
Supporting large persistent stores using
conventional hardware†

Francis Vaughan, Alan Dearle
Department of Computer Science, University of Adelaide

Adelaide, Australia

Abstract
Persistent programming systems are generally supported by an object store, a conceptually
infinite object repository. Objects in such a repository cannot be directly accessed by user
programs; to be manipulated they must be fetched from the object store into virtual memory.
Thus in these systems, two different kinds of object addresses may exist: those in the object
store and those in virtual memory. The action of changing object store addresses into virtual
memory addresses has become known as pointer swizzling and is the subject of this paper.

The paper investigates three approaches to pointer swizzling: a typical software address
translation scheme, a technique for performing swizzling at page fault time and finally a new
hybrid scheme which performs swizzling in two phases. The hybrid scheme supports
arbitrarily large pointers and object repositories using conventional hardware. The paper
concludes with a comparison of these approaches.

1 . Introduction

Most persistent and database programming languages are supported by an object store, a
conceptually infinite repository in which objects reside. In order to manipulate these
objects, they must be fetched from the object store into directly addressable memory,
usually virtual memory. In systems which support orthogonal persistence [3] this is
performed transparently. Thus in these systems, two different kinds of object addresses
may exist: those in the backing store (persistent identifiers or PIDs) and those in directly
addressable memory (virtual addresses).

Many researchers have argued that large pointers (anywhere up to 128 bits) are
required to support persistent systems [9, 17]. Persistent pointers need not be the same
size as those supported by virtual memory (usually 32 bits); indeed persistent identifiers
may be arbitrarily long. This paper presents a new architecture which supports arbitrarily
large pointers and persistent stores using conventional hardware.
The persistent address of an object may be mapped onto a virtual address in a number of
ways:

• Dynamically translate from a PID to a virtual address on each dereference.

• Make an object’s virtual address coincident with its persistent identifier.

• Perform a once only translation from a persistent identifier to virtual
address, overwriting the copy of the persistent identifier in the virtual
address space with a virtual address so that all subsequent dereferences
incur no translation penalty.

This last option has become known as pointer swizzling and is the subject of this paper.
The first option, dynamic translation, is seldom more efficient than swizzling [16]. The
second option is only possible if persistent stores are small enough to be contained within

† In Proceedings of the 5th International Workshop on Persistent Object Systems, San Miniato, Italy,
September 1992, to appear in Springer-Verlag Workshops in Computing Series.

the virtual memory. All these techniques have been used to implement persistent object
stores [8, 12, 13].

Pointer swizzling may be performed at a variety of times, the earliest being when
objects are loaded or faulted into memory; this is termed eager pointer swizzling. The
latest time swizzling may be performed is when a pointer is dereferenced, and is termed
lazy pointer swizzling. When swizzled objects are removed from virtual memory, virtual
memory pointers must be replaced by PIDs; this is often referred to as unswizzling or
deswizzling.

Eager pointer swizzling has some advantages; in particular, if a data set may be
identified in its entirety, all the pointers may be swizzled at once, avoiding the necessity to
test whether a reference is a PID or a virtual address prior to every dereference.
However, this approach has the disadvantage that pointers may be swizzled, involving
some computational expense, and never used.

Some systems use an ad hoc swizzling scheme; in these systems persistent pointers
are the same size as VM addresses and may be coincident with the virtual address space.
Whenever possible data is simply copied at the appropriate position into the virtual
address space from the store. However if the appropriate region has already been
allocated, swizzling is employed. Such systems are unable to support persistent stores
larger than virtual memory and are not discussed further. It is believed that a variation of
this scheme is also used by Object Design [15] .

In persistent systems it is unusual to be able to identify a self contained data set and
some lazy swizzling is unavoidable. The first persistent systems to employ swizzling [4]
relied upon a software test to distinguish between PIDs and local addresses. Recently,
schemes have been described which avoid performing these tests by performing pointer
swizzling at page fault time [18]. In this paper we present a new hybrid technique which
offers many of the advantages of both these approaches.

The remainder of the paper is structured as follows: firstly we will describe a typical
software address translation scheme. This is followed by a discussion of Wilson's
scheme: a technique for performing pointer swizzling at page fault time. Next we
introduce a new scheme which is a hybrid and performs swizzling in two phases and an
analysis of this scheme is made. We also suggest some implementation techniques that
may be utilised in conjunction with such a scheme. The paper concludes with a
comparison of the three architectures.

2 . Software address translation

The first object systems to be called persistent [4, 5] performed lazy pointer swizzling
implemented entirely in software. In this section, for illustration purposes, we will
concentrate on one of these, the Persistent Object Management System written in C, the
CPOMS [7]. The CPOMS is the underlying system used to support implementations of
PS-algol [2] under Unix.

The persistent store implemented by the CPOMS is a large heap with objects being
addressed using persistent identifiers (PIDs). How PIDs are interpreted is not relevant to
this paper and the interested reader is referred to [6] for more details. PIDs may be
arbitrarily large but in current implementations PIDs are identical in size to the normal
pointers (known as Local Object Numbers or LONs) used by the PS-algol run time
system [1] . PIDs are distinguished by having their most significant bit set. Hence it is
possible for the PS-algol run time system to distinguish between a LON and a PID.

