
Promoting Component Reuse by Separating 
Transmission Policy from Implementation 

 
 

Scott M. Walker 
University of St Andrews 
scott@dcs.st-and.ac.uk 

 
Graham N. C. Kirby 

University of St Andrews 
graham@dcs.st-and.ac.uk 

 

Alan Dearle 
University of St Andrews 

al@dcs.st-and.ac.uk 
 

Stuart Norcross 
University of St Andrews 
stuart@dcs.st-and.ac.uk 

 
 

Abstract 
 

In this paper we present a methodology and set of 
tools which assist the construction of applications from 
components, by separating the issues of transmission 
policy from component definition and implementation. 
This promotes a greater degree of software reuse than 
is possible using traditional middleware environments.  

Whilst component technologies are usually 
presented as a mechanism for promoting reuse, reuse 
is often limited due to design choices that permeate 
component implementation. The programmer has no 
direct control over inter-address-space parameter 
passing semantics: it is fixed by the distributed 
application’s structure, based on the remote 
accessibility of the components. Using traditional 
middleware tools and environments, the application 
designer may be forced to use an unnatural encoding 
of application level semantics since application 
parameter passing semantics are tightly coupled with 
the component deployment topology. 

This paper describes how inter-address-space 
parameter passing semantics may be decided 
independently of component implementation. 
Transmission policy may be dynamically defined on a 
per-class, per-method or per-parameter basis. 

 
Introduction 

 
During remote method call, different transmission 

policies can be applied to components that are passed 
across address space boundaries. The requirements of 
each particular application dictate the parameter 
passing semantics applied to particular arguments and 
return values. Typically, components are either passed-
by-reference or passed-by-value though variations such 
as pass-by-migrate or pass-by-visit exist. This paper 

describes a methodology and set of tools that allow an 
application programmer to separate the issues of 
component transmission policy from component 
definition and implementation. The advantage of this 
separation is that it aids component reusability since 
components can be used in applications in a more 
flexible manner. 

An environment in which transmission policy is 
distinct from component implementation promotes 
software reuse to a greater degree than is possible 
using traditional middleware systems. A single 
component can be reused in multiple applications with 
different parameter passing semantics without the need 
to modify the component. 

Consider the following use-case: Some address 
book software models each entry in the address book 
as a component. The software runs on a desktop 
machine and holds references to these components. 
Using traditional middleware the PDA must either 
obtain the components by-reference, meaning that they 
are unavailable when disconnected from the network, 
or by-value, meaning coherency control must be 
performed on each update. Using the described 
technology, the PDA can obtain components by-
reference while it is connected to the network, 
obviating the need for coherency control on update. 
Only when disconnecting from the network does the 
PDA obtain components by-value in order that they 
remain available offline. At any given moment, the 
programmer can employ the most advantageous 
transmission policy for the circumstances. 

By allowing the specification of transmission policy 
dynamically and independently of component 
implementation, the roles of component programmer 
and application programmer are separated. The 
component programmer is concerned only with the 
functional requirements of the components, not the 



parameter passing semantics that may be applied to it 
when it is deployed in an application. Components 
make fewer assumptions about the environment in 
which they are to be used. The application programmer 
has the freedom to apply any transmission policy to 
any component, thereby increasing the likelihood that 
any given component will be reusable in another 
context. 

The technology that permits the separation of 
transmission policy from component creation has been  
implemented as part of a middleware system known as 
the RAFDA Run Time (RRT). No special steps need be 
taken during component implementation and 
components can be assembled into applications in the 
conventional manner. Both component programmer 
and application programmer can benefit from using the 
RRT without having to alter their development 
process. 

Typical middleware systems do not allow this 
separation of transmission policy from implementation. 
Transmission policy is decided statically and cannot be 
changed without modifying the component. This 
inflexibility hampers reuse. The application 
programmer has no control over the transmission 
policy applied to components – it is hard-coded by the 
component programmer. 

