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Abstract. Over the past decade a variety of process languages have been
defined and applied to software engineering environments. The idea of using
a process language to encode a software process as a “process model”, and
enacting this using a process-sensitive environment is now well established.
Many prototype process-sensitive environments have been developed; but
their use in earnest has been limited. We are designing a second generation
process language which is a significant departure from current conventional
thinking. Firstly a process is viewed as a set of mediated collaborations rather
than a set of partially ordered activities. Secondly emphasis is given to how
process models are developed, used, and enhanced over a potentially long
lifetime. In particular the issue of composing both new and existing model
fragments is central to our development approach. This paper outlines these
features, and gives the motivations behind them. It also presents a view of
process support for software engineering drawing on our decade of experi-
ence in exploiting a “first generation” process language, and our experience
in designing and exploiting programming languages.
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1 Introduction

There is a long association between process languages and efforts to provide com
support for software engineering. Initially there was considerable work which conc
trated on providing integrated project support environments to support users wor
together. The emphasis was mostly on tool integration; ensuring that the design
compilers, debuggers etc. could work together. It became apparent that support
ronments could make a greater contribution if they had knowledge of the proce
which their users were involved. This led to further research on process-based env
ments [1,5,7]. The recognition that software processes can themselves be descri
software is attributed to Osterweil [19], and has led to the development of process
gramming as part of software engineering, and ongoing research into process-ce
environments.

More recently the interest in understanding and designing business process
particular the vogue for business process re-engineering, has led to an expansion
terest in process languages outside the software area. In general these have been
languages specialised for an application area. For example, many forms-based
flow systems have a language based on the notion of passing an electronic docu
around an organization [14]. The concentration has been on high-volume proc
where standards are key to operational efficiency, e.g. car loan credit checking.

Over the past decade the Informatics Process Group (IPG) at Manchester has
oped a number of process models using the first-generation language of ICL’s Pro
Wise Integrator (PWI) [20,24] and more recently ProcessWeb [9,29] which comb
PWI with a Web interface. We believe that our experience has been typical. First-
eration languages, and the systems which evaluate them to provide process system
technically feasible and promising [7]. However the costs of developing process mo
are too high. Too great a knowledge of the language implementation is needed to d
op effective models, and the code, when completed, tends to give a somewhat ob
representation of the process flow. This is partly because many first-generation
guages have adopted specific implementations, particularly with respect to mode
collaboration, which have restricted their range of applicability.

Research in the Persistent Programming Research Group (PPRG) at St And
has tackled the problems of constructing and maintaining large, long-lived applica
systems, including software development environments [16,18]. Many of these p
lems are closely related to process language issues and therefore the techniques
oped can be refined and incorporated in a process language. The two technique
cussed in this paper are Communicating Actions Control System (CACS) [22] and
per-programming [13,17]. CACS addresses the problem of providing flexi
concurrency control mechanisms to support collaborative working. Hyper-progr
ming provides a novel approach to developing long-lived systems through allow
new code to be not just text but both text and explicit links to existing code and d

Together the IPG and PPRG are now developing a second-generation lang
based on a synthesis of our joint experiences [26]. We see process models as ful
a key role in modern computer systems; that of relating the business processes a
IT systems which support them [27]. Understanding this relationship is growing in
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portance as systems are increasingly knitted together from existing components
must have the flexibility to adapt in response to business changes. Automation inv
introducing new IT systems into existing systems and changing the business proc
to exploit them. This has led us to place emphasis on how our second generation
guage represents collaboration, and how models can be developed by composing
ponents.

In designing a process language we are addressing the problems which we ha
perienced with first generation languages. We also have a view of the kind of pro
system which we want to express in our new language which derives from our wor
process modelling methods.

2 Motivation - A Process System

A number of process systems which execute programs in process languages hav
developed. These systems have been strongly influenced by factors such as too
cation, visualisation, and meta-processes which do not figure so highly in traditi
program language design. There are a number of contributing factors:

• The contribution of people is part of the process. A process system can sup
the people involved by ensuring that the right information is in the right place
the right time. However, people are biddable rather than controllable by the p
ess system. For example, if input is requested there is no control over how lo
user will take to respond.