PIDs are pointers to objects outside of the program’s virtual address space, therefore
the objects to which they refer cannot be directly addressed by a PS-algol program. To

ensure that PIDs are not dereferenced, a test is made prior to the use of any object address;
in the PS-algol system this test is made using in line code. When an attempt to
dereference a PID is detected, the referenced object is fetched into memory and the PID is
swizzled and replaced with the appropriate LON. This process is shown in Figure 1
below in which objects B, C and E have been fetched into directly addressable memory
where they are represented by objects B', C' and E'. Note that some references within
virtual memory are virtual memory addresses whereas other are PIDs.

B' C' E'

A B C D E

LONPID

Persistent Store

Virtual Memory

Figure 1: Swizzling in PS-algol

In order to prevent more than one copy of an object being made, a data structure called the
PID to Local Address Map (PIDLAM) is kept. When a PID is first used and the object to
which it refers is copied into local memory, the PID is entered into the PIDLAM along
with the LON of the copy as shown in Figures 2 and 3. Therefore, if another instance of
the same PID is encountered, the LON of the copy can be found from the PIDLAM. This
is necessary to preserve referential integrity in the running system.

PIDLAM

PID

PID LON

PS-algol Object

PS-algol Object

first time lookup
and insertion

Figure 2: Looking up a PID in the
PIDLAM

PIDLAM

LON

PID LON

PS-algol Object

PS-algol Object

Figure 3: Overwriting a PID by a
LON

Although relatively simple, this mechanism compromises performance in five areas:
• all the address translation is performed in software,
• all pointer dereferences must be checked using software to ensure that the

pointer is not a PID,
• disk fetches occur on a per object basis,
• large objects must be copied into virtual memory in their entirety, and

• every unswizzled pointer to an object must be swizzled at the time of
dereference, even if the referend is resident in local memory.

The first, fourth and last of these problems may be eliminated if the hardware address
translation mechanisms may be exploited. As stated earlier, this is only possible if the
persistent identifier of an object is made coincident with its virtual address; clearly this
approach may only be used with relatively small stores. The second problem may be
eliminated if persistent addresses are illegal virtual memory addresses since an access will
cause the hardware to raise an exception. This is only more efficient if the operating
system provides a light weight exception mechanism. The CPOMS partially addresses
this problem by eagerly swizzling certain pointers and in so doing avoids some checks.
For example, pointers loaded onto a stack in the dynamic call chain are eagerly swizzled.
The third problem may be overcome by amortising the cost of disk access across many
object fetches.

3 . Address translation at page fault time

Recently, an approach has been suggested by Wilson [18] that employs both pointer
swizzling and page faulting techniques. The basic strategy is to fetch pages of data into
virtual memory rather than individual objects. As pages are fetched, they are scanned and
all (persistent) pointers are translated into valid virtual memory addresses. References to
non-resident objects cause virtual memory to be allocated; these pages are fetched only if
the pointers into them are dereferenced. In Wilson's scheme, pages of data in virtual
memory only contain valid virtual memory addresses, never persistent identifiers.

A

B’ D’ E’

B C D E

A’

Virtual Memory

Persistent Store

Page allocated
but not resident
Page allocated
but not resident

Page Fault

Access

Figure 4: Page faulting and allocation in Wilson's scheme

Figure 4 shows Wilson's scheme in operation; in the diagram, a non-resident persistent
object on page A (i.e. an object on a page that has not been fetched into virtual memory)

has been accessed. This will cause a copy of page A, denoted A', to be fetched into
virtual memory. At this time, the page is scanned and all the pointers in it are swizzled
into valid virtual memory addresses. Since page A contains references to objects on pages
B and D, locations for pages B' and D' must be allocated in virtual memory and the
pointers into those pages swizzled to the addresses of B' and D' with appropriate offsets
added. Virtual memory must also be allocated for page E since objects from page D
overlap that page. Note that the loading and swizzling of pages B', D' and E' is
performed lazily: only space is allocated for them in virtual memory. This mechanism
causes virtual memory which may never be used to be allocated. Since pages B, D and E
may have already been faulted into virtual memory, a translation table similar to the
CPOMS PIDLAM must be maintained to avoid loss of referential integrity.

When a reference to a previously unseen page is encountered whilst scanning an
incoming page, three actions are required. Firstly a new translation table entry for the
page is allocated. Secondly, the store is interrogated to discover the page's crossing map
(described below). Thirdly, virtual memory space is allocated for the page. Interrogation
of the store is potentially expensive and since it is performed eagerly, at page fault time, is
a potential performance bottleneck.

When a page is scanned, it is necessary to find all the pointers on that page; provided
that objects are self describing, this requirement reduces to finding the header of the first
object on or overlapping the page boundary. This same requirement is made of object
systems by some parallel garbage collection techniques [11, 14] and the solutions are well
known. The first solution is to maintain a bitmap known as a crossing map which
indicates if an object header is coincident with the start of a page.

To find all the pointers on a page, the system has to scan the pages which precede the
faulted page starting at the first page which has a object header coincident with the start of
the page. This obviously can be expensive if there is a high degree of crossing and the
pages are mostly on disk. Another technique is to maintain an array of pointers containing
one pointer for each page in the system. Each pointer points to the first object header
before or aligned with the start of the page. In this way, at most two pages need to be
examined when a page is faulted.

If pointers are stored contiguously in objects a further optimisation is possible.
Rather than an array of pointers, an array of tags is maintained, with each tag
corresponding to a page in the store. Each tag, which may be encoded into 32 bits,
describes any partial object which may overlap the start of the page. The tag consists of
the length of the partial object (if any), the offset of the first pointer in the partial object (if
any) and the number of pointers in the partial object (if any). This optimisation means that
only the faulted page needs to be examined when a page fault occurs.

