, the return value should be passed-
by-reference. Additionally, they allow a single
transmission policy to be associated with all
parameters of a method, avoided the need to specify a
parameter policy rule for each. For example, a method
policy rule might specify that during a call to a
particular method, all parameters should be passed-by-
value.

Class policy rules are associated with classes. They
indicate how instances of classes should be passed
across address-space boundaries. For example, a class
policy rule might specify that all instances of a
particular class are passed-by-value. Each class policy
rule applies to exactly one class. It does not apply to
sub-classes of that class. Class policy rules are applied
based on the actual classes of the parameters, not the
those specified in the method signature.

Policy rules apply only in the address space in
which they are specified, though they apply to all
components in that address space. Policy rules can be
specified dynamically at any point during application
execution and they come into force immediately. A
component programmer can effectively specify policy
rules statically by specifying them in the component’s
initialization code. For example, in Java, policy rules
specified in the static initializer are active from class
load time.

This functionality distinguishes the RRT from
typical middleware systems and tackles the limitations
listed at the beginning of this section. The dynamic
specification of policy rules that dictate application
parameter passing semantics returns control of these
semantics to the application programmer.

Policy rules are created through the policy manager.
There is a single policy manager per address-space
which is responsible for evaluating transmission policy
in that address-space. Each policy manager stores a
database of policy rules, specified by the application
programmer.

Transmission policy is concerned with cross-
address-space communication and so is applied at
serialization time. During serialization, the policy
manager determines the transmission policy that
should be applied to each component it is asked to

serialize. When a component is serialized by-value, the
components it references are also passed into the
serializer. The policy manager will determine how
each of these components should be passed across the
network and serialize them appropriately. Method and
parameter policy rules can be specified with a depth
value. This depth indicates how far into the closure of
an argument the policy rule applies.

The policy manager provides the methods shown in
Figure 1 for the specification of policy rules. The
Policy class is not shown. It is an enumeration class
identifying all available parameter passing
mechanisms. The purpose of the isOverridable flag is
discussed later.

public static void setClassPolicy(
String className,
Policy policy,
boolean isOverridable
) {0}
public static void setMethodPolicy (
String className,
String methodName,
Policy policy,
boolean isOverridable
) {0}
public static void setParamPolicy (
String className,
String methodName,
int paramNumber,
Policy policy,
boolean isOverridable
) {0}
Figure 1: Policy manager methods used to
specify policy rules

Evaluating transmission policy

The policy manager makes all transmission policy
decisions for all components in its address space.
However, from the perspective of a single component,
the programmer may wish to control the transmission
policy that is applied to the following:

1. The arguments the component passes when
calling some remote method

2. The arguments the component receives
when a method is called on it

3. The return value the component transmits
after a method has been called on it

4. The return value the component receives
after calling some remote method

One component’s passed arguments are another’s
received arguments. For some remote method call, the
caller may wish to apply one transmission policy (case
1 above) while the callee wishes to apply another

transmission policy (case 2 above). Cases 3 and 4
exhibit the same problem.

Each policy manager has direct control over the
transmission policy applied to components outgoing
from its address space, that is, cases 1 and 3 above.
They cannot have direct control over components that
are incoming from a remote address space, that is,
cases 2 and 4 above. When evaluating transmission
policy during a remote call, a policy manager may
solicit information from the policy manager in the
remote address space about the policy rules it has
associated with this remote call.

Individual policy managers are configured to either
use this information from the remote policy manager or
to base the transmission policy decision on locally
specified rules alone. A policy manager that considers
the remote policy manager is known as a co-operative
policy manager. All policy managers, whether co-
operative or not, respond to requests for information
about their locally specified policy rules.

From the specified policy rules, the transmission
policy applicable to a particular remote method call
can be deduced. It is based on the class of the
component; the method being called; whether the
component is an argument or return value; and the
depth of the component in the argument’s closure.
Figure 2 shows the methods provided by the policy
manager that determine transmission policy.

public static TransmissionPolicy
getTransmissionPolicy (
String className,
String methodName,
int paramNumber,
Object param,
int depth) {...}
public static TransmissionPolicy
getReturnTransmissionPolicy (
String className,
String methodName,
Object returnValue,
int depth) {...}
Figure 2: The policy manager methods
used to evaluate transmission policy

These methods are called by the RRT during
component serialization or by a co-operative remote
policy manager that is evaluating transmission policy.
In addition to specifying how the component should be
passed across the network, the returned
TransmissionPolicy also contains information about
the kind of policy rule that was used to make the
decision. This information is used by remote policy
managers but is ignored by the RRT.

Resolving policy rule contention

Clearly, there is scope for contention between
policy rules specified in different policy managers. A
class policy rule in one address-space can specify that
instances of X are always passed-by-value, while a
class policy rule in another address-space specifies that
instances of X are always passed-by-reference.