• Processes can last for a long time. Software projects may last for weeks, mo
or even years. To support such processes, process systems must themselv
just as long.

• Process models are developed over a period of time. Early parts of a softwar
velopment project often involve investigating alternatives and making decisi
about the future course of the project. To support this a process model cann
fully defined when its enactment starts. A process system must support the in
mental development of models and provide facilities which bind new and exis
model fragments.

The general scheme adopted by most process languages is to model the process a
duction system. The software product is the output of the software development p
ess. This process is usually described in terms of a set of partially ordered tasks (
ities) with output to input connections between them. This leads to a factory view w
there is a “master process program” which provides the instructions to keep every
running efficiently; the emphasis is on design for efficiency.

Our preference, based on experience in modelling processes both inside and o
the software domain, is to view the process system as a service system. The purp
the process system is to provide effective assistance to its users. Software develo
requires the collaboration of many people over a period of time. A process system
provide information to people, ensure that they do not mistakenly work on incorrec
incomplete, data, and it can carry out some routine, mundane activities on behalf
users. From a systems theory perspective, the process system is a serving system
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supports its users, a served system [3]. To be viable a process system must conti
support the changing requirements of its users; design for evolution is a key theme
This implies a need to separate existing models into fragments which can be comp
in new ways to address future requirements.

For a process system to support the collaboration requirements of its users, its
ess language must be able to express a rich range of collaborations. A process lan
needs to provide high-level concepts which offer flexibility in modelling and enable
fective and efficient support systems to be developed.

3 Collaboration

Our experience, from prototype systems, industrial case studies, and developing a
ess modelling method, is that a focus on collaboration is an effective way of mode
processes [8,12,27]. Unfortunately whilst many first-generation languages offer g
abstractions for activity, they offer only low-level communication mechanisms, with
any real abstractions, with which to realistically model coordination [10].

In PWI’s Process Management Language (PML) this collaboration is modelle
terms of explicit message passing using typed buffers calledinteractions[2,11]. Our
second generation approach is to adopt a more abstract general view of collaborat
mediated access to shared data. The specific implementation of message pass
PWI’s PML interactions can then be defined using this more abstract view. Howe
many other forms of collaboration can also be defined.

3.1 A Small Example
Consider the case of a sub-process where there is one software engineer who wr
updates a module, and another who must check it. One implementation of this invo
a “module writing” activity which results in a revised module delivered to a “modu
checking” activity. This latter activity either outputs a “checked module” for input
the next sub-process or delivers the module and comments back to “module writ
This implementation means that the module checker cannot start until the module w
has finished writing, and once the writer has submitted the module for checking, fur
module writing must wait until the checker finishes. In many cases, however, this is
how work progresses in reality: the module writer may deliver a draft version for che
ing and continue writing; a checker’s comments may include updates to the mo
What matters is that the two people involved have an agreed protocol for manipula
the module, and deciding when their tasks are complete.

Figure 1 provides a sketch of this small example. The overlap between “mo
writing” and “module checking” shows that these components collaborate. A colla
ration, which is in essence shared behaviour, is defined by identifying the shared
involved and the rules for accessing it. Our approach to defining these sharing ru
outlined in the next section. A key part of this is the separation of the collaboration
tocol from the details of a specific process. In this example there is a “writing-check
collaboration protocol which is independent of the organizational rules on how mod
should be written, and how they should be checked. We may want to reuse this pro
in the context of writing and checking design documents, test plans, user manual
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Similarly, we may want to change the details of how a module is checked without m
ing changes to the collaboration protocol. This separation is one example of the ki
structuring which needs to be applied to process models in order to maintain their
ity.

We have written a series of related writer-checker processes in PWI’s PML [2,
Java, and Little-JIL [21,28]. In these implementations, the collaboration protocol w
significant proportion of the effort, and it became closely interwoven with the res
the process. This restricted our ability to reuse fragments between related processe
library of re-usable process components just did not grow as we had envisaged.