In Wilson's scheme, page evacuation from virtual memory is convoluted. This
problem is exacerbated by the fact that virtual memory is eagerly allocated and hence the
need to reuse virtual memory addresses potentially more frequent. If a set of pages is
written back to persistent storage, the pointers in those pages must be deswizzled into
PIDs by consulting the translation table. However, if virtual memory is exhausted and a
virtual memory range is to be reused by another persistent page, all pointers which refer to
the old contents must be removed.

A translation table that contains an entry for each instance of a referend object can
become very large. Wilson proposes a scheme in which the translation table provides a
per page rather than per object mapping. To implement this, PIDs are structured so that
the offset within the holding page of an object is encoded into the object’s PID. For
example, assuming 8k byte pages and word alignment of objects, eleven bits are needed

to describe the offset. This leaves 53 bits of a 64 bit PID to identify the page. The
structure of PIDs is depicted in Figure 6.

This scheme has two advantages. First, it is only necessary to maintain a mapping
from pages within the large persistent address space to pages in the machine virtual
address space. This table is relatively small and of fixed size. Secondly, an object’s
offset is required in the construction of a swizzled pointer. If the offset were not coded
into the PID, further interrogation of the store manager would be required, adding extra
cost to the swizzling process.

4 . A hybrid approach

The CPOMS and systems like it require software tests prior to each object dereference to
check if the pointer being dereferenced is a persistent identifier. Wilson suggests that
pointer swizzling may be performed at page fault time. This implements a barrier that
ensures that a running program may never encounter a PID. However this is not achieved
without cost; space must be allocated in virtual memory for every page referred to by data
resident in virtual memory. Whilst this does not seem too onerous it has some
unfortunate consequences.

Firstly, space in virtual memory is allocated greedily, this may cause virtual memory
to become exhausted even although much of it has not been used. The counter argument
says that many programs will have a high degree of locality of reference. However
consider an array of large objects such as images – whenever the array is faulted into
memory, enough virtual memory must be allocated for all the referenced images. It is
likely that such an operation would be common in persistent applications although
uncommon in traditional database applications.

We now present a hybrid architecture which does not require software checks for
pointer validity and does not involve greedy allocation of virtual memory. The
architecture is designed to support PIDs which address a space much larger than virtual
memory and makes the requirement that PIDs are at least twice as large as virtual memory
addresses. From this point on, to ease discussion, we will assume that a PID is 64 bits
and virtual memory pointers are 32 bits.

In this architecture, pointers are swizzled in a two phase process: first at page load
time to refer to an entry in a translation table and secondly to a virtual address when the
referend object is first accessed. When pages are first accessed, they are copied from
persistent memory into the virtual address space and scanned to find the pointers
contained in them. Rather than allocating virtual memory for every page referenced by the
page being faulted in, as happens in Wilson's scheme, the long pointers contained in the
page are swizzled to refer to either:

• entries in a translation table if the referend object is not present in virtual
memory (partially swizzled), or

• a virtual memory pointer (fully swizzled) if it is.

This is shown in Figure 5 below.
The translation table used in this scheme may be similar to either the one used by the

CPOMS (a per object translation table) or by Wilson (a per page table). The table contains
the persistent and virtual address (if any) of all objects (or pages) referred to by objects
resident in virtual memory. For the remaining discussion we will assume a per page
translation table. Unlike the CPOMS, the table is protected from any access by the user
process, thus when a partially swizzled pointer is dereferenced an access fault occurs.

This triggers the second phase of the swizzle in which the pointer (currently containing the
table entry address) is overwritten with the virtual address of the referend.

Translation Table

PID
A’ D’Partially Swizzled Resident

Fully Swizzled

Persistent Store

Virtual Memory

A B C D E

PIDPartially Swizzled Non-Resident

NO ACCESS

Within a running program pointers may be either
virtual addresses (fully swizzled) or references to objects
via the Translation Table (partially swizzled.)

Figure 5: Partially and fully swizzled pointers

If the referend is not resident in virtual memory, the page containing it must be loaded
from the persistent store. To do this, the PID, which may be found in the translation
table, must be presented to the store manager. Using this the store manager can supply
the appropriate page(s) containing the object. Once the page is loaded the partially
swizzled pointer is overwritten with the virtual address of the object and the object
dereference can proceed. The page load may result in new entries being created in the
translation table. In contrast to Wilson’s scheme it is only when an object is used that the
store is interrogated to discover how much virtual memory must be allocated.

When a persistent pointer is fully swizzled half the space in the pointer is unused –
this space is used to store the address of the corresponding translation table entry. This
allows the pointer to be easily deswizzled.

In a partially swizzled pointer the space is used to store the offset within the page at
which the object begins. This offset, when combined with the address at which the page
is placed when it is faulted into virtual memory, forms the object address of a fully
swizzled pointer. The store formats for pointers and the translation table entries are
shown in Figure 6.

Page Offset Table Address

Table Address VM Address

Partially Swizzled

PID

Fully Swizzled

53 bits

Page Address (19 bits)
or Chain Pointer (30 bits)

Page identifier part of PID

11 bits

Residency Flag
Mark Flag

Translation Table Entry

This field used for
machine addressing

53 bits 11 bits

Page identifier Page offset

11 bits

Page address Page offset

19 bitsVM Address

32 bits

32 bits32 bits

30 bits

Figure 6: Pointer and translation table formats

The translation table maps from page identifiers in the persistent store to pages within the
machines virtual address space. Each translation table entry holds the page identifier field
of a persistent identifier, a virtual memory address, a residency bit and a mark bit. If the
residency bit is set the virtual memory address holds the address of the corresponding
page in memory, otherwise it may contains the head of a partially swizzled pointer chain
which is discussed next. The formats depicted in Figure 6 assume a 32 bit virtual address
space and a page size of eight kilobytes.