Component transmission policy is commonly based 
on whether a component is remotely accessible. 
Choosing transmission policy in this manner can force 
the application programmer to use an unnatural 
encoding of application level semantics. Either the 
application programmer must create an application 
within the constraints of the available components or 
the component programmer must know at component 
creation time the semantics of the application in which 
it is to be deployed. 

This paper describes several notable traits of the 
RRT middleware system, namely the following: 

• A single component can be passed-by-
reference or passed-by-value. 

• Transmission policy and application 
distribution are not tightly coupled. 

• Inter-address-space parameter passing 
semantics can be controlled. 

Using the RRT, components are written without 
regard for their transmission policy. Applications are 
constructed from components in the usual manner and 
an application-specific component transmission policy 
is specified separately. This transmission policy can be 
dynamically altered and is defined on a per-class, per-
method or per-parameter basis. 

  
Related work 

 

Whilst component technologies are usually 
presented as a mechanism for promoting reuse, this 
reuse is often limited due to design choices that 
permeate component implementation. During the 
creation of a distributed application, the programmer is 
forced to decide statically how the application is 
partitioned. Particular component classes are written to 
be remotely accessible. The transmission policy 
applied to components is decided statically. 

Using Java RMI[1] and Microsoft .NET 
remoting[2] the programmer defines special remote 
classes, instances of which are remotely accessible. 
During remote calls, instances of (almost1) any class 
can be passed as arguments. Arguments that are 
instances of remotely accessible classes are always 
passed by-reference. Arguments that are not instances 
of remotely accessible classes are always passed by-
value. The parameter passing semantics applied to 
components are inflexible and tightly coupled with the 
distribution of the application. 

Using CORBA v2.3 or later[3], the component 
programmer decides statically at component creation 
time whether a component will cross network 
boundaries by-reference or by-value. Initially, this 
seems to offer moderately more control than RMI and 
.NET remoting. However, only components specified 
as CORBA components can be passed as arguments, 
unlike the others which permit other classes of 
component to cross network boundaries, if only by-
value. 

Web Services[4] technologies permit only pass-by-
value. The RRT includes some extensions to the Web 
Services model that support pass-by-reference and are 
described outwith this paper[5]. 

In all cases, typical middleware systems restrict 
reusability and application semantics in the following 
ways: 

• They define transmission policy statically. 
A component can only be passed-by-
reference or passed-by-value for the entire 
duration of the application. 

• They tightly couple transmission policy 
and application distribution. 

• The application programmer has no direct 
control over inter-address space parameter 
passing semantics. 

These restrictions hamper component reuse because 
application level semantics are built into components at 
creation time in an unalterable fashion. We have 
created the RRT in order to overcome these limitations. 
The RRT has several features that differentiate it from 
typical middleware systems, namely: 

                                                             
1 Instances must be of a remotely accessible or serializable class 



• The provision of a transmission policy 
framework that allows the dynamic 
definition of transmission policy on a: 

o Per-parameter basis 
o Per-method basis 
o Per-class basis 

• If an application component can cross 
network boundaries then the RRT can 
choose whether to pass it by-reference or 
by-value 

The RRT is capable of deploying arbitrary 
components as Web Services. These components can 
be referenced from remote address-spaces using a 
remote reference scheme implemented by the RRT. If a 
component is to be passed by-reference, the RRT will 
automatically deploy the component to make it remote 
accessible and will transmit a remote reference across 
the network. If the component is to be passed by-value, 
the RRT will serialize the component and transmit it 
across the network. This functionality is described in 
detail elsewhere. 

The RRT is capable of transmitting any component 
by-reference and any component by-value. The RRT 
dynamically decides how to treat each component 
based on the transmission policy. To exploit this 
mechanism, the programmer must be able to define 
transmission policy in an expressive and flexible 
manner. 