3.2 Communicating Actions Control System (CACS)
Communicating Actions Control System (CACS) is an abstract operational mode
signed to allow the specification of coherency protocols for accessing shared data
The CACS model consists of actions (computations) that access objects (shared

A particular coherency protocol, for example atomic (ACID) transactions, is
fined by a set ofsignificant eventsand a set ofrules. The significant events specify the
operations on shared data that need to be coordinated by the protocol. The rules s
the details of this coordination. For example, consider the atomic transaction prot

• The significant events are:begin, commit, abort, read andwrite.

• The rules give an operational specification of how the ACID transaction prop
ties are to be enforced.

As it runs, each action generates a sequence of significant events, which are hand
the CACScontroller, according to the rules. Each rule specifies what the contro
should do in response to a particular significant event. In addition to performing a
trary computation, the controller may suspend and resume actions, and generate
tional, synthetic events that are added to the incoming event stream.

module

writing

module

checking

collaboration

Figure 1 A small process showing the collaboration between two
components
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This architecture gives considerable flexibility both in defining new coherency p
tocols, and in varying the policy implementing a particular protocol. For example, b
optimistic and pessimistic flavours of atomic transactions could be defined in a sim
way. The significant events would be the same in each case, but the bodies of the
would vary. For an optimistic scheme the controller would allow actions to read
write shared data without restriction, recording which data objects had been acce
On acommitevent, the controller would test for conflict with other transactions, a
generate anabortevent for each conflicting transaction. For pessimistic transactions
controller would suspend an action on the first attempted conflicting access to sh
data.

In general it is not possible for the CACS system to deduce automatically the po
in an action at which significant events are generated. The source program must th
annotated to indicate these. In some special cases, however, this may be done au
ically. For example with atomic transactions the system may deduce whereread and
write events occur, but notbegin, commit or abort.

CACS specifications, in terms of events and rules, can be written for a wide var
of coherency protocols. These include traditional schemes such as atomic transa
and monitors, and more complex application-specific schemes. The programmin
volved in the correct implementation of these schemes can be defined and place
library for reuse. The writer of a CACS action, a process computation in our case,
does not have to write CACS specifications in cases where standard coherency p
cols are sufficient, but has the flexibility to define new schemes if required. For ex
ple, it is possible to implement CACS rules to give the particular message-passin
mantics which are currently offered by interactions in PWI’s PML.

In the writer-checker example, one useful coherency protocol is that offered
single element buffer. A data item must be written before it is read. Once written,
“buffer” is full and the item must be read before it can be written again. In CACS ter
a read event may suspend because it must wait for the corresponding write event,
write event may suspend until the value from the previous write has been read. T
would be two CACS rules, one handling read events and one handling write ev
Figure 2 illustrates pseudo-code for the write rule.

let writerule[write,%id,%v] =
if there is an unread write of shared data item %v
then suspend %id on write %v
else
begin

update %v
if there is a read %id2 suspended on write %v
do unsuspend %id2

end

Figure 2 Example CACS Rule - write is the CACS event, %id the
CACS action identifier and %v is the shared data item manipulated
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One of the benefits of the CACS approach is that it does not restrict the numb
computations which access a specific shared data area. This means that collabo
involving more than two parties can be modelled more naturally than with a mes
passing style. This was a particularly unpleasant problem to implement using the
sage-passing semantics of PWI’s PML interactions.

An example checker is given in Figure 3, corresponding to the checker ac
shown in Figure 4. As the shared data is explicitly identified, we can anticipate tha
compiler will be able to generate the CACS events, here shown in comments.
shared data,checksd, is shared between checker and writer. It contains two fields,mod-
ule andcomnts. This checker simply loops through four steps. The first step is to re
the module from the shared data,checksd, and assign it to checker’s local variable
chModule. It is at this point that checker will suspend if the module is not available. T
second step makes the module available to the checker user, and the third step re
comments from the user when they are available. The fourth step is to write those
ments to the shared data,checksd, and so make them available to the writer. The fun
tion checkernotfinishedreturns a boolean value which istrue when the process is com-
plete. If there is only one checker this is simply when the comments indicate the mo
is acceptable, but with multiple checkers this can be more complicated.