4.1. Eager Swizzling

The eager swizzling technique described by Wilson has the advantage that when a page is
faulted into memory all the pointers which refer to objects on that page are automatically
correct (since those pointers already refer to the correct virtual addresses on that page). A
late swizzling scheme does not have this advantage, however this may be simulated. A
form of eager swizzling can be provided by threading a linked list called the partially
swizzled pointer chain through of all instances of pointers referencing objects on a page.
When an object is faulted into memory the swizzling code not only swizzles the pointer
that caused the fault, but follows the chain and swizzles as many other pointers as it can.
This is eager pointer swizzling; as discussed earlier, this is only more efficient if some of
these pointers are used. This very much depends on the nature of the system, programs
and programming languages being used and the marginal costs of creating and following
the pointer chains versus the cost of on demand per pointer swizzling.

As described the pointer formats do not provide space for the link field needed to
implement the partially swizzled pointer chain. The chain may be implemented by using
one of the following:

• Making PIDs large enough to accommodate the link. Expanding PIDs to
96 bits also has the advantage of providing a much larger address space.

• Using a per object translation table. Using this technique the translation
table pointer field in a partially swizzled pointer uniquely describes the
referend object. The upper half of the pointer does not contain the page

offset and is free to hold the link field. However per object translation
tables can become very large.

• By encoding the information. The problem is that 30 bits are required to
implement the chain (assuming word alignment.) The table address
requires 28 bits (assuming 16 byte table entries), the offset requires 11
bits, leaving only 25 bits free. Therefore another five bits are required.
These bits may be stolen from the table address if the translation table is
made 32 times as large as normally required.

Translation TableAddress Space

PID

New
Page

Chain Head

Partially swizzled pointer chain

Partially swizzled pointers
refer to Translation Table entry

Figure 7: A pointer is inserted into the partially swizzled pointer chain

The partially swizzled pointer chain is formed as pages are loaded into virtual memory. If
an instance of a PID is encountered which is already in the translation table, the head of
the partially swizzled pointer chain is loaded into the unused space in the partially swizzled
pointer and the address of the new instance is copied into the chain pointer head stored in
the translation table entry. This process is shown in Figure 7 above.

During the execution of a program, some of the pointers in the partially swizzled
pointer chain may have been overwritten by the user making (64 bit) pointer assignments.
Such a break is simple to detect when the chain is being scanned since an overwritten
pointer will not refer to the expected table entry. If the chains are broken, it is not
possible to find all the instances of a partially swizzled pointer. However, the remains of
the chain will continue to exist and many of the pointers in it may be still be swizzled
through the partial chains referenced by the translation table entry and the pointer being
swizzled. Also, future dereferences of pointers in a partial chain will permit yet more
pointers to be found and swizzled at low cost. It is possible to maintain intact pointer
chains by requiring that code doing pointer assignments perform list insertion and deletion
as part of the assignment process. We consider that this would be too expensive for the
marginal gains.

4.2. Deswizzling

Virtual memory addresses may only be interpreted inside the address space in which they
were created. Therefore the only meaningful addresses that can be used in pages outside
of a virtual address space are PIDs. The necessity to make copies of pages outside of a
virtual address space arises for two reasons:

• to send pages to a process resident within another virtual address space,
• to send pages back to the persistent store.

This requires the pointers within the page copies to be fully deswizzled (PIDs). This is
performed by following the reference to the translation table entry contained within the
pointer and overwriting the pointer with the PID found in the table.
The management of pages within the virtual address space involves the allocation and
control of two resources:

• physical memory, and
• virtual memory.

Physical memory is a finite resource and will rarely be large enough to hold the working
set of pages used by a program. Pages will be removed from physical memory either to
make room for another page needed for computation to continue, or when data is shared
between separate virtual address spaces. When a page is removed from physical memory,
pointers within it must be deswizzled as described above. A page which is not resident in
physical memory may still reside within the virtual address space of the process.

In a persistent operating system [10] the integration of swap space and persistent
storage may give considerable advantages. We will therefore assume that pages removed
from physical memory are either returned to the persistent store or to another persistent
application.

Virtual memory is also a finite resource. Programs that use very large data sets or
those which are very long lived may eventually exhaust virtual memory. Indeed, the
architecture described in this paper is designed to support such programs. When virtual
memory is exhausted, virtual address ranges require reuse in a manner analogous to the
reuse of physical memory. It should be noted that both Wilson’s scheme and the hybrid
design require that virtual memory addresses be reallocated in such a way that the
reallocated ranges do not divide objects.

When a page is removed from the virtual address space, it must also be removed
from physical memory if resident. At this time all references to that page from within
virtual memory must also be removed. This involves ensuring that all references to
objects in the removed page are partially swizzled pointers by deswizzling the appropriate
fully swizzled pointers.

4.2.1 Deswizzling in Wilson’s Scheme

Wilson proposes a scheme to reclaim pages of virtual memory that works as follows.
Initially all of virtual memory is protected from access. Whenever the mutator attempts to
access a page that is protected from access two actions are taken. First, the page
protection is removed. Next, the page is scanned to find all pointers on it and any
referenced pages are marked. Finally the mutator is resumed. As the mutator executes it
constructs a new working set of pages. At some time in the future any page that is neither
open for access nor marked as referenced may be reused. Once page reuse has begun it is
possible that when a protected page is scanned a pointer to a reused page will be
encountered. When this occurs a new range of virtual addresses must be allocated and the
pointer changed to refer to this new location. This process is similar to the greedy
allocation that occurs when a page is retrieved from the persistent store described earlier.