Similarly, contention can exist among rules
specified within a single address-space. For example, a
component of class X is passed as a parameter to
method m(). A class policy rule may indicate that
instances of X are passed-by-value while a method
policy rule simultaneously indicates that parameters to
method m() are always passed-by-reference.

The policy manager has a set of policy rules,
including some that may have been received from a
remote policy manager, and must decide which to
apply.

A hierarchy of policy rules is defined. Higher rules
are followed while lower rules are ignored. The
hierarchy is:

1. Parameter policy rule
2. Method policy rule
3. Class policy rule

4. Default policy

A parameter policy rule is followed before all
others. If none exists, then the policy manager looks
for an applicable method policy rule. If none exists,
then it looks for an applicable class policy. If no policy
rules have been defined then a default policy is
applied. The policy rule that is used to decide the
transmission policy in a particular set of circumstances
is known as the dominant rule.

This strict hierarchy is restrictive. Under some
circumstances, it is desirable that a class policy rule
take precedence over a parameter or method policy
rule. For this reason, policy rules are specified with a
flag that indicates whether the rule can be overridden.
A rule that cannot be overridden is always followed
before a rule that can be overridden, irrespective of
their hierarchical position. The hierarchy can be
revised as follow:

1. Parameter policy rule (non-overridable)
Method policy rule (non-overridable)
Class policy rule (non-overridable)
Parameter policy rule (overridable)
Method policy rule (overridable)

Class policy rule (overridable)

7. Default policy

It is recommended that policy rules are specified as
overridable in most circumstances. Despite specifying
a class policy rule as non-overridable, it will still be
overridden by a non-overridable method policy. The

AN

authors suggest that it should rarely be necessary to
override a policy rule that has been specified as non-
overridable and that such an operation should be
performed with care.

The policy manager holds a series of policy rules
that are applicable during a particular method call. The
transmission policy received from a remote policy
manager also includes the dominant rule in that remote
address-space. The hierarchy can resolve contention
among this set of policy rules.

Contention can still exist occur if the dominant rule
in the remote policy manager is hierarchically
equivalent to the dominant rule in the local policy
manager. Contention of this form is resolved
differently depending on whether the transmission
policy is associated with an argument of a return value.

The callee’s policy rule is followed over the caller’s
when choosing the transmission policy for arguments.
Conversely, the caller’s policy rule is followed over the
callee’s when choosing the transmission policy for the
return value. The RRT is capable of deserializing and
using components irrespective of the transmission
policy used during serialization. The programmer is
responsible for ensuring that application transmission
policy is specified in a consistent manner that leads to
the desired application semantics.

Future Work

Initial measurements indicate that the cost of
dynamically evaluating transmission policy is
subsumed by the cost of serialization leading us to
believe that the benefits gained outweigh the expense.
We intend to perform further measurements to evaluate
the trade-off in more detail.

We hope to introduce additional features to the
transmission policy framework. Currently, policy
managers hold policy rules that apply only to
components in the local address space. Policy
managers can co-operate with each other in order to
reach a consensus but the specification of policy rules
that apply across the entire application is not
supported. We propose the introduction of a
mechanism that peers together policy managers such
that policy rules defined in any one of them apply in
all. It would be possible to peer together only a subset
of the policy managers active in a distributed system
while the remainder stay autonomous.

We propose extensions to the policy rules. It will be
possible to specify a class policy rule that applies not
just to a single class, but to the class’s entire
inheritance hierarchy. The programmer will be also
able to specify policy rules that apply only to a single
call.

Conclusion

This paper describes the transmission policy
framework provided by the RAFDA Run Time (RRT).
The RRT overcomes the limitations inherent in typical
middleware systems with respect to component
transmission policy and subsequently, their reuse. The
RRT separates the specification of the parameter
passing semantics applied to a component during inter-
address-space method call from the component’s
creation and implementation. It provides a mechanism
and framework to allow the dynamic specification of
component transmission policy on a per-class, per-
method or per-parameter basis.

Application semantics are no longer driven by
decisions made statically during component creation.
This aids component reuse since the programmer has
complete control over application semantics
independently of the component implementation.

References

[1] Sun Microsystems, Java™ Remote Method
Invocation Specification. 1996-1999.

[2] Thai, T. and Lam, H. Q., .NET Framework
Essentials. 2001: O'Reilly.

[3] OMG, Common Object Request Broker
Architecture: Core Specification. Vol. 3.0.3.
2004.

[4] Box, D, Ehnebuske, D, Kakivaya, G, Layman,
A, Mendelsohn, N, Nielsen, H F, Thatte, S,
and Winer, D, Simple Object Access Protocol
(SOAP) 1.1.2000, W3C.

[5] Walker, S, Dearle, A, Kirby, G N C, and
Norcross, S, Exposing Application
Components as Web Services. 2004.