3.3 User and Tool Interaction as Collaboration
Figure 3 is code which will be executed by the process system to support the us
sponsible for the checking. It makes the module available to this user by writing
shared data area. Figure 4 depicts an overview of the module example showing th
users. Over time the boundary between what is done by the system and what is do
the users may change. For example, if checking only involved ensuring that the mo

Checker
shared data - checksd, cuisd
let chModule := nullModule
let chComments := nullComments
while checkernotfinished() do
begin

chModule := checksd.module
! CACS event -[read,my_aid,checksd.module]

cuisd.module := chModule
! CACS event -[write,my_aid,cuisd.module]

chComments := cuisd.comnts
! CACS event -[read,my_aid,cuisd.comnts]

checksd.comnts := chComments
! CACS event -[write,my_aid,checksd.comnts]

end

Figure 3 Example code for Checker (including annotations identifying
CACS events)
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compiled and conformed to coding standards, then the organization might decide
vest in tools to automate this. In our process language we want to be able to mode
automation. This gives us a requirement that collaboration with the external world,
users and external tools, should be handled in the same way as collaboration with
process system. This is represented as the manipulation of data shared between
putation within the process system and an “external computation” carried out by a
or another software tool.

A process model in our system is represented by a persistent, strongly typed c
tion of data and programs held within the system, interacting with other software
users outside the system. The hyper-program, to be described in the next sectio
representation which provides a single consistent description format for everyt
within the system. Input/output then involves a translation between the strongly ty
internal form and other external forms. For interaction with a user these external fo
might be X-Windows events or HTTP streams; for interaction with other tools th
might be raw bytes, database relations etc.

A particular sequence of Input/Output can itself be viewed as a collaboration
tween the outside world and an action within the process model that implements th
quired translation. CACS rules can thus be used to coordinate the Input/Output. A
a library of pre-defined rule sets for standard Input/Output patterns can be provid

writer checker

Process System

User A User B

(Writer) (Checker)

Figure 4 User Interaction as Collaboration
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4 Composition

A significant motive for our focus on collaboration was the kind of process syste
which our experience tells us it is desirable to build. Similarly, the way we build su
systems is a significant motive for our composition focus. In this context there is a n
to address not only the issue of how components are composed, but also the facili
decompose assemblies of components and re-compose them in new ways.

Our view is that a model developer should be thinking about composing fragme
rather than writing a model from scratch. This gives a close mapping between the
that a model is understood as a set of mediated collaborations, and the way that it
veloped. One motivation for this is to encourage re-use of existing model fragmen
a standard part of model development. A second motivation stems from the pote
longevity of our process models.

Figure 5 depicts the automation of the checking in our example through repla
“User B” with a computation within our process system. If the “automated check
tool” uses the same shared data and protocol as “User B” there is no need for any c
es to “checker”. If we had replaced “User B” with an external tool, the diagram wo
have been the same as Figure 4 with “User B” re-labelled “external checking to
Again our focus would have been on the collaboration between this tool and “chec

The examples in Figure 4 and Figure 5 show a close relationship between m
ling based around collaboration and a modelling method in which composition pla

writer checker

Process System

User A

automated
checking

(Writer)

tool

Figure 5 Automation through moving the process system boundary
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strong role. The intuition from the figures is that in both cases “writer” and “check
will be composed in the same way. A typical concrete approach to sharing such a
teractions, also defines, by implication, a composition approach. Our abstract sh
model does not. We need to have composition facilities to enable us to construct
cific sharing implementations in the language.

In the context of our small example, there are many possible enhancements
model which supports a single writer and single checker. In some situations it ma
better to have two checkers who must both agree that the module is acceptable
could be made visible to the writer, or it could be hidden so that the writer collabor
with one, two, or more checkers in exactly the same fashion. With more than two ch
ers there might be some kind of voting algorithm to determine if the module was acc
able. Writing and checking might form part of a larger quality control process, suc
Fagan inspections. Our goal in using CACS is to allow the programmer to carry
these kinds of adaptations as easily as possible.