4.2.2 Deswizzling in the Hybrid Scheme

The hybrid scheme provides greater flexibility in address space reuse. Since partially
swizzled pointers do not directly reference virtual addresses, fully swizzled pointers may
be replaced with partially swizzled. This allows address ranges within virtual memory to

be reused whilst references to objects that once resided within those addresses remain in
virtual memory. In the hybrid scheme page reuse occurs as follows.

During normal execution a candidate set of page ranges can be identified for reuse,
using conventional LRU techniques. This may be integrated with the LRU scan used to
manage allocation and reuse of physical memory. When it becomes necessary to reuse
virtual address ranges, access to virtual memory is denied as in Wilson’s scheme.
However, in the hybrid scheme reuse can proceed immediately. Those address ranges
considered as candidates for reuse may be reused as soon as their contents are secure in
the stable store. An exception will occur on the first access to a page since reuse started,
again the exception handler scans the page in the same manner as Wilson’s scheme.
However rather than allocating new address ranges for those pointers that reference
reused addresses, pointers to objects within reused address ranges may be replaced with
their partially swizzled form. Thus partially swizzled pointers serve two purposes: to
permit virtual memory to be deallocated at low cost and as a mechanism to avoid greedy
allocation of virtual memory.

In addition to the mutator causing pointers on pages to be deswizzled, it is
advantageous to provide a parallel sweep of virtual memory that eagerly scans pages and
deswizzles pointers. Once all virtual memory has been swept, all allocated pages will be
open for access and no direct references to deallocated pages will exist. The mutator can
attempt to reference a page that is tagged for reuse by dereferencing through a partially
swizzled pointer. If this page has not been reused and is still resident in memory it need
only be removed from the reuse set and scanned for pointers. The partially swizzled
pointer is fully swizzled and execution continues. It is not necessary to reuse all address
ranges tagged for reuse. At any time ranges can be removed from the reuse set and
references to objects within them left intact.

The ability to choose the number of pages to be reused ahead of time, which pointers
to deswizzle, and the rate of progress of the parallel sweep provide useful tuning
parameters to the memory management system. Setting the system to label all pages as
reused, and to untag any referenced pages upon page scan effectively reduces to Wilson’s
scheme. Labelling all pages as reused, and deswizzling all pointers encountered
effectively frees the entire virtual address space. A complete spectrum of choices is
available within these extremes.

4.3. Elaboration of detail

The above description glosses over a large number of important details namely:
• finding object addresses,
• pointer comparisons,
• large objects,
• management of the translation table,
• creation of new objects,
• exception handlers, and
• access to the translation table.

We will now proceed to describe these implementation details.

4.3.1. Finding object addresses

When an access is attempted through a partially swizzled pointer three actions are
required:

1. find the object to which access is being attempted,
2. overwrite the pointer with the virtual address of the referend, and finally,
3. update the saved state of the executing code’s register set to refer to the

object.

None of these activities is straightforward, and requires detailed study at the basic level of
the machine's operation. Consider the code fragment shown in Figure 8 below, a type
tuple is declared to be a record and an instance of that type is created. Later in the
program a field of an instance of type tuple is dereferenced.

type tuple is record(a,b,c,e,f,g : integer)
let an_instance := tuple(1,2,3,4,5,6)
.
write an_instance.f

Figure 8: Dereferencing a field of a record.

Consider the implementation of the program above. The pointer denoted by an_instance
may be partially or fully swizzled; an aim of the architecture is to avoid user code having
to test which of these it is. Fully swizzled pointers do not present a problem: the
dereference is performed without incident. A partially swizzled pointer will result in an
attempt to access an address within the translation table and this will cause an access fault.
However, the address that causes the fault will not be the address of an_instance's
translation table entry since an offset will have been added to the object pointer in order to
extract the field. Hence, although an access fault will deliver the address of the fault to the
exception handler, the address will not directly resolve the identity of the required object.
Similar problems occur in the other two phases; the swizzling code must be able to find
and swizzle the object pointer, but ordinarily there is no record of the location of that
pointer. If this swizzle is not performed, the system reduces to a translation per
dereference design.

In the hybrid system, the saved state of the executing thread is repaired by an
exception handler which must therefore be able to determine which machine registers
contain the addresses requiring change. This can be arbitrarily difficult; to make the
problem tractable steps must be taken to ensure that when an object reference is made, it
must be performed in such a way that allows the recovery of the information needed to
complete the swizzle. This requires a specification of the object access process at the
machine code level.

All of the information required will ordinarily pass through the processor during the
execution of a dereference sequence. The difficulty is in keeping track of this information
and making it available to the exception handler. A similar sequence is executed whether
the access is a read or a write. In general a dereference takes place in three steps and is
shown in Figure 9 below:

1. The address of the pointer to the head of the object being referenced is
loaded into a register.

2. Using that address, the address of the object is loaded into a register.

3. The offset within the object is added to the object address and the result
used as the address of the memory access.

For the mechanism described in this paper to work, the only changes required to this
sequence are to ensure that the pointer address is not overwritten after the pointer value is
loaded (which ordinarily is a legal optimisation) and to ensure that the instruction
sequence always uses the same registers for this purpose, allowing the exception handler
to find the necessary addresses.