 
Defining transmission policy 

 
During remote method call, components are passed 

across address space boundaries as arguments and 
return values. Transmission policy dictates the manner 
in which components are encoded for transmission. It 
decides which parameter passing semantics will be 
employed during remote method calls. 

Though the transmission policy framework has been 
described in the context of the RRT it is applicable 
with any middleware. The RRT supports passing 
parameters by-reference or by-value but the described 
transmission policy framework not restricted to these 
two mechanisms. It is scalable to accommodate any 
parameter passing mechanisms that the underlying 
middleware supports. 

In order to define the transmission policy for an 
application, the programmer specifies a series of policy 
rules. There are three kinds of policy rule: 

• Parameter policy rules 
• Method policy rules 
• Class policy rules 

Parameter policy rules are associated with 
individual method parameters. They indicate how 
particular method arguments should be passed across 

address-space boundaries during a call to the specified 
method. They allow fine-grained control over the 
transmission policy that is applied to the parameters of 
a method. For example, a parameter policy rule might 
specify that during a call to a particular method, the 
second parameter should be passed-by-value. 

Method policy rules are associated with methods as 
a whole. They have a dual role. They specify how 
return values from methods should be passed across 
address-space boundaries. For example, a method 
policy rule might specify that during a call to a 
particular method, the return value should be passed-
by-reference. Additionally, they allow a single 
transmission policy to be associated with all 
parameters of a method, avoided the need to specify a 
parameter policy rule for each. For example, a method 
policy rule might specify that during a call to a 
particular method, all parameters should be passed-by-
value. 

Class policy rules are associated with classes. They 
indicate how instances of classes should be passed 
across address-space boundaries. For example, a class 
policy rule might specify that all instances of a 
particular class are passed-by-value. Each class policy 
rule applies to exactly one class. It does not apply to 
sub-classes of that class. Class policy rules are applied 
based on the actual classes of the parameters, not the 
those specified in the method signature. 

Policy rules apply only in the address space in 
which they are specified, though they apply to all 
components in that address space. Policy rules can be 
specified dynamically at any point during application 
execution and they come into force immediately. A 
component programmer can effectively specify policy 
rules statically by specifying them in the component’s 
initialization code. For example, in Java, policy rules 
specified in the static initializer are active from class 
load time. 

This functionality distinguishes the RRT from 
typical middleware systems and tackles the limitations 
listed at the beginning of this section. The dynamic 
specification of policy rules that dictate application 
parameter passing semantics returns control of these 
semantics to the application programmer. 

Policy rules are created through the policy manager. 
There is a single policy manager per address-space 
which is responsible for evaluating transmission policy 
in that address-space. Each policy manager stores a 
database of policy rules, specified by the application 
programmer. 

Transmission policy is concerned with cross-
address-space communication and so is applied at 
serialization time. During serialization, the policy 
manager determines the transmission policy that 
should be applied to each component it is asked to 



serialize. When a component is serialized by-value, the 
components it references are also passed into the 
serializer. The policy manager will determine how 
each of these components should be passed across the 
network and serialize them appropriately. Method and 
parameter policy rules can be specified with a depth 
value. This depth indicates how far into the closure of 
an argument the policy rule applies. 

The policy manager provides the methods shown in 
Figure 1 for the specification of policy rules. The 
Policy class is not shown. It is an enumeration class 
identifying all available parameter passing 
mechanisms. The purpose of the isOverridable flag is 
discussed later. 

 
public static void setClassPolicy( 

      String className, 
      Policy policy, 
      boolean isOverridable 
      ) {...} 

public static void setMethodPolicy( 
      String className, 
      String methodName, 
      Policy policy, 
      boolean isOverridable 
      ) {...} 

public static void setParamPolicy( 
      String className, 
      String methodName, 
      int paramNumber, 
      Policy policy, 
      boolean isOverridable 
      ) {...} 

Figure 1: Policy manager methods used to 
specify policy rules 

 
Evaluating transmission policy 

 
The policy manager makes all transmission policy 

decisions for all components in its address space. 
However, from the perspective of a single component, 
the programmer may wish to control the transmission 
policy that is applied to the following: 