4.1 Hyper-Programming for Model Development
The technique which we adopt is to base our model development on hyper-prog
ming [13,17]. Traditionally, a program which accesses another potentially shared o
during its execution, contains a textual description of how to locate the object. This
scription is subsequently resolved, commonly during linking for code objects and
ing execution for data objects. This resolution is necessary because programs ar
structed and stored in some long-term storage facility, such as a file system, whi
separate from the run-time environment which disappears at the end of each prog
execution. By contrast in a persistent programming system, programs may be cons
ed and stored in the same environment as that in which they will subsequently be
cuted. This means that objects accessed by a program may already exist when th
gram is composed. Direct links to the objects can be included in the program rather
textual descriptions of the access paths by which they can be located at execution
A program containing both text and links to objects is a hyper-program.

There are a number of benefits of hyper-programming [13].

• early checking - access path checking and type checking for linked compon
can be performed during program construction,

• associations between executable programs and their source programs c
maintained automatically,

• source representations of all programs, including those that may, due to the
text in which they were defined, contain references to other existing data -
difficult to fully describe such programs with a purely textual notation.

These benefits are all relevant in our context of a process language and system
supports model development through composition and incremental evolution. The
ity to include explicit links to existing objects closely matches development throu
composition. Part of a modeller’s task is to describe how existing fragments (obje
should be assembled to produce the new model required. The ability to relate execu
and source descriptions means that process model instances and their source d
tions can be related over their lifetime rather than just at instantiation time. The ab
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to have hyper-program representations for both source and run-time makes increm
definition of long-lived models significantly simpler.

4.2 Returning to our Small Example
Hyper-programming is very helpful in enabling a development by composition
proach. We can develop the components separately and then use hyper-links to
the appropriate connections. We can also unlink and re-link as required. If we con
thewriter-checkerexample there are several possibilities for components being de
oped at different times. CACS specifications for common coherency protocols
available in a library when thewriter-checkermodel is being developed. Hyper-pro
gramming enables the use of these inwriter-checkerto be checked at compile time.
Simple mistakes can be eliminated when the model is being developed rather than
becoming evident at run-time. Another process might want to use the checked mo
oncewriter-checkeris complete. A compositional development approach, supported
hyper-program links to existing fragments (objects), is well suited to developing m
els and libraries over a period of time.

In most first generation process languages the traditional development sequen
write a process definition; specialise the definition into an enactable process; and
the enactable process to yield an enacting process [6]. This means that a single p
definition can be specialised and sparked many times to give separate enacting pr
es. The distinction between the definition (source) and enacting (run-time) repres
tions makes it more difficult to compose new definitions with fragments of existing
acting processes. In progressing from the definitions of the separate compone
writer-checkerto an enacting model, which is supporting two users writing and che
ing a particular module, we make use of the ability of hyper-programs to provide b
source and run-time representations. When writer and checker are developed th
defined asscripts. A script corresponds to a CACS action. It records business rule
terms of the sequencing of operations which manipulate local script data and med
shared data. (For example Checker in Figure 3.) A script is a piece of code and sus
ed thread. When defined it is suspended at the start of its execution. The hyper-pro
which is compiled to produce a script is also the hyper-program which represent
script in its initial suspended state. The system has a built in functionactivatewhich is
used to spark a collection of scripts, returning anactivity. (An activity thus corresponds
to a set of CACS actions, along with associated shared data and rules.)

Figure 6 illustrates activate sparking the scripts in thewriter-checkerexample. The
activate takes two parameters: a set of scripts and a set of rules. Thus theactivatewould
be passed the Checker script code from Figure 3 and the writerule from Figure 2
scripts mention the CACS events, while the rules provide the implementation of
events in a particular concurrency protocol. For example, in a case where the s
used a transaction protocol there might be one set of rules which implemented opt
tic locking and another set which implemented pessimistic locking. If we want to h
multiple instances ofwriter-checkerthen we can write a constructor function which re
turns an activity, and call it as often as required.



writing thread checking thread

Writer Checker
mediated
shared data

Script
with event
calls

Script
with event
calls

Rules
interpret events

with interpreted
events

with interpreted
events

wcactivity := activate([Writer, Checker,...],[writerule,...])