Address Space

Machine registers

Pointer + Offset

Pointer Value

Pointer Address

Offset

1
2

3

{

Register holds address
of pointer to be
dereferenced.

Pointer refers to
object head.

Accessed field is
object head + offset.

Offset

Figure 9: The three steps in pointer dereference

The result of these restrictions is a scheme in which during a dereference operation two
registers are reserved for particular purposes. Firstly a Pointer Pointer register is loaded
with the address of the pointer to the object being dereferenced. Next the Object Pointer
register is loaded with the value referenced by the Pointer Pointer register. This value is
either the address of the head of the object (for fully swizzled pointers) or the address of a
translation table entry (for partially swizzled pointers). Finally, the offset is added to the
contents of the Object Pointer register (with a single indexed addressing mode instruction)
and the result used as an address to effect the dereference. If the pointer is partially
swizzled an access exception will occur. The exception handler will receive an address
within the translation table, allowing it to distinguish the exception from any others that
may occur. In processing the exception the exception handler places the fully swizzled
value of the pointer in both the location referred to by the Pointer Pointer register and into
the Object Pointer register, then the instruction that caused the exception is restarted. If
the pointer is fully swizzled then the instruction will execute without incident and with no
extra cost. This process is shown in Figures 10 and 11 below. The Pointer Pointer and
Object Pointer registers are only special during the process of a dereference, they are
available for general use at other times.

The mechanism relies on the translation table residing in protected memory and an
exception being raised when access to that memory is attempted. When the offset is
added to the Object Pointer it is possible for a legal memory address to be generated. This

may be avoided if the translation table is positioned in high memory and grows downward
and that the exception mechanism checks for arithmetic overflow during the addition.

Translation TableAddress Space

Machine registers

PID

Address of
exception

Object Pointer

Pointer Pointer

Offset

Offset

Translation Table entry
contains the address of
the page containing the object.

Partially swizzled
pointer refers to TT entry.

Attempted access
causes exception.

Page Offset

PO

Offset within a page of an object
is stored in the top part of
a partially swizzled pointer.

Figure 10: Pointer dereference via a partially swizzled pointer

Translation TableAddress Space

Machine registers

PID

Address of
access

Object Pointer

Pointer Pointer

Offset

Offset

After swizzling the pointer refers
to the actual object. The Table
Address field in the top half of the
pointer refers to the Translation Table
to allow easy unswizzling.

Figure 11: Dereference after the completion of swizzling

The scheme described above is directed at those processor architectures that only support
simple addressing modes and require a number of instructions to carry out a dereference.
Some processors are capable of executing the sequence described above in a single
instruction, on such architectures the exception handler can decode the instruction pointed
to by the saved PC. Such a scheme can be more flexible for two reasons. Firstly it may
use many different addressing modes and secondly, it is not necessary to designate

particular registers since the instruction will indicate unambiguously which registers are
being used and for what purpose. However, the complexity of the exception handler is
higher.

4.3.2. Pointer comparisons

Since a pointer can exist within the system in one of two forms, care must be taken with
pointer comparisons. Pointers can either be partially swizzled in which case they contain
an offset and a reference to their translation table entry, or fully swizzled, in which case
they contain a translation table reference and a pointer to the actual object. These two
forms can be differentiated since the translation table and object area occupy distinct
address ranges. In both formats a reference to a translation table entry, and the page
offset is present, it is therefore enough to compare these values when performing pointer
comparison.

4.3.3. Large Objects

Objects which cross page boundaries and more importantly very large objects which span
a large number of pages require no special treatment. When an object spans more than
one page it is not necessary for the whole object to be resident at one time. However it is
necessary to reserve enough virtual memory to hold the object in a contiguous span so that
it is possible to fault the rest of the object into memory as it is required. This preserves all
the advantages that a demand paged virtual memory space has for sparse access to large
objects.

4.3.4. Management of the translation table

The scheme described uses a translation table similar in format to that used by Wilson.
Whereas translation tables in Wilson’s scheme are of fixed size, only describing pages in
the machine address range, our scheme requires a table that provides entries for every
page that is referenced by pointers within virtual memory. Growth of the translation table
takes the place of greedy allocation of virtual memory in Wilson’s scheme.

The table has two major constraints placed upon its organisation: firstly, translation
table entries are referenced directly by objects, therefore table entries may not move.
Secondly, the action of swizzling pointers requires that it is possible to find entries from
their PID quickly, otherwise the swizzling on page fault becomes a performance
bottleneck.

Since pages are removed from the virtual address space, the translation table will
eventually contain entries for pages which are no referenced from the virtual address
space. By a simple modification to the scan used to deswizzle pointers during reclamation
of virtual address ranges, these stale entries can be garbage collected. Any pointers found
during the scan may be followed and the mark bit set in the referenced translation table
entry. Once the scan has completed, the translation table is scanned and those entries
without a mark bit set may be reclaimed. During this scan partially swizzled pointers for
which the referend is resident may also be swizzled. Thus the reclamation pass through
memory results in all references to resident objects being fully swizzled, stale entries in
the translation table being eliminated and the freeing of virtual memory.

4.3.5. Creation of new objects

Many objects are created during the execution of user code; many of those objects will be
short lived and therefore not require the allocation of a PID. Objects only require a PID
when they become visible outside of the virtual address space in which they were created.
In practice, this means an object that already has a PID acquires a reference to them.

We now describe a scheme whereby the allocation of PIDs is performed at the latest
possible time. Pointers to new objects only contain the object’s address; the field that
would ordinarily refer to the translation table address is set to a sentinel value that
indicates that the object does not yet have a PID allocated. When a page is deswizzled,
pointers to objects without PIDs will be detected. At this time, a PID is allocated and a
translation table entry created.