1. The arguments the component passes when 
calling some remote method 

2. The arguments the component receives 
when a method is called on it 

3. The return value the component transmits 
after a method has been called on it 

4. The return value the component receives 
after calling some remote method 

One component’s passed arguments are another’s 
received arguments. For some remote method call, the 
caller may wish to apply one transmission policy (case 
1 above) while the callee wishes to apply another 

transmission policy (case 2 above). Cases 3 and 4 
exhibit the same problem. 

Each policy manager has direct control over the 
transmission policy applied to components outgoing 
from its address space, that is, cases 1 and 3 above. 
They cannot have direct control over components that 
are incoming from a remote address space, that is, 
cases 2 and 4 above. When evaluating transmission 
policy during a remote call, a policy manager may 
solicit information from the policy manager in the 
remote address space about the policy rules it has 
associated with this remote call. 

Individual policy managers are configured to either 
use this information from the remote policy manager or 
to base the transmission policy decision on locally 
specified rules alone. A policy manager that considers 
the remote policy manager is known as a co-operative 
policy manager. All policy managers, whether co-
operative or not, respond to requests for information 
about their locally specified policy rules. 

From the specified policy rules, the transmission 
policy applicable to a particular remote method call 
can be deduced. It is based on the class of the 
component; the method being called; whether the 
component is an argument or return value; and the 
depth of the component in the argument’s closure. 
Figure 2 shows the methods provided by the policy 
manager that determine transmission policy. 

 
public static TransmissionPolicy 
     getTransmissionPolicy( 
      String className,  
      String methodName,  
      int paramNumber,  
      Object param,  
      int depth) {...} 
public static TransmissionPolicy  

     getReturnTransmissionPolicy( 
      String className,  
      String methodName,  
      Object returnValue,  
      int depth) {...} 

Figure 2: The policy manager methods 
used to evaluate transmission policy 

 
These methods are called by the RRT during 

component serialization or by a co-operative remote 
policy manager that is evaluating transmission policy. 
In addition to specifying how the component should be 
passed across the network, the returned 
TransmissionPolicy also contains information about 
the kind of policy rule that was used to make the 
decision. This information is used by remote policy 
managers but is ignored by the RRT. 

 



Resolving policy rule contention 
 
Clearly, there is scope for contention between 

policy rules specified in different policy managers. A 
class policy rule in one address-space can specify that 
instances of X are always passed-by-value, while a 
class policy rule in another address-space specifies that 
instances of X are always passed-by-reference. 

Similarly, contention can exist among rules 
specified within a single address-space. For example, a 
component of class X is passed as a parameter to 
method m(). A class policy rule may indicate that 
instances of X are passed-by-value while a method 
policy rule simultaneously indicates that parameters to 
method m() are always passed-by-reference. 

The policy manager has a set of policy rules, 
including some that may have been received from a 
remote policy manager, and must decide which to 
apply. 

A hierarchy of policy rules is defined. Higher rules 
are followed while lower rules are ignored. The 
hierarchy is: 

1. Parameter policy rule 
2. Method policy rule 
3. Class policy rule 
4. Default policy 

A parameter policy rule is followed before all 
others. If none exists, then the policy manager looks 
for an applicable method policy rule. If none exists, 
then it looks for an applicable class policy. If no policy 
rules have been defined then a default policy is 
applied. The policy rule that is used to decide the 
transmission policy in a particular set of circumstances 
is known as the dominant rule. 