Figure 6 Using activate to convert scripts into an enacting process
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There is also adecomposefunction which takes an activity and returns the scrip
in a suspended state. An activate following a decompose restarts the scripts from
suspension point as if the decompose had never occurred. It is also possible to u
compose and activate to dynamically compose or change enacting models. It m
that after decomposition some new scripts are added to the collection before it is
vated, or individual scripts might be replaced, as shown in Figure 7.

5 Related Work

There are different schools of thought about the appropriate current research go
the area of process languages. There are those who see new languages as an irre
which create artificial barriers between the research community and industrial pr
tioners. They place emphasis on exploiting and inter-operating with existing tools
as configuration management systems, workflow systems, object request broker
[4]. This work is important but this does not mean that there is no need for furthe
search on process languages. It has been noted that despite the considerable res
process languages, almost no novel approaches to software development have em
This suggests that the first-generation languages have been overly constrained
emphasis on describing, promoting and supporting existing software processes. I
supports our thesis that many of these languages made an early commitment to p
ular mechanisms, which both make them difficult for inexpert modellers to use,
make it clumsy, or impossible, to represent some forms of collaboration.

The “second generation” school advocate that the lessons learned from first g
ation languages now need to be consolidated and exploited through the developm
new process languages. Here the chief difference seems to be between those w
lieve the most promising approach is a set of sub-languages which can be factore
gether as and when required [23], and those like ourselves who are concentrating
better core language [15]. One common theme is the issue of managing concurr

! suspend activity and extract a script
suspendedwc := decompose ( wcactivity );
suspendedChecker :=

suspendedwc.scriptvector[checkerIndex];

! revise script and replace in suspended activity
revisedChecker := changefunction( suspendedChecker );
suspendedwc.scriptvector[checkerIndex] := revisedChecker;

! restart the suspended activity
wcactivity := activate( suspendedwc );

Figure 7 An example of stopping, modifying and restarting an activity
using decompose
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Little-JIL [21] is a sub-language of the second generation process language JIL
which concentrates on the coordination of activities and agents. It has a visual sy
and is aimed at making it easier for practitioners to experiment with process progr
This emphasis on coordination is closely related to our view of processes as sets o
diated collaborations. In both it is recognised that an important part of managing
currency is expressing how shared resources are handled. Another common theme
importance of well-defined semantics to enable reasoning about processes writt
second generation languages. This is one area in which our process modelling m
[27] needs further improvement.

6 Conclusions

Interest in understanding processes and how we can apply computer systems to s
them continues to drive the development and use of process languages. In genera
elling software engineering processes has turned out to be particularly challengin
has therefore often acted as the driver in process language design. However, p
languages should not be evaluated just on how accurately they can reflect estab
best practice in software engineering, producing traditional applications in traditio
ways. There is a need to support rich collaborative protocols between a process s
and users, and between a process system and other software tools. Viewing a proc
a set of mediated collaborations is clearly a very general approach, within which pa
ular collaboration styles can be defined. A common approach to collaboration whe
within the process system or across its boundaries supports a clean and gener
proach to modelling process automation.

As processes may be developed incrementally over a period of time, the mode
support them must be incrementally developed too. The process language and s
must provide facilities which combine new process model fragments and existing
acting models. A collaborative viewpoint matches well with an approach based on
neric composition facilities. These can be used to recombine existing process m
fragments, and further to retain the composition structure to assist future understa
and change.

In developing a second generation process language we have been motivated
problems in using existing languages, and a recognition of the key role of process
guages in modern flexible architectures. We need a better understanding of proces
guages in order to meet the next challenge of developing appropriate architecture
the support and integration of process systems. By exploiting CACS and hyper
gramming we are able to solve the issues of collaboration and composition in the
shown. This gives us an abstract machine which addresses collaboration and com
tion at a basic level and can be used as the target for other higher-level process
sentations.1

1. This work is supported by UK EPSRC grants GR/L34433 and GR/L32699, Complian
System Architecture
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