4.3.6. Exception Handlers

Clearly one of the main performance determinants of this scheme will be the performance
of the exception handling mechanism. Conventional operating systems can provide a
platform with which to prototype a system such as we have described. However they
place a large overhead on the user program, typically over 10,000 machine cycles per
exception. Where the designer of the system has control of the hardware and is able to
define the actions of the exception handler the overhead can be as low as a dozen machine
cycles. The architecture described in this paper is of most benefit in an operating system
designed from scratch to support it.

4.3.7. Access to the translation table.

In the hybrid architecture described in this paper user code is prohibited access to the
translation table whilst the exception handler and page fault handler have full access to it.
This situation is also found in some garbage collection schemes [11] and the solutions are
the same. If the exception and fault handlers are implemented within the kernel they can
make use of the full access accorded the kernel to user address spaces. Alternatively it is
possible to place the translation table within the user's virtual address space but to have a
protected area of the same size at high memory to which all the partially swizzled pointers
refer. When interpreting pointer values during swizzling and deswizzling the offset
between the translation table and the protected area is subtracted from the pointers to
provide the actual address within the translation table. This allows the system to be
implemented without modifying the operating system kernel.

5 . Comparison of the schemes

The following table summarises the main design features and costs of each of the three
schemes described.

• Granularity is the size of the entity which the swizzling scheme manages.
• Code compatibility lists those areas in which specific changes to the code

running on the system must be made.
• Dereference overhead is the extra cost (if any) of performing a dereference

operation.
• Assignment is the size of the data assigned in pointer assignment.
• Object fault overhead lists the main activities that must be performed when a

reference to a non-resident object occurs.

• Recovery of VM lists what actions are required when virtual memory is
exhausted.

• Recovery of Translation Table lists what actions are required when space for the
Translation Table is exhausted.

• VM space allocation lists the entities for which virtual memory must be allocated.
• VM space used lists the entities for which virtual memory is used to hold data.
• Translation Table allocation lists the objects for which an entry in the Translation

Table must be made.
• Deswizzle action compares the costs of deswizzling a pointer.
• Stabilisation Action lists the actions required to stabilise the state of the system to

persistent storage.
• Large object overhead compares the use of virtual memory to hold large objects.
• Sensitivity to exception handler speed compares how performance is affected by

the exception handling mechanism.
• Overall VM space compares the use of virtual memory of the systems.

Feature/System CPOMS Wilson Hybrid
Granularity Object Page Page

Code compatibility Software check per
dereference

No implications Use of defined sequence
for dereference, and
pointer comparison

Dereference
overhead

Software check per
dereference, possible
swizzle

None Usually none, possible
swizzle

Assignment Virtual address Virtual address Twice virtual address

Object fault
overhead

Copy single object from
store

Copy page from store
and swizzle internal
pointers. For each new
referenced page,
interrogate store and
allocate memory

Copy page from store,
swizzle internal pointers
and follow pointer
chains if used

Recovery of VM
space

Rebuild system if VM
exhausted

Invalidate VM and
rebuild

Invalidate VM and
rebuild

Recovery of
translation table

Rebuild system if
PIDLAM exhausted

Fixed size table Garbage collect
translation table

VM space
allocation

Accessed objects All referenced pages Accessed pages

VM space used Accessed objects Accessed pages Accessed pages

Translation table
allocation

Accessed objects Entry per page of VM Entry per page of VM

Deswizzle action Follow pointers to PID
stored with object

Search translation table
for object entry

Follow pointer to
translation table

Stabilisation action Per modified object:
Deswizzle pointers,
write object to store

Per modified page:
Deswizzle pointers,
write page to store

Per modified page:
Deswizzle pointers,
write page to store

Large object
overhead

Entire object kept in
virtual memory

Accessed pages kept in
virtual memory

Accessed pages kept in
virtual memory

Sensitivity to
exception handler
speed

Little impact Slight impact High, less when swizzle
chain is used

Overall VM space Lowest Highest Low

Each of the three systems described has particular strengths. The CPOMS design is the
most parsimonious in the use of virtual memory, but also the one with the highest run
time overhead. Wilson’s design has the lowest running costs when not page faulting, but
the highest page fault costs. If the amount of virtual memory used becomes large
Wilson’s scheme must incur the cost of rebuilding the working set and expense of an
extra translation table. Hence Wilson’s design is probably best suited to environments
small enough for it never to be necessary to recover allocated virtual memory.
Applications with shorter lifetimes and smaller data bases would be most suitable. The
hybrid scheme has running costs similar to that of Wilson's design, has lower page fault
costs, and is able to recover virtual memory and translation table space more easily. This
is at the cost of forcing the use of a special dereference instruction sequence, and double
length pointer assignments.

Pointer swizzling may be characterised by the time at which: pointers to be swizzled
are encountered, translation table entries are allocated, memory for the object is allocated,
an object is loaded from the store, the initial pointer that refers to the object is swizzled.
Further characterisations are: whether other instances of the pointer to the same object are
swizzled at the same time, and whether pointers within objects newly faulted into memory
are swizzled to refer to resident objects. Each of these activities may be performed either
eagerly or lazily, the following table summarises the characteristics of the three systems
described.