This strict hierarchy is restrictive. Under some 
circumstances, it is desirable that a class policy rule 
take precedence over a parameter or method policy 
rule. For this reason, policy rules are specified with a 
flag that indicates whether the rule can be overridden. 
A rule that cannot be overridden is always followed 
before a rule that can be overridden, irrespective of 
their hierarchical position. The hierarchy can be 
revised as follow: 

1. Parameter policy rule (non-overridable) 
2. Method policy rule (non-overridable) 
3. Class policy rule (non-overridable) 
4. Parameter policy rule (overridable) 
5. Method policy rule (overridable) 
6. Class policy rule (overridable) 
7. Default policy 

It is recommended that policy rules are specified as 
overridable in most circumstances. Despite specifying 
a class policy rule as non-overridable, it will still be 
overridden by a non-overridable method policy. The 

authors suggest that it should rarely be necessary to 
override a policy rule that has been specified as non-
overridable and that such an operation should be 
performed with care. 

The policy manager holds a series of policy rules 
that are applicable during a particular method call. The 
transmission policy received from a remote policy 
manager also includes the dominant rule in that remote 
address-space. The hierarchy can resolve contention 
among this set of policy rules. 

Contention can still exist occur if the dominant rule 
in the remote policy manager is hierarchically 
equivalent to the dominant rule in the local policy 
manager. Contention of this form is resolved 
differently depending on whether the transmission 
policy is associated with an argument of a return value. 

The callee’s policy rule is followed over the caller’s 
when choosing the transmission policy for arguments. 
Conversely, the caller’s policy rule is followed over the 
callee’s when choosing the transmission policy for the 
return value. The RRT is capable of deserializing and 
using components irrespective of the transmission 
policy used during serialization. The programmer is 
responsible for ensuring that application transmission 
policy is specified in a consistent manner that leads to 
the desired application semantics. 

 
Future Work 

 
Initial measurements indicate that the cost of 

dynamically evaluating transmission policy is 
subsumed by the cost of serialization leading us to 
believe that the benefits gained outweigh the expense. 
We intend to perform further measurements to evaluate 
the trade-off in more detail. 

We hope to introduce additional features to the 
transmission policy framework. Currently, policy 
managers hold policy rules that apply only to 
components in the local address space. Policy 
managers can co-operate with each other in order to 
reach a consensus but the specification of policy rules 
that apply across the entire application is not 
supported. We propose the introduction of a 
mechanism that peers together policy managers such 
that policy rules defined in any one of them apply in 
all. It would be possible to peer together only a subset 
of the policy managers active in a distributed system 
while the remainder stay autonomous. 

We propose extensions to the policy rules. It will be 
possible to specify a class policy rule that applies not 
just to a single class, but to the class’s entire 
inheritance hierarchy. The programmer will be also 
able to specify policy rules that apply only to a single 
call. 



 
Conclusion 

 
This paper describes the transmission policy 

framework provided by the RAFDA Run Time (RRT). 
The RRT overcomes the limitations inherent in typical 
middleware systems with respect to component 
transmission policy and subsequently, their reuse. The 
RRT separates the specification of the parameter 
passing semantics applied to a component during inter-
address-space method call from the component’s 
creation and implementation. It provides a mechanism 
and framework to allow the dynamic specification of 
component transmission policy on a per-class, per-
method or per-parameter basis. 

Application semantics are no longer driven by 
decisions made statically during component creation. 
This aids component reuse since the programmer has 
complete control over application semantics 
independently of the component implementation. 
 
References 
 
[1] Sun Microsystems, Java™ Remote Method 

Invocation Specification. 1996-1999. 
[2] Thai, T. and Lam, H. Q., .NET Framework 

Essentials. 2001: O'Reilly. 
[3] OMG, Common Object Request Broker 

Architecture: Core Specification. Vol. 3.0.3. 
2004. 

[4] Box, D, Ehnebuske, D, Kakivaya, G, Layman, 
A, Mendelsohn, N, Nielsen, H F, Thatte, S, 
and Winer, D, Simple Object Access Protocol 
(SOAP) 1.1. 2000, W3C. 

[5] Walker, S, Dearle, A, Kirby, G N C, and 
Norcross, S, Exposing Application 
Components as Web Services. 2004. 

 