Feature/System CPOMS Wilson Hybrid
Locate pointers Lazy Eager Eager

Translation Table
allocation

Lazy Eager Eager

Allocation of VM Lazy Eager Lazy

Object Loading Lazy Lazy Lazy

Swizzle to VM
Address

Lazy Eager Lazy

Swizzle other
pointer instances

Lazy Eager Eager/Lazy

Swizzle new
pointers

Lazy Eager Eager

6 . Conclusions

This paper describes three architectures capable of supporting arbitrarily large persistent
identifiers and large object stores using conventional hardware. Two of these represent
opposite ends of a design spectrum; the third is a new hybrid architecture which embodies
useful attributes of the other schemes and which has some useful attributes in its own
right. The hybrid architecture maintains the advantages of lazy swizzling found in the
CPOMS design namely only allocating space for objects, and fetching objects, when they
are referenced. The hybrid design also maintains the advantages of page based designs,
requiring no runtime checking of pointers and allowing sparse references to large objects
without the need to copy entire objects into virtual memory. A design for machine level
dereferencing has been presented that allows exception handling code to swizzle pointers

on demand without requiring checking by user code. Many of the techniques described in
this paper may be of benefit in other designs.

Acknowledgments

This paper benefits from discussions with Malcolm Atkinson, Ron Morrison, John
Rosenberg, Sándor (Alex) Farkas and Kevin Maciunas. For those discussions we thank
them. We would also like to thank Tracy Lo Basso, Bett Koch and Andrew (Noid)
Cagney for their comments on an earlier draft of this paper. This paper was completed
despite the arrival of Graham Stewart Dearle on 3/7/92. This work is supported by ARC
Grant number A49130439.

References

1. "PS-algol Abstract Machine Manual", Universities of Glasgow and St Andrews,
PPRR-11-85, 1985.

2. "PS-algol Reference Manual - fourth edition", University of Glasgow and St
Andrews, Persistent Programming Research Report 12/88, 1988.

3. Atkinson, M. P., Bailey, P. J., Chisholm, K. J., Cockshott, W. P. and Morrison,
R. "An Approach to Persistent Programming", The Computer Journal, vol 26, 4, pp.
360 - 365, 1983.

4. Atkinson, M. P., Bailey, P. J., Cockshott, W. P., Chisholm, K. J. and Morrison,
R. "POMS: A Persistent Object Management System", Software Practice and
Experience, vol 14, 1, pp. 49-71, 1984.

5. Atkinson, M. P., Chisholm, K. J. and Cockshott, W. P. "PS-algol: An Algol with a
Persistent Heap", ACM SIGPLAN Notices, vol 17, 7, pp. 24-31, 1981.

6. Brown, A. L. "Persistent Object Stores", Ph.D Thesis, Universities of St. Andrews
and Glasgow, 1988.

7. Brown, A. L. and Cockshott, W. P. "The CPOMS Persistent Object Management
System", Universities of Glasgow and St Andrews, PPRR-13, 1985.

8. Cockshott, W. P., Atkinson, M. P., Chisholm, K. J., Bailey, P. J. and Morrison,
R. "POMS: A Persistent Object Management System", Software Practice and
Experience, vol 14, 1, 1984.

9. Cockshott, W. P. and Foulk, P. W. "Implementing 128 Bit Persistent Addresses on
80x86 Processors", Proceedings of the International Workshop on Computer
Architectures to Support Security and Persistence of Information, Bremen, West
Germany, ed J. Rosenberg and J. L. Keedy, Springer-Verlag and British Computer
Society, pp. 123-136, 1990.

10. Dearle, A., Rosenberg, J., Henskens, F. A., Vaughan, F. A. and Maciunas, K. J.
"An Examination of Operating System Support for Persistent Object Systems", 25th
Hawaii International Conference on System Sciences, vol 1, IEEE Computer Society
Press, Poipu Beach, Kauaii, pp. 779-789, 1992.

11. Ellis, J., Li, K. and Appel, A. "Real-time Concurrent Collection on Stock
Multiprocessors", DEC SRC, 25, 1988.

12. Kaehler, T. and Krasner, G. "LOOM – large object-oriented memory for Smalltalk-
80", Smalltalk-80: Bits of History, Words of Advice, ed G. Krasner, Addison-
Wesley, pp. 251-270, 1983.

13. Koch, B., Schunke, T., Dearle, A., Vaughan, F., Marlin, C., Fazakerley, R. and
Barter, C. "Cache Coherence and Storage Management in a Persistent Object
System", Proceedings, The Fourth International Workshop on Persistent Object
Systems, Marthas Vineyard, ed A. Dearle, G. Shaw and S. Zdonik, Morgan
Kaufmann, pp. 99-109, 1990.

14. Kolodner, E., Liskov, B. and Weihl, W. "Atomic Garbage Collection: Managing a
Stable Heap", Proceedingss of the 1989 ACM SIGMOD International Conference on
the Management of Data, pp. 15-25, 1989.

15. Lamb, C., Landis, G., Orenstein, J. and Weinreb, D. "The Objectstore Database
System", CACM, vol 34, 10, pp. 50-63, 1991.

16. Moss, J. E. B. "Working with Persistent Objects: To Swizzle or Not to Swizzle",
COINS, University of Massachusetts, 90-38, 1990.

17. Rosenberg, J. "Architectural Support for Persistent Object Systems", International
Workshop on Object-Orientation in Operating Systems, IEEE Computer Society
Press, Xerox-Parc, California, 1991.

18. Wilson, P. "Pointer Swizzling at Page Fault Time: Efficiently Supporting Huge
Address Spaces on Standard Hardware", ACM Computer Architecture News, June,
pp. 6-13, 1991.

